New! View global litigation for patent families

US20010027159A1 - Method for preparation of sintered body of rare earth oxide - Google Patents

Method for preparation of sintered body of rare earth oxide Download PDF

Info

Publication number
US20010027159A1
US20010027159A1 US09783602 US78360201A US20010027159A1 US 20010027159 A1 US20010027159 A1 US 20010027159A1 US 09783602 US09783602 US 09783602 US 78360201 A US78360201 A US 78360201A US 20010027159 A1 US20010027159 A1 US 20010027159A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
oxide
earth
rare
powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09783602
Other versions
US6410471B2 (en )
Inventor
Masami Kaneyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin-Etsu Chemical Co Ltd
Original Assignee
Shin-Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates

Abstract

Disclosed is a method for the preparation of a high-quality sintered body of a rare earth oxide or a composite oxide of a rare earth oxide and an adjuvant oxide such as aluminum oxide. The method comprises shaping a rare earth oxide powder characterized by specified particle diameter distribution values of D50 and D90 and a specified specific surface area or a powder blend of the rare earth oxide and adjuvant oxide into a powder compact and subjecting the powder compact to a sintering heat treatment at a specified sintering temperature by increasing and decreasing the temperature up to and from the sintering temperature each at a rate not exceeding a specified upper limit.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    The present invention relates to a method for the preparation of a sintered body of a rare earth oxide. More particularly, the invention relates to a method for the preparation of a sintered body of a rare earth oxide having a large sintering density and a small average crystallite diameter. The invention also relates to a method for the preparation of an oxide mixture mainly consisting of a rare earth oxide with a non-rare earth adjuvant oxide, which crystallographically consists of a single phase.
  • [0002]
    As is well known, sintered bodies of a rare earth oxide generally have an outstandingly high corrosion resistance against halogen gases or halogen-containing gases and melt of a metal or alloy. By virtue of this unique property, applications in various fields can be expected for the articles of a sintered rare earth oxide body. Besides, sintered bodies of a rare earth oxide are each a potential material in the applications as a dielectric material, magnetic material, optical functional material and so on. For example, yttrium aluminum garnet, referred to as YAG hereinafter, having a chemical composition of Y3Al5O12 as a composite oxide of yttrium and aluminum belongs crystallographically to the cubic system having isotropy and a high-density sintered body of YAG, which is nothing other than a polycrystalline body, may exhibit high transmissivity to visible light close to that of a single crystal or glassy body of YAG. Further, sintered bodies of a composite oxide consisting of a rare earth oxide, such as oxides of yttrium, dysprosium and terbium, and iron oxide have an application as a material of magnetooptical devices.
  • [0003]
    It is important in most applications of a sintered body of rare earth oxides in order to exhibit the inherently high performance that the sintered body has a sintering density, i.e. the actual density of the sintered body relative to the true density of the oxide, as close to the true density of the oxide as possible and that the sintered body consists of a crystallographically single phase. These desirable characteristics of a sintered body of a rare earth oxide largely depend on the physical properties of the starting oxide particles and it is generally a very difficult matter to obtain a sintered body of a rare earth oxide even by undertaking improvements and optimization of the process conditions for the preparation of a sintered body.
  • SUMMARY OF THE INVENTION
  • [0004]
    The present invention accordingly has an object, in view of the above described problems and difficulties in the prior art methods for the preparation of a sintered body of a rare earth oxide or an oxide mixture mainly composed of a rare earth oxide or a rare earth oxide-based oxide mixture, to provide a novel and reliable method for the preparation of a sintered body of a rare earth oxide or a rare earth oxide-based oxide mixture having a large sintering density and consisting of a crystallographically single phase with a small average crystal-lite diameter.
  • [0005]
    Thus, the method of the present invention for the preparation of a sintered body of a rare earth oxide comprises the steps of:
  • [0006]
