US20010048958A1 - Conductance based control system - Google Patents
Conductance based control system Download PDFInfo
- Publication number
- US20010048958A1 US20010048958A1 US09/740,213 US74021300A US2001048958A1 US 20010048958 A1 US20010048958 A1 US 20010048958A1 US 74021300 A US74021300 A US 74021300A US 2001048958 A1 US2001048958 A1 US 2001048958A1
- Authority
- US
- United States
- Prior art keywords
- concentrate
- substance
- dispenser
- controllable
- dilution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/08—Details
- B67D1/12—Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
- B67D1/1284—Ratio control
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J31/00—Apparatus for making beverages
- A47J31/40—Beverage-making apparatus with dispensing means for adding a measured quantity of ingredients, e.g. coffee, water, sugar, cocoa, milk, tea
- A47J31/402—Liquid dosing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/0042—Details of specific parts of the dispensers
- B67D1/0043—Mixing devices for liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67D—DISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
- B67D1/00—Apparatus or devices for dispensing beverages on draught
- B67D1/0042—Details of specific parts of the dispensers
- B67D1/0043—Mixing devices for liquids
- B67D1/0044—Mixing devices for liquids for mixing inside the dispensing nozzle
- B67D1/0046—Mixing chambers
Definitions
- the present invention relates to a novel system for controlling the mixture of concentrate with a dilution substance in a beverage preparation system.
- the invention also includes the method and apparatus of the system which achieves the control of the mixing of concentrate in a beverage preparation system.
- beverage preparation systems which use a concentrate substance to prepare a beverage.
- the concentrate substance is diluted with another substance to prepare the desired resultant beverage.
- coffee and juice concentrate systems which use a prepared coffee or juice concentrate.
- the coffee concentrate might be provided in a liquid form either at room temperature or, for example, in a frozen state.
- the packaged concentrate in this form might be referred to as a “bag-in-box” packaged concentrate, and the system dispensing such concentrate might be referred to as a “bag-in-box” system.
- a concentrate retained in a container is connected to a system which dilutes the concentrate with a predetermined quantity of water.
- these systems use heated water so as to produce a heated coffee beverage.
- Such systems meter out a predetermined quantity of the concentrate to be mixed with the predetermined quantity of dilution water.
- Such prior art systems also extend to powdered or solid beverage concentrate systems.
- powdered beverage substances such as coffee, juices or other beverages can be diluted either to produce a single cup serving, larger volumes, or to refill a common supply tank.
- the powdered beverage substance is mixed with the dilution water and dispensed into the corresponding container.
- a predetermined volume, weight or quantity of powder is dispensed and mixes the material with a predetermined quantity of water.
- the dilution system of the prior art can extend to systems which utilize a freshly brewed concentrate such as taught in U.S. Pat. No. 4,757,752 to Robins et al.
- a tea concentrate is brewed and retained at a desired temperature range.
- the tea concentrate is then diluted on demand.
- the concentrate is diluted based on volume settings.
- the present invention relates to the system, apparatus, and method for controllably mixing a concentrate with a dilution substance using closed-loop feedback in order to improve the resultant substance.
- the objective of the present invention is for use in combination with a concentrate based beverage dispensing system which monitors the conductivity of the diluted substance and provides feedback to adjust the dispensing of the concentrate.
- Another object of the present invention is to provide a system for dispensing beverages which uses closed-loop feedback based on the conductivity of the diluted beverage to adjust the dispensing of concentrate.
- Still a further object of the present invention is to provide a method of mixing a beverage concentrate with a dilution substance to produce a resultant beverage in which the conductance of the beverage is monitored for adjusting the dispensing of concentrate.
- the present invention discloses a system, apparatus and method for sensing the conductivity of a diluted substance to provide feedback information for adjusting dispensing of a concentrate used to produce the resultant or diluted substance.
- the present invention also includes a system for dispensing beverages using the conductivity sensor such that the system controllably adjusts the dispensing of concentrate to maintain the resultant beverage within a desired concentration range based on conductivity sensing.
- the present invention also includes the method for sensing the conductivity of the resultant beverage and adjusting the dispensing of concentrate in response to the conductivity of the resultant beverage.
- the invention includes a conductivity sensor coupled to a dispensing portion downstream of the introduction of concentrate into the dilution liquid. The conductivity of the resultant mixed beverage is measured and the dispensing of the coffee concentrate is adjusted to maintain the resultant beverage within a desired conductivity range.
- FIG. 1 is a diagrammatic illustration of the conductivity sensor and system which incorporates the features of the invention
- FIG. 2 is a schematic of a sensor circuit used to sense the conductivity of the resultant beverage
- FIG. 3 is a diagrammatic illustration of an example of a concentrate system of the invention.
- FIG. 4 is a chart of signal waveforms of conductance sensor operation.
- the present invention provides a novel system, apparatus and method 20 for controllably combining a concentrate substance 22 with a dilution substance 24 such as heated water to produce a resultant beverage 26 .
- the system 20 is shown diagrammatically and includes a novel dilution assembly 28 using a novel conductance sensor 30 .
- the dilution assembly 28 is coupled to a concentrate dispenser 32 and a dilution substance dispenser 34 .
- the concentrate dispensers 32 dispense a liquid or solid concentrate, as well as any other form of concentrate which might be applicable in the preparation of food substances.
- concentrate is referred to in this application, it is envisioned that other substances may be used and the present invention broadly includes such other substances, variations, alternates, equivalents, substitutes, and/or combinations.
- a base may be used and reconstituted with water.
- the base may or may not be concentrated, it is combined with water to produce the resultant soup.
- the invention may be used to prepare substances which are concentrated in order to prepare the substance in a more useful form.
- a chocolate powder may be prepared using the invention to produce a liquid chocolate concentrate in a concentration which may be preferable for mixing with other substances such as coffee.
- the liquid chocolate may be used to mix with coffee and avoid potential powder mixing problems such as clumping.
- the description is generally directed to the preparation of a beverage and specifically described as the preparation of coffee.
- other foods might also be prepared using this system and its structures and such systems are fully included within the scope of the present invention.
- description in the present application is directed to a diluted substance dispenser 34 which uses hot water.
- other liquid substances may be used to dilute or mix with the concentrate such as coffee, tea, carbonated water, milk products, or other substances.
- the present application also includes other devices which may be used to combine the concentrate 22 and the dilution substance 24 . For example, mechanical agitators, heaters, or coolers should be fully considered as contemplated in the present invention.
- an interface 36 is provided in the system 20 .
- the interface 36 may be as uncomplicated as on/off switches or controls or may involve detailed computer based user-interface selections. Such user-interface selections may involve the user inputting specific criteria about the desired resultant food substance, may involve a memory or recognition device which associates information regarding the user and the food substance or a combination of such devices. Regardless of its degree of complexity, the interface 36 is coupled to a controller 38 which controls the system in response to inputs from the interface 36 .
- the controller 38 is coupled to the dilution substance dispenser 34 , concentrate dispenser 32 , and the conductance sensor 30 .
- a signal is transmitted via line 40 to the controller 38 .
- the controller 38 then responds to the signal 40 and controllably operates the dilution substance dispenser 34 (via line 41 ) and concentrate dispenser 32 (via line 43 ) to dispense a pre-determined quantity of dilution substance 24 and concentrate 22 into the dilution assembly 28 .
- the conductance sensor 30 is coupled to the chamber, generally positioned at least slightly downstream from the initial mixing of the concentrate 22 and the dilution substance 24 .
