US20010041692A1 - Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use - Google Patents

Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use Download PDF

Info

Publication number
US20010041692A1
US20010041692A1 US09/874,815 US87481501A US2001041692A1 US 20010041692 A1 US20010041692 A1 US 20010041692A1 US 87481501 A US87481501 A US 87481501A US 2001041692 A1 US2001041692 A1 US 2001041692A1
Authority
US
United States
Prior art keywords
alkyl
och
heteroaryl
cycloalkyl
functionally modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/874,815
Other languages
English (en)
Other versions
US6458854B2 (en
Inventor
Gustav Graff
Peter Klimko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/694,138 external-priority patent/US6353032B1/en
Application filed by Individual filed Critical Individual
Priority to US09/874,815 priority Critical patent/US6458854B2/en
Assigned to ALCON UNIVERSAL LTD. reassignment ALCON UNIVERSAL LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRAFF, GUSTAV, KLIMKO, PETER G.
Publication of US20010041692A1 publication Critical patent/US20010041692A1/en
Application granted granted Critical
Publication of US6458854B2 publication Critical patent/US6458854B2/en
Assigned to NOVARTIS AG reassignment NOVARTIS AG MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ALCON, INC (F/K/A ALCON UNIVERSAL LTD.)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/117Esters of phosphoric acids with cycloaliphatic alcohols

