US20010033225A1 - System and method for collecting vehicle information - Google Patents

System and method for collecting vehicle information Download PDF

Info

Publication number
US20010033225A1
US20010033225A1 US09332346 US33234699A US2001033225A1 US 20010033225 A1 US20010033225 A1 US 20010033225A1 US 09332346 US09332346 US 09332346 US 33234699 A US33234699 A US 33234699A US 2001033225 A1 US2001033225 A1 US 2001033225A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
network
sub
car
devices
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09332346
Other versions
US6362730B2 (en )
Inventor
Behfar Razavi
Owen M. Densmore
Guy W. Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oracle America Inc
Original Assignee
Oracle America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/34Network-specific arrangements or communication protocols supporting networked applications involving the movement of software or configuration parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/26Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L29/00Arrangements, apparatus, circuits or systems, not covered by a single one of groups H04L1/00 - H04L27/00 contains provisionally no documents
    • H04L29/02Communication control; Communication processing contains provisionally no documents
    • H04L29/06Communication control; Communication processing contains provisionally no documents characterised by a protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/12Network-specific arrangements or communication protocols supporting networked applications adapted for proprietary or special purpose networking environments, e.g. medical networks, sensor networks, networks in a car or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation, e.g. WAP [Wireless Application Protocol]
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks

Abstract

A system and method for collecting information from a vehicle wherein the vehicle incorporates an internal network having a device coupled thereto for collecting or generating the vehicle information and a communication device coupled thereto for transmitting the vehicle information to an external receiver. In one embodiment, the devices coupled to the network are addressable using corresponding IP addresses. In another embodiment, the devices are addressable using object terminology which references their respective services. The vehicle information may include location, traffic, diagnostic or other types of information The vehicle information may be transmitted to the external receiver automatically or the transmission may be initiated by a network user within the vehicle.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    This invention relates generally to the field of computerized systems for automobiles and other vehicles and more particularly to a vehicle component architecture in which vehicle components are network devices coupled to an in-vehicle network.
  • [0003]
    2. Description of the Related Art
  • [0004]
    Automobiles play an important role in the lives of millions of people. They provide a mode of transportation which allows people to cover great distances quickly and easily and are a convenience which many people could not do without. For example, many people commute to and from work every day in their automobiles and some may spend an hour or more in traffic each way.
  • [0005]
    Despite the freedom with which automobiles allow people to move about, the substantial amount of time which people spend in their automobiles may also be an inconvenience. For instance, a person who commutes an hour each way to and from work typically cannot make productive use of that time. That is, time which is spent in the automobile might have instead been spent working, playing or in some other useful manner. Although some people may be able to make use of cellular phones to conduct business from their automobiles, they make up a relatively small percentage of the driving population. Time spent in an automobile is more typically an interruption of the driver's normal activities. The inconvenience and anxiety resulting from this interruption may be magnified by problems such as traffic jams, vehicle malfunctions and driver confusion.
  • [0006]
    Automobile designers may attempt to lessen the inconvenience of time spent in automobile by making it as comfortable as possible and by providing certain services to the occupants of the vehicle. For example, the ergonomics of the automobile are studied to ensure that it provides both a physically comfortable environment and a user-friendly interface to the automobile's functions. The designers may also incorporate into the vehicle the delivery of services that may assist the driver, thereby reducing the driver's workload and anxiety level. Such services may include providing computerized maps, navigation aids and emergency assistance signaling.
  • [0007]
    One of the difficulties faced by designers, however, is that the designs for automobiles must be finalized long before the vehicles themselves actually go into production. The designers must therefore anticipate needs which drivers will have several years in the future. Since a typical design cycle for an automobile is four years long, the designers must create an automobile design which is four years ahead of its time. Then, after the automobile is in production, even services which designers may have accurately anticipated may quickly become outdated or obsolete. Because a person may own an automobile for ten years or more, it is not at all unusual for the design of an automobile to be outdated for a substantial portion of its useful is life.
  • [0008]
    While it may be desirable to upgrade the components of automobiles, they are often difficult, if not impossible, to upgrade. The components typically have unique physical and functional characteristics, including their size, shape and interface to the automobile, which prevent them from being replaced with similar, but not identical parts. Further, the replacement of the components can be very labor-intensive, and it is not unusual for the cost of the labor to install the components to be on the same order as the cost of the components themselves. There is therefore no practical way in the prior art for an automobile which is already in production to be upgraded to maintain state-of-the-art components and/or functionality.
  • SUMMARY OF THE INVENTION
  • [0009]
    One or more of the problems described above may be solved by the various embodiments of the invention. Broadly speaking, the invention comprises a system for integrating components into a vehicle wherein the components comprise devices coupled to an in-car network and wherein the network provides for easy re-configuration and upgrading of the vehicle, as well as improved communication of information between the vehicle's systems and integration of the vehicle network into external networks.
  • [0010]
    One embodiment of the invention comprises a vehicle which has a network installed therein. The network includes one or more devices which are addressable using IP addresses or object terminology. The devices may include various servers and clients, such as microphones, cameras, GPS receivers, interfaces to on-board diagnostic systems, communication devices, displays, CD players, radios, speakers, security devices and LANs (local are networks,) to name only a few. Devices may easily be connected or disconnected to upgrade or reconfigure the vehicle's systems, and software and services can easily be provided to the various devices through the network. The network can enable the interaction of various network devices to increase the capabilities or utility of devices which may otherwise be limited. The system therefore provides an easy and inexpensive means to improve or otherwise modify the functionality of the vehicle.
  • [0011]
    In one embodiment, the in-vehicle network comprises an ethernet, although other embodiments can be implemented in any other type of network. Communication devices such as wireless modems and wireless ethernet allow communications with devices and networks external to the in-vehicle network so that data, software, services and other information can be downloaded from or uploaded to these external sources. The in-vehicle network can also be coupled to an external network through these communication devices so that it can function as a device (a sub-network) on the external network.
  • [0012]
    In one embodiment, some traditional vehicle components maybe replaced by network devices, thereby providing extended functionality to the driver. For example, the vehicle's dashboard maybe replaced by a monitor which displays images of dashboard instruments, vehicle data and other information to the driver. Graphics generated by a server on the network may be designed to emulate digital or analog gauges which are normally found on a dashboard. The graphics may be varied to suit the preferences of different drivers, or the driver may be able to select different information to be displayed (for example, tabbing from vehicle data to location information, to a radio display, and so on.)
  • [0013]
    Additional embodiments are described below
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which:
  • [0015]
    [0015]FIG. 1 is a block diagram of an in-car sub-network in one embodiment of the invention.
  • [0016]
    [0016]FIG. 2 is a detailed block diagram of an in-car sub-network in one embodiment of the invention
  • [0017]
    [0017]FIG. 3 is a diagram of the operating environment of the server in one embodiment of the invention.
  • [0018]
    [0018]FIG. 4 is a diagram illustrating the operation of an in-car sub-network in conjunction with a land-based proxy server and external networks in one embodiment of the invention.
  • [0019]
    While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0020]
    One embodiment of the invention will be described in detail below. It should be noted that many modifications of the described embodiment are possible and will be obvious to a person of ordinary skill upon reading this disclosure. While some of these modifications will also be described below, all of the various embodiments of the invention are intended to be encompassed by this disclosure and the appended claims.
  • [0021]
    One embodiment of the invention comprises an automobile which incorporates its own network. A group of components within the automobile comprise network devices which are coupled to the in-car network. Thus, rather than being directly and independently coupled to the automobile, these components are citizens of the in-car network and may be installed, disconnected, upgraded or replaced with different devices. They may increase or decrease the functionality of the automobile, or they may function cooperatively with other network devices. Thus, the components are not limited by outdated designs or the constraints of proprietary buses or connections.
  • [0022]
    As used herein, “network” refers to a group of computers or other devices (e.g., servers, displays, modems, etc.) which are interconnected by a transmission medium, and which are addressable using IP addresses or object terminology. A network may be one of many different types, several of which are defined in the standards of the Institute of Electrical and Electronics Engineers (IEEE.) For example, one embodiment of the invention employs an ethernet (as defined IEEE 802.3.) Because network types such as ethernet, token ring and others are well known and understood in the art of the invention, they will not be explained in detail here. Suitable transmission media (e.g., twisted pairs of wires, coaxial cables, optical fibers, free space or even the connections between devices and their peripherals) can be selected according to the selected network architecture. A wide variety of network devices can be coupled to a network and the network can typically be dynamically reconfigured through connection and/or disconnection of these devices
  • [0023]
    IP (Internet Protocol) is a protocol which is typically used in conjunction with TCP (Transport Control Protocol) as a protocol suite for passing data from applications to networks and then from the networks to other applications. The IP portion of the protocol suite is used in transporting packets from the transmitting device to the receiving device. IP addresses are, of course, the means by which the packets are directed to the target device. Because IP addresses are well-known in the data-processing arts, they will not be explained in further detail here. It is sufficient to note that IP addressing allows data to be directed to devices which are not part of a predetermined, hard-wired design. “Object terminology,” as used in this disclosure, refers to software language which handles devices in an object-oriented manner. That is, the devices and their functions can be used in a manner which is not dependent upon the specific implementation of the device, but instead upon the type and functions of the device. For instance, as will be explained below in regard to Jini software, a device which joins a network may register its services with a lookup server so that other devices which need these services can request them without regard to the specific device that provides them. In contrast, prior art on-board diagnostic buses have specific, predetermined devices which provide specific, predetermined services and which transmit/receive data over a specific, predetermined path. By using IP addressing and object terminology to provide communication between devices on the network, the invention eliminates the constraints which are inherent in bus systems. (Communication, as used here, includes data transfer and any other interaction between the devices.)
  • [0024]
    For the purposes of this disclosure, a network is distinct from the various buses which may monitor the functions of an automobile and provide diagnostic information, but which can be coupled only to specific monitoring devices. These buses may be referred to as “on-board diagnostic” (OBD) systems. Because the Environmental Protection Agency has adopted standards for such systems from the standards of the society of automotive engineers (SAE), most of the diagnostic buses use command sets and protocols defined by SAE standards (e.g. SAE J2979 and SAE J. 2850 VPW/PWM.) OBD systems do not provide IP addressability. Consequently, they do not, in the absence of the invention, support the wide variety of devices that can be coupled to a network. The utility of OBD system buses is limited to specific diagnostic functions which are designed into the automobile. It is contemplated, however, that embodiments of the invention may be implemented by adding an IP layer on top of the OBD buses. Thus, while the proprietary buses are distinct from the networks described herein, these buses may be converted to network uses, or they may be coupled to the networks through appropriate interfaces (i.e., the buses themselves can function as devices on the networks.)
  • [0025]
    In another embodiment of the invention, an automobile having an in-car network may be coupled to an external network That is, the in-car network may appear to the external network to have a single IP address. (In this context, the in-car network may be referred to as a “sub-network,” while they external network may be referred to as the “primary” network.) The automobile sub-network may include a variety of communication devices through which it may be coupled to the primary network. These devices may include a wireless modem, a cellular packet data (CDPD) modem, a pager or other communication devices. The in-car sub-network operates in cooperation with a land-based proxy server. Because the in-car sub-network uses several different communication devices, it has several different IP addresses (one for each of the communications devices.) These addresses may be dynamically assigned by a service provider. The in-car sub-network communicates to the land-based proxy server of the IP address of the currently-used communication device. Packets which originate on the primary network and which are addressed to the in-car sub-network are directed to the land-based proxy server, which then directs the packets to the in-car sub-network at the appropriate IP address. The land-based proxy server additionally acts as a buffer when the in-car sub-network is disconnected from the primary network. The land-based proxy server forwards packets which are destined for the disconnected in-car sub-network and delivers the packets when the in-car sub-network is reconnected to the primary network.
  • [0026]
    The goals of the system can be grouped into three broad categories: hardware independence; service delivery; and software upgradability. The hardware independence of the system is related to the interchangeability of the components of the automobile's sub-network. If, for example, the sub-network includes a graphical display, this display should be replaceable with several different displays, each having unique characteristics. The several displays only need to be able to interface with the sub-network in order to be exchanged. The goal of service delivery relates to the ability to provide new and different services to the vehicle through the sub-network. Although automobiles in the prior art may provide one or two services to the driver, e.g. driver assistance via automatic telephone communications, the equipment for providing these services are dedicated to their respective services and cannot provide distinctly different services. The present system, on the other hand, allows new components or new software to be added to the automobile sub-network and thereby enables new services to be provided to the driver. Finally, software upgradeability relates to the ease with which software systems in the automobile may be upgraded via the automobile sub-network. Rather than manually replacing memory modules or CDs (e.g. containing map data,) the automobile sub-network enables the downloading of new applications or data, as well as the uploading of vehicle diagnostic data or other information, through the network communication devices.
  • [0027]
    This disclosure is directed generally to sub-network implementations within vehicles. “Vehicles” may include automobiles, boats, airplanes, trailers, buses, trains and the like. For the sake of brevity, the detailed description herein describes an implementation in an automobile. The scope of the invention, however, is intended to encompass any type of vehicle, and references to automobiles or cars apply equally to other vehicles. Additionally, at least portions of the system are also applicable to land-based implementations of sub-networks, rather than being limited to vehicle-based implementations.
  • [0028]
    Referring to FIG. 1, an in-car sub-network 10 in one embodiment of the invention is shown. In-car sub-network 10 comprises a utility box 11, network devices 13 and 14, communication device 15 and network cabling 12. These components are installed in vehicle 18. Utility box 11 and network devices 13 and 14 are coupled to cabling 12. Communication device 15 is connected to utility box 11. Each of these devices is addressable on network 10. Although communication device 15 is not directly connected to cabling 12, utility box 11 is configured to recognize packets on the network which are addressed to communication device 15 and to forward these packets to the device. Network 10 can be coupled to an external network through internet service provider 17. In the embodiment depicted in FIG. 1, communication device 15 is a wireless device and is coupled to internet service provider 17 by wireless transmissions 16.
  • [0029]
    In one embodiment, the in-car sub-network is installed in a General Motors EV1. The EV1 is an electric car which General Motors markets through its Saturn dealerships. The EV1 was selected for this embodiment in part because of the energy requirements of the devices connected to the in-car sub-network. Although many vehicles can provide sufficient power to run the devices, the EV1 has large batteries for providing energy to the car's original equipment. These batteries can power the devices of the in-car sub-network for a longer period of time than the smaller batteries which are found in most vehicles. Thus, the in-car sub-network can be installed in essentially any type of vehicle.
  • [0030]
    Referring to FIG. 2, a more detailed block diagram of in-car sub-network 20 is shown. FIG. 2 illustrates some of the components that may be coupled to the network. In-car sub-network 20 is built around an on-board compute platform 22. Compute platform 22 consists of a SparcStation UPN server (a prototype Sparc 5-based system.) All of the components of the incar sub-network are either directly plugged into the compute platform or coupled to do it via an ethernet connection.
  • [0031]
    Compute platform 22 includes some type of readable/writeable storage media 25, such as a hard disk or flash memory. As mentioned above, the manufacturer's on-board diagnostic system bus 23 can be coupled to the in-car sub-network. On-board diagnostic system bus 23 is connected to compute platform 22 via an RS-232 connector. The in-car sub-network can also be coupled to an in-car ethernet LAN 24 via the ethernet itself. The in-car sub-network can also be connected to external networks via a set of communication devices. These communication devices include wireless modem 26, CDPD modem 27, cellular phone 29 and wireless ethernet 28. Depending upon the circumstances in which the in-car sub-network is operating, the external network connection may be provided by any one of these communication devices. The in-car sub-network is configured to select one of the devices according to the prevailing operating conditions.
  • [0032]
    The communication devices identified above (i.e., wireless modems and ethernet transceivers) are typical for network communications. In addition to these devices, however, the in-car sub-network may utilize devices that provide “last-hop” service. Communications from a node on a first network to a node on a second network are typically routed through a number of intermediate networks. Packets may “hop” from the first network to an intermediate network, and then to another network before arriving at the second network. Last hop service is the service that transmits the packets over the last segment of this data path. Because any one of the communication devices of the in-car sub-network may lose communications with the ISP (or other external device,) it is advantageous to have as many possible means for communicating as possible. The in-car sub-network may therefore employ last hop service comprising paging or similar types of communications. These services will typically be used by transmitting packets to a last hop service transmitter, which will convert the packet data as necessary to make the last hop (e.g., convert the data to text for an alphanumeric pager,) then transmit the data to the in-car sub-network.
  • [0033]
    In-car sub-network 20 can also communicate with external systems such as global positioning systems (GPS) and traffic information systems. A GPS receiver 30 is coupled to in-car sub-network 20 for providing automobile location information. GPS receiver 30 is capable of collecting information from GPS satellites to determine the position of the automobile. This information is converted to a format appropriate for other uses within the in-car sub-network, such as map retrieval for the area around the automobile. A Cue traffic information receiver 31 is also coupled to in-car sub-network 20. Receiver 31 obtains traffic information (e.g., information on traffic jams) which can be used, for example, by navigation systems running on in-car sub-network 20 to determine the best route for the automobile to take. Both GPS receiver 30 and traffic information receiver 31 are connected to compute platform 22 by RS-232 connectors.
  • [0034]
    In one embodiment, in-car sub-network 20 includes video camera 32. Video camera 32 provides visual information from the automobile's surroundings to in-car sub-network 20. Video camera 32 provides a good example of the utility of a network device. Because video camera 32 is a network device, other devices on the in-car sub-network, or even devices on external networks which are coupled to the in-car sub-network, can request this visual information. For example, the video produced by video camera 32 may be displayed by LCD panel 35 or by a web browser coupled to the in-car sub-network through PDA dock 33. A person browsing the internet on an external network could also request images from video camera 32.
  • [0035]
    In one embodiment, in-car sub-network 20 also includes PDA (personal digital assistant) dock 33, Java Ring reader 34, LCD panel 35, microphone 36 and speakers 37. PDA dock 33 provides a means for passengers in the automobile to connect a PDA to the in-car sub-network. Other embodiments of the invention may include a dock for a laptop computer instead of, or in addition to, PDA dock 33. Java Ring reader 34 is coupled to in-car sub-network 20 to provide a means for controlling access to the network and the functions of the automobile itself. Java Ring reader 34 essentially performs a password function. That is, it identifies a user of the in-car sub-network and provides a particular level of access to network components according to the privilege level of the user. For example, the owner of the automobile may be allowed to access substantially all of the components and functions of the in-car sub-network except for detailed vehicle diagnostic information. A mechanic, on the other hand, may be allowed to access this detailed diagnostic information, but may only be allowed to drive the automobile a limited distance. This mechanism may also be used to personalize the operation of the automobile, adjusting seat positions, radio stations and the like according to the preferences of different drivers. The extent to which this mechanism controls the various functions of the automobile depends, of course, upon the coupling of the related automobile components to the in-car sub-network.
  • [0036]
    Microphone 36 and speakers 37 are coupled to in-car sub-network 20 in order to provide, among other things, a mechanism for speech communications between the driver and the network, In one embodiment, compute platform 22 includes a speech engine for converting speech to text or commands. The driver of the automobile may therefore control various functions of the network and/or the automobile using spoken commands. For example, the driver may simply recite the appropriate command for determining the location of the automobile, whereupon compute platform 22 might query GPS receiver 30 for location information, then retrieve a map from a web site and display the map to the driver. Compute platform 22 may also include a text-to-speech engine for use in delivering information to the driver. For example, the in-car sub-network may retrieve the driver's email or other documents, convert the text to speech and then “read” the document to the driver.
  • [0037]
    It is contemplated that the vehicle's OBD (on-board diagnostic) system (e.g., item 23 in FIG. 2) will be connected to in-car sub-network 20. The OBD system, as indicated above, is typically of a proprietary design which was not originally intended to be connected to a network. The OBD system may therefore be connected to the network by an interface which is designed as a network device. With the OBD system coupled to the network via the interface device, other devices on the network can query the OBD system for diagnostic information and/or provide information to the OBD system.
  • [0038]
    Although the in-car sub-network depicted in FIG. 2 includes the particular network devices described above, the enumerated devices are intended to be illustrative rather than limiting. In other embodiments, the network may include printers, compact disk (CD) drives, storage devices, digital video disk (DVD) players, video games, monitors or other devices. The network may include any type of network devices that may be installed in the automobile or remotely connected to the network through its communication devices. Because the network supports any network device, components which were not designed, nor even conceived, when the network itself was installed can be easily coupled to the network and operated cooperatively with the remainder of the network devices