    (a) molding a powder of a rare earth oxide, of which the D50 value of the particle diameter distribution does not exceed 2.0 μm, the Dπvalue of the particle diameter distribution does not exceed 3.0 μm and the specific surface area is in the range from 5 to 20 m2/g, into a powder compact; and
  • [0007]
    (b) subjecting the powder compact to a heat treatment for sintering at a temperature of 1000° C. or higher, in which the rate of temperature elevation does not exceed 500° C. per hour and the rate of temperature decrease does not exceed 600° C. per hour.
  • [0008]
    It is preferable in the above defined inventive method that the D′50 value of the pore diameter distribution of the rare earth oxide particles does not exceed 20 nm.
  • [0009]
    It is further optional that the starting rare earth oxide powder defined above is admixed with an adjuvant oxide of an element selected from the group consisting of magnesium, aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, niobium, molybdenum, indium, tin, hafnium, tantalum and tungsten in a limited proportion so as to give a sintered body of a rare earth-based composite oxide. When a sintered body is prepared from an oxide mixture of a rare earth oxide and one or more of these adjuvant oxides, it is desirable that the amount of the rare earth oxide is at least 40% by weight based on the total amount of the oxide mixture.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0010]
    The above defined present invention has been completed as a result of the extensive investigations undertaken by the inventor on the relationship between the physical properties of the rare earth oxide powder as the starting material and the physical properties of a sintered body of the rare earth oxide obtained from the oxide powder. The investigations have led to a discovery that a sintered body of a rare earth oxide having the most desirable properties can be obtained when the starting rare earth oxide powder has optimum values of the parameters including the average particle diameter, particle diameter distribution, specific surface area and pore diameter distribution.
  • [0011]
    Thus, the starting rare earth oxide powder, which is compression-molded into a powder compact in step (a) of the inventive method, should have the particle diameter distribution values D50 and D90, which can be determined by the laser diffraction method, not exceeding 2.0 μm and 3.0 μm, respectively, and a specific surface area in the range from 5 m2/g to 20 m2/g. The above mentioned particle diameter distribution value expressed by the symbol Dn is defined in such a way that the particles having a particle diameter not exceeding Dn, e.g., in μm unit, constitute n% by weight of the whole powder.
  • [0012]
    The rare earth elements forming a rare earth oxide, to which the inventive preparation method is applicable, include yttrium and the elements having an atomic number in the range from 57 to 71 on the Periodic Table. Each of the rare earth oxides, excepting the oxides of cerium, praseodymium and terbium, has a chemical composition of the formula R2O3, in which R is the rare earth element, while the oxides of the above mentioned cerium, praseodymium and terbium are expressed usually by the formulas of CeO2, Pr6O11 and Tb4O7, respectively. These rare earth oxide powders can be used either singly or as a blend of two kinds or more according to need. The method of the present invention is applicable more successfully to the oxides of yttrium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium or, in particular, to yttrium oxide among the above mentioned rare earth oxides.
  • [0013]
    As is mentioned before, the rare earth oxide powder as the starting material in the inventive method must satisfy the requirements for the granulometric parameters including the particle diameter distribution values, specific surface area and, desirably, pore diameter distribution. When the particle diameter distribution of a powder is measured by the laser diffraction method, the center value of distribution and presence of coarse particles must be taken into consideration.
  • [0014]
    The D50 value of the starting rare earth oxide powder according to the above given definition should not exceed 2.0 μm or, preferably, should not exceed 1.5 μm or, more preferably, should be in the range from 0.9 to 1.3 μm. When the D50 value of the starting rare earth oxide powder is too large, the process of sintering cannot proceed as desired not to give a high sintering density of the sintered body unless the sintering temperature is unduly increased. When a sintered body of a rare earth-based composite oxide with an adjuvant oxide is to be prepared, in addition, the reaction between the oxides can hardly be complete with coarse rare earth oxide particles not to give a crystallographically uniform sintered body which eventually comprises undesired oxide phases and the unreacted starting oxide phases.