Definitions

  • the present invention is directed to compositions containing phospholipids comprised of hydroxyeicosatetraenoic acid derivatives and methods of use in treating dry eye.
  • Dry eye also known generically as keratoconjunctivitis sicca, is a common ophthalmological disorder affecting millions of Americans each year. The condition is particularly widespread among post-menopausal women due to hormonal changes following the cessation of fertility. Dry eye may afflict an individual with varying severity. In mild cases, a patient may experience burning, a feeling of dryness, and persistent irritation such as is often caused by small bodies lodging between the eye lid and the eye surface. In severe cases, vision may be substantially impaired. Other diseases, such as Sjogren's disease and cicatricial pemphigoid manifest dry eye complications.
  • Examples of the tear substitution approach include the use of buffered, isotonic saline solutions, aqueous solutions containing water soluble polymers that render the solutions more viscous and thus less easily shed by the eye. Tear reconstitution is also attempted by providing one or more components of the tear film such as phospholipids and oils. Phospholipid compositions have been shown to be useful in treating dry eye; see, e.g., McCulley and Shine, Tear film structure and dry eye.
  • U.S. Pat. No. 3,991,759 discloses the use of ocular inserts in the treatment of dry eye.
  • Other semi-solid therapy has included the administration of carrageenans (U.S. Pat. No. 5,403,841, Lang) which gel upon contact with naturally occurring tear film.
  • Mucins are proteins which are heavily glycosylated with glucosamine-based moieties. Mucins provide protective and lubricating effects to epithelial cells, especially those of mucosal membranes. Mucins have been shown to be secreted by vesicles and discharged on the surface of the conjunctival epithelium of human eyes (Greiner et al., Mucous Secretory Vesicles in Conjunctival Epithelial Cells of Wearers of Contact Lenses, Archives of Ophthalmology, volume 98, pages 1843-1846 (1980); and Dilly et al., Surface Changes in the Anaesthetic Conjunctiva in Man, with Special Reference to the Production of Mucous from a Non - Goblet - Cell Source, British Journal of Ophthalmology, volume 65, pages 833-842 (1981)).
  • Mucins are also produced and secreted in other parts of the body including lung airway passages, and more specifically from goblet cells interspersed among tracheal/bronchial epithelial cells. Certain arachidonic acid metabolites have been shown to stimulate mucin production in these cells. Yanni reported the increased secretion of mucosal glycoproteins in rat lung by hydroxyeicosatetraenoic acid (“HETE”) derivatives (Yanni et al, Effect of Intravenously Administered Lipoxygenase Metabolites on Rat Trachael Mucous Gel Layer Thickness, International Archives of Allergy And Applied Immunology, volume 90, pages 307-309 (1989)).
  • HETE hydroxyeicosatetraenoic acid
  • Agents claimed for increasing ocular mucin and/or tear production include vasoactive intestinal polypeptide (Dartt et. al., Vasoactive intestinal peptide - stimulated glycocongiugate secretion from conjunctival goblet cells. Experimental Eye Research, volume 63, pages 27-34, (1996)), gefarnate (Nakmura et. al., Gefarnate stimulates secretion of mucin - like glycoproteins by corneal epithelium in vitro and protects corneal epithelium from dessication in vivo, Experimental Eye Research, volume 65, pages 569-574 (1997)), liposomes (U.S. Pat. No. 4,818,537), androgens (U.S.
  • U.S. Pat. No. 5,696,166 discloses compositions containing HETE derivatives and methods of use for treating dry eye. Yanni et al. discovered that compositions comprising HETE derivatives increase ocular mucin secretion and are thus useful in treating dry eye. Such compositions, however, only act to increase ocular mucin secretion, leading to the rebuilding of the natural tears. While such compositions are therapeutically useful in treating an underlying cause of dry eye, such compositions may not immediately alleviate the symptoms of dry eye following administration.
  • the inventors of the present invention have invented improved HETE-related molecules and compositions which provide both immediate, as well as long-term, dry eye relief.
  • HETEs have been shown to incorporate in phospholipids in cell cultures. See, e.g., Substitution of 15- Hydroxyeicosatetraenoic Acid in the Phosphoinositide Signaling Pathway, Journal of Biological Chemistry, volume 266, No. 12, pages 7570-7571 (1991); Human Tracheal Epithelial Cells Selectively Incorporate 15- Hydroxyeicosatetraenoic Acid into Phosphatidylinositol, Am. J. Respir. Cell Mol.
  • the present invention is directed to novel phospholipid-HETE derivative compounds, compositions and methods of use. Preferred methods are directed to the treatment of dry eye-type diseases and disorders requiring the wetting of the eye, including symptoms of dry eye associated with refractive surgery such as LASIK surgery.
  • the compositions are preferably administered topically to the eye.
  • compositions and methods of the present invention provide the advantages of a two-part system for treating dry eye-type diseases and disorders.
  • the phospholipid-HETE derivatives may act as a pro-drug wherein the HETE derivative is cleaved from the phospholipid in vivo following topical administration to the eye.
  • the released HETE derivative may then act to stimulate mucin production while the free phospholipid may concurrently provide for immediate wetting, tear build-up, lubrication or otherwise improving the dry eye condition of the eye due to its amphipathic and humectant characteristics.