  • [0039]
    As indicated above, compute platform 22 is at the center of in-car sub-network 20. In one embodiment, compute platform 22 is a Java platform. (Java is a trademark of Sun Microsystems, Inc.) In other words, compute platform 22 uses the Java programming language to provide an environment in which Java applications can be executed. The use of a Java environment in compute platform 22 allows the software that will be executed on the compute platform to be hardware independent.
  • [0040]
    The organization of the operating environment of compute platform 22 is shown in FIG. 3. At the lowest level of the diagram shown in FIG. 3 is hardware 41. Hardware 41 comprises the physical server (or other processor) on which the software is executed. Hardware 41 may comprise a SparcStation as in the above-described embodiment, or any other suitable computer, such as a StrongARM, PowerPC, Intel, MIPS or Mitsubishi system. Hardware 41 executes an operating system 42 which provides the basic functionality of the compute platform. The particular operating system selected to be used with hardware 41 will depend upon the type of processor upon which hardware 41 is built, and may also depend upon the network's requirements, if more than one operating system is available for the chosen hardware. A few of the operating systems which may be available are VxWorks, PSOS, OS9, Chorus and Linux. Operating system 42 supports Transport Control Protocol/Internet Protocol (TCP/IP) 43. Each of the devices connected to the in-car sub-network can therefore be addressable as a network device.
  • [0041]
    Compute platform 22 runs Java virtual machine 44. Java virtual machine 44 is a software application that executes in the environment of the native operating system and provides a common environment for applications written in the Java programming language. In other words, Java virtual machine 44 provides a layer of abstraction between an operating system and an executable program, essentially providing a Java-to-operating system interface so that programs written in the Java programming language can be executed on a platform running an operating system which would not otherwise support execution of the program. Because Java virtual machines exist for many different compute platforms, the same Java language program can be executed on each of these different platforms. In this manner, the hardware/operating system portion of the system is made a commodity. As a result, the remainder of the system is no longer tied to the original hardware, the original operating system, or the original supplier thereof.
  • [0042]
    In the embodiment shown in FIG. 3, compute platform 22 executes Personal Java 45 on Java virtual machine 44. (Personal Java 45 also interfaces to some extent with operating system 42.) Personal Java is an application environment which was specifically designed for consumer devices such as PDAs, set-top boxes, smart phones and other mobile, hand-held devices. These consumer devices differ from desktop computers in that they typically use different interface technologies, they have much smaller memories, they use embedded processors and they have tight constraints on power consumption, among other things. Personal Java is designed to provide an environment which eliminates these constraints and which facilitates the use of network-connectable applications for these consumer devices. Personal Java is therefore well-suited to operate within the constraints of the in-car sub-network. Personal Java includes a subset of core Java application programming interfaces (APIs) and a set of APIs which are directed specifically to features required by consumer applications in resource-limited environments (Personal Java implementations often include a Java virtual machine, so Java virtual machine 44 may therefore be considered part of Personal Java 45.)
  • [0043]
    In the embodiment illustrated in FIG. 3, several APIs are made available in the environment provided by Personal Java 45. These APIs include Java card 46, Java telephony 47, Java media 48, Java communications 49, Java speech 50, Java automotive 51, Jini 52 and Java embedded server 53. These applications are exemplary of the applications and applets that can be employed and many others can be used with, or instead of, these applications. Applications 46-51 will be described in more detail below in connection with the operation of the system. A virtual dashboard application 54 operates cooperatively with these applications and provides an interface between the applications and the vehicle's driver. Virtual dashboard 54 may also interface directly with Personal Java 51 and with native code 55. Native code 55 may include native (rather than Java) equivalents of applications 46-51.
  • [0044]
    The embodiment of the invention illustrated in FIG. 3 incorporates Jini software 52. Jini is a technology developed by Sun Microsystems to allow devices to form impromptu communities on networks. (Jini is a trademark of Sun Microsystems, Inc.) In other words, the devices can become aware of each other and share each other's services even though they do not have any prior knowledge of each other. Jini software 52 is an application which implements the Jini technology. Using Jini technology, devices can spontaneously form network communities through a discovery-and-join protocol. When a device using a discovery-and-join protocol is plugged into a network, the device polls the network for a Jini lookup service. The device then registers itself with the lookup service. Once the device has registered itself with the lookup service, any other device on the network may query the network server to determine whether desired services are available. Because this process is automatic, users need not perform complicated installation procedures to couple Jini-enabled devices to the network and enable the devices to function cooperatively with other devices on network. Jini technology also employs a concept known as “leasing.” Whenever a device registers with a lookup server, the device can be thought of as having a “lease” which must be periodically renewed. If the “lease” is not renewed within a predetermined period, the lookup server assumes that the device has been disconnected and removes the information associated with the device. Disconnection of devices is therefore also automatic, so that the user is not required to perform any de-installation procedures.
  • [0045]
    Although Jini technology is used in the embodiment described above, other embodiments may not include a Jini application. Embodiments which do not implement Jini technology may, if desired, implement similar functionality (e.g., a discover-and-join protocol) through other means. For example, a device may include an on-board memory which contains information on the services it provides or the services it needs to be able to perform all of its functions. The memory may also contain a web address at which this type of information may be found. The network server may then look up the information on the device using this web address. The device and/or its services may thereby be registered in a manner similar to that of a Jini network.
  • [0046]
    The embodiment of FIG. 3 uses Java embedded server 53 to provide services to the in-car sub-network. Java embedded server 53 is a “small footprint” server which requires only a limited amount of memory. Java embedded server 53 includes a set of APIs for management of “plug and play” services and applications, and a set of services which are managed, such as HTTP, SNMP, logging, thread management, remote administration and servlet support. (A “servlet” is an applet designed to provide a service to the network.) More complex services such as email and facsimile can be built on top of the embedded server's services. Because of the small footprint of Java embedded server 53, it is well-suited for use in the in-car sub-network. Java embedded server 53 allows the services which are provided to be upgraded or otherwise modified, whereas services provided by many embedded servers are “hard wired” into them, thereby limiting their capabilities and their upgradability.
  • [0047]
    Java speech module 50 (and possibly native code 55) provide a speech interface between the user and the in-car sub-network. Because the user may also be the driver of the vehicle, it may be important to focus the user's attention on driving rather than providing input to one or more network devices. Providing this input through speech is both safe and convenient. The user's spoken input can be converted to textual (or equivalent) input by speech engines in either module 50 or native code 55. Similarly, output of one more network devices may be converted to speech so that the user can hear the output rather than having to look at a display device. The in-car sub-network may also be configured to provide information to the user as a combination of speech and other types of information (e.g., graphics.)
  • [0048]
    Virtual dashboard application 54 is an application that generates a graphical display similar to a conventional automobile dashboard. Virtual dashboard application 54 is used in conjunction with a monitor which is coupled to the in-car sub-network (e.g., LCD panel 35 shown in FIG. 2.) The monitor and associated software may be referred to as a “virtual dashboard” or a “software dashboard.” In one embodiment, the monitor of the virtual dashboard is mounted directly in front of the vehicle's driver (i.e., where the speedometer would normally be located.) The graphics generated by virtual dashboard application 54 may include images of a speedometer, odometer, fuel gauge and/or other instrumentation. It should be noted that the graphics generated by virtual dashboard application 54 define the manner in which the information is presented (e.g., analog vs. digital readouts, color schemes, etc.) rather than simply generating a value (e.g., speed) which is then displayed in a predetermined manner (e.g., two-digit speedometer display.) The virtual dashboard is therefore distinct from prior art digital displays.
  • [0049]
    Because these graphics are generated by virtual dashboard application 54, they may be customized in a number of ways. They may display a particular subset of available information or they may display the information according to a particular style to match the vehicle's interior. The graphics generated by virtual dashboard application 54 may also be customized for different users so that, when a first person is driving, the information is displayed in a first arrangement and, when a second person is driving, the information is displayed in a second arrangement. These different display modes (corresponding to the different sets of information or the different styles) can be user-selectable. The user can select one of the modes using voice commands or by manually selecting a mode (e.g., by using a touch-sensitive screen.)
  • [0050]
    In other embodiments, similar software applications and monitors can be used to generate graphics for other equipment such as console displays, radio controls, air conditioning controls and the like. Other embodiments may also utilize independent processors and memories to generate graphics for the monitors rather than having the graphics generated by an application executing on the server.
  • [0051]
    Referring to FIG. 4, the operation of the in-car sub-network in connection with a primary network is illustrated. In-car sub-network 60 is in communication with both land-based proxy server 61 and internet service provider (ISP) 64. ISP 64 is in turn connected to the internet and, consequently, all networks connected thereto (which will be collectively referred to herein as primary network 62.) Communications between in-car sub-network 60 and primary network 62 may be routed directly between the two networks (via ISP 64,) or they may be routed through land-based proxy server 61, depending on the circumstances surrounding the communications. (It should be noted that, although the proxy server in this embodiment is land-based, this is not a requirement of the system. The proxy server is intended provide a communications link to the primary network which is less likely to be disconnected than the communication devices of the in-car sub-network.)
  • [0052]
    As described above, in-car sub-network 60 may include several different devices (e.g., a wireless modem) for communications external to the in-car sub-network. In-car sub-network 60 can switch between these devices as necessary to maintain communications. That is, the network is configured to establish communications using one of the devices and, if at some point communications using this device are no longer possible, to switch to another one of the devices and attempt to re-establish communications using the new device. Because each of these communication devices has a different IP address associated with it, some action must be taken to allow devices in the primary network to properly address packets which are targeted for the incar sub-network. This can be handled in several different ways.
  • [0053]
    If communications are expected to take place quickly, the in-car sub-network can operate in a first mode in which it can communicate directly to the primary network, and the primary network can respond directly to the in-car sub-network. In other words, packets originating at the in-car sub-network can be addressed using the IP address of the target node on the primary network, and packets originating at the primary network can be addressed using the IP address of the in-car sub-network (i.e., the IP address of the currently-used communication device.) Just as with a typical, land-based network connection, the transmissions between the in-car sub-network and the primary network are routed to the internet through the ISP. These direct communications should be sufficient because, over the short term, the communication device which is currently being used by the in-car sub-network is not expected to lose contact with the primary network. Over the long term, however, it is expected that communications will occasionally be lost, and that they will subsequently have to be re-established.
  • [0054]
    As an example of a long-term situation, it may be desirable for the in-car sub-network to have a single email address. Because of the fact that the in-car sub-network may use several different IP addresses (each corresponding to a different communication device,) that email address cannot be associated with an IP address corresponding to one of the in-car sub-network's communication devices. In this situation, the system operates in a second mode in which communications from the primary network to the in-car sub-network are routed through the land-based proxy server, which has a single IP address that can be associated with the email address. The land-based proxy server, which keeps track of the current IP address of the in-car sub-network, can buffer email messages (if necessary) and forward them to the in-car sub-network when the land-based proxy server is in communication with it.
  • [0055]
    There may also be situations in which it is desirable to use a hybrid scheme to communicate between the in-car sub-network and the primary network. For example, when a device on the in-car sub-network is retrieving web pages, the communications are relatively short-term and may proceed directly between the in-car sub-network and the web site. It may be desirable, however, to employ some means for transforming the communicated data (e.g., web pages) to make more efficient use of the bandwidth of the in-car sub-network (e.g., by removing advertisements or images from some of the pages.) This function can be performed by the land-based proxy server. Thus, in a hybrid mode of operation, some of the communications are direct while others are routed through the land-based proxy server.
  • [0056]
    Whenever the in-car sub-network establishes communications with the ISP or land-based proxy server, it identifies the IP address of the currently-used communication device to the landbased proxy server. When the in-car sub-network becomes disconnected from the external network (e.g., when the currently-used communication device loses service,) the land-based proxy server becomes aware of the fact that the in-car sub-network is disconnected and cannot receive packets. The land-based proxy server maintains an awareness of whether the in-car sub-network is connected through periodic communications between the two. The in-car subnetwork periodically sends messages to the land-based proxy server in the same manner that devices renew their “leases” on a Jini-enabled network. It is further contemplated that the land-based proxy server may periodically query the in-car sub-network. As explained above, when the in-car sub-network is not in communication with the land-based proxy server and primary network, the land-based proxy server may act as a buffer and store the packets targeted for the in-car sub-network for later delivery. When the in-car sub-network is able to re-establish communications through one of its communication devices, the land-based proxy server identifies the IP address of the device with which communications were re-established and delivers the stored packets to the in-car sub-network using this address.
  • [0057]
    It should also be noted that the in-car sub-network can operate in a third mode in which it can communicate with the land-based proxy server directly rather than through the ISP. As indicated above, one embodiment of invention includes a wireless ethernet communication device. When the in-car sub-network is within range of the land-based proxy server, a wireless ethernet connection may be established between the two. When it joins the land-based proxy server's LAN, the in-car sub-network can communicate directly to the land-based proxy server on the LAN, or it can communicate with other networks through the LAN's connection to the internet. As will be explained in more detail below, the in-car sub-network can join other networks as well using the wireless ethernet device.
  • [0058]
    In order to make full use of the devices connected to the in-car sub-network, they must be able to communicate with devices on other networks. The in-car sub-network's devices must therefore have IP addresses to which the other devices can send packets. Several factors, however, make it impractical to assign an IP address to each device that is connected to the in-car sub-network. First, there is a large number of devices which may be connected to the in-car sub-network (it is contemplated that virtually all of a vehicle's components may in time be configured as network devices,) and this number must be multiplied by the number of vehicles in which in-car sub-networks may be installed. Further, as indicated above, one device which may be connected to an in-car sub-network is another sub-network (see FIG. 2, item 24.) Thus, the in-car sub-network, which is a sub-network relative to the primary network, may in turn have sub-networks connected to it so that there are networks within networks, within networks (and so on.) These nested networks are sometimes referred to as fractal networks because a device on a network may, upon closer examination, itself be a network (and so on.)
  • [0059]
    It is therefore useful to employ a technique known as network address translation. In network address translation, one device on a first network serves as a proxy through which devices on the first network communicate with other networks. To the other networks, the first network therefore appears to be a single device (the proxy device.) Relative to the other networks, only one IP address is needed for the first network because it appears to be a single device. Although devices on the first network have IP addresses within the network, packets which are directed outside the first network are conveyed to the proxy device, which wraps them in another packet having the IP address which is represented to the other networks. The first-network IP addresses are translated to port numbers which are used in the externally represented IP address. Just as the networks themselves can be nested within each other, network address translation can be used recursively to wrap IP addresses within IP addresses (and so on.)
  • [0060]
    As indicated above, the configuration of the vehicle components as network devices on an in-car sub-network simplifies installation and removal of the devices, hence re-configuration of the vehicle. This system thereby makes it possible to remove outdated components and replace them with new components, even though the new components may have different features or require different data or other signals from the vehicle or its components. Similarly, components which execute associated software, display data or provide services can be upgraded by downloading new software, data or services (“upgrade data”) to the components through the in-car sub-network. This software may be quickly and easily retrieved from sources external to the in-car sub-network, such as web pages or LANs which can be accessed through the communication devices on the in-car sub-network. The software can be retrieved by one device (e.g., a wireless modem,) conveyed through the network and installed in a second device (e.g., a GPS locator) as easily as downloading a web page. The system thereby provides a great deal of flexibility in the hardware and software configurations of the vehicle. In contrast, prior art systems for providing in-car services are tightly coupled to the car manufacturer's choice of hardware and operating system. Changes to the hardware require substantial time, labor and expense. Changes to the software require the original software supplier to provide modified code. The use of Personal Java in the in-car sub-network provides platform independence and also eliminates a substantial portion of the labor, time and costs involved in replacing and upgrading the vehicle's components and functionality.
  • [0061]
    In addition to increasing the upgradability of the vehicle, the in-car sub-network extends the capabilities of individual components coupled to the network. While network devices are often configured with their own processors, the in-car sub-network can eliminate the need for these processors and thereby reduce the cost of the individual components. Further, devices which may only be capable of accepting information and displaying that information may be coupled to the in-car sub-network and allowed to utilize the processing power of other components on the network. Still further, devices which are not IP-addressable (or object-terminology-addressable) in a stand-alone configuration can appear to be IP-addressable (or object-terminology-addressable) to other devices or networks. (It should be noted that, for the purposes of this disclosure, devices which appear to be IP-addressable or object-terminology-addressable are considered to actually be IP-addressable or object-terminology-addressable, respectively.)
  • [0062]
    As an example, a simple digital display may be configured to receive a signal defining a value (e.g., the speed of the vehicle) and to display the digits corresponding to that value. Although this display may not be capable of querying the vehicle for the value to be displayed or recognizing packets on the in-car sub-network which contain the information, a piece of software may be executed on a server's processor to perform this function. The software may cause of the server to recognize packets which contain the appropriate information and redirect this information to the display, which only needs to receive and display the information.
  • [0063]
    It is contemplated that a component that utilizes the capabilities of other devices on the network (such as the display) could include a memory which stores the software which enables the component to function in this manner and passes it on to the server when the component is coupled to the network. The memory may alternately store a location, such as a web site, from which the server may retrieve the software. The component, which utilizes the processing power of the server, is enabled to function as a stand-alone component with its own processor, and is addressed in the same manner in this the other devices coupled to the in-car sub-network. The system thereby allows inexpensive components to be used in place of components which incorporate their own processors and may be considered prohibitively expensive.
  • [0064]
    The operation of the in-car sub-network as a component in an external network can be illustrated in several examples. In one scenario, an automobile having an in-car sub-network is driven to a particular city. In the city, a LAN or MAN (metropolitan area network) is set up to establish a wireless connection to a communication device such as a wireless ethernet device. When the automobile drives within range of the LAN/MAN, a connection is established between the in-car sub-network and the LAN/MAN. The in-car sub-network functions as a single IP device coupled to the LAN/MAN and can retrieve information about the city or otherwise interact with devices on the LAN/MAN. Although the in-car sub-network appears to the LAN/MAN as a single device, nodes on the LAN/MAN can exchange packets with devices within the in-car sub-network as a result of network address translation which is being performed within the in-car sub-network.
  • [0065]
    In another scenario, a service station may have a wireless LAN so that a vehicle equipped with a network and wireless communication device can establish a connection with the LAN as the vehicle pulls into the station. Once the connection is established, the in-car sub-network and LAN can function as a single network. The service station may be configured to request the service records of the vehicle so that any necessary service may be performed. If a software maintenance update is required by one of the components in the vehicle, a server on the LAN may automatically download this information to the appropriate component. Alternately, the user of the vehicle may request information or services. For example, the user may request that music (e.g., in MP3 format) or videos (e.g., in MPEG-2 format) be downloaded for the passengers entertainment. The user may also have information he or she wishes to have printed, in which case the information could be transmitted to a printer on the service station's LAN, where it could be picked up by the user.