  • [0015]
    The D90 value of the starting rare earth oxide powder according to the above given definition should not exceed 3.0 μm or, preferably, should not exceed 2.7 μm or, more preferably, should be in the range from 1.9 to 2.3 μm. When the D90 value is too large, the disadvantage caused thereby is similar to that caused with a too large D50 value mentioned above. In addition, the average crystallite diameter cannot be small enough with a large variation of the diameters adversely affecting the mechanical strengths of the sintered body. The crystallite diameter of a sintered body can be determined from an electron-microscopic photograph of a section of the sintered body along with an electron-microscopic examination of the surface of the section.
  • [0016]
    The specific surface area of the rare earth oxide powder can be determined by the so-called BET method by measuring the volume of nitrogen gas adsorbed on the unit amount of the powder at the boiling point of liquid nitrogen, i.e. −196° C. The starting rare earth oxide powder should have a specific surface area in the range from 5 to 20 m2/g or, preferably, from 7 to 18 m2/g or, more preferably, from 10 to 15 m2/g. When the specific surface area of the starting rare earth oxide powder is too small, the oxide particles have low reactivity so that the process of sintering cannot proceed as desired and the reaction with the adjuvant oxide particles can hardly proceed. When the specific surface area is too large, on the other hand, local unevenness of sintering is sometimes unavoidable with partial oversintering and the crystallite diameter in the sintered body cannot be fine enough with a large variation or unevenness sometimes leaving closed pores at the grain boundaries in addition to the problem that a single-phase sintered body can hardly be obtained in a sintered body of a rare earth oxide-based composite oxide with an adjuvant oxide.
  • [0017]
    A further granulometric parameter to be determined of the starting rare earth oxide powder is the pore diameter distribution value D′50 which should not exceed 20 nm or, preferably, should be in the range from 10 to 20 nm. When the D′50 value of the starting rare earth oxide powder is too large, the sintering behavior of the oxide powder is adversely affected. The pore diameter distribution value D′50 is defined in such a way that 50% of the overall pore volume of the particles is occupied by the pores of which the pore diameter does not exceed D′50 (nm). The D′50 value can be determined by the so-called BJH method from the adsorption and desorption behavior of nitrogen gas on and from the oxide powder under varied pressures.
  • [0018]
    Following is a description of steps of the inventive method for the preparation of a sintered body of a rare earth oxide or of a rare earth oxide-based composite oxide. When the target product is a sintered body of a rare earth oxide-based composite oxide, the first step is mixing of the rare earth oxide powder and an adjuvant oxide powder as intimately as possible by using a suitable powder-mixing tool such as mortars and pestles or, preferably, by using a powder-mixing machine such as a ball mill either as a dry-blending process or as a wet-blending process with admixture of water or an organic solvent or, preferably, water from the standpoint of safety and environmental pollution. When the wet-process powder mixing is undertaken, the wetting water or solvent is usually removed from the wet mixture or slurry of the powders by evaporation to give a dried powder blend.
  • [0019]
    The first of the essential steps in the inventive method is molding of a rare earth oxide powder or, when the above described powder blending has been undertaken, the powder blend into a powder compact by a suitable molding method such as compression molding in a metal mold, so-called slip casting using a mold of a liquid-absorbent material such as gypsum and hydrostatic compression method. When the slip casting method is undertaken with a powder blend, it is of course that the wet powder blend or slurry obtained by the wet-process mixing need not be dried into a dried powder blend. The method of hydrostatic compression is advantageous because the density of the powder compact obtained by this method is high as compared with the other molding methods consequently resulting in a small shrinkage of the powder compact in the subsequent step of sintering. The pressure of the hydrostatic compression medium in the hydrostatic compression molding method should be at least 100 MPa or, desirably, at least 150 MPa.