- the conductance sensor 30 is positioned downstream in order to allow at least some mixing of the concentrate 22 and the dilution substance 24 before it is monitored for conductivity.
- the conductance sensor 30 includes a conductivity sensing circuit 48 which includes two at least slightly spaced-apart contacts or probes in the form of a first 50 and second 52 generally cylindrical electrodes.
- the electrodes 50 , 52 are spaced apart by a non-conductive or dielectric portion 54 such as a silicone tube.
- the conductivity sensing circuit 48 is coupled to the associated sensing circuit 48 of the controller 38 by line 56 . As shown in FIG.
- a spacer 57 of a dielectric material is provided to space apart the electrodes 50 , 52 .
- Conductive threaded studs 59 , 61 are provided on the electrodes 50 , 52 and are attached to the spacer 57 with nuts 63 , 65 .
- Lines 56 a , 56 b are attached to the conductive studs 59 , 61 .
- the electrodes 50 , 52 may be in any of a variety of suitable forms and are not limited to the generally cylindrical electrode configuration as illustrated.
- the electrodes may be in the form of probes extending into the stream or areas contacted by some portion of the stream such as a conductive area on the inside of the structure containing the stream.
- the conductivity sensing circuit 48 provides conductance measurements 56 of the resultant beverage during the dispensing of the desired quantity of beverage.
- the conductance of the resultant beverage can be used to adjust the dispensing of the concentrate 22 and the dilution substance 24 from the corresponding dispensers ( 32 , 34 ) to maintain the conductance of the resultant beverage 26 within a desired range.
- the signal 56 is processed by the controller 38 which then makes adjustments to the dispensing from the dispensers 34 , 32 throughout the beverage production cycle.
- the adjustment of the concentrate dispensing throughout the beverage dispensing cycle helps to increase the consistency, repeatability, uniformity and accuracy of the concentration of the concentrate in the dilution substance.
- prior art devices typically dispense a volume or time-metered quantity of concentrate and dilution substance. If there were some deviation in either of these substances from some standard level or range of acceptable levels, the resultant beverage would be outside of the desired acceptable level. Moreover, if the tolerances of acceptable levels of dilution substance of concentrate became cumulative, such that independently each component was within its desired range but cumulatively the combination was outside the desired range, there would be an effect on the resultant beverage. The effect on the resultant beverage would be manifested in the form of changes in the flavor characteristics and flavor profile. The change in these characteristics results from increased characteristic components in the concentrate as well as the dilution substance.
- This closed-loop system shows improved performance compared to prior art, from the standpoint of the limitations of prior “open-loop” systems that merely dispense for a fixed period of time from the concentrate and dilution (hot water) channels.
- Such prior art systems yield varying finished-beverage results when: the viscosity of the concentrate is high and variable enough that flow rate through the pumping means cannot be precisely predicted from run-time alone; the dilution channel flow is based on gravity flow from a reservoir with varying water level, thus varying flow rate; or the concentration of flavor components in the beverage concentrate is not consistent over time, thus a fixed volumetric dilution is not adequate to ensure consistent finished-beverage flavor.
- control of both substance dispensers 34 , 32 may be achieved using the present system 20
- precise control of the dilution substance dispenser 34 may not be necessary when only water is being dispensed to dilute a beverage concentrate 22 such as coffee concentrate.
- a time-metered or volume-metered quantity of heated water may be dispensed from the dispenser 34 and adjustment to the conductivity of the resultant beverage 26 being controlled by controlling the concentrate dispenser 32 .
- the closed-loop system of the present invention improves the consistency of the resultant beverage 26 by more accurately controlling the dispensing of concentrate 22 into the hot water stream 24 .
- the conductance sensing circuit 48 and controller 38 calculate the conductance to determine the concentration of the resultant beverage 26 and provide controlled variation of the dispensing rate of the concentrate 22 into the blending chamber 46 . This requires that the concentrate dispenser 32 is adjustably controllable.
- a concentrate dispenser 32 is shown diagrammatically employing elements also disclosed in the above referenced application.
- the dispenser 32 includes a reservoir 58 coupled to a pump 60 coupled to a gating device 62 .
- the pump 60 in a preferred embodiment, a peristaltic pump in accordance with the teachings of the above referenced application, draws concentrate from the reservoir 58 .
- the concentrate is advanced from the pump 60 to the gating device 62 .
- the gating device 62 is controllably operated to more precisely control the flow from the pump 60 .
- a precise quantity of concentrate can be dispensed from the concentrate dispenser 32 through the conduit 42 communicating with the blending chamber 46 .
- dispensing devices may require only one control line with the controller, two controlled signals may be required for the embodiment of the dispenser 32 as shown in FIG. 3.
- independent control of the pump 60 and the gating device 62 may provide more accurate control of the dispenser 32 .
- the system monitors conductance of the concentrate “on the fly” and allows the adjusting of the variable speed pump 60 and the gating device 62 to precisely control the amount of concentrate injected into the dilution stream.
- the present invention helps to adjust the system to assure consistent blend strength since the conductivity of the beverage is related to the blend strength.
- the concentrate in combination with the dilution water 24 is measurably more conductive than the water prior to mixing with concentrate.
- Another benefit of using the dispenser 32 as shown in FIG. 3 is that the gating device tends to reduce or eliminate the “pulsing” of liquid through the conduit 42 thereby providing a more uniform flow. This will increase the uniformity of the mixture with the heated water and dispensing of a consistent beverage from the exit port 64 of the dilution assembly 28 . This reinforces and enhances the visual characteristics of the brewed beverage to the consumer.
- the conductivity circuit 48 senses the conductance of various substances and can be adjusted for the type of substance being dispensed.
- the conductance reading or measurement is used as a characteristic of the concentrate in the resultant beverage 26 .
- the conductivity measurement is related to the caffeine, acid, and solids (total dissolved solids) in the coffee concentrate.
- the conductance measurement is related to the acids in the juice.
- the system can be adjusted based on the type of concentrate used in the characteristics of the concentrate. Generally, this system relies on the ionic molecules in the particular concentrate as conductors.
- a range of acceptable levels of conductance can be set for a particular type of beverage.
- concentration concentration
- the predetermined range and the variability of the concentrate injection into the dilution stream 24 helps accommodate variations in batches of concentrate regardless of whether the concentrate is in a prepared liquid form, fresh prepared liquid form, powdered form, or other form. While the variability of the substance used to prepare the concentrate may change from batch to batch or the processing techniques may vary slightly based on manufacturing tolerances of the concentrate, the adjustments resulting from the present system helps assure a consistent resultant beverage 26 .
- the present system 20 accommodates ranges for several variables.
- the system can be adjusted to take into account the temperature of the substance.
- conductivity is generally consistent at elevated temperatures whereas conductivity tends to be reduced with a decrease in temperature.
- a control can be provided on the controller unit 38 or the conductivity circuit 48 to adjust the range upwardly or downwardly. This may be used to adjust the system for regional tastes, for example, to make a batch of coffee stronger or weaker. However, the control may also be limited to a specific desired range while still providing adjustment within that range upwardly or downwardly.
- the circuit 48 senses AC conductance. AC conductance is used in order to prevent plating of the molecules on the electrodes 50 , 52 . Also, a triac is used to change energy to the solenoid to control the gating device 62 to control the flow therethrough.