Claims (16)

    What is claimed is:
  1. 1. A method for collecting vehicle information comprising:
    providing a network internal to the vehicle, wherein said network comprises a first device configured to produce vehicle information and a communication device;
    establishing a communications link between said communication device and a receiver external to said network; and
    transmitting vehicle information from said network to said receiver.
  2. 2. The method of
    claim 1
    wherein transmitting vehicle information from said network to said receiver comprises transmitting said vehicle information from said first device to said communication device and then transmitting said vehicle information from said communication device to said receiver.
  3. 3. The method of
    claim 2
    wherein transmitting said vehicle information from said first device to said communication device comprises addressing said vehicle information to an IP address corresponding to said communication device.
  4. 4. The method of
    claim 2
    wherein transmitting said vehicle information from said first device to said communication device comprises said first device requesting transmission service from said communication device using object terminology.
  5. 5. The method of
    claim 1
    further comprising said communication device registering a transmission service with a lookup server on said network, wherein said transmitting vehicle information from said network to said receiver comprises said first device looking up said transmission service on said lookup server and transmitting said vehicle information via said transmission service of said communication device.
  6. 6. The method of
    claim 1
    further comprising a transmitter external to said network requesting said vehicle information, wherein said vehicle information is transmitted from said network to said receiver in response to said requesting said vehicle information.
  7. 7. The method of
    claim 6
    wherein said transmitter requests vehicle location information and wherein said first device comprises a GPS system which transmits said vehicle location information to said receiver in response to said request.
  8. 8. The method of
    claim 1
    wherein said transmitter requests vehicle diagnostic information and wherein said first device comprises an onboard diagnostic system which transmits said vehicle diagnostic information to said receiver in response to said request.
  9. 9. A system for collecting vehicle information comprising:
    a vehicle;
    a network transmission medium installed in said vehicle;
    a vehicle information source coupled to said network transmission medium;
    a communication device coupled to said network transmission medium.
    wherein said vehicle information source is configured to transmit said vehicle information to said communication device and wherein said communication device is configured to transmit said vehicle information.
  10. 10. The system of
    claim 9
    wherein said vehicle information source is configured to transmit said vehicle information to said communication device in response to a query from said communication device.
  11. 11. The system of
    claim 10
    wherein said query is received by said communication device from an external source and transmitted to said vehicle information source.
  12. 12. The system of
    claim 9
    wherein said vehicle information source is configured to periodically transmit said vehicle information to said communication device.
  13. 13. The system of
    claim 9
    wherein said vehicle information source and said communication device are IP-addressable.
  14. 14. The system of
    claim 9
    wherein said vehicle information source and said communication device are addressable using object terminology.
  15. 15. The system of
    claim 9
    wherein said vehicle information source is configured to transmit vehicle diagnostic information.
  16. 16. The system of
    claim 9
    wherein said vehicle information source is configured to transmit vehicle location information.
US09332346 1999-06-14 1999-06-14 System and method for collecting vehicle information Expired - Fee Related US6362730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09332346 US6362730B2 (en) 1999-06-14 1999-06-14 System and method for collecting vehicle information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09332346 US6362730B2 (en) 1999-06-14 1999-06-14 System and method for collecting vehicle information
EP20000941452 EP1188115B1 (en) 1999-06-14 2000-06-14 Vehicle computerized network system and method
DE2000630114 DE60030114D1 (en) 1999-06-14 2000-06-14 Computer-aided vehicle network system and process
PCT/US2000/016496 WO2000077620A3 (en) 1999-06-14 2000-06-14 Vehicle computerized network system

Publications (2)

Publication Number Publication Date
US20010033225A1 true true US20010033225A1 (en) 2001-10-25
US6362730B2 US6362730B2 (en) 2002-03-26

Family

ID=23297827

Family Applications (1)

Application Number Title Priority Date Filing Date
US09332346 Expired - Fee Related US6362730B2 (en) 1999-06-14 1999-06-14 System and method for collecting vehicle information

Country Status (1)

Country Link
US (1) US6362730B2 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091706A1 (en) * 2000-09-06 2002-07-11 Johnson Controls Technology Company Vehicle history and personalization information management system and method
EP1253415A2 (en) * 2001-04-25 2002-10-30 Fuji Jukogyo Kabushiki Kaisha Vehicle control system
US20020193925A1 (en) * 2001-06-15 2002-12-19 Travis Funkhouser Auto diagnostic method and device
US6625581B1 (en) * 1994-04-22 2003-09-23 Ipf, Inc. Method of and system for enabling the access of consumer product related information and the purchase of consumer products at points of consumer presence on the world wide web (www) at which consumer product information request (cpir) enabling servlet tags are embedded within html-encoded documents
US20030187554A1 (en) * 2000-11-09 2003-10-02 Honeywell International, Inc. System and method for performance monitoring of operational equipment used with machines
WO2003085414A2 (en) * 2002-04-02 2003-10-16 Randazzo William S Navigation system for locating and communicating with wireless mesh network
US20030200096A1 (en) * 2002-04-18 2003-10-23 Masafumi Asai Communication device, communication method, and vehicle-mounted navigation apparatus
US20040111195A1 (en) * 2002-06-11 2004-06-10 Vries Jeroen Joost De Systems and methods for marine satellite monitoring
US20040204047A1 (en) * 2002-07-08 2004-10-14 Steed Jeffrey Wayne Automobile computing
US20040220711A1 (en) * 1999-12-15 2004-11-04 Knoska James J. Vessel monitoring system
US20040217852A1 (en) * 2000-04-24 2004-11-04 Kolls H. Brock Method for characterizing a vehicle's fuel efficiency
US20040225557A1 (en) * 2003-05-06 2004-11-11 Joseph Phelan Motor vehicle operating data collection and analysis
US6839614B1 (en) * 1999-12-29 2005-01-04 Bellsouth Intellectual Property Corporation Multi-mode in-vehicle control unit with network selectivity for transmitting vehicle data for fleet management
US6865460B2 (en) 2001-10-29 2005-03-08 Visteon Global Technologies, Inc. Communication network for an automobile
US20050151655A1 (en) * 1999-12-29 2005-07-14 Bellsouth Intellectual Property Corporation G.P.S. management system
US6928348B1 (en) 2001-04-30 2005-08-09 Reynolds & Reynolds Holdings, Inc. Internet-based emissions test for vehicles
US20050193326A1 (en) * 2004-02-26 2005-09-01 International Business Machines Corporation Tool for configuring available functions of an application
US6957133B1 (en) 2003-05-08 2005-10-18 Reynolds & Reynolds Holdings, Inc. Small-scale, integrated vehicle telematics device
US6961712B1 (en) * 1996-10-25 2005-11-01 Ipf, Inc. Consumer product information request (CPIR) enabling servlets and web-based consumer product information catalogs employing the same
US20050251304A1 (en) * 2004-05-03 2005-11-10 Pasquale Cancellara Device and method for performing both local and remote vehicle diagnostics
US6988033B1 (en) 2001-08-06 2006-01-17 Reynolds & Reynolds Holdings, Inc. Internet-based method for determining a vehicle's fuel efficiency
US7003289B1 (en) * 2000-04-24 2006-02-21 Usa Technologies, Inc. Communication interface device for managing wireless data transmission between a vehicle and the internet
US20060041337A1 (en) * 2004-08-19 2006-02-23 Augsburger Brett N Web-enabled engine reprogramming
US20060052086A1 (en) * 2004-09-07 2006-03-09 Yuji Funato Information link service system, electronic equipment, mobile terminal, authentication apparatus and communication method
US20060097854A1 (en) * 2004-11-10 2006-05-11 The Boeing Company System, method, and computer program product for fault prediction in vehicle monitoring and reporting system
US7065433B2 (en) 2003-02-07 2006-06-20 The Boeing Company Vehicle monitoring and reporting system and method
US20060158330A1 (en) * 2002-03-05 2006-07-20 Andre Gueziec Traffic information dissemination
US20070015119A1 (en) * 2005-07-13 2007-01-18 Atenasio Christopher M Identifying locations
EP1865623A1 (en) * 2005-04-01 2007-12-12 Matsushita Electric Industrial Co., Ltd. Communication system, vehicle information communicating apparatus, and indoor information processing apparatus
EP1905648A1 (en) * 2006-09-28 2008-04-02 Delphi Technologies, Inc. Universal integration system for auxiliary digital audio playback
US7359713B1 (en) 2003-02-28 2008-04-15 Trimble Navigation Limited Battery consumption optimization for mobile users
US20080103658A1 (en) * 2006-10-27 2008-05-01 Spx Corporation Scan tool software update using an image
US20080137590A1 (en) * 2006-12-06 2008-06-12 Idsc Holdings Llc Detachable wireless adapter for vehicle communication modules
US20080221749A1 (en) * 2004-11-18 2008-09-11 Robert Bosch Gmbh Diagnostic Interface for Applications on a Service Gateway
US20080228600A1 (en) * 2000-02-09 2008-09-18 Vengte Software Ag Limited Liability Company Purchasing Systems
US20080262660A1 (en) * 2005-09-28 2008-10-23 Shmuel Weber Control-Information System For Mass Transportation Vehicles
US20080317288A1 (en) * 2005-04-28 2008-12-25 Tomoyoshi Aoki Vehicle, Image Processing System, Image Processing Method, Image Processing Program, Image Processing System Configuration Method, and Server
US7502672B1 (en) 2000-04-24 2009-03-10 Usa Technologies, Inc. Wireless vehicle diagnostics with service and part determination capabilities
US20090070488A1 (en) * 2006-03-13 2009-03-12 Bayerische Motoren Werke Aktiengesellschaft Data Communication Method
WO2009073806A2 (en) * 2007-12-05 2009-06-11 Johnson Controls Technology Company Vehicle user interface systems and methods
DE102008013069A1 (en) * 2008-03-06 2009-09-17 Continental Automotive Gmbh Electronic vehicle log book for use in commercial motor vehicle, has electronic memory with database for storing information about passengers and load entered in vehicle, control unit calculating weights of passengers and load
US20100097239A1 (en) * 2007-01-23 2010-04-22 Campbell Douglas C Mobile device gateway systems and methods
US20100144284A1 (en) * 2008-12-04 2010-06-10 Johnson Controls Technology Company System and method for configuring a wireless control system of a vehicle using induction field communication
US7747365B1 (en) * 2001-03-13 2010-06-29 Htiip, Llc Internet-based system for monitoring vehicles
US20110071720A1 (en) * 2009-09-21 2011-03-24 Ford Global Technologies, Llc Methods and systems for monitoring the condition of vehicle components from a nomadic wireless device or computer
US20110071725A1 (en) * 2009-09-23 2011-03-24 Ford Global Technologies, Llc Remotely interacting with a vehicle to perform servicing and engineering functions from a nomadic device or computer
US20110071734A1 (en) * 2009-09-23 2011-03-24 Ford Global Technologies, Llc System and method for remotely controlling vehicle components from a nomadic communication device or computer
US20110080282A1 (en) * 2009-10-01 2011-04-07 Ford Global Technologies, Llc Vehicle system passive notification using remote device
US20110083161A1 (en) * 2008-06-04 2011-04-07 Takayuki Ishida Vehicle, maintenance device, maintenance service system, and maintenance service method
US20110137490A1 (en) * 2009-12-03 2011-06-09 Continental Automotive Gmbh Mobile interface and system for controlling vehicle functions
US20110153652A1 (en) * 2009-12-21 2011-06-23 Electronics And Telecommunications Research Institute Method for transmitting vehicle information
US20110205047A1 (en) * 2010-02-25 2011-08-25 Ford Global Technologies, Llc Methods and systems for determining a tire pressure status
US20110205040A1 (en) * 2010-02-25 2011-08-25 Ford Global Technologies, Llc Method and systems for detecting an unauthorized use of a vehicle by an authorized driver
US20110215901A1 (en) * 2010-03-08 2011-09-08 Ford Global Technologies, Llc Method and system for enabling an authorized vehicle driveaway
US20110230165A1 (en) * 2010-03-19 2011-09-22 Ford Global Technologies, Llc Wireless vehicle tracking
US20120083971A1 (en) * 2001-04-24 2012-04-05 Eagle Harbor Holdings Method and Apparatus for a Task Priority Processing System
JP2012122988A (en) * 2010-12-06 2012-06-28 Hyundai Motor Co Ltd Vehicle information update system and method for the same
US20120324075A1 (en) * 2011-06-20 2012-12-20 Spx Corporation Method and Apparatus to Manage Information Between a Scan Tool and Networked Devices
US20130073112A1 (en) * 2005-06-01 2013-03-21 Joseph Patrick Phelan Motor vehicle operating data collection and analysis
US20130166138A1 (en) * 2011-12-23 2013-06-27 Electronics And Telecommunications Research Institute Vehicle information transmission apparatus
US20130282375A1 (en) * 2007-06-01 2013-10-24 At&T Mobility Ii Llc Vehicle-Based Message Control Using Cellular IP
US8619072B2 (en) 2009-03-04 2013-12-31 Triangle Software Llc Controlling a three-dimensional virtual broadcast presentation
US8634033B2 (en) 2006-12-20 2014-01-21 Johnson Controls Technology Company Remote display reproduction system and method
US8660780B2 (en) 2003-07-25 2014-02-25 Pelmorex Canada Inc. System and method for delivering departure notifications
US8718910B2 (en) 2010-11-14 2014-05-06 Pelmorex Canada Inc. Crowd sourced traffic reporting
US8725396B2 (en) 2011-05-18 2014-05-13 Pelmorex Canada Inc. System for providing traffic data and driving efficiency data
US8781718B2 (en) 2012-01-27 2014-07-15 Pelmorex Canada Inc. Estimating time travel distributions on signalized arterials
US20140215491A1 (en) * 2011-01-14 2014-07-31 Cisco Technology, Inc. System and method for internal networking, data optimization and dynamic frequency selection in a vehicular environment
US20140280552A1 (en) * 2013-03-15 2014-09-18 Audi Ag Method to transmit real-time in-vehicle information to an internet service
US8982116B2 (en) 2009-03-04 2015-03-17 Pelmorex Canada Inc. Touch screen based interaction with traffic data
US9046924B2 (en) 2009-03-04 2015-06-02 Pelmorex Canada Inc. Gesture based interaction with traffic data
US20150181257A1 (en) * 2013-12-20 2015-06-25 GM Global Technology Operations LLC Methods and systems for an adapter device between vehicle infotainment systems and electronic devices
US9224249B2 (en) 2000-07-25 2015-12-29 Hti Ip, L.L.C. Peripheral access devices and sensors for use with vehicle telematics devices and systems
US9430882B2 (en) 2013-10-11 2016-08-30 Kenton Ho Computerized vehicle maintenance management system with embedded stochastic modelling
US9430945B2 (en) 2006-12-20 2016-08-30 Johnson Controls Technology Company System and method for providing route calculation and information to a vehicle
US9520005B2 (en) 2003-07-24 2016-12-13 Verizon Telematics Inc. Wireless vehicle-monitoring system
US9845097B2 (en) 2015-08-12 2017-12-19 Ford Global Technologies, Llc Driver attention evaluation

