US20010025035A1 - Water soluble prodrugs of hindered alcohols - Google Patents

Water soluble prodrugs of hindered alcohols Download PDF

Info

Publication number
US20010025035A1
US20010025035A1 US09/733,817 US73381700A US2001025035A1 US 20010025035 A1 US20010025035 A1 US 20010025035A1 US 73381700 A US73381700 A US 73381700A US 2001025035 A1 US2001025035 A1 US 2001025035A1
Authority
US
United States
Prior art keywords
compound
group
formula
compound according
camptothecin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/733,817
Other languages
English (en)
Other versions
US6451776B2 (en
Inventor
Valentino Stella
Jan Zygmunt
Ingrid Georg
Muhammad Safadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Kansas
Original Assignee
University of Kansas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Kansas filed Critical University of Kansas
Priority to US09/733,817 priority Critical patent/US6451776B2/en
Publication of US20010025035A1 publication Critical patent/US20010025035A1/en
Priority to US10/208,647 priority patent/US6872838B2/en
Application granted granted Critical
Publication of US6451776B2 publication Critical patent/US6451776B2/en
Priority to US10/991,348 priority patent/US7244718B2/en
Assigned to UNIVERSITY OF KANSAS reassignment UNIVERSITY OF KANSAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAFADI, MUHAMMAD S., GEORG, INGRID GUNDA, STELLA, VALENTINO J., ZYGMUNT, JAN J.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • A61K38/13Cyclosporins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • C07F9/65522Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • C07K7/645Cyclosporins; Related peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to novel water-soluble prodrugs of aliphatic or aromatic hindered hydroxyl group containing pharmaceuticals.
  • the present invention concerns novel water-soluble phosphonooxymethyl ethers of hindered alcohol and phenol containing pharmaceuticals, such as camptothecin, propofol, etoposide, Vitamin E and Cyclosporin A.
  • the present invention also relates to intermediates used to create the final prodrugs as well as pharmaceutical compositions containing the novel compounds.
  • camptothecin is a natural product isolated from barks of the Chinese camptotheca tree, Camptotheca accuminata . It has been shown to have strong anti-tumor activity in several in vivo animal models including major tumor types such as lung, breast, ovary, pancreas, colon and stomach cancer and malignant melanoma. Camptothecin inhibits the cellular enzyme DNA topoisomerase I and triggers a cascade of events leading to apoptosis and programmed cell death. Topoisomerase I is essential nuclear enzyme responsible for the organization and modulation of the topological feature of DNA so that a cell may replicate, transcribe and repair genetic information.
  • camptothecin is its very limited water solubility.
  • DMSO organic solvent
  • Tween 80:saline which is an undesirable drug formulation for human therapy.
  • Recently two analogs of camptothecin with moderate water solubility have been approved in United States for treatment of advanced ovarian cancer (Hycamtin) and colorectal cancer (Camptosar).
  • CsA cyclosporin A
  • propofol propofol
  • etoposide etoposide
  • Vitamin E alpha-tocopherol
  • CsA has within its structure a sterically hindered alcohol, a secondary alcohol in this case.
  • CsA is formulated in a CremophorEL/ethanol mixture.
  • An example of a sterically hindered, poorly water soluble phenol is propofol, an anesthetic.
  • Propofol is formulated for i.v. clinical use as a o/w emulsion. Not only is propofol poorly water soluble, but it also causes pain at the site of injection. This pain must be ameliorated by using lidocaine. Due to the fact that it is formulated as an emulsion, it is difficult and questionable to add other drugs to the formulation and physical changes to the formulation such as an increase in oil droplet size can lead to lung embolisms, etc. A water soluble and chemically stable prodrug of propofol would provide several advantages. Such a formulation could be a simple aqueous solution that could be admixed with other drugs.
  • the prodrug itself was painless, the prodrug may be more patient friendly, and finally there should be no toxicity due to the vehicle.
  • Other poorly water soluble, sterically hindered phenols are the anticancer drug, etoposide and Vitamin E (alpha-tocopherol).