  • [0020]
    The step to follow the above described molding step of the rare earth oxide powder or a powder blend is a heat treatment of the powder compact for sintering which is conducted in an electric furnace under an atmosphere of the atmospheric air, non-reactive gas or reducing gas or in vacuum depending on the types of the desired sintered bodies. Most conveniently, the atmosphere for sintering can be the atmospheric air when the sintered body to be obtained is that of a single rare earth oxide or of a rare earth oxide-based composite oxide including rare earth aluminum garnets R3Al5O12 such as YAG, rare earth iron garnets R3Fe5O12 such as yttrium iron garnet (YIG), yttrium titanate Y2Ti2O7 of the pyrochlore type and so on.
  • [0021]
    The highest temperature to be reached in the heat treatment for sintering, referred to as the sintering temperature hereinafter, is, though dependent on the types of the sintered body to be obtained, 1000° C. or higher or, preferably, in the range from 1200 to 1900° C. or, more preferably, in the range from 1400 to 1800° C. When the sintering temperature is too low, sintering of the powder compact cannot proceed completely as a matter of course while sintering at a too high temperature is unavoidably accompanied by a disadvantage due to premature degradation of the heater elements installed in the electric furnace by the evaporation of vaporizable constituents therein.
  • [0022]
    The length of time for keeping the powder compact under sintering at the sintering temperature is desirably at least one hour in order to accomplish complete sintering of the body. It is preferable in the heat treatment that the rate of temperature elevation to reach the sintering temperature does not exceed 500° C. per hour or, preferably, is in the range from 150 to 400° C. per hour, desirably, at least in the temperature range from 500° C. to the sintering temperature. When the rate of temperature elevation is too high, the sintered body may eventually suffer a defect such as cracks and chippings while a rate of temperature elevation smaller than 150° C. per hour has no particular advantages thereby rather with an economical disadvantage due to a decrease in the productivity. The cooling rate of the body after the heat treatment at the sintering temperature down to room temperature or, desirably, at least down to 500° C. should not exceed 600° C. per hour. When the sintered body is cooled down too rapidly, the sintered body eventually suffers defects of deformation, cracks and chippings.
  • [0023]
    In the following, the present invention is described in more detail by way of examples and comparative examples, which, however, never limit the scope of the invention in any way.
  • [0024]
    In the experiments described below, characterization of the rare earth oxide powders was made for the items including the particle diameter distribution, specific surface area and pore diameter distribution according to the testing procedures given below.
  • [0025]
    The particle diameter distribution of the oxide powders was measured by the laser diffraction method by using an instrument therefor (Model Microtrac FRA 9220, manufactured by Leeds & Northrup Co.) to give the values of D10, D50 and D μm units. The BET specific surface area and the pore diameter distribution of the oxide powders were determined by the BJH method using an instrument for gas adsorption and desorption measurements (Model Coulter SA3100, manufactured by Coulter Electronics Co.) to give the specific surface area in m2/g units and to give the values of D′50 in nm units.
  • [0026]
    Experiment 1
  • [0027]
    Powders of yttrium oxide were taken from four different lots A, B, C and D of yttrium oxide products and they were subjected to characterization as mentioned above to give the results summarized in Table 1 below.
    TABLE 1
    Particle diameter Specific Pore diameter
    Yttrium distribution, μm surface distribution,
    oxide, lot D10 D50 D90 area, m2/g D′50 , nm
    A 0.69 1.10 2.15 13.2 17.3
    B 0.94 1.74 4.13 39.1 31.7
    C 0.65 1.16 3.22 12.1 22.8
    D 1.67 3.51 6.27  7.9 38.7
  • [0028]
    A 100 g portion taken from each of these yttrium oxide powders A to D was introduced into a rubber mold having an inner diameter of 50 mm and tightly sealed therein with a rubber stopper to be subjected to hydrostatic molding in a hydrostatic press under a pressure of 200 MPa. The thus hydrostatically molded powder compacts taken out of the rubber mold were subjected to a sintering heat treatment in an electric furnace under an atmosphere of air at a sintering temperature of 1700° C. for 4 hours. The rate of temperature elevation up to this sintering temperature was 300° C. per hour and the cooling rate from 1700° C. down to room temperature was also 300° C. per hour.