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US9015071B2 (en) 2000-09-08 2015-04-21 Intelligent Technologies International, Inc. Asset monitoring using the internet
US8482399B2 (en) * 2000-09-08 2013-07-09 Intelligent Technologies International, Inc. Asset monitoring using the internet
US8786437B2 (en) 2000-09-08 2014-07-22 Intelligent Technologies International, Inc. Cargo monitoring method and arrangement
US7277010B2 (en) * 1996-03-27 2007-10-02 Raymond Anthony Joao Monitoring apparatus and method
US20030193404A1 (en) * 1996-03-27 2003-10-16 Joao Raymond Anthony Control, monitoring and/or security apparatus and method
US7397363B2 (en) * 1993-06-08 2008-07-08 Raymond Anthony Joao Control and/or monitoring apparatus and method
US20030206102A1 (en) * 2002-05-01 2003-11-06 Joao Raymond Anthony Control, monitoring and/or security apparatus and method
US6680694B1 (en) * 1997-08-19 2004-01-20 Siemens Vdo Automotive Corporation Vehicle information system
US20100030423A1 (en) * 1999-06-17 2010-02-04 Paxgrid Telemetric Systems, Inc. Automotive telemetry protocol
US8965677B2 (en) 1998-10-22 2015-02-24 Intelligent Technologies International, Inc. Intra-vehicle information conveyance system and method
US9075136B1 (en) 1998-03-04 2015-07-07 Gtj Ventures, Llc Vehicle operator and/or occupant information apparatus and method
US6549534B1 (en) * 1998-09-14 2003-04-15 Siemens Information & Communication Networks, Inc. Apparatus and method for accessing wireless trunks on a communications network
US20020150050A1 (en) * 1999-06-17 2002-10-17 Nathanson Martin D. Automotive telemetry protocol
US6728268B1 (en) * 1999-06-22 2004-04-27 Trimble Navigation Ltd. Method and system to connect internet protocol hosts via an application specific bus
US20050021197A1 (en) * 1999-12-06 2005-01-27 Zimmerman Kelly L. Methods and systems for communicating vehicle data
CA2391485C (en) * 1999-12-29 2012-08-07 Volvo Teknisk Utveckling Ab System and method for communication between a central station and remote objects
US6876642B1 (en) * 2000-03-27 2005-04-05 Delphi Technologies, Inc. In-vehicle wireless local area network
JP3747734B2 (en) * 2000-04-11 2006-02-22 マツダ株式会社 Audio equipment, the music data reproducing method and automotive sound system and program storage medium
EP1146422A1 (en) * 2000-04-13 2001-10-17 Abb Research Ltd. Method to set up a communications link between an embedded server and a client computer
US7161476B2 (en) 2000-07-26 2007-01-09 Bridgestone Firestone North American Tire, Llc Electronic tire management system
US8266465B2 (en) 2000-07-26 2012-09-11 Bridgestone Americas Tire Operation, LLC System for conserving battery life in a battery operated device
US7007061B1 (en) * 2000-08-07 2006-02-28 Cisco Technology, Inc. Communicating data using facsimile protocols
DE10052570A1 (en) * 2000-10-23 2002-04-25 Bosch Gmbh Robert System for controlling and monitoring vehicle-operating processes inserts variable program conditions with variable program modules and/or the same program modules with different content.
US7143939B2 (en) * 2000-12-19 2006-12-05 Intel Corporation Wireless music device and method therefor
US6741933B1 (en) * 2000-12-27 2004-05-25 Advanced Tracking Technologies, Inc. Travel tracker
US6892216B2 (en) * 2001-02-13 2005-05-10 Snap-On Incorporated Common platform for use in automotive services
DE10108392B4 (en) * 2001-02-21 2006-05-18 J. Eberspächer GmbH & Co. KG Heater for a motor vehicle with a vehicle-manufacturer-specific data interface and a bi-directional heating equipment manufacturer-specific data interface
US6611740B2 (en) 2001-03-14 2003-08-26 Networkcar Internet-based vehicle-diagnostic system
JP2002323409A (en) * 2001-04-26 2002-11-08 Fuji Heavy Ind Ltd Vehicle control system
US6636789B2 (en) * 2001-04-27 2003-10-21 Spx Corporation Method and system of remote delivery of engine analysis data
DE10131197A1 (en) * 2001-06-28 2003-01-16 Bosch Gmbh Robert A method of operating a navigation system for a vehicle. in particular a motor vehicle navigation system and
US6711520B2 (en) 2001-07-12 2004-03-23 Seagate Technology Llc Remote execution of diagnostic firmware in a block data storage device
US6694281B2 (en) 2001-07-12 2004-02-17 Seagate Technology Llc Real time signal analysis of a remote block data storage device
US7027387B2 (en) * 2001-08-31 2006-04-11 Motorola, Inc. Vehicle active network with data redundancy
GB2379310B (en) * 2001-09-01 2005-12-14 At & T Lab Cambridge Ltd Vehicle information system
US7557696B2 (en) * 2001-09-11 2009-07-07 Zonar Systems, Inc. System and process to record inspection compliance data
US8810385B2 (en) 2001-09-11 2014-08-19 Zonar Systems, Inc. System and method to improve the efficiency of vehicle inspections by enabling remote actuation of vehicle components
US9230437B2 (en) 2006-06-20 2016-01-05 Zonar Systems, Inc. Method and apparatus to encode fuel use data with GPS data and to analyze such data
US20110068954A1 (en) 2006-06-20 2011-03-24 Zonar Systems, Inc. Method and apparatus to collect object identification data during operation of a vehicle and analysis of such data
US8400296B2 (en) * 2001-09-11 2013-03-19 Zonar Systems, Inc. Method and apparatus to automate data collection during a mandatory inspection
US8972179B2 (en) * 2006-06-20 2015-03-03 Brett Brinton Method and apparatus to analyze GPS data to determine if a vehicle has adhered to a predetermined route
US20030053433A1 (en) * 2001-09-19 2003-03-20 Chun Anthony L. System and method for communicating between an automobile computer and a remote computer via a short range, high bandwidth communication link
JP4153690B2 (en) * 2001-10-25 2008-09-24 本田技研工業株式会社 Hydrogen stand filling management device
US20030093199A1 (en) * 2001-11-15 2003-05-15 Michael Mavreas Remote monitoring and control of a motorized vehicle
US6654770B2 (en) 2002-01-10 2003-11-25 Mycarstats.Com, Llc Automobile safety and maintenance information systems and methods and related services
US7933998B2 (en) * 2002-01-11 2011-04-26 Motorola Mobility, Inc. Dynamic CAN bus system configuration and messaging
US6816090B2 (en) * 2002-02-11 2004-11-09 Ayantra, Inc. Mobile asset security and monitoring system
US8010423B2 (en) * 2002-08-29 2011-08-30 International Business Machines Corporation Anticipatory mobile system service brokering and resource planning from multiple providers
US6977580B2 (en) 2002-09-26 2005-12-20 International Business Machines Corporation Apparatus, system and method of securing perimeters of security zones from suspect vehicles
US8027843B2 (en) * 2002-11-07 2011-09-27 International Business Machines Corporation On-demand supplemental diagnostic and service resource planning for mobile systems
US7447642B2 (en) * 2002-11-07 2008-11-04 International Business Machines Corporation Location based services revenue sharing and cost offsetting
US7043255B1 (en) 2003-02-28 2006-05-09 At Road, Inc. Dynamic server managed profiles for mobile users
US6795017B1 (en) 2003-02-28 2004-09-21 At Road, Inc. Rule-based actions using tracking data
US7415243B2 (en) 2003-03-27 2008-08-19 Honda Giken Kogyo Kabushiki Kaisha System, method and computer program product for receiving data from a satellite radio network
US7209813B2 (en) 2003-05-13 2007-04-24 Spx Corporation Cellular phone configured with off-board device capabilities and starter/charger and battery testing capabilities
US7113127B1 (en) * 2003-07-24 2006-09-26 Reynolds And Reynolds Holdings, Inc. Wireless vehicle-monitoring system operating on both terrestrial and satellite networks
US20050076160A1 (en) * 2003-10-06 2005-04-07 Mcwalter William F. Using logical names as a string to distinguish logical controls
US7818380B2 (en) * 2003-12-15 2010-10-19 Honda Motor Co., Ltd. Method and system for broadcasting safety messages to a vehicle
US8041779B2 (en) * 2003-12-15 2011-10-18 Honda Motor Co., Ltd. Method and system for facilitating the exchange of information between a vehicle and a remote location
JP4562402B2 (en) * 2004-02-20 2010-10-13 アルパイン株式会社 Asynchronous communication system and communication method of the audio data
US7729880B1 (en) 2004-03-22 2010-06-01 Snap-On Incorporated Wireless vehicle service systems using addressable devices
JP2007533004A (en) 2004-04-06 2007-11-15 本田技研工業株式会社 Method and system for controlling the exchange of vehicle-related messages of the application information
US7225065B1 (en) 2004-04-26 2007-05-29 Hti Ip, Llc In-vehicle wiring harness with multiple adaptors for an on-board diagnostic connector
US7518530B2 (en) * 2004-07-19 2009-04-14 Honda Motor Co., Ltd. Method and system for broadcasting audio and visual display messages to a vehicle
US20060049915A1 (en) * 2004-09-03 2006-03-09 Siemens Vdo Automotive Corporation USB port incorporated into vehicle access components
US7643788B2 (en) * 2004-09-22 2010-01-05 Honda Motor Co., Ltd. Method and system for broadcasting data messages to a vehicle
US20060161315A1 (en) * 2004-11-22 2006-07-20 Ron Lewis Vehicle position and performance tracking system using wireless communication
US7272475B2 (en) * 2004-12-02 2007-09-18 General Motors Corporation Method for updating vehicle diagnostics software
US7562049B2 (en) * 2005-03-29 2009-07-14 Honda Motor Co., Ltd. Payment system and method for data broadcasted from a remote location to vehicles
US8024083B2 (en) * 2005-06-30 2011-09-20 Chenn Ieon C Cellphone based vehicle diagnostic system
US7949330B2 (en) * 2005-08-25 2011-05-24 Honda Motor Co., Ltd. System and method for providing weather warnings and alerts
JP2007083873A (en) * 2005-09-22 2007-04-05 Alpine Electronics Inc On-vehicle display device and on-vehicle proxy server used for the same
US7596636B2 (en) 2005-09-23 2009-09-29 Joseph Gormley Systems and methods for implementing a vehicle control and interconnection system
US7590768B2 (en) * 2005-09-23 2009-09-15 Joseph Gormley Control and interconnection system
US7920944B2 (en) * 2005-10-21 2011-04-05 General Motors Llc Vehicle diagnostic test and reporting method
US9067565B2 (en) 2006-05-22 2015-06-30 Inthinc Technology Solutions, Inc. System and method for evaluating driver behavior
US8630768B2 (en) * 2006-05-22 2014-01-14 Inthinc Technology Solutions, Inc. System and method for monitoring vehicle parameters and driver behavior
US9483880B2 (en) 2006-06-13 2016-11-01 Cellassist, Llc Automotive ECU mobile phone interface
US20080033609A1 (en) * 2006-08-04 2008-02-07 Ramin Razavi Automotive diagnostic and tuning system
US8134481B2 (en) * 2006-08-11 2012-03-13 Honda Motor Co., Ltd. Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system
US8102281B2 (en) * 2006-08-11 2012-01-24 Honda Motor Co., Ltd. Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system
US7646296B2 (en) * 2006-08-11 2010-01-12 Honda Motor Co., Ltd. Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system
US7899610B2 (en) 2006-10-02 2011-03-01 Inthinc Technology Solutions, Inc. System and method for reconfiguring an electronic control unit of a motor vehicle to optimize fuel economy
US8694328B1 (en) 2006-12-14 2014-04-08 Joseph Gormley Vehicle customization and personalization activities
WO2008151103A1 (en) * 2007-05-31 2008-12-11 Hti Ip, Llc Methods, systems, and apparatuses for consumer telematics
US7668653B2 (en) 2007-05-31 2010-02-23 Honda Motor Co., Ltd. System and method for selectively filtering and providing event program information
US8825277B2 (en) 2007-06-05 2014-09-02 Inthinc Technology Solutions, Inc. System and method for the collection, correlation and use of vehicle collision data
US8666590B2 (en) 2007-06-22 2014-03-04 Inthinc Technology Solutions, Inc. System and method for naming, filtering, and recall of remotely monitored event data
US9129460B2 (en) * 2007-06-25 2015-09-08 Inthinc Technology Solutions, Inc. System and method for monitoring and improving driver behavior
US7999670B2 (en) * 2007-07-02 2011-08-16 Inthinc Technology Solutions, Inc. System and method for defining areas of interest and modifying asset monitoring in relation thereto
US8577703B2 (en) * 2007-07-17 2013-11-05 Inthinc Technology Solutions, Inc. System and method for categorizing driving behavior using driver mentoring and/or monitoring equipment to determine an underwriting risk
US9117246B2 (en) 2007-07-17 2015-08-25 Inthinc Technology Solutions, Inc. System and method for providing a user interface for vehicle mentoring system users and insurers
US8818618B2 (en) 2007-07-17 2014-08-26 Inthinc Technology Solutions, Inc. System and method for providing a user interface for vehicle monitoring system users and insurers
US20090043703A1 (en) * 2007-08-06 2009-02-12 Mitac International Corp. Transaction method and system in search region
US8099308B2 (en) * 2007-10-02 2012-01-17 Honda Motor Co., Ltd. Method and system for vehicle service appointments based on diagnostic trouble codes
US7876205B2 (en) * 2007-10-02 2011-01-25 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device in a moving vehicle
US20090106036A1 (en) * 2007-10-22 2009-04-23 Kazuya Tamura Method and system for making automated appointments
US20090177336A1 (en) * 2008-01-07 2009-07-09 Mcclellan Scott System and Method for Triggering Vehicle Functions
US7519472B1 (en) 2008-05-15 2009-04-14 International Business Machines Corporation Inferring static traffic artifact presence, location, and specifics from aggregated navigation system data
US8688180B2 (en) * 2008-08-06 2014-04-01 Inthinc Technology Solutions, Inc. System and method for detecting use of a wireless device while driving
US20100049373A1 (en) * 2008-08-25 2010-02-25 Gm Global Technology Operations, Inc. Method for modular software removal
US20100211301A1 (en) * 2009-02-13 2010-08-19 Mcclellan Scott System and method for analyzing traffic flow
US8188887B2 (en) * 2009-02-13 2012-05-29 Inthinc Technology Solutions, Inc. System and method for alerting drivers to road conditions
US8892341B2 (en) * 2009-02-13 2014-11-18 Inthinc Technology Solutions, Inc. Driver mentoring to improve vehicle operation
US8963702B2 (en) 2009-02-13 2015-02-24 Inthinc Technology Solutions, Inc. System and method for viewing and correcting data in a street mapping database
US8135804B2 (en) * 2009-07-07 2012-03-13 Honda Motor Co., Ltd. Method for scheduling and rescheduling vehicle service appointments
US8736419B2 (en) 2010-12-02 2014-05-27 Zonar Systems Method and apparatus for implementing a vehicle inspection waiver program
US8855621B2 (en) 2012-05-01 2014-10-07 Innova Electronics, Inc. Cellphone controllable car intrusion recording and monitoring reaction system
US8862117B2 (en) 2012-05-01 2014-10-14 Innova Electronics, Inc. Cellphone controllable car intrusion recording and monitoring reaction system
US9002554B2 (en) 2012-05-09 2015-04-07 Innova Electronics, Inc. Smart phone app-based remote vehicle diagnostic system and method
US8798847B2 (en) 2012-05-16 2014-08-05 The Morey Corporation Method and system for remote diagnostics of vessels and watercrafts
US9240082B2 (en) 2013-10-22 2016-01-19 At&T Intellectual Property I, L.P. Crowd sourced optimization of vehicle performance based on cloud based data
US9172477B2 (en) 2013-10-30 2015-10-27 Inthinc Technology Solutions, Inc. Wireless device detection using multiple antennas separated by an RF shield
KR101837096B1 (en) * 2016-01-27 2018-03-09 주식회사 패튼코 Proxy device for car and method for managing the data from car