  • the present invention provides a water soluble form of alcohol and phenol containing drugs such as camptothecin and propofol.
  • compounds according to the present inventions are phosphonooxymethyl ethers of camptothecin in the form of the free acid and pharmaceutically acceptable salts thereof.
  • the water solubility of the acid and the salts facilitates preparation of pharmaceutical formulations.
  • All of the prodrugs according to the present invention exhibit superior water solubility compared to their respective parent drugs.
  • the methods developed for the compounds of the present invention can be useful for conversion of many other water insoluble medicinal agents having aliphatic or aromatic hindered hydroxyl groups to the water soluble derivatives.
  • the invention described herein involves new compositions of matter.
  • the invention relates to the water soluble phosphonooxymethyl derivatives of alcohol and phenol containing pharmaceuticals represented by the general formula I:
  • ROH represents an alcohol- or phenol-containing drug, such as camptothecin, propofol, etoposide, vitamin E and cyclosporin A.
  • n represents an integer of 1 or 2.
  • ROH is preferably a phenol-containing pharmaceutical, such as propofol.
  • R 1 is hydrogen or an alkali metal ion including sodium, potassium or lithium or a protonated amine or protonated amino acid or any other pharmaceutically acceptable cation.
  • R 2 is hydrogen or an alkali metal ion including sodium, potassium or lithium or a protonated amine or a protonated amino acid or any other pharmaceutically acceptable cation.
  • FIG. 1 illustrates an in vitro enzymatic conversion of propofol prodrug to propofol.
  • FIG. 2 illustrates the blood concentration change of propofol with respect to time from administration of the propofol prodrug or Diprivano in a dog study.
  • FIG. 3 illustrates an in vitro enzymatic conversion of camptothecin prodrug to camptothecin.
  • FIG. 4 illustrates the correlation between plasma concentration of camptothecin from the camptothecin prodrug and from camptothecin in organic co-solvents for a rat study.
  • Phosphono- means the group —P(O)(OH)2 and “phosphonooxymethoxy” or “phosphonooxymethyl ether” means generically the group —OCH 2 CP(O)(OH) 2 .
  • “Methylthiomethyl” refers to the group —CH 2 SCH 3 .
  • camptothecin moiety denotes moiety containing the twenty carbon camptothecin core framework including two nitrogen atoms and four oxygen atoms as represented by the structural formula shown below with the absolute configuration.
  • camptothecin analogue refers to a compound having the basic camptothecin core framework. It is to be understood that camptothecin analogues encompass compounds including but not limited to the following compounds: Topotecan, available from SmithKline Beecham, Irinotecan (CPT-11), available from Pharmacia & Upjohn, 9-Aminocamptothecin (9AC), 9-Nitrocamptothecin (9NC), GI 147211C, available from Glaxo Wellcome, and DX-8951f (the previous six camptothecin anologues are currently under clinical investigation and are described in a review conducted by the Pacific West Cancer Fund authored by Claire McDonald (December 1997).
  • Camptothecin analogues which are herein incorporated by reference are disclosed by Sawada et al., Current Pharmaceutical Design, Vol. 1, No. 1, pp 113-132, as well as U.S. Pat. Nos. 5,646,159, 5,559,235, 5,401,747, 5,364,858, 5,342,947, 5,244,903, 5,180,722, 5,122,606, 5,122,526, 5,106,742, 5,053,512, 5,049,668, 4,981,968 and 4,894,456.
  • camptothecin contains more than one hydroxyl group, for example 10-hydroxycamptothecin, topotecan and several others listed in the above references. It is herein understood that the present invention may be applied to more than one hydroxyl group. This may be accomplished by protecting the additional hydroxyl group prior to derivatization.
  • Phosphono protecting groups means moieties, which can by employed to block or protect the phosphono functional group. Preferably, such protecting groups are those that can be removed by methods that do not appreciably affect the rest of the molecule. Suitable phosphonooxy protecting groups include for example benzyl (denoted by “Bn”), t-butyl, and allyl groups.