  • [0029]
    The thus obtained sintered bodies of yttrium oxide by uaing the yttrium oxide powders A, B, C and D, referred to as the sintered bodies 1A, 1 B, 1 C and 1 D, respectively, were electron microscopically examined for the surface. The average crystallite diameters were determined on the electron microscopic photographs to give the results shown in Table 2 below. The sintered bodies were subjected to the measurement of the density to give the results in Table 2 as a relative density in % which is the ratio of the sintering density to the theoretical density 5.03 g/cm3 of yttrium oxide.
    TABLE 2
    Sintered Relative Average crystallite
    body density, % diameter, nm
    1A 99.7 9.2
    1B 99.5 26
    1C 99.4 19
    1D 98.2 14
  • [0030]
    The results of Table 2 indicate that the sintered body 1A among the four had the highest sintering density and smallest average crystallite diameter. In fact, the sintered body 1A had the highest mechanical strength and heat-shock resistance and was free from occurrence of any noticeable cracks or fissures on the surface.
  • [0031]
    Experiment 2
  • [0032]
    Powder blends of yttrium oxide and aluminum oxide in a molar ratio of 3:5 corresponding to the chemical composition of YAG were prepared each by ball-milling 57.06 g of one of the yttrium oxide powders A to D used in Experiment 1 and 42.94 g of an aluminum oxide powder having a D50 value of about 0.3 μm and a D90 value of about 1.1 μm (Taimicron TM-DA, a product by Taimei Chemical Co.) with addition of 100 ml of water for 3 hours in an alumina pot containing alumina balls of about 5 mm diameter followed by removal of the alumina balls from the slurry by screening and drying of the slurry to give a dried cake of the powder blend which was lightly disintegrated with a mortar and pestle into a powder to serve as the base material for the preparation of sintered bodies.
  • [0033]
    These powder blends were each subjected to hydrostatic molding and a sintering heat treatment in substantially the same manner as in Experiment 1 except that the sintering temperature was 1600° C. instead of 1700° C. The thus obtained sintered bodies are referred to hereinafter as the sintered bodies 2A, 2B, 2C and 2D corresponding to the yttrium oxide powders A, B, C and D, respectively.
  • [0034]
    Each of the sintered bodies 2A to 2D was subjected to the measurement of the density by the in-water weighing method to give the relative density in %, which was the ratio of the sintering density of the sintered body to the theoretical density 4.55 g/cm3 of YAG, as shown in Table 3 below.
  • [0035]
    According to the results of the powder X-ray diffractometry undertaken with the sintered bodies, the sole or major constituent phase of the sintered bodies was YAG which was, in some samples, accompanied by other minor phases including the phase of YAlO3, referred to as YAP hereinafter, the phase of Y4Al2O9, referred to as YAM hereinafter, and the phase of yttrium oxide Y2O3.
  • [0036]
    A 15 mm square and 3 mm thick plate specimen was taken by cutting each of the sintered bodies 2A to 2D with polishing of the square surfaces. A quantitative X-ray diffractometric analysis was undertaken with the thus finished square specimens to determine the contents of the yttrium atoms in the respective crystallographic phases from the intensities of the diffraction peaks by making reference to authentic standard specimens to give the results shown in Table 3 below for the phases of YAG, YAP, YAM and Y2O3.
  • [0037]
    The above prepared surface-polished square specimens were subjected to the measurement of light transmissivity for light of 550 nm wavelength on a spectrophotometer. The results in % transmission are shown in Table 3 below.
    TABLE 3
    % Yttrium atoms contained in the Light Relative
    Sintered phase of transmission, density,
    body YAG YAP YAM Y2O3 % %
    2A 100 0 0 0 68 99.8
    2B 91 6 1 1 49 99.9
    2C 94 3 0 0 44 99.7
    2D 87 7 2 2 36 99.8
  • [0038]
    The sintered body 2A is characteristic in consisting of a single crystallographic phase of YAG and having a high light transmissivity as compared with the other sintered bodies so that this material could be employed as a material of windows of special lamps.
  • [0039]
    The results summarized in Tables 1 to 3 clearly support the conclusion leading to the present invention that the particle diameter distribution values and the specific surface area of the rare earth oxide powder are the most important granulometric parameters which determine the quality of the sintered bodies of the rare earth oxides and rare earth oxide-based composite oxides.