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3546664C3 (en) 1985-02-22 1995-10-26 Bosch Gmbh Robert A method of operating a data processing system
US4787040A (en) 1986-12-22 1988-11-22 International Business Machines Corporation Display system for automotive vehicle
US4811240A (en) 1986-12-22 1989-03-07 International Business Machines Corporation System for creating and controlling interactive graphic display screens
US4827520A (en) 1987-01-16 1989-05-02 Prince Corporation Voice actuated control system for use in a vehicle
GB9013300D0 (en) 1990-06-14 1990-08-08 British Aerospace Video interface circuit
US5442553A (en) * 1992-11-16 1995-08-15 Motorola Wireless motor vehicle diagnostic and software upgrade system
US5400018A (en) * 1992-12-22 1995-03-21 Caterpillar Inc. Method of relaying information relating to the status of a vehicle
US5917405A (en) * 1993-06-08 1999-06-29 Joao; Raymond Anthony Control apparatus and methods for vehicles
US5555502A (en) 1994-05-11 1996-09-10 Geo Ventures Display and control apparatus for the electronic systems of a motor vehicle
DE4433953A1 (en) 1994-09-23 1996-03-28 Bosch Gmbh Robert A method of displaying information on a screen
US5808197A (en) 1995-01-13 1998-09-15 Remec, Inc. Vehicle information and control system
WO1996027513A1 (en) * 1995-03-03 1996-09-12 Qualcomm Incorporated Method and apparatus for monitoring parameters of vehicle electronic control units
US5844473A (en) * 1995-04-12 1998-12-01 Products Research, Inc. Method and apparatus for remotely collecting operational information of a mobile vehicle
US5794164A (en) 1995-11-29 1998-08-11 Microsoft Corporation Vehicle computer system
US5732074A (en) 1996-01-16 1998-03-24 Cellport Labs, Inc. Mobile portable wireless communication system
US5751956A (en) 1996-02-21 1998-05-12 Infoseek Corporation Method and apparatus for redirection of server external hyper-link references
US5805442A (en) 1996-05-30 1998-09-08 Control Technology Corporation Distributed interface architecture for programmable industrial control systems
US6028537A (en) * 1996-06-14 2000-02-22 Prince Corporation Vehicle communication and remote control system
US5956487A (en) 1996-10-25 1999-09-21 Hewlett-Packard Company Embedding web access mechanism in an appliance for user interface functions including a web server and web browser
US6009355A (en) 1997-01-28 1999-12-28 American Calcar Inc. Multimedia information and control system for automobiles
US5974368A (en) 1997-08-29 1999-10-26 Sarnoff Corporation Remote vehicle data interface tag system
JP3496479B2 (en) 1997-10-16 2004-02-09 トヨタ自動車株式会社 Road data maintenance system
US6032089A (en) 1997-12-01 2000-02-29 Chrysler Corporation Vehicle instrument panel computer interface node