  • “Pharmaceutically acceptable salt” means a metal or an amine salt of the acidic phosphono group in which the cation does not contribute significantly to the toxicity or biological activity of the active compound.
  • Suitable metal salts include lithium, potassium, sodium, calcium, barium, magnesium, zinc, and aluminum salts.
  • Preferred salts are sodium and potassium salts.
  • Suitable amines salts are for example, ammonia, tromethamine, triethanolamine, ethylenediamine, glucamine, N-methylglucamine, glycine, lysine, ornithine, arginine, ethanolamine, to name but a few.
  • Preferred amine salts are lysine, arginine, N-methylglucamine, and tromethamine salts.
  • One aspect of the present invention provides for derivatives of alcohol and phenol containing pharmaceuticals as shown in formula I:
  • ROH represents an alcohol- or phenol-containing drug, such as camptothecin, propofol, etoposide, vitamin E, cyclosporin A. It is to be understood that the above pathway is just one of several alternate pathways. These alternate pathways will become evident upon review of the following disclosure and examples.
  • formula II includes diacids where Z is metal or amine in both occurrences.
  • the preferred pharmaceutically acceptable salts of a compound of formula II are alkali salts including lithium, sodium, and potassium salts; and amine salts including triethylamine, triethanolamine, ethanolamine, arginine, lysine and N-methylglucamine salts.
  • camptothecin derivatives of formula II include the following compounds: (20)-O-phosphonooxymethylcamptothecin, (20)-O-phosphonooxymethylcamptothecin mono- or di-sodium salt, (20)-0-phosphonooxymethylcamptothecin mono or di-potassium salt, (20)-O-phosphonooxymethylcamptothecin mono- or di-arginine salt, (20)-O-phosphonooxymethylcamptothecin mono- or di-lysine salt, (20)-O-phosphonooxymethylcamptothecin mono- or di-N-methylglucamine salt and (20)-O-phosphonooxymethylcamptothecin mono- or di-triethanolamine salt.
  • a compound of formula III (methylthiomethyl ether, MTM ether) may be prepared by treating camptothecin with dimethylsulfoxide/acetic anhydride/acetic acid.
  • the methylthiomethyl ether is converted to the corresponding protected phosphonooxymethyl ether (compound of formula IV). This is accomplished by treating the MTM ether with N-iodosuccinamide and protected phosphate HOP(O)(OR) 2 .
  • the phosphono protecting groups are removed to provide a compound of formula II.
  • a suitable phosphono protecting group(s) is benzyl that may be removed by catalytic hydrogenolysis.
  • the free hydroxy group of the camptothecin is converted to the corresponding methylthiomethyl ether (—OCH 2 SCH 3 ) group.
  • This conversion may be accomplished by reaction with dimethylsulfoxide in the presence of acetic anhydride and acetic acid.
  • This method commonly known as the Pummer reaction was successfully applied by Bristol-Myers Squibb for methylthiomethylation of taxol (Europ.Pat.0604910A1, Bioorg.Med.Chem.Lett.,6,1837,1996).
  • the reaction is usually carried out at room temperature, and for 24-72 hours to produce the methylthiomethyl ether.
  • the methylthiomethyl ether is converted to the corresponding protected phosphonooxymethyl ether.
  • This well-known conversion was successfully applied by Bristol-Myers Squibb for phosphonooxymethylation of taxol (Europ.Pat.0604910A1, Bioorg.Med.Chem.Lett.,6,1837,1996)
  • a compound of formula III is treated with N-iodosuccinamide and protected phosphoric acid such as dibenzyl phosphate.
  • the reaction is carried out in an inert organic solvent such as tetrahydrofuran and halogenated hydrocarbon such as methylene chloride and in the presence of molecular sieves. Reaction is carried out at room temperature. N-iodosuccinimide and protected phosphoric acid are used in excess (3-5 equivalents) relative to the methylthiomethyl ether.
  • the phosphono protecting groups are removed.
  • the deblocking is accomplished by conventional methods well known in the art such as acid- or base-catalyzed hydrolysis, hydrogenolysis, reduction, and the like.