- the conductance sensor 30 can be used to sense an empty dispenser 32 condition. For example, if the sensor 30 senses a dramatic change in conductance, this would tend to indicate either the absence of concentrate or dilution liquid in the dispenser 32 or a blockage preventing concentrate 22 or dilution liquid from entering the blending chamber 46 . In either situation, this condition can be identified to the user whereby troubleshooting can occur to solve the problem. Furthermore, in a highly automated system, the low or no concentrate signal sensed by the sensor 30 can be used to initiate a refill cycle whereby concentrate stock can be dispensed from a corresponding brewer 68 coupled to the controller 38 . This might be in the very basic form as shown in the Robins et al. patent mentioned in the Background section of this application.
- the micro controller 72 outputs a square wave which makes position transition at t 1 .
- the analog to digital input voltage 74 fed to the analog to digital converter 76 is read at t 2 .
- the conductance of the portion of the resultant beverage in the sensing chamber 78 at a given time interval is related to the analog to digital reading. The conductance is detected and the measurement is used in determining whether to accelerate or decelerate the variable speed pump and gating device 60 , 62 used in the dispenser 32 . It should be noted that the average current is zero in order to eliminate buildup on the electrodes 50 , 52 .
- the lower sensing electrode 52 is generally connected to circuit ground and earth ground such that any external surface contacted by the delivered beverage will not affect the conductance reading of the sensor.
- the effective parallel conductance of the concentrate line 42 is not significant due to its length and small cross-section; the effective parallel conductance of the water from line 44 is not significant due to the relatively low conductance of water. This is consistent with the use of AC in the system to prevent plating.
- diodes 80 , 82 are provided to protect the gate 84 and input to the analog to digital converter.
- the schematic of FIG. 2 and examples of wave forms in FIG. 4 show how the microcontroller 72 and A/D converter can rapidly determine a conductance reading with no DC current through the sensor. The reading or measurement is used, for example, to determine the concentration of coffee components in a blended beverage.
- the measured conductivity is based on the peak reading among several readings taken over an interval which includes individual A/D readings at consecutive “t 2 ” events; this further ensures that the occasional air bubble will not introduce confusing control responses.
- control algorithm implements an integrating response with variable gain, such that the rate at which the concentrate dispenser's drive responds to a measured error in conductivity is set to not over-react to normal variations in measured conductivity, such as might occur with the introduction of an occasional air bubble into the sensing chamber.
- the user can adjust the delivered beverage strength with a simple control (e.g. rotary control knob) connected to the controller which adjusts the target to which the closed-loop control adjusts average conductance readings.
- a simple control e.g. rotary control knob
- the dilution assembly 28 includes the generally cylindrical electrodes 50 , 52 .
- the electrodes are also formed in a reduced diameter or necked-shape so as to generate a degree of mixing turbulence in the blending chamber 46 as the hot water 24 and concentrate 42 are injected therein.
- the tapered section 50 tends to inhibit the introduction of air bubbles into the sensing chamber between 50 and 52 , which would have confounded the accurate sensing of the conductance of the blended liquid beverage.
- the turbulence restricts the outflow of the blended beverage through the exit port 64 . This produces a degree of buildup in the blending chamber 46 .
- the mixing and blending of the concentrate with the water helps assure that it is thoroughly mixed.
- the controller 38 is programmed with a brief delay (for example, one second) when the dispensing cycle is initiated. The brief delay insures that the sensing chamber 78 is full of liquid before measurements are taken. This helps to assure that the system does not overreact to the initial, perhaps inconsistent, mixture of beverage which is used to fill the sensing chamber 78 .
- a columnating device 84 is provided in the electrode 52 proximate to the exit port 64 .
- the columnating device 84 helps to reduce the swirling and turbulence which might otherwise be present at the exit port 64 . By columnating and directing the flow in a generally vertical direction, the potential for splashing at the exit port 64 is minimized or prevented.
- the columnating device 84 as shown in FIG. 1 is generally multi-vaned device. It should be noted that a single blade device such as in taught in U.S. Pat. No. 5,423,245 issued Jun. 13, 1995 could be used for this purpose as well.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Devices For Dispensing Beverages (AREA)
- Tea And Coffee (AREA)
- Gasification And Melting Of Waste (AREA)
- Flow Control (AREA)
- Vehicle Body Suspensions (AREA)
- Control Of Non-Electrical Variables (AREA)
- Apparatus For Making Beverages (AREA)
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Die Bonding (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Application Serial No. 60/172,495 filed Dec. 17, 1999 which is expressly incorporated herein by reference.
- The present invention relates to a novel system for controlling the mixture of concentrate with a dilution substance in a beverage preparation system. The invention also includes the method and apparatus of the system which achieves the control of the mixing of concentrate in a beverage preparation system.
- By way of review, there are numerous beverage preparation systems which use a concentrate substance to prepare a beverage. Typically, the concentrate substance is diluted with another substance to prepare the desired resultant beverage. More specifically, there are coffee and juice concentrate systems which use a prepared coffee or juice concentrate. We will refer to coffee for the present discussion with the understanding that other beverages, such as juice, are included in the discussion. The coffee concentrate might be provided in a liquid form either at room temperature or, for example, in a frozen state. The packaged concentrate in this form might be referred to as a “bag-in-box” packaged concentrate, and the system dispensing such concentrate might be referred to as a “bag-in-box” system. In such a system, a concentrate retained in a container is connected to a system which dilutes the concentrate with a predetermined quantity of water. Typically, when making coffee, these systems use heated water so as to produce a heated coffee beverage. Such systems meter out a predetermined quantity of the concentrate to be mixed with the predetermined quantity of dilution water.
- Such prior art systems also extend to powdered or solid beverage concentrate systems. In this regard, powdered beverage substances such as coffee, juices or other beverages can be diluted either to produce a single cup serving, larger volumes, or to refill a common supply tank. In these systems, the powdered beverage substance is mixed with the dilution water and dispensed into the corresponding container. In such systems, a predetermined volume, weight or quantity of powder is dispensed and mixes the material with a predetermined quantity of water. The dilution system of the prior art can extend to systems which utilize a freshly brewed concentrate such as taught in U.S. Pat. No. 4,757,752 to Robins et al. In the Robins' device, a tea concentrate is brewed and retained at a desired temperature range. The tea concentrate is then diluted on demand. In the system of Robins, the concentrate is diluted based on volume settings.
- It is expected that there are other beverage and substance dispensing and diluting systems which are similar to or identical to that as described hereinabove. It is also believed that many of these systems would greatly benefit from the present invention which provides improved accuracy, consistency, repeatably, and uniformity as provided by the present invention.
- The present invention relates to the system, apparatus, and method for controllably mixing a concentrate with a dilution substance using closed-loop feedback in order to improve the resultant substance.
- More specifically, the objective of the present invention is for use in combination with a concentrate based beverage dispensing system which monitors the conductivity of the diluted substance and provides feedback to adjust the dispensing of the concentrate.
- Another object of the present invention is to provide a system for dispensing beverages which uses closed-loop feedback based on the conductivity of the diluted beverage to adjust the dispensing of concentrate.
- Still a further object of the present invention is to provide a method of mixing a beverage concentrate with a dilution substance to produce a resultant beverage in which the conductance of the beverage is monitored for adjusting the dispensing of concentrate.
- Briefly, and in accordance with the foregoing, the present invention discloses a system, apparatus and method for sensing the conductivity of a diluted substance to provide feedback information for adjusting dispensing of a concentrate used to produce the resultant or diluted substance. The present invention also includes a system for dispensing beverages using the conductivity sensor such that the system controllably adjusts the dispensing of concentrate to maintain the resultant beverage within a desired concentration range based on conductivity sensing. The present invention also includes the method for sensing the conductivity of the resultant beverage and adjusting the dispensing of concentrate in response to the conductivity of the resultant beverage. The invention includes a conductivity sensor coupled to a dispensing portion downstream of the introduction of concentrate into the dilution liquid. The conductivity of the resultant mixed beverage is measured and the dispensing of the coffee concentrate is adjusted to maintain the resultant beverage within a desired conductivity range.