Claims (17)

    What is claimed is:
  1. 1. A method for the preparation of a sintered body of a rare earth oxide which comprises the steps of:
    (a) shaping a powder of the rare earth oxide, of which the D50 value of the particle diameter distribution does not exceed 2.0 μm, the D90 value of the particle diameter distribution does not exceed 3.0 μm and the specific surface area is in the range from 5 to 20 m2/g, into a powder compact; and
    (b) subjecting the powder compact to a heat treatment for sintering at a sintering temperature of 1000° C. or higher for at least 1 hour, in which the rate of temperature elevation in the range from 500° C. to the sintering temperature does not exceed 500° C. per hour and the rate of temperature decrease from the sintering temperature does not exceed 600° C. per hour.
  2. 2. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the D50 value of the particle diameter distribution of the rare earth oxide powder does not exceed 1.5 μm.
  3. 3. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the D50 value of the particle diameter distribution of the rare earth oxide powder is in the range from 0.9 to 1.3 μm.
  4. 4. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the D value of the particle diameter distribution of the rare earth oxide powder does not exceed 2.7 μm.
  5. 5. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the D90 value of the particle diameter distribution of the rare earth oxide powder is in the range from 1.9 to 2.3 μm.
  6. 6. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the specific surface area of the rare earth oxide powder is in the range from 7 to 18 m2/g.
  7. 7. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the specific surface area of the rare earth oxide powder is in the range from 10 to 15 m2/g.
  8. 8. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the D′50 value of the pore diameter distribution of the rare earth oxide powder does not exceed 20 nm.
  9. 9. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the sintering temperature is in the range from 1200 to 1900° C.
  10. 10. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the sintering temperature is in the range from 1400 to 1800° C.
  11. 11. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which shaping of the rare earth oxide powder into a powder compact is conducted by hydrostatic compression.
  12. 12. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 11
    in which the pressure of hydrostatic compression is at least 100 MPa.
  13. 13. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 11
    in which the pressure of hydrostatic compression is at least 150 MPa.
  14. 14. The method for the preparation of a sintered body of a rare earth oxide as claimed in
    claim 1
    in which the rate of temperature elevation is in the range from 150 to 400° C. per hour.
  15. 15. A method for the preparation of a sintered body of a rare earth oxide-based composite oxide with a n adjuvant oxide which comprises the steps of:
    (a) blending a powder of the rare earth oxide, of which the D50 value of the particle diameter distribution does not exceed 2.0 μm, the D90 value of the particle diameter distribution does not exceed 3.0 μm and the specific surface area is in the range from 5 to 20 m2/g, and an adjuvant oxide of an element selected from the group consisting of magnesium, aluminum, silicon, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, niobium, molybdenum, indium, tin, hafnium, tantalum and tungsten to give a powder blend;
    (b) shaping the powder blend into a powder compact; and
    (c) subjecting the powder compact to a heat treatment for sintering at a sintering temperature of 1000° C. or higher for at least 1 hour, in which the rate of temperature elevation in the range from 500° C. to the sintering temperature does not exceed 500° C. per hour and the rate of temperature decrease from the sintering temperature does not exceed 600° C. per hour.
  16. 16. The method for the preparation of a sintered body of a rare earth oxide-based composite oxide with an adjuvant oxide as claimed in
    claim 15
    in which the amount of the rare earth oxide powder in the powder blend is at leasr 40% by weight based on the total amount of the powder blend.
  17. 17. The method for the preparation of a sintered body of a rare earth oxide-based composite oxide with an adjuvant oxide as claimed in
    claim 15
    in which the adjuvant oxide is selected from the group consisting of the oxides of iron, aluminum, silicon, titanium, gallium and zirconium.
US09783602 2000-03-07 2001-02-15 Method for preparation of sintered body of rare earth oxide Expired - Fee Related US6410471B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000062361 2000-03-07
JP2000-062361 2000-03-07
JP2000-62361 2000-03-07