  • the use of phospholipid-HETE derivative pro-drugs may enhance the stability of the HETE derivative in its pharmaceutical composition.
  • HETE derivatives may be linked to their free terminal carboxylate in an aqueous environment, “tying off” the HETE derivative carboxylate by covalent attachment to the phospholipid backbone may improve the stability of the HETE-containing compositions.
  • the phospholipid-HETE derivatives of the present invention may also act to stimulate mucin production and concurrently provide for the wetting, tear build-up or lubrication of the eye without the need for cleavage of the HETE from the glycerol backbone.
  • the present invention is directed to phospholipids comprising HETE derivatives and methods of use in treating dry eye-type diseases and disorders. It is believed that the phospholipid-HETE derivatives stimulate ocular mucin production and/or secretion following topical ocular application, and also provide for the wetting, tear build-up or lubrication of the eye, either as the phospholipid-HETE complex or as the cleaved, individual phospholipid and HETE components following topical application to the eye.
  • the phospholipid-HETE derivatives of the present invention are of formula I:
  • R 20 is H or Ch ⁇ CH(CH 2 ) 12 CH 3 ;
  • X is O or S
  • R 1 is H, (C ⁇ O)R 4 or CH 2 R 4 ;
  • J is O or NH
  • R 2 is (C ⁇ O)R 5 ;
  • A is CH 2 or O
  • R 3 is OCH 2 CH(NH 3 + )COO ⁇ , OCH 2 CH 2 NH 3 +, OCH 2 CH 2 N + (CH 3 ) 3 , OCH 2 CH(OH)CH 2 OH, O-inositol, OH, H, or alkyl;
  • R 4 and R 5 are independently a HETE derivative; substituted or unsubstituted C 12-30 alkyl or alkenyl (the alkenyl group containing one or more double bonds); alkyl(cycloalkyl)alkyl; alkyl(cycloalkyl); alkyl(heteroaryl); alkyl(heteroaryl)alkyl; or alkyl-M-Q; wherein the substitution is alkyl, halo, hydroxy, or functionally modified hydroxy; wherein:
  • M is O or S
  • Q is H, alkyl, alkyl(cycloalkyl)alkyl, alkyl(cycloalkyl), alkyl(heteroaryl) or alkyl(heteroaryl)alkyl;
  • R 4 and R 5 must be a HETE derivative
  • HETE derivative is a structural fragment of formula II:
  • OR 6 and OR 7 are the same or different and comprise a free or functionally modified hydroxy group
  • T and Z are the same or different and are CH 2 CH 2 , cis- or trans-CH ⁇ CH or C ⁇ C;
  • one of A 1 , B 1 is H or CH 3 , and the other is a free or functionally modified hydroxy group, or A 1 -B 1 comprises a double bonded oxygen as a carbonyl, or A 1 -B 1 is OCH 2 CH 2 O;
  • X 1 is CR 16 R 17 (CH 2 ) q or CR 16 R 17 (CH 2 ) q O, with q is 0-6;
  • R 16 and R 17 are the same or different and are H or CH 3 ;
  • Y 1 is CH 3 , or a phenyl ring optionally substituted with alkyl, halo, trihalomethyl, acyl, or a free or functionally modified hydroxy, thiol, or amino group;
  • X 1 -Y 1 is (CH 2 ) p Y 20 , p is 0-6,
  • W 14 is CH 2 , O, S(O) m , NR 21 , CH 2 CH 2 , Ch ⁇ CH, CH 2 O, CH 2 S(O) m , Ch ⁇ N, or CH 2 NR 21 ;
  • m is 0-2;
  • NR 21 is NH or a functionally modified amino group
  • J 14 is H, alkyl, acyl, halo, trihalomethyl, or a free or functionalized hydroxy, thiol, or amino group;
  • X 1 -Y 1 is cyclohexyl
  • the individual enantiomers can be enantioselectively synthesized from the appropriate enantiomerically pure or enriched starting material by means such as those described below. Alternatively, they may be enantioselectively synthesized from racemic/non-racemic or achiral starting materials.
  • racemic and non-racemic mixtures may be obtained by several means, including without limitation, nonenantioselective synthesis, partial resolution, or even mixing samples having different enantiomeric ratios. Departures may be made from such details within the scope of the accompanying claims without departing from the principles of the invention and without sacrificing its advantages. Also included within the scope of the present invention are the individual isomers substantially free of their respective enantiomers.
  • wavy line attachments indicate that the configuration may be either alpha ( ⁇ ) or beta ( ⁇ ). Hatched lines indicate the ⁇ configuration. A solid triangular line indicates the ⁇ configuration.
  • the terms “pharmaceutically acceptable salt”, “pharmaceutically acceptable ester” and “pharmaceutically acceptable thioester” means any salt, ester or thioester, respectively, that would be suitable for therapeutic administration to a patient by any conventional means without significant deleterious health consequences; and “ophthalmically acceptable salt”, “ophthalmically acceptable ester” and “ophthalmically acceptable thioester” means any pharmaceutically acceptable salt, ester or thioester, respectively, that would be suitable for ophthalmic application, i.e. non-toxic and non-irritating.
  • free hydroxy group means an OH.
  • functionally modified hydroxy group means an OH which has been functionalized to form: an ether, in which an alkyl, aryl, cycloalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, or heteroaryl group is substituted for the hydrogen; an ester, in which an acyl group is substituted for the hydrogen; a carbamate, in which an aminocarbonyl group is substituted for the hydrogen; or a carbonate, in which an aryloxy-, heteroaryloxy-, alkoxy-, cycloalkoxy-, heterocycloalkoxy-, alkenyloxy-, cycloalkenyloxy-, heterocycloalkenyloxy-, or alkynyloxy-carbonyl group is substituted for the hydrogen.
  • Preferred moieties include OH, OCH 2 C(O)CH 3 , OCH 2 C(O)C 2 H 5 , OCH 3 , OCH 2 CH 3 , OC(O)CH 3 , and OC(O)C 2 H 5 .
  • the term “free amino group” means an NH 2 .