  • catalytic hydrogenolysis can be used to remove the benzyl phosphono-protecting group.
  • Deprotecting methodologies may be found in standard texts, such as T. W. Green and P. G. M. Wutz, Protective groups in organic sythesis, J. Wiley publishers, New York, NY, 1991, pp. 47-67.
  • the base salts of a compound of formula II may be formed by conventional techniques involving contacting a compound of formula II free acid with a metal base or with an amine.
  • Suitable metal bases include hydroxides, carbonates and bicarbonates of sodium, potassium, lithium, calcium, barium, magnesium, zinc, and aluminum; and suitable amines include triethylamine, ammonia, lysine, arginine, N-methylglucamine, ethanolamine, procaine, benzathine, dibenzylamine, tromethamine (TRIS), chloroprocaine, choline, diethanolamine, triethanolamine and the like.
  • the base salts may be further purified by chromatography followed by lyophilization or crystallization.
  • Compounds of the present invention are phosphonooxymethyl ether pharmaceuticals such as camptothecin, propofol, etoposide, tocopherol, etc.
  • the pharmaceutically acceptable salt forms exhibit improved water solubility over parent compounds thereby allowing more convenient pharmaceutical formulations.
  • the phosphonooxymethyl ethers of the present invention are prodrugs of the parent pharmaceuticals; the phosphonooxyethyl moiety being cleaved upon contact with. phosphatase in vivo to generate subsequently the parent compound.
  • compounds of the instant invention are effective pharmaceutical or therapeutic agents.
  • compounds of formula II of the present invention may be used in a manner similar to that of camptothecin.
  • the structure of the camptothecin prodrug is shown above. Therefore, an oncologist skilled in the art of cancer treatment will be able to ascertain, without undue experimentation, an appropriate treatment protocol for administering a compound of the present invention.
  • the dosage, mode and schedule of administration of compounds of this invention are not particularly restricted, and will vary with the particular compound employed.
  • a compound of the formula II may be administrated via any suitable route of administration, preferable parenterally; the dosage may be, for example, in the range of about 0.1 to about 100 mg/kg of body weight, or about 5 to 500 mg/m2.
  • oral dosage may be in the range of about 5 to about 500 mg/kg of body weight.
  • the actual dose used will vary according to the particular composition of formulated, the route of administration, and the particular site, host and type of tumor being treated. Many factors that modify the action of the drug will be taken into account in determining the dosage including age, sex, diet and the physical conditions of the patient.
  • propofol prodrug according to formula I of the present invention.
  • the structure of the propofol prodrug is shown below:
  • a compound of formula I such as the propofol prodrug may be administered via any suitable route of administration, preferably parenterally; the dosage may be, for example, in the range of 0.5 to 10 mg/kg administered according to procedures for induction of general anesthesia or maintenance of general anesthesia.
  • the compound of formula I may be administered by parenteral infusion, the dosage may be, for example, in the range of 2 ⁇ g/kg/min to 800 ⁇ g/kg/min administered according to procedures for maintenance of general anesthesia, initiation and maintenance of MAC sedation or initiation and maintenance of ICU sedation.
  • the present invention also provides pharmaceutical compositions containing a pharmaceutically effective amount of compound of formula I in combination with one or more pharmaceutically acceptable carriers, excipients, diluents or adjuvants.
  • compounds of the present invention may be formulated in the form of tablets, pills, powder mixtures, capsules, injectables, solutions, suppositories, emulsions, dispersions, food premix, and in other suitable forms. They may also be manufactured in the form of sterile solid compositions, for example, freeze-dried and, if desired, combined with other pharmaceutically acceptable excipients.
  • Such solid compositions can be reconstituted with sterile water, physiological saline, or a mixture of water and an organic solvent, such as propylene glycol, ethanol, and the like, or some other sterile injectable medium immediately before use of parenteral administration.
  • an organic solvent such as propylene glycol, ethanol, and the like, or some other sterile injectable medium immediately before use of parenteral administration.