Publications (2)

Publication Number Publication Date
US20010027159A1 true true US20010027159A1 (en) 2001-10-04
US6410471B2 US6410471B2 (en) 2002-06-25

Family

ID=18582384

Family Applications (1)

Application Number Title Priority Date Filing Date
US09783602 Expired - Fee Related US6410471B2 (en) 2000-03-07 2001-02-15 Method for preparation of sintered body of rare earth oxide

Country Status (1)

Country Link
US (1) US6410471B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827826B2 (en) 2000-08-07 2004-12-07 Symmorphix, Inc. Planar optical devices and methods for their manufacture
US20050019241A1 (en) * 2003-07-23 2005-01-27 Lyons Robert Joseph Preparation of rare earth ceramic garnet
GB2430671A (en) * 2005-09-30 2007-04-04 Fujimi Inc Thermal spray powder including yttria
US20070110915A1 (en) * 2005-11-02 2007-05-17 Junya Kitamura Thermal spray powder and method for forming a thermal spray coating
US20100000260A1 (en) * 2006-12-07 2010-01-07 Sandoz Frederic Method for fabricating a preform, a preform, an optical fiber and an amplifier
US7826702B2 (en) 2002-08-27 2010-11-02 Springworks, Llc Optically coupling into highly uniform waveguides
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8045832B2 (en) 2002-03-16 2011-10-25 Springworks, Llc Mode size converter for a planar waveguide
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8105466B2 (en) 2002-03-16 2012-01-31 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277973B2 (en) * 2001-07-19 2009-06-10 日本碍子株式会社 Yttria - method for producing alumina composite oxide film, yttria - alumina composite oxide film and the corrosion-resistant member
JP4723127B2 (en) * 2001-07-23 2011-07-13 日本特殊陶業株式会社 Sintered alumina ceramic and a method for manufacturing the same, and a cutting tool
US7371467B2 (en) * 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
US7476634B2 (en) * 2005-08-16 2009-01-13 Covalent Materials Corporation Yttria sintered body and manufacturing method therefor
US20080111186A1 (en) * 2006-11-14 2008-05-15 Translucent Photonics, Inc. Field-Effect Transistor Structure and Method Therefor
JP5466831B2 (en) * 2008-04-28 2014-04-09 株式会社フェローテックセラミックス Yttria sintered body and plasma process apparatus for member
DE102013105304A1 (en) * 2013-05-23 2014-11-27 Osram Opto Semiconductors Gmbh A process for preparing a powdery precursor material, powdered precursor material and its use
CN105263655A (en) * 2013-06-04 2016-01-20 H·C·施塔克公司 Slip and pressure casting of refractory metal bodies

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757690B2 (en) * 1989-06-16 1995-06-21 信越化学工業株式会社 Method for producing a rare earth oxide solid spherical particles
JP2951771B2 (en) * 1991-09-26 1999-09-20 守 大森 Rare earth oxides - alumina - silica sintered body and manufacturing method thereof
EP0722919B1 (en) * 1995-01-19 1999-08-11 Ube Industries, Ltd. Ceramic composite