  • the term “functionally modified amino group” means an NH 2 which has been functionalized to form: an aryloxy-, heteroaryloxy-, alkoxy-, cycloalkoxy-, heterocycloalkoxy-, alkenyl-, cycloalkenyl-, heterocycloalkenyl-, alkynyl-, or hydroxy-amino group, wherein the appropriate group is substituted for one of the hydrogens; an aryl-, heteroaryl-, alkyl-, cycloalkyl-, heterocycloalkyl-, alkenyl-, cycloalkenyl-, heterocycloalkenyl-, or alkynyl-amino group, wherein the appropriate group is substituted for one or both of the hydrogens; an amide, in which an acyl group is substituted for one of the hydrogens; a carbamate, in which an aryloxy-, heteroaryloxy-,
  • substitution patterns for example an NH 2 in which one of the hydrogens is replaced by an alkyl group and the other hydrogen is replaced by an alkoxycarbonyl group, also fall under the definition of a functionally modified amino group and are included within the scope of the present invention.
  • Preferred moieties include NH 2 , NHCH 3 , NHC 2 H 5 , N(CH 3 ) 2 , NHC(O)CH 3 , NHOH, and NH(OCH 3 ).
  • free thiol group means an SH.
  • functionally modified thiol group means an SH which has been functionalized to form: a thioether, where an alkyl, aryl, cycloalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heterocycloalkenyl, alkynyl, or heteroaryl group is substituted for the hydrogen; or a thioester, in which an acyl group is substituted for the hydrogen.
  • Preferred moieties include SH, SC(O)CH 3 , SCH 3 , SC 2 H 5 , SCH 2 C(O)C 2 H 5 , and SCH 2 C(O)CH 3 .
  • acyl represents a group that is linked by a carbon atom that has a double bond to an oxygen atom and a single bond to another carbon atom.
  • alkyl includes straight or branched chain aliphatic hydrocarbon groups that are saturated and have 1 to 15 carbon atoms.
  • the alkyl groups may be interrupted by one or more heteroatoms, such as oxygen, nitrogen, or sulfur, and may be substituted with other groups, such as halogen, hydroxyl, aryl, cycloalkyl, aryloxy, or alkoxy.
  • Preferred straight or branched alkyl groups include methyl, ethyl, propyl, isopropyl, butyl and t-butyl.
  • cycloalkyl includes straight or branched chain, saturated or unsaturated aliphatic hydrocarbon groups which connect to form one or more rings, which can be fused or isolated.
  • the rings may be substituted with other groups, such as halogen, hydroxyl, aryl, aryloxy, alkoxy, or lower alkyl.
  • Preferred cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • C 1 -C 5 cyclopropyl means an alkyl chain of 1 to 5 carbon atoms containing a cyclopropyl group wherein the cyclopropyl group may start, be contained in or terminate the alkyl chain.
  • heterocycloalkyl refers to cycloalkyl rings that contain at least one heteroatom such as O, S, or N in the ring, and can be fused or isolated.
  • the rings may be substituted with other groups, such as halogen, hydroxyl, aryl, aryloxy, alkoxy, or lower alkyl.
  • Preferred heterocycloalkyl groups include pyrrolidinyl, tetrahydrofuranyl, piperazinyl, and tetrahydropyranyl.
  • alkenyl includes straight or branched chain hydrocarbon groups having 1 to 15 carbon atoms with at least one carbon-carbon double bond, the chain being optionally interrupted by one or more heteroatoms.
  • the chain hydrogens may be substituted with other groups, such as halogen.
  • Preferred straight or branched alkenyl groups include, allyl, 1-butenyl, 1-methyl-2-propenyl and 4-pentenyl.
  • cycloalkenyl includes straight or branched chain, saturated or unsaturated aliphatic hydrocarbon groups which connect to form one or more non-aromatic rings containing a carbon-carbon double bond, which can be fused or isolated.
  • the rings may be substituted with other groups, such as halogen, hydroxyl, alkoxy, or lower alkyl.
  • Preferred cycloalkenyl groups include cyclopentenyl and cyclohexenyl.
  • heterocycloalkenyl refers to cycloalkenyl rings which contain one or more heteroatoms such as O, N, or S in the ring, and can be fused or isolated.
  • the rings may be substituted with other groups, such as halogen, hydroxyl, aryl, aryloxy, alkoxy, or lower alkyl.
  • Preferred heterocycloalkenyl groups include pyrrolidinyl, dihydropyranyl, and dihydrofuranyl.
  • carbonyl group represents a carbon atom double bonded to an oxygen atom, wherein the carbon atom has two free valencies.
  • aminocarbonyl represents a free or functionally modified amino group bonded from its nitrogen atom to the carbon atom of a carbonyl group, the carbonyl group itself being bonded to another atom through its carbon atom.
  • lower alkyl represents alkyl groups containing one to six carbons (C 1 -C6).
  • halogen represents fluoro, chloro, bromo, or iodo.
  • aryl refers to carbon-based rings which are aromatic.
  • the rings may be isolated, such as phenyl, or fused, such as naphthyl.
  • the ring hydrogens may be substituted with other groups, such as lower alkyl, halogen, free or functionalized hydroxy, trihalomethyl, etc.
  • Preferred aryl groups include phenyl, 3-(trifluoromethyl)phenyl, 3-chlorophenyl, and 4-fluorophenyl.
  • heteroaryl refers to aromatic hydrocarbon rings which contain at least one heteroatom such as O, S, or N in the ring. Heteroaryl rings may be isolated, with 5 to 6 ring atoms, or fused, with 8 to 10 atoms.
  • the heteroaryl ring(s) hydrogens or heteroatoms with open valency may be substituted with other groups, such as lower alkyl or halogen. Examples of heteroaryl groups include imidazole, pyridine, indole, quinoline, furan, thiophene, pyrrole, tetrahydroquinoline, dihydrobenzofuran, and dihydrobenzindole.