Cited By (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625581B1 (en) * 1994-04-22 2003-09-23 Ipf, Inc. Method of and system for enabling the access of consumer product related information and the purchase of consumer products at points of consumer presence on the world wide web (www) at which consumer product information request (cpir) enabling servlet tags are embedded within html-encoded documents
US8458055B2 (en) 1996-10-25 2013-06-04 Ipf, Inc. Internet-based method of and system for managing and delivering consumer product information at points along the world wide web using consumer product information (CPI) requesting and graphical user interface (GUI) displaying subsystems driven by server-side objects and managed by consumer product manufacturers and/or authorized parties
US8065201B2 (en) 1996-10-25 2011-11-22 Ipf, Inc. Internet-based method of and system for managing and delivering consumer product information at points along the world wide web using consumer product information (CPI) requesting and graphical user interface (GUI) displaying subsystems driven by server-side components and managed by consumer product manufactures and/or authorized parties
US6961712B1 (en) * 1996-10-25 2005-11-01 Ipf, Inc. Consumer product information request (CPIR) enabling servlets and web-based consumer product information catalogs employing the same
US20040220711A1 (en) * 1999-12-15 2004-11-04 Knoska James J. Vessel monitoring system
US6978197B2 (en) * 1999-12-15 2005-12-20 Yacht Watchman International, Inc. Vessel monitoring system
US8022844B2 (en) 1999-12-15 2011-09-20 Yacht Watchman International, Inc. Marine vessel monitoring system
US20100138104A1 (en) * 1999-12-15 2010-06-03 Yacht Watchman International, Inc. Marine vessel monitoring system
US20060095173A1 (en) * 1999-12-15 2006-05-04 Knoska James J Vessel monitoring system
US7667622B2 (en) 1999-12-15 2010-02-23 Yacht Watchman International Marine vessel monitoring system
US20080186208A1 (en) * 1999-12-15 2008-08-07 Yacht Watchman International, Inc. Marine vessel monitoring system
US8725344B2 (en) * 1999-12-29 2014-05-13 At&T Intellectual Property I, L.P. G.P.S. management system
US7460954B2 (en) 1999-12-29 2008-12-02 At&T Mobility Ii Llc G. P. S. management system
US7577525B2 (en) 1999-12-29 2009-08-18 At&T Intellectual Property I, L.P. G.P.S. management system
US20120323434A1 (en) * 1999-12-29 2012-12-20 Hamrick Marvin R G.P.S. Management System
US9652973B2 (en) 1999-12-29 2017-05-16 At&T Intellectual Property I, L.P. Apparatus, systems, and methods for processing alerts relating to an in-vehicle control unit
US7366608B2 (en) 1999-12-29 2008-04-29 At&T Delaware Intellectual Property, Inc. G.P.S. management system
US6839614B1 (en) * 1999-12-29 2005-01-04 Bellsouth Intellectual Property Corporation Multi-mode in-vehicle control unit with network selectivity for transmitting vehicle data for fleet management
US20050065716A1 (en) * 1999-12-29 2005-03-24 Bellsouth Intellectual Property Corporation Multi-mode in-vehicle control unit with network selectivity for transmitting vehicle data for fleet management
US20080030378A1 (en) * 1999-12-29 2008-02-07 At&T Bls Intellectual Property, Inc G.P.S. Management system
US7272493B1 (en) 1999-12-29 2007-09-18 Bellsouth Intellectual Property Corporation G.P.S. management system
US9734698B2 (en) 1999-12-29 2017-08-15 At&T Intellectual Property I, L.P. G.P.S. management system
US20050151655A1 (en) * 1999-12-29 2005-07-14 Bellsouth Intellectual Property Corporation G.P.S. management system
US20060253252A1 (en) * 1999-12-29 2006-11-09 Bellsouth Intellectual Property Corporation G. P. S. management system
US20060106537A1 (en) * 1999-12-29 2006-05-18 Bellsouth Intellectual Property Corporation G.P.S. management system
US7725218B2 (en) 1999-12-29 2010-05-25 At&T Intellectual Property I, L.P. G.P.S. management system
US8781645B2 (en) 1999-12-29 2014-07-15 At&T Intellectual Property I, L.P. Apparatus, systems, and methods for processing alerts relating to an in-vehicle control unit
US6975928B2 (en) 1999-12-29 2005-12-13 Bellsouth Intellectual Property Corporation Multi-mode in-vehicle control unit with network selectivity for transmitting vehicle data for fleet management
US20050246097A1 (en) * 1999-12-29 2005-11-03 Bellsouth Intellectual Property Corporation G.P.S. management system
US8478453B2 (en) 1999-12-29 2013-07-02 At&T Intellectual Property I, L.P. Apparatus, systems, and methods for processing alerts relating to an in-vehicle control unit
US8577734B2 (en) 2000-02-09 2013-11-05 Vengte Software Ag Limited Liability Company Method and medium for facilitate mobile shopping
US20080228600A1 (en) * 2000-02-09 2008-09-18 Vengte Software Ag Limited Liability Company Purchasing Systems
US8612294B1 (en) 2000-02-09 2013-12-17 Vengte Software Ag Limited Liability Company Handheld computing device systems
US7502672B1 (en) 2000-04-24 2009-03-10 Usa Technologies, Inc. Wireless vehicle diagnostics with service and part determination capabilities
US20050102074A1 (en) * 2000-04-24 2005-05-12 Kolls H. B. System for interfacing with an on-board engine control system in a vehicle
US7003289B1 (en) * 2000-04-24 2006-02-21 Usa Technologies, Inc. Communication interface device for managing wireless data transmission between a vehicle and the internet
US20040217852A1 (en) * 2000-04-24 2004-11-04 Kolls H. Brock Method for characterizing a vehicle's fuel efficiency
US9224249B2 (en) 2000-07-25 2015-12-29 Hti Ip, L.L.C. Peripheral access devices and sensors for use with vehicle telematics devices and systems
US20020091706A1 (en) * 2000-09-06 2002-07-11 Johnson Controls Technology Company Vehicle history and personalization information management system and method
US20030187554A1 (en) * 2000-11-09 2003-10-02 Honeywell International, Inc. System and method for performance monitoring of operational equipment used with machines
US6845306B2 (en) * 2000-11-09 2005-01-18 Honeywell International Inc. System and method for performance monitoring of operational equipment used with machines
US7747365B1 (en) * 2001-03-13 2010-06-29 Htiip, Llc Internet-based system for monitoring vehicles
US20120083971A1 (en) * 2001-04-24 2012-04-05 Eagle Harbor Holdings Method and Apparatus for a Task Priority Processing System
US9336043B2 (en) * 2001-04-24 2016-05-10 Dan Alan Preston Method and apparatus for a task priority processing system
EP1253415A2 (en) * 2001-04-25 2002-10-30 Fuji Jukogyo Kabushiki Kaisha Vehicle control system
EP1253415A3 (en) * 2001-04-25 2007-05-09 Fuji Jukogyo Kabushiki Kaisha Vehicle control system
US6928348B1 (en) 2001-04-30 2005-08-09 Reynolds & Reynolds Holdings, Inc. Internet-based emissions test for vehicles
US6807469B2 (en) 2001-06-15 2004-10-19 Carcheckup, Llc Auto diagnostic method and device
US20050043869A1 (en) * 2001-06-15 2005-02-24 Carcheckup, Llc. (An Indiana Limited Liability Company) Auto diagnostic method and device
US6925368B2 (en) 2001-06-15 2005-08-02 Carcheckup, Llc Auto diagnostic method and device
US20020193925A1 (en) * 2001-06-15 2002-12-19 Travis Funkhouser Auto diagnostic method and device
US6988033B1 (en) 2001-08-06 2006-01-17 Reynolds & Reynolds Holdings, Inc. Internet-based method for determining a vehicle's fuel efficiency
US6865460B2 (en) 2001-10-29 2005-03-08 Visteon Global Technologies, Inc. Communication network for an automobile
US9082303B2 (en) 2002-03-05 2015-07-14 Pelmorex Canada Inc. Generating visual information associated with traffic
US7221287B2 (en) 2002-03-05 2007-05-22 Triangle Software Llc Three-dimensional traffic report
US7880642B2 (en) 2002-03-05 2011-02-01 Triangle Software Llc GPS-generated traffic information
US8958988B2 (en) 2002-03-05 2015-02-17 Pelmorex Canada Inc. Method for choosing a traffic route
US20060158330A1 (en) * 2002-03-05 2006-07-20 Andre Gueziec Traffic information dissemination
US20070013551A1 (en) * 2002-03-05 2007-01-18 Andre Gueziec System and method for predicting travel time for a travel route
US8564455B2 (en) 2002-03-05 2013-10-22 Triangle Software Llc Generating visual information associated with traffic
US9368029B2 (en) 2002-03-05 2016-06-14 Pelmorex Canada Inc. GPS generated traffic information
US8531312B2 (en) 2002-03-05 2013-09-10 Triangle Software Llc Method for choosing a traffic route
US9401088B2 (en) 2002-03-05 2016-07-26 Pelmorex Canada Inc. Method for predicting a travel time for a traffic route
US9489842B2 (en) 2002-03-05 2016-11-08 Pelmorex Canada Inc. Method for choosing a traffic route
US8786464B2 (en) 2002-03-05 2014-07-22 Pelmorex Canada Inc. GPS generated traffic information
US9602977B2 (en) 2002-03-05 2017-03-21 Pelmorex Canada Inc. GPS generated traffic information
US8358222B2 (en) 2002-03-05 2013-01-22 Triangle Software, Llc GPS-generated traffic information
US9640073B2 (en) 2002-03-05 2017-05-02 Pelmorex Canada Inc. Generating visual information associated with traffic
US9070291B2 (en) 2002-03-05 2015-06-30 Pelmorex Canada Inc. Method for predicting a travel time for a traffic route
US6904364B2 (en) 2002-04-02 2005-06-07 William S. Randazzo Navcell pier to pier GPS
WO2003085414A2 (en) * 2002-04-02 2003-10-16 Randazzo William S Navigation system for locating and communicating with wireless mesh network
WO2003085414A3 (en) * 2002-04-02 2004-06-03 Richard A Randazzo Navigation system for locating and communicating with wireless mesh network
US20030200096A1 (en) * 2002-04-18 2003-10-23 Masafumi Asai Communication device, communication method, and vehicle-mounted navigation apparatus
US20040111195A1 (en) * 2002-06-11 2004-06-10 Vries Jeroen Joost De Systems and methods for marine satellite monitoring
US20040204047A1 (en) * 2002-07-08 2004-10-14 Steed Jeffrey Wayne Automobile computing
US7065433B2 (en) 2003-02-07 2006-06-20 The Boeing Company Vehicle monitoring and reporting system and method
US7359713B1 (en) 2003-02-28 2008-04-15 Trimble Navigation Limited Battery consumption optimization for mobile users
US20060106515A1 (en) * 2003-05-06 2006-05-18 Joseph Phelan Motor vehicle operating data collection and analysis
US20050182538A1 (en) * 2003-05-06 2005-08-18 Joseph Phelan Motor vehicle operating data collection and analysis
US6931309B2 (en) 2003-05-06 2005-08-16 Innosurance, Inc. Motor vehicle operating data collection and analysis
US20040225557A1 (en) * 2003-05-06 2004-11-11 Joseph Phelan Motor vehicle operating data collection and analysis
US20060111817A1 (en) * 2003-05-06 2006-05-25 Joseph Phelan Motor vehicle operating data collection and analysis
US20060122749A1 (en) * 2003-05-06 2006-06-08 Joseph Phelan Motor vehicle operating data collection and analysis
US20050137757A1 (en) * 2003-05-06 2005-06-23 Joseph Phelan Motor vehicle operating data collection and analysis
US6957133B1 (en) 2003-05-08 2005-10-18 Reynolds & Reynolds Holdings, Inc. Small-scale, integrated vehicle telematics device
US9520005B2 (en) 2003-07-24 2016-12-13 Verizon Telematics Inc. Wireless vehicle-monitoring system
US9644982B2 (en) 2003-07-25 2017-05-09 Pelmorex Canada Inc. System and method for delivering departure notifications
US9127959B2 (en) 2003-07-25 2015-09-08 Pelmorex Canada Inc. System and method for delivering departure notifications
US8660780B2 (en) 2003-07-25 2014-02-25 Pelmorex Canada Inc. System and method for delivering departure notifications
US20080148169A1 (en) * 2004-02-26 2008-06-19 International Business Machines Corporation Tool for configuring available functions of an application
US20050193326A1 (en) * 2004-02-26 2005-09-01 International Business Machines Corporation Tool for configuring available functions of an application
US20080172601A1 (en) * 2004-02-26 2008-07-17 International Business Machines Corporation Tool for configuring available functions of an application
US20050251304A1 (en) * 2004-05-03 2005-11-10 Pasquale Cancellara Device and method for performing both local and remote vehicle diagnostics
US20060041337A1 (en) * 2004-08-19 2006-02-23 Augsburger Brett N Web-enabled engine reprogramming
US7636564B2 (en) * 2004-09-07 2009-12-22 Alpine Electronics, Inc. Information link service system, electronic equipment, mobile terminal, authentication apparatus and communication method
US20060052086A1 (en) * 2004-09-07 2006-03-09 Yuji Funato Information link service system, electronic equipment, mobile terminal, authentication apparatus and communication method
US20060097854A1 (en) * 2004-11-10 2006-05-11 The Boeing Company System, method, and computer program product for fault prediction in vehicle monitoring and reporting system
US7230527B2 (en) 2004-11-10 2007-06-12 The Boeing Company System, method, and computer program product for fault prediction in vehicle monitoring and reporting system
US20080221749A1 (en) * 2004-11-18 2008-09-11 Robert Bosch Gmbh Diagnostic Interface for Applications on a Service Gateway
EP1865623A1 (en) * 2005-04-01 2007-12-12 Matsushita Electric Industrial Co., Ltd. Communication system, vehicle information communicating apparatus, and indoor information processing apparatus
US7737829B2 (en) * 2005-04-01 2010-06-15 Panasonic Corporation Communications system, vehicle information communicating apparatus, and indoor information processing apparatus
EP1865623A4 (en) * 2005-04-01 2011-11-23 Panasonic Corp Communication system, vehicle information communicating apparatus, and indoor information processing apparatus
US20080055058A1 (en) * 2005-04-01 2008-03-06 Tamotsu Nishiyama Communications System, Vehicle Information Communicating Apparatus, and Indoor Information Processing Apparatus
US8107683B2 (en) * 2005-04-28 2012-01-31 Honda Motor Co., Ltd. Method and system for in-vehicle image processing
US20080317288A1 (en) * 2005-04-28 2008-12-25 Tomoyoshi Aoki Vehicle, Image Processing System, Image Processing Method, Image Processing Program, Image Processing System Configuration Method, and Server
US9196098B2 (en) 2005-06-01 2015-11-24 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9189895B2 (en) * 2005-06-01 2015-11-17 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9637134B2 (en) 2005-06-01 2017-05-02 Allstate Insurance Company Motor vehicle operating data collection and analysis
US9269202B2 (en) 2005-06-01 2016-02-23 Allstate Insurance Company Motor vehicle operating data collection and analysis
US20130073112A1 (en) * 2005-06-01 2013-03-21 Joseph Patrick Phelan Motor vehicle operating data collection and analysis
US9053591B2 (en) 2005-06-01 2015-06-09 Allstate Insurance Company Motor vehicle operating data collection and analysis
US20070015119A1 (en) * 2005-07-13 2007-01-18 Atenasio Christopher M Identifying locations
US8959084B2 (en) * 2005-07-13 2015-02-17 Google Inc. Identifying locations
US20080262660A1 (en) * 2005-09-28 2008-10-23 Shmuel Weber Control-Information System For Mass Transportation Vehicles
US8677019B2 (en) * 2006-03-13 2014-03-18 Bayerische Motoren Werke Aktiengesellschaft Data communication method using unambiguous vehicle identification information
US20090070488A1 (en) * 2006-03-13 2009-03-12 Bayerische Motoren Werke Aktiengesellschaft Data Communication Method
EP1905648A1 (en) * 2006-09-28 2008-04-02 Delphi Technologies, Inc. Universal integration system for auxiliary digital audio playback
US20080154400A1 (en) * 2006-09-28 2008-06-26 Wang Ting Z Universal integration system for auxiliary digital audio playback
US7779167B2 (en) 2006-09-28 2010-08-17 Delphi Technologies, Inc. Universal integration system for auxiliary digital audio playback
US20080103658A1 (en) * 2006-10-27 2008-05-01 Spx Corporation Scan tool software update using an image
US20080137590A1 (en) * 2006-12-06 2008-06-12 Idsc Holdings Llc Detachable wireless adapter for vehicle communication modules
US9430945B2 (en) 2006-12-20 2016-08-30 Johnson Controls Technology Company System and method for providing route calculation and information to a vehicle
US8634033B2 (en) 2006-12-20 2014-01-21 Johnson Controls Technology Company Remote display reproduction system and method
US20100097239A1 (en) * 2007-01-23 2010-04-22 Campbell Douglas C Mobile device gateway systems and methods
US9587958B2 (en) 2007-01-23 2017-03-07 Visteon Global Technologies, Inc. Mobile device gateway systems and methods
US20130282375A1 (en) * 2007-06-01 2013-10-24 At&T Mobility Ii Llc Vehicle-Based Message Control Using Cellular IP
US9478215B2 (en) * 2007-06-01 2016-10-25 At&T Mobility Ii Llc Vehicle-based message control using cellular IP
WO2009073806A2 (en) * 2007-12-05 2009-06-11 Johnson Controls Technology Company Vehicle user interface systems and methods
WO2009073806A3 (en) * 2007-12-05 2009-12-10 Johnson Controls Technology Company Vehicle user interface systems and methods
US8447598B2 (en) * 2007-12-05 2013-05-21 Johnson Controls Technology Company Vehicle user interface systems and methods
US20140100740A1 (en) * 2007-12-05 2014-04-10 Johnson Controls Technology Company Vehicle user interface systems and methods
US20110257973A1 (en) * 2007-12-05 2011-10-20 Johnson Controls Technology Company Vehicle user interface systems and methods
US8843066B2 (en) 2007-12-05 2014-09-23 Gentex Corporation System and method for configuring a wireless control system of a vehicle using induction field communication
DE102008013069A1 (en) * 2008-03-06 2009-09-17 Continental Automotive Gmbh Electronic vehicle log book for use in commercial motor vehicle, has electronic memory with database for storing information about passengers and load entered in vehicle, control unit calculating weights of passengers and load
US20110083161A1 (en) * 2008-06-04 2011-04-07 Takayuki Ishida Vehicle, maintenance device, maintenance service system, and maintenance service method
US20100144284A1 (en) * 2008-12-04 2010-06-10 Johnson Controls Technology Company System and method for configuring a wireless control system of a vehicle using induction field communication
US9324230B2 (en) 2008-12-04 2016-04-26 Gentex Corporation System and method for configuring a wireless control system of a vehicle using induction field communication
US9448690B2 (en) 2009-03-04 2016-09-20 Pelmorex Canada Inc. Controlling a three-dimensional virtual broadcast presentation
US9046924B2 (en) 2009-03-04 2015-06-02 Pelmorex Canada Inc. Gesture based interaction with traffic data
US8982116B2 (en) 2009-03-04 2015-03-17 Pelmorex Canada Inc. Touch screen based interaction with traffic data
US8619072B2 (en) 2009-03-04 2013-12-31 Triangle Software Llc Controlling a three-dimensional virtual broadcast presentation
US9715665B2 (en) * 2009-09-21 2017-07-25 Ford Global Technologies, Llc Methods and systems for monitoring the condition of vehicle components from a nomadic wireless device or computer
US20110071720A1 (en) * 2009-09-21 2011-03-24 Ford Global Technologies, Llc Methods and systems for monitoring the condition of vehicle components from a nomadic wireless device or computer
US20110071725A1 (en) * 2009-09-23 2011-03-24 Ford Global Technologies, Llc Remotely interacting with a vehicle to perform servicing and engineering functions from a nomadic device or computer
US8346432B2 (en) 2009-09-23 2013-01-01 Ford Global Technologies, Llc System and method for remotely controlling vehicle components from a nomadic communication device or computer
US20110071734A1 (en) * 2009-09-23 2011-03-24 Ford Global Technologies, Llc System and method for remotely controlling vehicle components from a nomadic communication device or computer
US20110080282A1 (en) * 2009-10-01 2011-04-07 Ford Global Technologies, Llc Vehicle system passive notification using remote device
US8558690B2 (en) 2009-10-01 2013-10-15 Ford Global Technologies, Llc Vehicle system passive notification using remote device
US9251694B2 (en) 2009-10-01 2016-02-02 Ford Global Technologies, Llc Vehicle system passive notification using remote device
US8706318B2 (en) * 2009-12-03 2014-04-22 Continental Automotive Gmbh Docking terminal and system for controlling vehicle functions
US20110137490A1 (en) * 2009-12-03 2011-06-09 Continental Automotive Gmbh Mobile interface and system for controlling vehicle functions
US20120303177A1 (en) * 2009-12-03 2012-11-29 Continental Automotive Gmbh Docking terminal and system for controlling vehicle functions
US8682503B2 (en) * 2009-12-03 2014-03-25 Continental Automotive Gmbh Mobile interface and system for controlling vehicle functions
US20110153652A1 (en) * 2009-12-21 2011-06-23 Electronics And Telecommunications Research Institute Method for transmitting vehicle information
US9205710B2 (en) 2010-02-25 2015-12-08 Ford Global Technologies, Llc Methods and systems for determining a tire pressure status
US20110205040A1 (en) * 2010-02-25 2011-08-25 Ford Global Technologies, Llc Method and systems for detecting an unauthorized use of a vehicle by an authorized driver
US8558678B2 (en) 2010-02-25 2013-10-15 Ford Global Technologies, Llc Method and systems for detecting an unauthorized use of a vehicle by an authorized driver
US20110205047A1 (en) * 2010-02-25 2011-08-25 Ford Global Technologies, Llc Methods and systems for determining a tire pressure status
US8525657B2 (en) 2010-02-25 2013-09-03 Ford Global Technologies, Llc Methods and systems for determining a tire pressure status
US9580044B2 (en) 2010-03-08 2017-02-28 Ford Global Technologies, Llc Method and system for enabling an authorized vehicle driveaway
US9205807B2 (en) 2010-03-08 2015-12-08 Ford Global Technologies, Llc Method and system for enabling an authorized vehicle driveaway
US20110215901A1 (en) * 2010-03-08 2011-09-08 Ford Global Technologies, Llc Method and system for enabling an authorized vehicle driveaway
US8614622B2 (en) 2010-03-08 2013-12-24 Ford Global Technologies, Llc Method and system for enabling an authorized vehicle driveaway
US20110230165A1 (en) * 2010-03-19 2011-09-22 Ford Global Technologies, Llc Wireless vehicle tracking
US8718910B2 (en) 2010-11-14 2014-05-06 Pelmorex Canada Inc. Crowd sourced traffic reporting
JP2012122988A (en) * 2010-12-06 2012-06-28 Hyundai Motor Co Ltd Vehicle information update system and method for the same
US20140215491A1 (en) * 2011-01-14 2014-07-31 Cisco Technology, Inc. System and method for internal networking, data optimization and dynamic frequency selection in a vehicular environment
US9860709B2 (en) 2011-01-14 2018-01-02 Cisco Technology, Inc. System and method for real-time synthesis and performance enhancement of audio/video data, noise cancellation, and gesture based user interfaces in a vehicular environment
US9277370B2 (en) * 2011-01-14 2016-03-01 Cisco Technology, Inc. System and method for internal networking, data optimization and dynamic frequency selection in a vehicular environment
US9154900B1 (en) 2011-01-14 2015-10-06 Cisco Technology, Inc. System and method for transport, network, translation, and adaptive coding in a vehicular network environment
US9654937B2 (en) 2011-01-14 2017-05-16 Cisco Technology, Inc. System and method for routing, mobility, application services, discovery, and sensing in a vehicular network environment
US9225782B2 (en) 2011-01-14 2015-12-29 Cisco Technology, Inc. System and method for enabling a vehicular access network in a vehicular environment
US9888363B2 (en) 2011-01-14 2018-02-06 Cisco Technology, Inc. System and method for applications management in a networked vehicular environment
US8725396B2 (en) 2011-05-18 2014-05-13 Pelmorex Canada Inc. System for providing traffic data and driving efficiency data
US9547984B2 (en) 2011-05-18 2017-01-17 Pelmorex Canada Inc. System for providing traffic data and driving efficiency data
US9390620B2 (en) 2011-05-18 2016-07-12 Pelmorex Canada Inc. System for providing traffic data and driving efficiency data
US20120324075A1 (en) * 2011-06-20 2012-12-20 Spx Corporation Method and Apparatus to Manage Information Between a Scan Tool and Networked Devices
WO2012177672A1 (en) * 2011-06-20 2012-12-27 Service Solutions U.S. Llc Method and apparatus to manage information between a scan tool and networked devices
US9262254B2 (en) * 2011-06-20 2016-02-16 Bosch Automotive Service Solutions Inc. Method and apparatus to manage information between a scan tool and networked devices
US20130166138A1 (en) * 2011-12-23 2013-06-27 Electronics And Telecommunications Research Institute Vehicle information transmission apparatus
US8942885B2 (en) * 2011-12-23 2015-01-27 Electronics And Telecommunications Research Institute Vehicle information transmission apparatus
US8781718B2 (en) 2012-01-27 2014-07-15 Pelmorex Canada Inc. Estimating time travel distributions on signalized arterials
US9293039B2 (en) 2012-01-27 2016-03-22 Pelmorex Canada Inc. Estimating time travel distributions on signalized arterials
US20140280552A1 (en) * 2013-03-15 2014-09-18 Audi Ag Method to transmit real-time in-vehicle information to an internet service
US9883353B2 (en) * 2013-03-15 2018-01-30 Volkswagen Ag Method to transmit real-time in-vehicle information to an internet service
US9430882B2 (en) 2013-10-11 2016-08-30 Kenton Ho Computerized vehicle maintenance management system with embedded stochastic modelling
US20150181257A1 (en) * 2013-12-20 2015-06-25 GM Global Technology Operations LLC Methods and systems for an adapter device between vehicle infotainment systems and electronic devices
US9845097B2 (en) 2015-08-12 2017-12-19 Ford Global Technologies, Llc Driver attention evaluation