- The organization and manner of the structure and operation of the invention, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in connection with the accompanying drawings, wherein like reference numerals identify like elements in which:
- FIG. 1 is a diagrammatic illustration of the conductivity sensor and system which incorporates the features of the invention;
- FIG. 2 is a schematic of a sensor circuit used to sense the conductivity of the resultant beverage;
- FIG. 3 is a diagrammatic illustration of an example of a concentrate system of the invention; and
- FIG. 4 is a chart of signal waveforms of conductance sensor operation.
- While the invention may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, specific embodiments with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated and described herein.
- The present invention provides a novel system, apparatus and
method 20 for controllably combining aconcentrate substance 22 with adilution substance 24 such as heated water to produce aresultant beverage 26. With reference to FIG. 1, thesystem 20 is shown diagrammatically and includes anovel dilution assembly 28 using anovel conductance sensor 30. Thedilution assembly 28 is coupled to aconcentrate dispenser 32 and adilution substance dispenser 34. In a preferred embodiment theconcentrate dispensers 32 dispense a liquid or solid concentrate, as well as any other form of concentrate which might be applicable in the preparation of food substances. - While concentrate is referred to in this application, it is envisioned that other substances may be used and the present invention broadly includes such other substances, variations, alternates, equivalents, substitutes, and/or combinations. For example, for food substances such as soups, a base may be used and reconstituted with water. In this example, while the base may or may not be concentrated, it is combined with water to produce the resultant soup. Similarly, the invention may be used to prepare substances which are concentrated in order to prepare the substance in a more useful form. For example, a chocolate powder may be prepared using the invention to produce a liquid chocolate concentrate in a concentration which may be preferable for mixing with other substances such as coffee. In this regard the liquid chocolate may be used to mix with coffee and avoid potential powder mixing problems such as clumping.
- With the foregoing in mind, the description is generally directed to the preparation of a beverage and specifically described as the preparation of coffee. However, it should be appreciated that other foods might also be prepared using this system and its structures and such systems are fully included within the scope of the present invention. Moreover, description in the present application is directed to a diluted
substance dispenser 34 which uses hot water. However, it should be appreciated that other liquid substances may be used to dilute or mix with the concentrate such as coffee, tea, carbonated water, milk products, or other substances. Additionally, the present application also includes other devices which may be used to combine theconcentrate 22 and thedilution substance 24. For example, mechanical agitators, heaters, or coolers should be fully considered as contemplated in the present invention. - With reference to FIG. 1, an interface36 is provided in the
system 20. The interface 36 may be as uncomplicated as on/off switches or controls or may involve detailed computer based user-interface selections. Such user-interface selections may involve the user inputting specific criteria about the desired resultant food substance, may involve a memory or recognition device which associates information regarding the user and the food substance or a combination of such devices. Regardless of its degree of complexity, the interface 36 is coupled to acontroller 38 which controls the system in response to inputs from the interface 36. Thecontroller 38 is coupled to thedilution substance dispenser 34,concentrate dispenser 32, and theconductance sensor 30. When the user-interface 36 is activated, a signal is transmitted vialine 40 to thecontroller 38. Thecontroller 38 then responds to thesignal 40 and controllably operates the dilution substance dispenser 34 (via line 41) and concentrate dispenser 32 (via line 43) to dispense a pre-determined quantity ofdilution substance 24 and concentrate 22 into thedilution assembly 28. - One of ordinary skill in the art will appreciate that appropriate connections, couplings or conduits (42, 44) are provided to permit the
dispensers corresponding chamber 46 of thedilution assembly 28. Theconcentrate 22 anddilution substance 24 are mixed in thechamber 46 to produce a desiredresultant beverage 26. - The
conductance sensor 30 is coupled to the chamber, generally positioned at least slightly downstream from the initial mixing of theconcentrate 22 and thedilution substance 24. Theconductance sensor 30 is positioned downstream in order to allow at least some mixing of theconcentrate 22 and thedilution substance 24 before it is monitored for conductivity. Theconductance sensor 30 includes aconductivity sensing circuit 48 which includes two at least slightly spaced-apart contacts or probes in the form of a first 50 and second 52 generally cylindrical electrodes. Theelectrodes dielectric portion 54 such as a silicone tube. Theconductivity sensing circuit 48 is coupled to the associatedsensing circuit 48 of thecontroller 38 byline 56. As shown in FIG. 1, aspacer 57 of a dielectric material is provided to space apart theelectrodes studs electrodes spacer 57 withnuts Lines conductive studs electrodes - Continuing the dispensing of a resultant beverage as initially discussed above, the
conductivity sensing circuit 48 providesconductance measurements 56 of the resultant beverage during the dispensing of the desired quantity of beverage. In this regard, the conductance of the resultant beverage can be used to adjust the dispensing of theconcentrate 22 and thedilution substance 24 from the corresponding dispensers (32, 34) to maintain the conductance of theresultant beverage 26 within a desired range. Thesignal 56 is processed by thecontroller 38 which then makes adjustments to the dispensing from thedispensers - In contrast, prior art devices typically dispense a volume or time-metered quantity of concentrate and dilution substance. If there were some deviation in either of these substances from some standard level or range of acceptable levels, the resultant beverage would be outside of the desired acceptable level. Moreover, if the tolerances of acceptable levels of dilution substance of concentrate became cumulative, such that independently each component was within its desired range but cumulatively the combination was outside the desired range, there would be an effect on the resultant beverage. The effect on the resultant beverage would be manifested in the form of changes in the flavor characteristics and flavor profile. The change in these characteristics results from increased characteristic components in the concentrate as well as the dilution substance. This closed-loop system shows improved performance compared to prior art, from the standpoint of the limitations of prior “open-loop” systems that merely dispense for a fixed period of time from the concentrate and dilution (hot water) channels. Such prior art systems yield varying finished-beverage results when: the viscosity of the concentrate is high and variable enough that flow rate through the pumping means cannot be precisely predicted from run-time alone; the dilution channel flow is based on gravity flow from a reservoir with varying water level, thus varying flow rate; or the concentration of flavor components in the beverage concentrate is not consistent over time, thus a fixed volumetric dilution is not adequate to ensure consistent finished-beverage flavor.