  • aryloxy represents an aryl, heteroaryl, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, cycloalkenyl, heterocycloalkenyl, or alkynyl group, respectively, attached through an oxygen linkage.
  • alkoxycarbonyl represents an alkoxy, aryloxy, heteroaryloxy, cycloalkoxy, heterocycloalkoxy, alkenyloxy, cycloalkenyloxy, heterocycloalkenyloxy, or alkynyloxy group, respectively, bonded from its oxygen atom to the carbon of a carbonyl group, the carbonyl group itself being bonded to another atom through its carbon atom.
  • Preferred compounds of the present invention include those of formula I, wherein:
  • X is O
  • R 1 is H or (C ⁇ O)R 4 ;
  • A is O
  • R 3 is OCH 2 CH(NH 3 + )COO ⁇ , OCH 2 CH 2 NH 3 +, OCH 2 CH 2 N + (CH 3 ) 3 , O-inositol, or OH;
  • R 5 is a HETE derivative.
  • the compounds of formula (I) may be made by methods known in the art of phospholipid synthesis.
  • compositions of the present invention comprise one or more compounds of formula (I) and a pharmaceutically acceptable carrier.
  • the compositions are formulated in accordance with methods known in the art for the particular route of administration desired for the prevention, treatment or amelioration of the particular disease or disorder targeted.
  • the level of peroxy compounds in the HETE derivative raw materials that are used to prepare the pharmaceutical formulations of the present invention may have an impact on the HETE derivative's biological activity. Although the precise relationship has not been defined, it is preferable to use HETE derivative raw material supplies containing peroxy compounds at levels no greater than about 0.3 ppm. Methods for determining peroxy levels are known in the art (e.g., European Pharmacopoeia 1997 3 rd Ed., Method 2.5.5—Peroxide Value).
  • pharmaceutically acceptable carrier refers to any formulation which is safe, and provides the appropriate delivery of an effective amount of one or more compounds of formula (1) for the prevention, treatment or amelioration of the disease or disorder targeted.
  • the term “pharmaceutically effective amount” refers to an amount of one or more compounds of formula (I) that, when administered to a patient, prevents, treats or ameliorates a disease or disorder, or conditions associated thereof.
  • an ophthalmically effective amount refers to an amount of one or more compounds of formula (I) that, when administered to a patient, prevents, treats or ameliorates an ophthalmic disease or disorder, or conditions associated thereof.
  • an effective amount will stimulate secretion of mucin in the eye and thus eliminate or improve dry eye conditions when administered to the eye.
  • an effective amount to treat dry eye refers to an amount of one or more compounds of formula (I) that, when administered to a patient, prevents, treats or ameliorates a dry eye disease or disorder, or conditions associated thereof.
  • the compounds of formula (I) will be contained in a composition of the present invention in a concentration range of about 0.00001 to 10 per cent weight/volume (“% w/v”).
  • % w/v concentration range of about 0.00001 to 10 per cent weight/volume
  • Preferred ophthalmic, including dry eye-treatment, compositions will contain one or more compounds of formula (I) in a concentration of from about 0.00001-0.01% w/v.
  • compositions useful in treating dry eye are particularly directed to compositions useful in treating dry eye.
  • such compositions will be formulated as solutions, suspensions and other dosage forms for topical administration.
  • Aqueous solutions are generally preferred, based on ease of formulation, biological compatibility (especially in view of the malady to be treated, e.g., dry eye-type diseases and disorders), as well as a patient's ability to easily administer such compositions by means of instilling one to two drops of the solutions in the affected eyes.
  • the compositions may also be suspensions, viscous or semi-viscous gels, or other types of solid or semi-solid compositions. Suspensions may be preferred for compounds of formula (I) which are less soluble in water.
  • the ophthalmic compositions of the present invention will also contain ethanol.
  • an effective concentration of ethanol refers to a concentration that enhances the biological efficacy of the formula (I) compositions in vivo.
  • concentration of ethanol necessary for the enhancement of the compounds of formula (I) is believed to be somewhat proportional to the concentration of the formula (I) compound(s) administered. If a relatively high concentration of formula (I) compound(s), e.g., above 0.1% w/v, is administered, the concentration of ethanol in such compositions may be proportionally less than analogous compositions containing lower concentrations of formula (I) compounds.
  • the ethanol concentration contained in the ophthalmic compositions of the present invention will range from about 0.001-2% w/v.
  • Compositions containing formula (I) concentrations of about 0.00001-0.05% w/v preferably will contain ethanol in a concentration of about 0.005-0.40% w/v, and most preferably, about 0.02-0.20% w/v.
  • the compositions of the present invention will also contain a surfactant.
  • a surfactant useful in pharmaceutical formulations may be employed.
  • the surfactant(s) may provide additional chemical stabilization of the formula (I) compounds and may further provide for the physical stability of the compounds.
  • the surfactants may aid in preventing chemical degradation of the compounds of formula (I) and also prevent the compounds from binding to the containers in which their compositions are packaged.