Also Published As

Publication number Publication date Type
US6362730B2 (en) 2002-03-26 grant

Similar Documents

Publication Publication Date Title
US8190322B2 (en) Autonomous vehicle maintenance and repair system
US7286857B1 (en) Enhanced in-vehicle wireless communication system handset operation
US6909361B2 (en) Wireless communication system
US20090075624A1 (en) Remote vehicle infotainment apparatus and interface
US6246688B1 (en) Method and system for using a cellular phone as a network gateway in an automotive network
US7139660B2 (en) System and method for changing motor vehicle personalization settings
US20060211446A1 (en) Enabling telematics and mobility services within a vehicle for disparate communication networks
US20010011302A1 (en) Method and apparatus for voice activated internet access and voice output of information retrieved from the internet via a wireless network
US7506309B2 (en) Method for managing vehicle software configuration updates
US20020165006A1 (en) Wireless device having a single processor in a short-range radio network
US20060293813A1 (en) System and method for controlling remote vehicle using telematics system
US6023232A (en) Vehicle communications system and method
US20040192189A1 (en) System, method and computer program product for receiving data from a satellite radio network
US20040110472A1 (en) Wireless communication system and method
US7031724B2 (en) Location-based services for a telematics service subscriber
US20060122748A1 (en) System and method for diagnosing remote vehicle using telematics system
US20080114541A1 (en) Method, apparatus and system for use in navigation
US20050090236A1 (en) In-vehicle automated call routing using an origin identifier
US20020025832A1 (en) Controlling data transmission involving a wireless telephone
US20120167071A1 (en) Software update apparatus and method of vehicle
US7891004B1 (en) Method for vehicle internetworks
US20090240427A1 (en) Portable navigation device with wireless interface
US20080306682A1 (en) System serving a remotely accessible page and method for requesting navigation related information
US7346370B2 (en) Enabling interoperability between distributed devices using different communication link technologies
US7548815B2 (en) Method and system for programmable mobile vehicle hotspots

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUN MICROSYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAZAVI, BEHFAR;DENSMORE, OWEN M.;MARTIN, GUY W.;REEL/FRAME:010152/0909

Effective date: 19990803

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20100326