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827826B2 (en) 2000-08-07 2004-12-07 Symmorphix, Inc. Planar optical devices and methods for their manufacture
US8105466B2 (en) 2002-03-16 2012-01-31 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US8045832B2 (en) 2002-03-16 2011-10-25 Springworks, Llc Mode size converter for a planar waveguide
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US7826702B2 (en) 2002-08-27 2010-11-02 Springworks, Llc Optically coupling into highly uniform waveguides
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US20050019241A1 (en) * 2003-07-23 2005-01-27 Lyons Robert Joseph Preparation of rare earth ceramic garnet
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
US8075860B2 (en) 2005-09-30 2011-12-13 Fujimi Incorporated Thermal spray powder and method for forming a thermal spray coating
GB2430671A (en) * 2005-09-30 2007-04-04 Fujimi Inc Thermal spray powder including yttria
US20070077363A1 (en) * 2005-09-30 2007-04-05 Junya Kitamura Thermal spray powder and method for forming a thermal spray coating
US20070110915A1 (en) * 2005-11-02 2007-05-17 Junya Kitamura Thermal spray powder and method for forming a thermal spray coating
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20100000260A1 (en) * 2006-12-07 2010-01-07 Sandoz Frederic Method for fabricating a preform, a preform, an optical fiber and an amplifier
US8720230B2 (en) * 2006-12-07 2014-05-13 Silitec Fibers Sa Method for fabricating an optical fiber preform
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery

Also Published As

Publication number Publication date Type
US6410471B2 (en) 2002-06-25 grant

Similar Documents

Publication Publication Date Title
Handwerker et al. Effects of chemical inhomogeneities on grain growth and microstructure in Al2O3
KAYSSER et al. Effect of a liquid phase on the morphology of grain growth in alumina
Kuramoto et al. Transparent AIN ceramics
Cahoon et al. Sintering and Grain Growth of Alpha‐Alumina
US5591685A (en) Superplastic silicon carbide sintered body
Jancar et al. Characterization of CaTiO3-NdAlO3 dielectric ceramics
US6482387B1 (en) Processes for preparing mixed metal oxide powders
Rixecker et al. High-temperature effects in the fracture mechanical behaviour of silicon carbide liquid-phase sintered with AlN–Y2O3 additives
US6743744B1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
Tolmer et al. Low‐Temperature Sintering and Influence of the Process on the Dielectric Properties of Ba (Zn1/3Ta2/3) O3
US4908173A (en) Process for preparation of dense molded bodies of polycrystalline aluminum nitride without use of sintering aids
US6531423B1 (en) Liquid-phase-sintered SiC shaped bodies with improved fracture toughness and a high electric resistance
Wang et al. Two‐Step Sintering of Ceramics with Constant Grain‐Size, II: BaTiO3 and Ni–Cu–Zn Ferrite
US6066584A (en) Sintered Al2 O3 material, process for its production and use of the material
US7427577B2 (en) Sintered polycrystalline terbium aluminum garnet and use thereof in magneto-optical devices
Lee et al. Crystallization and densification of nano‐size amorphous cordierite powder prepared by a PVA solution‐polymerization route
Hong et al. Anisotropic Grain Growth in Diphasic‐Gel‐Derived Titania‐Doped Mullite
US5744411A (en) Aluminum nitride sintered body with high thermal conductivity and its preparation
US4280850A (en) S13N4 Having high temperature strength and method
Lipatnikov et al. Effects of vacancy ordering on structure and properties of vanadium carbide
US5227346A (en) Sialon composites and method of preparing the same
Kim et al. Anisotropic Abnormal Grain Growth in TiO2/SiO2‐Doped Alumina
US5002907A (en) Homogenous silicon nitride sintered body
US5312788A (en) High toughness, high strength sintered silicon nitride
US5505865A (en) Synthesis process for advanced ceramics

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANEYOSHI, MASAMI;REEL/FRAME:011557/0355

Effective date: 20010130

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20060625