  • an effective concentration of surfactant(s) refers to a concentration that enhances the chemical and physical stability of formula (I) compound(s).
  • surfactants include, but are not limited to: Cremophor® EL, polyoxyl 20 ceto stearyl ether, polyoxyl 40 hydrogenated castor oil, polyoxyl 23 lauryl ether and poloxamers, e.g., poloxamer 407, may be used in the compositions.
  • a preferred surfactant is polyoxyl 40 stearate.
  • the concentration of surfactant will vary, depending on the concentration of formula (I) compound(s) and optional ethanol present in the formulation. In general, however, the surfactant(s) concentration will be about 0.001 to 2.0% w/v.
  • Preferred compositions of the present invention will contain about 0.1% w/v of polyoxyl 40 stearate.
  • compositions of the present invention may also include various other ingredients, such as tonicity agents, buffers, preservatives, co-solvents and viscosity building agents.
  • tonicity agents may be employed to adjust the tonicity of the composition, preferably to that of natural tears for ophthalmic compositions.
  • sodium chloride, potassium chloride, magnesium chloride, calcium chloride, dextrose and/or mannitol may be added to the composition to approximate physiological tonicity.
  • Such an amount of tonicity agent will vary, depending on the particular agent to be added. In general, however, the compositions will have a tonicity agent concentration of about 0.1-1.5% w/v.
  • Sodium chloride in the amount of 0.75% w/v is preferred.
  • An appropriate buffer system e.g., sodium phosphate, sodium acetate, sodium citrate, sodium borate or boric acid
  • concentration will vary, depending on the agent employed. In general, however, such a concentration will range from about 0.02 to 2.0% w/v.
  • Antioxidants may be added to compositions of the present invention to protect the formula (I) compounds from oxidation during storage.
  • antioxidants include, but are not limited to, vitamin E and analogs thereof, ascorbic acid and derivatives, and butylated hydroxyanisole (BHA).
  • compositions formulated for the treatment of dry eye-type diseases and disorders may also comprise aqueous carriers designed to provide additional, immediate, short-term relief of dry eye-type conditions.
  • aqueous carriers designed to provide additional, immediate, short-term relief of dry eye-type conditions.
  • Such carriers can be formulated as a phospholipid carrier or an artificial tears carrier, or mixtures of both.
  • phospholipid refers only to the phospholipids of the phospholipid carrier and does not refer to a compound of formula (I).
  • phospholipid carrier and “artificial tears carrier” refer to aqueous compositions which: (i) comprise one or more phospholipids (in the case of phospholipid carriers) or other compounds, which lubricate, “wet,” approximate the consistency of endogenous tears, aid in natural tear build-up, or otherwise provide temporary relief of dry eye symptoms and conditions upon ocular administration; (ii) are safe; and (iii) provide the appropriate delivery vehicle for the topical administration of an effective amount of one or more compounds of formula (I).
  • Examples or artificial tears compositions useful as artificial tears carriers include, but are not limited to, commercial products, such as Tears Naturale®, Tears Naturale II®, Tears Naturale Free®, and Bion Tears® (Alcon Laboratories, Inc., Fort Worth, Tex.).
  • Examples of phospholipid carrier formulations include those disclosed in U.S. Pat. No. 4,804,539 (Guo et al.), U.S. Pat. No. 4,883,658 (Holly), U.S. Pat. No. 4,914,088 (Glonek), U.S. Pat. No. 5,075,104 (Gressel et al.), U.S. Pat. No. 5,278,151 (Korb et al.), U.S. Pat.
  • the phospholipids useful in the phospholipid carriers are any natural or synthetic phospholipid compound comprising a glycerol-phosphoric acid ester or sphingomyelin backbone.
  • Examples of glycerol-based phospholipid carriers useful in the present invention include those of the formula:
  • X 21 and X 22 are the same or different and are O, NH(C ⁇ O), O(C ⁇ O), or a direct bond;
  • R 22 is H or Ch ⁇ CH(CH 2 ) 12 CH 3 ;
  • X 21 -R 1 is OH, or R 1 is C 12-26 substituted or unsubstituted alkyl or alkenyl;
  • R 2 is C 12-26 substituted or unsubstituted alkyl or alkenyl
  • R 3 is H, OH, OCH 2 CH(NH 3 + )COO ⁇ , OCH 2 CH 2 NH 3 +, OCH 2 CH 2 N + (CH 3 ) 3 , OCH 2 CH(OH)CH 2 OH and O-inositol.
  • the phospholipids may be present as racemic or non-racemic compounds.
  • Preferred glycerol based phospholipids are those wherein X 21 -R 1 and/or X 22 -R 2 comprise fatty acid esters or amides.
  • Natural fatty acids are saturated, monounsaturated or polyunsaturated. Examples of fatty acid residues include, but are not limited to, laurate, myristate, palmitate, palmitoleate, stearate, oleate, linoleate, linolenate, eicosanoate, docosanoate and lignocerate.
  • Preferred phospholipid types are the phosphatidylethanolamines, phosphatidylcholines, phosphatidylserines, phospatidylinositols and sphingomyelins.
  • specific phospholipids include: 1,2-dipalmitoyl phosphatidyl choline (“DPPC”) 1,2-dipalmityl phosphatidyl glycerol (“DPPG”), N-stearyl sphingomyelin, N-palmityl sphingomyelin, N-oleyl sphingomyelin, 1,2-distearoyl phosphatidyl ethanolamine (“DSPE”), 1,2-distearoyl phosphatidyl inositol (“DSPI”), 1-stearoyl-2-palmitoyl phosphatidyl ethanolamine (“SPPE”), 1-stearoyl-2-palmitoyl phosphatidyl choline (“SPPC
  • the most preferred phospholipid carriers are the phosphatidylethanolamines and sphingomyelins.