  • Typical of pharmaceutically acceptable carriers are, for example, manitol, urea, dextrans, lactose, non- reducing sugars, potato and maize starches, magnesium stearate, talc, vegetable oils, polyalkylene glycols, ethyl cellulose, poly(vinyl-pyrrolidone), calcium carbonate, ethyloleate, isopropyl myristate, benzyl benzoate, sodium carbonate, gelatin, potassium carbonate, silicic acid.
  • the pharmaceutical preparation may also contain non toxic auxiliary substances such as emulsifying, preserving, wetting agents, and the like as for example, sorbitan monolaurate, triethanolamine oleate, polyoxyethylene monostearate, glyceryl tripalmitate, dioctyl sodium sulfosuccinate, and the like.
  • non toxic auxiliary substances such as emulsifying, preserving, wetting agents, and the like as for example, sorbitan monolaurate, triethanolamine oleate, polyoxyethylene monostearate, glyceryl tripalmitate, dioctyl sodium sulfosuccinate, and the like.
  • NMR nuclear magnetic resonance
  • the nature of the shifts as to multiplicity is reported as broad singlet (bs), broad doublet (bd), broad triplet (bt), broad quartet (bq), singlet (s), multiplet (m), doublet (d), quartet (q), triplet (t), doublet of doublet (dd), doublet of triplet (dt), and doublet of quartet (dq).
  • the solvents employed for taking NMR spectra are acetone-d6 (deuterated acetone) DMSO-d6 (perdeuterodimethylsulfoxide), D 2 0 (deuterated water), CDCl3 (deuterochloroform) and other conventional deuterated solvents.
  • MS mass spectrometry
  • HRMS high resolution mass spectrometry
  • Ac acetyl
  • Ph phenyl
  • FAB fast atom bombardment
  • min minute
  • h or hrs hour(s)
  • NIS N-iodosuccinimide
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • reaction Ic alternative route-2
  • n 2
  • the chloroiodomethane may be substituted with a compound such as X—CH2—O—CH2—Cl, wherein X is a good leaving group.
  • X represents a leaving group
  • R3 and R4 are each a hydrogen atom, an organic group or an inorganic group
  • Y is a phosphate protecting group.
  • leaving groups include chlorine, bromine, iodine, tosylate or any other suitable leaving group.
  • phosphate protecting groups include protecting groups that temporarily block the reactivity of the phosphate group and permit selective displacement with the nucleophilic displacement reaction. Examples of such blocking groups include but are not limited to benzyl, allyl, tertiary butyl and isopropyl, ethyl and ⁇ -cyanoethyl.
  • the solution is filtered, concentrated at reduced pressure to ⁇ 10 mL volume. After standing at room temperature for one hour, the solution is placed in a refrigerator overnight. The crystalline precipitate that forms overnight is filtered off and dried in vacuo to give the title compound as a solid. The filtrate is concentrated to ⁇ 1 mL volume and kept in the refrigerator for one hour to give additional product.
  • Compounds of the present invention are novel pharmaceutical agents; representative compounds of formula I have been evaluated in in vitro and in vivo conversion studies. In all of these studies the prodrugs were converted into their pharmaceutically active parent compounds.
  • the water solubility of propofol prodrug is approximately 500 mg/mL based on HPLC analysis of saturated aqueous solution.
  • Propofol prodrug was prepared for i.v. injection at a concentration of 68 mg/mL in 0.9% Sodium Chloride Injection, USP. This concentration is equivalent to 36 mg/mL of propofol.
  • the propofol prodrug solution was filtered through a 0.22 ⁇ m nylon membrane prior to administration.
  • the evaluation of the propofol prodrug on rats was conducted with two male Harlen Sprague-Dawley rats weighing 820 and 650 g.
  • the 820 g rat received 200 ⁇ L of the propofol prodrug i.v. formulation (equivalent to 9 mg/kg of propofol) in the tail vein.
  • a blood sample was taken from the tail vein (with heparinized syringe) after approximately 12 minutes.
  • the 650 g rat received a dose of the mild sedative Metaphane® prior to receiving the propofol prodrug formulation.