- While control of both
substance dispensers present system 20, precise control of thedilution substance dispenser 34 may not be necessary when only water is being dispensed to dilute abeverage concentrate 22 such as coffee concentrate. In this regard, a time-metered or volume-metered quantity of heated water may be dispensed from thedispenser 34 and adjustment to the conductivity of theresultant beverage 26 being controlled by controlling theconcentrate dispenser 32. The closed-loop system of the present invention improves the consistency of theresultant beverage 26 by more accurately controlling the dispensing ofconcentrate 22 into thehot water stream 24. Theconductance sensing circuit 48 andcontroller 38 calculate the conductance to determine the concentration of theresultant beverage 26 and provide controlled variation of the dispensing rate of theconcentrate 22 into the blendingchamber 46. This requires that theconcentrate dispenser 32 is adjustably controllable. - While a variety of
concentrate dispensers 32 might be employed in the present invention, the dispensing system as disclosed in U.S. patent application Ser. No. 09/602,908, filed Jun. 23, 1999 entitled Concentrate Pump System identifying Kevin G. Lowe and Robert C. Funk as inventors, provides a highly accurate controllable system which benefits from the conductance sensing of the present invention. The disclosure of this application is incorporated herein by reference in its entirety. Thecontroller 38 is pre-programmed with information about the control of thedispenser 32 so that when a specific conductivity is sensed by theconductance sensor 30, if necessary, adjustment of the flow rate of the dispenser or pump 32 can be made in response thereto. - With reference to FIG. 3, a
concentrate dispenser 32 is shown diagrammatically employing elements also disclosed in the above referenced application. Thedispenser 32 includes areservoir 58 coupled to apump 60 coupled to agating device 62. Thepump 60, in a preferred embodiment, a peristaltic pump in accordance with the teachings of the above referenced application, draws concentrate from thereservoir 58. The concentrate is advanced from thepump 60 to thegating device 62. Thegating device 62 is controllably operated to more precisely control the flow from thepump 60. As a result, with further reference to FIG. 1, a precise quantity of concentrate can be dispensed from theconcentrate dispenser 32 through theconduit 42 communicating with the blendingchamber 46. It should be noted that while some dispensing devices may require only one control line with the controller, two controlled signals may be required for the embodiment of thedispenser 32 as shown in FIG. 3. In this regard, independent control of thepump 60 and thegating device 62 may provide more accurate control of thedispenser 32. - The system monitors conductance of the concentrate “on the fly” and allows the adjusting of the
variable speed pump 60 and thegating device 62 to precisely control the amount of concentrate injected into the dilution stream. - The present invention helps to adjust the system to assure consistent blend strength since the conductivity of the beverage is related to the blend strength. For example, the concentrate in combination with the
dilution water 24 is measurably more conductive than the water prior to mixing with concentrate. - Another benefit of using the
dispenser 32 as shown in FIG. 3 is that the gating device tends to reduce or eliminate the “pulsing” of liquid through theconduit 42 thereby providing a more uniform flow. This will increase the uniformity of the mixture with the heated water and dispensing of a consistent beverage from theexit port 64 of thedilution assembly 28. This reinforces and enhances the visual characteristics of the brewed beverage to the consumer. - The
conductivity circuit 48 senses the conductance of various substances and can be adjusted for the type of substance being dispensed. The conductance reading or measurement is used as a characteristic of the concentrate in theresultant beverage 26. For example in coffee, the conductivity measurement is related to the caffeine, acid, and solids (total dissolved solids) in the coffee concentrate. Also, in juice products, the conductance measurement is related to the acids in the juice. Of course, the system can be adjusted based on the type of concentrate used in the characteristics of the concentrate. Generally, this system relies on the ionic molecules in the particular concentrate as conductors. - Additionally, a range of acceptable levels of conductance (concentrate) can be set for a particular type of beverage. The predetermined range and the variability of the concentrate injection into the
dilution stream 24 helps accommodate variations in batches of concentrate regardless of whether the concentrate is in a prepared liquid form, fresh prepared liquid form, powdered form, or other form. While the variability of the substance used to prepare the concentrate may change from batch to batch or the processing techniques may vary slightly based on manufacturing tolerances of the concentrate, the adjustments resulting from the present system helps assure a consistentresultant beverage 26. - The
present system 20 accommodates ranges for several variables. For example, the system can be adjusted to take into account the temperature of the substance. In this regard, conductivity is generally consistent at elevated temperatures whereas conductivity tends to be reduced with a decrease in temperature. A control can be provided on thecontroller unit 38 or theconductivity circuit 48 to adjust the range upwardly or downwardly. This may be used to adjust the system for regional tastes, for example, to make a batch of coffee stronger or weaker. However, the control may also be limited to a specific desired range while still providing adjustment within that range upwardly or downwardly. As an additional consideration, thecircuit 48 senses AC conductance. AC conductance is used in order to prevent plating of the molecules on theelectrodes gating device 62 to control the flow therethrough. - The
conductance sensor 30 can be used to sense anempty dispenser 32 condition. For example, if thesensor 30 senses a dramatic change in conductance, this would tend to indicate either the absence of concentrate or dilution liquid in thedispenser 32 or ablockage preventing concentrate 22 or dilution liquid from entering the blendingchamber 46. In either situation, this condition can be identified to the user whereby troubleshooting can occur to solve the problem. Furthermore, in a highly automated system, the low or no concentrate signal sensed by thesensor 30 can be used to initiate a refill cycle whereby concentrate stock can be dispensed from a correspondingbrewer 68 coupled to thecontroller 38. This might be in the very basic form as shown in the Robins et al. patent mentioned in the Background section of this application. - With reference to the circuit of FIGS. 2 and 4, a portion of the
sensing circuit 48 is shown. As generally shown, themicro controller 72 outputs a square wave which makes position transition at t1. The analog todigital input voltage 74 fed to the analog todigital converter 76 is read at t2. The conductance of the portion of the resultant beverage in thesensing chamber 78 at a given time interval is related to the analog to digital reading. The conductance is detected and the measurement is used in determining whether to accelerate or decelerate the variable speed pump andgating device dispenser 32. It should be noted that the average current is zero in order to eliminate buildup on theelectrodes lower sensing electrode 52 is generally connected to circuit ground and earth ground such that any external surface contacted by the delivered beverage will not affect the conductance reading of the sensor. The effective parallel conductance of theconcentrate line 42 is not significant due to its length and small cross-section; the effective parallel conductance of the water fromline 44 is not significant due to the relatively low conductance of water. This is consistent with the use of AC in the system to prevent plating. It should also be noted thatdiodes gate 84 and input to the analog to digital converter. The schematic of FIG. 2 and examples of wave forms in FIG. 4 show how themicrocontroller 72 and A/D converter can rapidly determine a conductance reading with no DC current through the sensor. The reading or measurement is used, for example, to determine the concentration of coffee components in a blended beverage. - The measured conductivity is based on the peak reading among several readings taken over an interval which includes individual A/D readings at consecutive “t2” events; this further ensures that the occasional air bubble will not introduce confusing control responses.
- The control algorithm implements an integrating response with variable gain, such that the rate at which the concentrate dispenser's drive responds to a measured error in conductivity is set to not over-react to normal variations in measured conductivity, such as might occur with the introduction of an occasional air bubble into the sensing chamber.
- The user can adjust the delivered beverage strength with a simple control (e.g. rotary control knob) connected to the controller which adjusts the target to which the closed-loop control adjusts average conductance readings.
- Turning now to FIG. 1, the
dilution assembly 28 includes the generallycylindrical electrodes chamber 46 as thehot water 24 and concentrate 42 are injected therein. The taperedsection 50 tends to inhibit the introduction of air bubbles into the sensing chamber between 50 and 52, which would have confounded the accurate sensing of the conductance of the blended liquid beverage. The turbulence restricts the outflow of the blended beverage through theexit port 64. This produces a degree of buildup in the blendingchamber 46. The mixing and blending of the concentrate with the water helps assure that it is thoroughly mixed. This is important for an accurate reading for insuring that thesensing chamber 78 is full of liquid when sensing conductivity and that the concentrate and water are thoroughly mixed together to prevent striation or layering. A partially full conductivity chamber might result in an inaccurate reading as well as striation creating inconsistent reading. Thecontroller 38 is programmed with a brief delay (for example, one second) when the dispensing cycle is initiated. The brief delay insures that thesensing chamber 78 is full of liquid before measurements are taken. This helps to assure that the system does not overreact to the initial, perhaps inconsistent, mixture of beverage which is used to fill thesensing chamber 78. - With further reference to FIG. 1, a
columnating device 84 is provided in theelectrode 52 proximate to theexit port 64. Thecolumnating device 84 helps to reduce the swirling and turbulence which might otherwise be present at theexit port 64. By columnating and directing the flow in a generally vertical direction, the potential for splashing at theexit port 64 is minimized or prevented. Thecolumnating device 84 as shown in FIG. 1 is generally multi-vaned device. It should be noted that a single blade device such as in taught in U.S. Pat. No. 5,423,245 issued Jun. 13, 1995 could be used for this purpose as well. - Near the completion of the dispensing cycle, dispensing of the concentrate is ceased and a small quantity of water is used to rinse the
dilution assembly 28. By rinsing at the end of the dilution cycle, thedilution assembly 28 can be kept clean and sanitary thereby further improving the efficiency of the invention. Such cleaning also helps maintain the accuracy of the system by keeping the electrode surfaces clean at the end of a mixing cycle. - While a preferred embodiment of the present invention is shown and described, it is envisioned that those skilled in the art may devise various modifications and equivalents without departing from the spirit and scope of the invention as defined by the appended claims. The invention is not intended to be limited by the foregoing disclosure.