  • Phospholipids are available from a variety of natural sources and may be synthesized by methods known in the art; see, for example, Tsai et. al., Biochemistry, volume 27, page 4619 (1988); and Dennis et. al., Biochemistry, volume 32, page 10185 (1993).
  • Other compounds designed to lubricate, “wet,” approximate the consistency of endogenous tears, aid in natural tear build-up, or otherwise provide temporary relief of dry eye symptoms and conditions upon ocular administration the eye are known in the art.
  • Such compounds may enhance the viscosity of the composition, and include, but are not limited to: monomeric polyols, such as, glycerol, propylene glycol, ethylene glycol; polymeric polyols, such as, polyethylene glycol, hydroxypropylmethyl cellulose (“HPMC”), carboxy methylcellulose sodium, hydroxy propylcellulose (“HPC”), dextrans, such as, dextran 70; water soluble proteins, such as gelatin; and vinyl polymers, such as, polyvinyl alcohol, polyvinylpyrrolidone, povidone and carbomers, such as, carbomer 934P, carbomer 941, carbomer 940, carbomer 974P.
  • monomeric polyols such as, glycerol, propylene
  • compositions of the present invention may also be added to the ophthalmic compositions of the present invention to increase the viscosity of the carrier.
  • viscosity enhancing agents include, but are not limited to: polysaccharides, such as hyaluronic acid and its salts, chondroitin sulfate and its salts, dextrans, various polymers of the cellulose family; vinyl polymers; and acrylic acid polymers.
  • the phospholipid carrier or artificial tears carrier compositions will exhibit a viscosity of 1 to 400 centipoises (“cps”).
  • Preferred compositions containing artificial tears or phospholipid carriers will exhibit a viscosity of about 25 cps.
  • Topical ophthalmic products are typically packaged in multidose form. Preservatives are thus required to prevent microbial contamination during use. Suitable preservatives include: benzalkonium chloride, chlorobutanol, benzododecinium bromide, methyl paraben, propyl paraben, phenylethyl alcohol, edetate disodium, sorbic acid, polyquaternium-1, or other agents known to those skilled in the art. Such preservatives are typically employed at a level of from 0.001 to 1.0% w/v. Unit dose compositions of the present invention will be sterile, but typically unpreserved. Such compositions, therefore, generally will not contain preservatives.
  • compositions of the present invention are intended for administration to a human patient suffering from dry eye or symptoms of dry eye.
  • such compositions will be administered topically.
  • the doses used for the above described purposes will vary, but will be in an effective amount to provide immediate, short-term dry eye relief, and to increase mucin production in the eye and thus eliminate or improve the dry eye condition of the patient.
  • 1-2 drops of such compositions will be administered 1-10 times per day for the treatment of dry eye or other ocular disease or disorder.
  • 1-2 drops of the compositions will be administered 1-4 times per day.
  • the present invention is also directed to stable, stock compositions comprising one or more compounds of formula (I) and ethanol.
  • ethanolic solution provides greater stability of the compounds of formula (I) over analogous aqueous compositions, or neat compounds of formula (I) compositions.
  • Such compositions comprise one or more compounds of formula (I) and an amount of ethanol to solubilize the compounds of formula (I) in solution.
  • the ethanolic stock solutions will contain anhydrous ethanol, but aqueous ethanolic solutions are also contemplated by the present invention.
  • the stock solutions will contain ethanol in a concentration of about 25 to 100 % volume/volume (“v/v”).
  • v/v % volume/volume
  • such stock solutions will contain compounds of formula (I) in a high concentration relative to the pharmaceutical compositions of the present invention.
  • compositions of the present invention illustrates a composition of the present invention.
  • the actual pH of the composition may vary (e.g., between 6-8), and the concentrations of the various ingredients included in the exemplified composition may vary, but are included in the compositions in the approximate amounts shown.
  • the above composition is prepared by the following method.
  • the batch quantities of polyoxyl 40 stearate, boric acid, sodium chloride, disodium edetate, and polyquatemium-1 are weighed and dissolved by stirring in 90% of the batch quantity of purified water.
  • the pH is adjusted to 7.5+0.1 with NaOH and/or HCl.
  • the batch quantity of the compound of Formula I as a stock solution in ethanol and the additional quantity of ethanol necessary for the batch are measured and added.
  • Purified water is added to q.s. to 100%. The mixture is stirred for five minutes to homogenize and then filtered through a sterilizing filter membrane into a sterile recipient.
  • the above process is performed using glass, plastic or other non-metallic containers or containers lined with such materials.
US09/874,815 1999-11-09 2001-06-05 Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use Expired - Lifetime US6458854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/874,815 US6458854B2 (en) 1999-11-09 2001-06-05 Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16436799P 1999-11-09 1999-11-09
US09/694,138 US6353032B1 (en) 1999-11-09 2000-10-23 Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use
US09/874,815 US6458854B2 (en) 1999-11-09 2001-06-05 Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/694,138 Continuation-In-Part US6353032B1 (en) 1999-11-09 2000-10-23 Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use

Publications (2)

Publication Number Publication Date
US20010041692A1 true US20010041692A1 (en) 2001-11-15
US6458854B2 US6458854B2 (en) 2002-10-01

Family

ID=46149974

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/874,815 Expired - Lifetime US6458854B2 (en) 1999-11-09 2001-06-05 Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use

Country Status (1)

Country Link
US (1) US6458854B2 (US20010041692A1-20011115-C00007.png)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003235454A1 (en) * 2002-06-14 2003-12-31 Alcon, Inc. Use of hydroxyeicosatetraenoic acid compounds to treat ophthalmic inflammatory disorders
AU2003221707A1 (en) * 2002-06-14 2003-12-31 Alcon, Inc. Topical use of hydroxyeicosatetraenoic acid compounds to treat psoriasis
WO2004026406A1 (en) * 2002-09-20 2004-04-01 Alcon, Inc. Use of cytokine synthesis inhibitors for the treatment of dry eye disorders
US6890867B2 (en) * 2003-02-25 2005-05-10 Micron Technology, Inc. Transistor fabrication methods comprising selective wet-oxidation

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991759A (en) 1975-10-28 1976-11-16 Alza Corporation Method and therapeutic system for treating aqueous deficient dry eye
US4131651A (en) 1977-10-25 1978-12-26 Barnes-Hind Pharmaceuticals, Inc. Treatment of dry eye
US4409205A (en) 1979-03-05 1983-10-11 Cooper Laboratories, Inc. Ophthalmic solution
US4370325A (en) 1979-03-30 1983-01-25 Dermik Laboratories Pharmaceutical compositions and method of treatment
AU546872B2 (en) 1982-06-16 1985-09-26 Unilever Plc Skin treatment compositions containing a fatty acid or ester
US4421748A (en) 1982-07-13 1983-12-20 Trager Seymour F Artificial tear aid
GB8319073D0 (en) 1983-07-14 1983-08-17 Efamol Ltd Fatty acid compositions
US4753945A (en) 1986-02-19 1988-06-28 Eye Research Institute Of Retina Foundation Stimulation of tear secretion with phosphodiesterase inhibitors
US4868154A (en) 1986-02-19 1989-09-19 Eye Research Institute Of Retina Foundation Stimulation of tear secretion with melanocyte stimulating hormones
US4883658A (en) 1986-04-28 1989-11-28 Holly Frank J Ophthalmic solution for treatment of dry-eye syndrome
US4744980A (en) 1986-04-28 1988-05-17 Holly Frank J Ophthalmic solution for treatment of dry eye syndrome
US4804539A (en) 1986-07-28 1989-02-14 Liposome Technology, Inc. Ophthalmic liposomes
US4818537A (en) 1986-10-21 1989-04-04 Liposome Technology, Inc. Liposome composition for treating dry eye
US4966773A (en) 1986-11-25 1990-10-30 Alcon Laboratories, Inc. Topical ophthalmic compositions containing microfine retinoid particles
US5278151A (en) 1987-04-02 1994-01-11 Ocular Research Of Boston, Inc. Dry eye treatment solution
US4914088A (en) 1987-04-02 1990-04-03 Thomas Glonek Dry eye treatment solution and method
US4921644A (en) 1988-02-29 1990-05-01 Technology Unlimited, Inc. Mucin directed lipsome
US4906467A (en) 1988-03-24 1990-03-06 New York Medical College Novel, long-duration treatment for glaucoma
US4923700A (en) 1988-06-03 1990-05-08 Kaufman Herbert E Artificial tear suspension
US5064655A (en) 1989-02-24 1991-11-12 Liposome Technology, Inc. Liposome gel composition and method
US5075104A (en) 1989-03-31 1991-12-24 Alcon Laboratories, Inc. Ophthalmic carboxy vinyl polymer gel for dry eye syndrome
US5174988A (en) 1989-07-27 1992-12-29 Scientific Development & Research, Inc. Phospholipid delivery system
AU655919B2 (en) 1990-02-22 1995-01-19 Macnaught Pty Limited Artificial tears
US5041434A (en) 1991-08-17 1991-08-20 Virginia Lubkin Drugs for topical application of sex steroids in the treatment of dry eye syndrome, and methods of preparation and application
ATE132366T1 (de) 1990-05-29 1996-01-15 Boston Ocular Res Zusammensetzung zur behandlung von dry eye erkrankungen
ZA912797B (en) 1990-05-29 1992-12-30 Boston Ocular Res Dry eye treatment process and solution
US5102670A (en) 1990-09-14 1992-04-07 Abraham Nader G Method for treating eye disorders by reducing 12(r)-hydroxyeicosatetraenoic acid and 12(r)-dihydroxyeicosatrienoic acid levels
EP0495421B1 (en) 1991-01-15 1996-08-21 Alcon Laboratories, Inc. Use of carrageenans in topical ophthalmic compositions
ZA927277B (en) 1991-10-02 1993-05-19 Boston Ocular Res Dry eye treatment process and solution.
EP0546728A3 (en) 1991-12-13 1993-09-08 Alcon Laboratories Inc Physiological tear compositions and methods for their preparation
ES2139005T3 (es) 1992-04-21 2000-02-01 Schepens Eye Res Inst Terapia ocular con androgeno en el sindrome de sjogren.
US5290572A (en) 1992-08-06 1994-03-01 Deo Corporation Opthalmic composition for treating dry eye
US5358706A (en) 1992-09-30 1994-10-25 Union Carbide Chemicals & Plastics Technology Corporation Muco-adhesive polymers
US5455265A (en) 1993-02-11 1995-10-03 Allergan, Inc. Method of treatment with compounds having selective agonist-like activity on RXR retinoid receptors
US5389383A (en) 1993-06-18 1995-02-14 Allergan, Inc. Method for treating hypoxia-associated ocular complications
US5696166A (en) 1995-10-31 1997-12-09 Yanni; John M. Compositions containing hydroxyeicosatetraenoic acid derivatives and methods of use in treating dry eye disorders
HUP0000150A3 (en) 1996-10-15 2002-07-29 Liposome Company Inc Princeton Peptide-lipid conjugates,liposomes and liposomal drug delivery
US5800807A (en) 1997-01-29 1998-09-01 Bausch & Lomb Incorporated Ophthalmic compositions including glycerin and propylene glycol
CA2362498A1 (en) 1999-03-01 2000-09-08 Vista Scientific Llc Mucin containing ophthalmic preparations

Also Published As

Publication number Publication date
US6458854B2 (en) 2002-10-01

Similar Documents

Publication Publication Date Title
US6645978B1 (en) Lipoxin A4 and its analogs for the treatment of dry eye
US6353022B1 (en) Compositions containing hydroxyeicosatetraenoic acid derivatives and methods of use in treating dry eye disorders
US6429227B1 (en) Hydroxyeicosatetraenoate salts, compositions and methods of use in treating dry eye disorders
US6441035B2 (en) Heteroatom-interrupted analogs of 15-hydroxyeicosatetraenoic acid and methods of use
US6353012B1 (en) 15-Hydroxyeicosatetraenoic acid-related compounds and methods of use
US6437160B1 (en) 3-heteroatom substituted and two carbon homologs of 15-HETE and methods of use
US6320062B1 (en) 15-hydroxyeicosatetraenoic acid analogs with enhanced metabolic stability and methods of their use in treating dry eye disorders
US6353032B1 (en) Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use
US6458854B2 (en) Phospholipids of hydroxyeicosatetraenoic acid-like derivatives and methods of use
US6255343B1 (en) 2,2-difluoro 15-hydroxyeicosatetraenoic acid analogs and methods of use
US6342525B1 (en) Benzenoid derivatives of 15-hydroxyeicosatetraenoic acid and methods of their use in treating dry eye disorders

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCON UNIVERSAL LTD., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRAFF, GUSTAV;KLIMKO, PETER G.;REEL/FRAME:011890/0174

Effective date: 20010605

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: NOVARTIS AG, SWITZERLAND

Free format text: MERGER;ASSIGNOR:ALCON, INC (F/K/A ALCON UNIVERSAL LTD.);REEL/FRAME:026393/0129

Effective date: 20110408

FPAY Fee payment

Year of fee payment: 12