Claims (3)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/740,213 US6387424B2 (en) | 1999-12-17 | 2000-12-18 | Conductance based control system and method |
AU2002226063A AU2002226063A1 (en) | 2000-12-18 | 2001-12-04 | Conductance based control system |
DE60126666T DE60126666T2 (en) | 2000-12-18 | 2001-12-04 | System for measuring the conductivity of a mixed food substance |
CA2432679A CA2432679C (en) | 2000-12-18 | 2001-12-04 | Conductance based control system |
EP01995485A EP1351586B1 (en) | 2000-12-18 | 2001-12-04 | Conductance based control system |
JP2002550808A JP3946142B2 (en) | 2000-12-18 | 2001-12-04 | Control system based on conductivity |
PCT/US2001/047580 WO2002049458A1 (en) | 2000-12-18 | 2001-12-04 | Conductance based control system |
AT01995485T ATE353564T1 (en) | 2000-12-18 | 2001-12-04 | CONDUCTIVITY-BASED CONTROL SYSTEM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17249599P | 1999-12-17 | 1999-12-17 | |
US09/740,213 US6387424B2 (en) | 1999-12-17 | 2000-12-18 | Conductance based control system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010048958A1 true US20010048958A1 (en) | 2001-12-06 |
US6387424B2 US6387424B2 (en) | 2002-05-14 |
Family
ID=24975514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/740,213 Expired - Lifetime US6387424B2 (en) | 1999-12-17 | 2000-12-18 | Conductance based control system and method |
Country Status (8)
Country | Link |
---|---|
US (1) | US6387424B2 (en) |
EP (1) | EP1351586B1 (en) |
JP (1) | JP3946142B2 (en) |
AT (1) | ATE353564T1 (en) |
AU (1) | AU2002226063A1 (en) |
CA (1) | CA2432679C (en) |
DE (1) | DE60126666T2 (en) |
WO (1) | WO2002049458A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026614A2 (en) * | 2000-09-29 | 2002-04-04 | Pepsico, Inc. | Brewed iced tea or non-carbonated drink dispenser |
US20050072671A1 (en) * | 2003-10-03 | 2005-04-07 | Rocklin Roy D. | Devices and methods for separating constituents |
US20060169687A1 (en) * | 2003-01-06 | 2006-08-03 | Geockner Victor D | Power circuitry for beverage apparatus |
US7998513B1 (en) * | 2007-07-10 | 2011-08-16 | Primordial Diagnostics, Inc. | Ascorbate monitoring and control system |
WO2012085813A3 (en) * | 2010-12-22 | 2012-08-16 | Koninklijke Philips Electronics N.V. | Method and system for brewing ingredients in a solvent, apparatus using said system |
US20130098249A1 (en) * | 2011-10-14 | 2013-04-25 | Michael Fidler | Coffee Apparatus |
WO2013072798A1 (en) * | 2011-11-16 | 2013-05-23 | Koninklijke Philips Electronics N.V. | Beverage making apparatus and method |
WO2013110500A1 (en) * | 2012-01-24 | 2013-08-01 | BSH Bosch und Siemens Hausgeräte GmbH | Tank outlet connection device for beverage preparation device |
EP2628421A1 (en) * | 2012-02-16 | 2013-08-21 | WMF Württembergische Metallwarenfabrik Aktiengesellschaft | Device for preparing a beverage containing milk with emptiness detection and method for same |
WO2014200481A1 (en) * | 2013-06-12 | 2014-12-18 | Nestec S.A. | Mixing nozzle |
US20150150410A1 (en) * | 2012-07-20 | 2015-06-04 | Bunn-O-Matic Corporation | Beverage dispensing system |
WO2016132005A1 (en) * | 2015-02-16 | 2016-08-25 | Smart Spirits, S.L. | Infuser for alcoholic beverages |
US20170099981A1 (en) * | 2015-10-08 | 2017-04-13 | Michel Abou Haidar | Callisto integrated tablet computer in hot and cold dispensing machine |
US20170099980A1 (en) * | 2015-10-08 | 2017-04-13 | Michel Abou Haidar | Integrated tablet computer in hot and cold dispensing machine |
CN107074522A (en) * | 2014-10-31 | 2017-08-18 | 松下知识产权经营株式会社 | Beverage supply device |
US20170305735A1 (en) * | 2014-10-31 | 2017-10-26 | The Coca-Cola Company | Beverage supply apparatus |
IT201600124466A1 (en) * | 2016-12-07 | 2018-06-07 | Brew Service S R L | TERMINAL DEVICE FOR DISPENSING MACHINES |
US20190118112A1 (en) * | 2002-11-13 | 2019-04-25 | Deka Products Limited Partnership | Water Vending Apparatus |
WO2020007771A1 (en) * | 2018-07-05 | 2020-01-09 | Melitta Professional Coffee Solutions GmbH & Co. KG | Method by means of which caffeinated hot beverages, particularly coffee beverages, can be produced by an apparatus for producing a caffeinated hot beverage |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726947B1 (en) * | 1999-08-14 | 2004-04-27 | The Procter & Gamble Co. | Process for providing customized varieties and strengths of fresh-brewed coffee on demand |
US20040016346A1 (en) * | 2002-02-13 | 2004-01-29 | Klockner Khs, Inc. | Self-contained beverage proportioner unit |
US20050109792A1 (en) * | 2002-06-17 | 2005-05-26 | Eltek S.P.A. | Method and device for detecting and checking the quality or properties of a mixture of fluids, in particular a food or domestic mixture |
ITTO20020519A1 (en) * | 2002-06-17 | 2003-12-17 | Eltek Spa | METHOD AND DEVICE TO DETECT AND CONTROL THE QUALITY OR CHARACTERISTICS OF A MIXTURE OF FLUIDS, IN PARTICULAR A MIXTURE FOR US |
ITTO20020517A1 (en) * | 2002-06-17 | 2003-12-17 | Eltek Spa | DEVICE INCLUDING MEANS SENSORS OF HYDRAULIC OR CHEMICAL-PHYSICAL CHARACTERISTICS OF A FLUID |
US7036687B1 (en) * | 2002-08-13 | 2006-05-02 | Bunn-O-Matic Corporation | Liquid beverage mixing chamber |
US6792847B2 (en) * | 2002-09-18 | 2004-09-21 | Unilever Bestfoods North America, A Division Of Conopco, Inc. | Beverage dispensing machine |
US6915732B2 (en) * | 2003-04-01 | 2005-07-12 | Pepsico, Inc. | Brewed iced tea or non-carbonated drink dispenser |
US7344299B2 (en) * | 2003-10-21 | 2008-03-18 | Mp Equipment Company | Mixing system and process |
US7789273B2 (en) | 2004-06-25 | 2010-09-07 | Bunn-O-Matic Corporation | Component mixing method, apparatus and system |
US7717297B2 (en) | 2004-06-25 | 2010-05-18 | Bunn-O-Matic Corporation | Component mixing method, apparatus and system |
DE102004031194A1 (en) * | 2004-06-28 | 2006-01-19 | Friedhelm Selbach Gmbh | Liquid dispenser or mixing chamber for a liquid dispenser |
WO2006023985A2 (en) * | 2004-08-23 | 2006-03-02 | Remote Clinical Solutions, Inc. | System and method for modifying a fluid for oral administration |
ITMO20050140A1 (en) * | 2005-06-03 | 2006-12-04 | Illycaffe Spa | METHODS AND EQUIPMENT FOR OBTAINING INFUSIONS. |
US20070053846A1 (en) * | 2005-08-31 | 2007-03-08 | Dave Rajesh N | Dry coating and downstream processing of cohesive powders |
WO2007087611A1 (en) * | 2006-01-25 | 2007-08-02 | Bunn-O-Matic Corporation | Beverage concentrate mixing apparatus and methods of producing a beverage |
US10631558B2 (en) | 2006-03-06 | 2020-04-28 | The Coca-Cola Company | Methods and apparatuses for making compositions comprising an acid and an acid degradable component and/or compositions comprising a plurality of selectable components |
MX2009008407A (en) | 2007-02-08 | 2009-08-18 | Bunn O Matic Corp | Component mixing method, apparatus and system. |
US8162176B2 (en) | 2007-09-06 | 2012-04-24 | The Coca-Cola Company | Method and apparatuses for providing a selectable beverage |
BE1019871A4 (en) * | 2007-11-14 | 2013-02-05 | Indria Alain | DISPENSING DEVICE FOR CONDIMENTED BEVERAGE AND PROCESS FOR PREPARING THE SAME |
DE102009016506A1 (en) * | 2009-04-08 | 2010-10-14 | Melitta System Service Gmbh & Co Kg | Method for producing a fresh cold coffee beverage and a corresponding coffee machine |
CN101637356B (en) * | 2009-07-23 | 2011-01-05 | 张顺 | Automatic milk powder dissolving device |
EP2547241B1 (en) * | 2010-03-19 | 2018-10-17 | Concordia Coffee Company Inc. | Method and apparatus for controlling brewed beverage quality |
USD677510S1 (en) | 2011-06-16 | 2013-03-12 | Calphalon Corporation | Coffee maker |
WO2013057630A1 (en) * | 2011-10-21 | 2013-04-25 | University Of Manitoba | Passive wireless sensor |
CA3169583C (en) * | 2014-02-18 | 2024-02-20 | The Coca-Cola Company | Beverage nozzle with mixing core |
USD795631S1 (en) | 2015-05-01 | 2017-08-29 | The Baby Barista Company | Apparatus for preparing ingredients for a baby bottle |
WO2016179052A1 (en) | 2015-05-01 | 2016-11-10 | The Baby Barista Company | Apparatus and method for preparing ingredients for a baby bottle using a concentrated solution |
GB201608280D0 (en) * | 2016-05-11 | 2016-06-22 | Heineken Uk Ltd | Connector |
US11713233B2 (en) | 2016-09-30 | 2023-08-01 | The Coca-Cola Company | Systems and methods for rationalizing ingredients |
US11524268B2 (en) | 2016-11-09 | 2022-12-13 | Pepsico, Inc. | Carbonated beverage makers, methods, and systems |
WO2018108642A1 (en) | 2016-12-15 | 2018-06-21 | Koninklijke Philips N.V. | A monitoring apparatus and a food processing device using the same |
CN110267906B (en) * | 2016-12-29 | 2022-02-08 | 可口可乐公司 | Resistance measuring sold-out sensor for beverage dispenser |
ES2715116B2 (en) * | 2018-05-18 | 2020-02-05 | Productos Agrovin S A | PROCEDURE FOR DISCOVERY OF THE VINTAGE AND DISCOVERER OF VINTAGE |
DE102018211406A1 (en) * | 2018-07-10 | 2020-01-16 | Krones Ag | LIQUID MIXING SYSTEM FOR MIXING COMPONENTS FOR A LIQUID PRODUCT |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4373863A (en) | 1979-02-22 | 1983-02-15 | Mason William L | Feed control system for pumping fluids to dishwashers and the like |
US4757752A (en) | 1986-12-16 | 1988-07-19 | General Foods Corporation | Tea brewing and dispensing apparatus |
US5068116A (en) * | 1989-10-04 | 1991-11-26 | Micro-Blend, Inc. | Method for beverage blending and proportioning |
US6130990A (en) | 1998-08-25 | 2000-10-10 | Nestec S.A. | On-demand direct electrical resistance heating system and method thereof |
US6240829B1 (en) * | 1999-02-12 | 2001-06-05 | Pepsico. Inc. | Tea or non-carbonated drink dispenser |
US6419466B1 (en) * | 1999-12-17 | 2002-07-16 | Bunn-O-Matic Corporation | Pump |
-
2000
- 2000-12-18 US US09/740,213 patent/US6387424B2/en not_active Expired - Lifetime
-
2001
- 2001-12-04 AT AT01995485T patent/ATE353564T1/en not_active IP Right Cessation
- 2001-12-04 JP JP2002550808A patent/JP3946142B2/en not_active Expired - Fee Related
- 2001-12-04 AU AU2002226063A patent/AU2002226063A1/en not_active Abandoned
- 2001-12-04 CA CA2432679A patent/CA2432679C/en not_active Expired - Fee Related
- 2001-12-04 WO PCT/US2001/047580 patent/WO2002049458A1/en active IP Right Grant
- 2001-12-04 DE DE60126666T patent/DE60126666T2/en not_active Expired - Lifetime
- 2001-12-04 EP EP01995485A patent/EP1351586B1/en not_active Expired - Lifetime
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002026614A3 (en) * | 2000-09-29 | 2002-06-13 | Pepsico Inc | Brewed iced tea or non-carbonated drink dispenser |
WO2002026614A2 (en) * | 2000-09-29 | 2002-04-04 | Pepsico, Inc. | Brewed iced tea or non-carbonated drink dispenser |
US20190118112A1 (en) * | 2002-11-13 | 2019-04-25 | Deka Products Limited Partnership | Water Vending Apparatus |
US20060169687A1 (en) * | 2003-01-06 | 2006-08-03 | Geockner Victor D | Power circuitry for beverage apparatus |
US8692165B2 (en) * | 2003-01-06 | 2014-04-08 | Bunn-O-Matic Corporation | Power circuitry incorporating both foreign and domestic alternating current line voltages for a heated beverage apparatus |
US20050072671A1 (en) * | 2003-10-03 | 2005-04-07 | Rocklin Roy D. | Devices and methods for separating constituents |
US7111501B2 (en) | 2003-10-03 | 2006-09-26 | Agilent Technologies, Inc. | Devices and methods for separating constituents |
US8647572B1 (en) | 2007-07-10 | 2014-02-11 | Karan Khurana | Ascorbate monitoring and control system |
US7998513B1 (en) * | 2007-07-10 | 2011-08-16 | Primordial Diagnostics, Inc. | Ascorbate monitoring and control system |
US8323571B1 (en) | 2007-07-10 | 2012-12-04 | Primordial Diagnostics Inc, DEA Pulse Instruments | Ascorbate monitoring and control system |
US8647571B1 (en) | 2007-07-10 | 2014-02-11 | Karan Khurana | Ascorbate monitoring and control system |
US8647570B1 (en) | 2007-07-10 | 2014-02-11 | Karan Khurana | Ascorbate monitoring and control system |
CN103269625A (en) * | 2010-12-22 | 2013-08-28 | 皇家飞利浦电子股份有限公司 | Method and system for brewing ingredients in a solvent, apparatus using said system |
RU2578114C2 (en) * | 2010-12-22 | 2016-03-20 | Конинклейке Филипс Электроникс Н.В. | Method and system for brewing ingredients in solvent, apparatus using said system |
WO2012085813A3 (en) * | 2010-12-22 | 2012-08-16 | Koninklijke Philips Electronics N.V. | Method and system for brewing ingredients in a solvent, apparatus using said system |
US20130098249A1 (en) * | 2011-10-14 | 2013-04-25 | Michael Fidler | Coffee Apparatus |
WO2013072798A1 (en) * | 2011-11-16 | 2013-05-23 | Koninklijke Philips Electronics N.V. | Beverage making apparatus and method |
WO2013110500A1 (en) * | 2012-01-24 | 2013-08-01 | BSH Bosch und Siemens Hausgeräte GmbH | Tank outlet connection device for beverage preparation device |
EP2628421A1 (en) * | 2012-02-16 | 2013-08-21 | WMF Württembergische Metallwarenfabrik Aktiengesellschaft | Device for preparing a beverage containing milk with emptiness detection and method for same |
US10806292B2 (en) * | 2012-07-20 | 2020-10-20 | Bunn-O-Matic Corporation | Beverage dispensing system |
US20150150410A1 (en) * | 2012-07-20 | 2015-06-04 | Bunn-O-Matic Corporation | Beverage dispensing system |
CN105283408A (en) * | 2013-06-12 | 2016-01-27 | 雀巢产品技术援助有限公司 | Mixing nozzle |
WO2014200481A1 (en) * | 2013-06-12 | 2014-12-18 | Nestec S.A. | Mixing nozzle |
US10676336B2 (en) | 2014-10-31 | 2020-06-09 | Panasonic Intellectual Property Management Co., Ltd. | Beverage supplying device |
US10526186B2 (en) * | 2014-10-31 | 2020-01-07 | The Coca-Cola Company | Beverage supply apparatus |
CN107074522A (en) * | 2014-10-31 | 2017-08-18 | 松下知识产权经营株式会社 | Beverage supply device |
US20170305735A1 (en) * | 2014-10-31 | 2017-10-26 | The Coca-Cola Company | Beverage supply apparatus |
US20170313566A1 (en) * | 2014-10-31 | 2017-11-02 | Panasonic Intellectual Property Management Co., Ltd. | Beverage supplying device |
US10377620B2 (en) * | 2014-10-31 | 2019-08-13 | Panasonic Intellectual Property Management Co., Ltd. | Beverage supplying device |
EA034023B1 (en) * | 2015-02-16 | 2019-12-19 | Смарт Спиритс, С.Л. | Infuser for alcoholic beverages |
US20180044621A1 (en) * | 2015-02-16 | 2018-02-15 | Smart Spirits, S.L. | Infuser for alcoholic beverages |
CN107580625A (en) * | 2015-02-16 | 2018-01-12 | 斯玛特斯布瑞特公司 | The injector of alcoholic beverage |
AU2016221590B2 (en) * | 2015-02-16 | 2020-08-27 | Smart Spirits, S.L. | Infuser for alcoholic beverages |
WO2016132005A1 (en) * | 2015-02-16 | 2016-08-25 | Smart Spirits, S.L. | Infuser for alcoholic beverages |
US11186808B2 (en) * | 2015-02-16 | 2021-11-30 | Smart Spirits, S.L. | Infuser for alcoholic beverages |
US20170099980A1 (en) * | 2015-10-08 | 2017-04-13 | Michel Abou Haidar | Integrated tablet computer in hot and cold dispensing machine |
US20170099981A1 (en) * | 2015-10-08 | 2017-04-13 | Michel Abou Haidar | Callisto integrated tablet computer in hot and cold dispensing machine |
WO2018104905A1 (en) * | 2016-12-07 | 2018-06-14 | Bevco S.R.L. | Ending device for dispensing machines |
IT201600124466A1 (en) * | 2016-12-07 | 2018-06-07 | Brew Service S R L | TERMINAL DEVICE FOR DISPENSING MACHINES |
WO2020007771A1 (en) * | 2018-07-05 | 2020-01-09 | Melitta Professional Coffee Solutions GmbH & Co. KG | Method by means of which caffeinated hot beverages, particularly coffee beverages, can be produced by an apparatus for producing a caffeinated hot beverage |
Also Published As
Publication number | Publication date |
---|---|
CA2432679C (en) | 2010-06-01 |
DE60126666D1 (en) | 2007-03-29 |
JP3946142B2 (en) | 2007-07-18 |
JP2004516053A (en) | 2004-06-03 |
US6387424B2 (en) | 2002-05-14 |
ATE353564T1 (en) | 2007-03-15 |
WO2002049458A1 (en) | 2002-06-27 |
AU2002226063A1 (en) | 2002-07-01 |
CA2432679A1 (en) | 2002-06-27 |
EP1351586B1 (en) | 2007-02-14 |
EP1351586A1 (en) | 2003-10-15 |
DE60126666T2 (en) | 2007-11-22 |
EP1351586A4 (en) | 2006-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6387424B2 (en) | Conductance based control system and method | |
US7328815B2 (en) | Liquid beverage conductivity detecting system | |
US7490638B2 (en) | Method and device for dispensing from liquid concentrates beverages having multi-layer visual appearance | |
US6419466B1 (en) | Pump | |
US9357871B2 (en) | Coffee machine with dispensing regulation and a method relating thereto | |
RU2695825C2 (en) | Beverage preparation device and method | |
US6130990A (en) | On-demand direct electrical resistance heating system and method thereof | |
US8851740B1 (en) | Liquid level detection and autonomous calibration for self-serve blending apparatus and methods | |
JP5048192B2 (en) | Liquid heating module, apparatus including liquid heating module, and liquid heat treatment method | |
US7401545B2 (en) | Method and apparatus for optimizing variable liquid temperatures | |
US4595131A (en) | Beverage dispensing apparatus | |
RU2321327C2 (en) | Liquid heating apparatus | |
US11412757B2 (en) | Multi-flavor frozen beverage dispenser | |
CA2542271A1 (en) | System, method and apparatus for heating water | |
WO2013072798A1 (en) | Beverage making apparatus and method | |
WO2010119438A1 (en) | An atmospheric water boiler | |
WO2005080199A1 (en) | Automatic consumer-operated dispensing machine | |
CN211186816U (en) | Automatic seasoning device and cooking equipment | |
EP1516238A2 (en) | Method and device for detecting and checking the quality or properties of a mixture of fluids, in particular a food or domestic mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BUNN-O-MATIC CORPORATION, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUNK, ROBERT C.;REEL/FRAME:011748/0926 Effective date: 20010214 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:BUNN-O-MATIC CORPORATION;REEL/FRAME:025633/0733 Effective date: 20110103 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:BUNN-O-MATIC CORPORATION;REEL/FRAME:048788/0316 Effective date: 20190326 |
|
AS | Assignment |
Owner name: BUNN-O-MATIC CORPORATION, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:064206/0235 Effective date: 20230620 |