  • the 650 g rat was injected with 125 ⁇ L of the propofol prodrug formulation in the tail vein and a blood sample was taken from the tail vein (with heparinized syringe) after approximately six minutes.
  • the blood samples from both rats were assayed for propofol by HPLC.
  • a pharmacokinetic study involving Diprivan® or the, propofol prodrug was performed in a dog with a sufficient washout period between studies.
  • the blood concentrations were determined using HPLC with fluorescence detection while brain activity was monitored with two lead electroencephalography (EEG).
  • EEG lead electroencephalography
  • Two mL blood samples were taken from either the cephalic (not the same vein as the formulation injection site), jugular, or saphenous vein (with heparinized syringe) after 1, 3, 5, 10, 15, 20 and 30 minutes after the injection. Blood samples were also taken after 60, 90, 120, 180, 240, 300, 360, 480, and 1440 minutes. Blood samples were extracted to remove the propofol immediately after being taken from the dog. The dog was fasted for approximately 20 hours prior to receiving the Diprivan® or propofol prodrug formulation. After the 120 minute sample was taken, the dog was allowed to drink water. Food was given to the dog after the 480 minute blood sample was obtained. The dog's regular diet was Hills' Science Diet Maintenance. The dog was on a light/dark cycle of 12 hours of light per day.
  • Standard curve samples were prepared by spiking 1 mL aliquots of the initial blood with propofol at concentrations 5, 1, 0.5, 0.1 and 0.01 ⁇ g/mL. These standards were treated the same as the samples.
  • the HPLC system consisted of the following Shimadzu components: LC-10AT pumps, SCL-10A system controller, RF 353 fluorescence detector, and SIL-10A auto sampler.
  • the HPLC parameters were as follows: excitation at 275 nm and emission at 320 nm; flow rate at 1 mL/min; injection volume was 3-30 ⁇ L depending on propofol concentration.
  • the HPLC column was a Zorbax RX-C18, 15 cm ⁇ 4.6 mm i.d., 5 ⁇ m particle size.
  • Mobile Phase A was 60:40 (v/v) acetonitrile: 25 mM phosphate, 15 mM TBAP Buffer pH 7.1.
  • Mobile Phase B was 80:10:10 (v/v/v) acetonitrile: water: THF. Mobile Phase B was used to clean the column after the thymol and propofol eluted using Mobile Phase A (4.2 and 7.4 minutes, respectively).
  • the dog exhibited signs of anesthesia upon injection of both formulations based on visual observations and EEG patterns. The dog recovered from anesthesia from both formulations in 20-30 minutes. Propofol blood levels resulting from injection of the propofol prodrug approximate those from injection of Diprivan®.
  • the water solubility of the camptothecin prodrug is greater than 50 mg/mL based on visual and HPLC analysis.
  • a 16 ⁇ g/mL p-cpt was cleaved with acid phosphatase (0.02 units/mL of p-cpt solution).
  • the media was 0.09 M citrate buffer, pH 4.8 and the temperature was 37° C.
  • the conversion of p-cpt to camptothecin was monitored by HPLC.
  • a volume of the camptothecin prodrug formulation or camptothecin formulation was prepared at a concentration so that a dose equivalent to 1 mg camptothecin per kg weight could be given to the rat.
  • the formulation was given to the rat using an indwelling cannula in the left jugular vein of the rat. Blood samples were taken via an indwelling cannula located in the right jugular vein of the rat. Both cannulas were rinsed with heparinized saline prior to use and contained heparinized saline during the study.
  • the rats were anesthetized with sodium pentobarbital prior to insertion of the jugular cannulas and kept anesthetized with sodium pentobarbital during the study.
  • the rats were placed on a 37° C. heating pad during the study and tracheotomized. Blood samples of approximately 150 ⁇ L were taken prior to dosing and after 1, 3, 5, 10, 15, 20, 30, 45, 60 and 90 minutes after the formulations were given to the rat.
  • the blood samples were placed in microcentrifuge tubes and centrifuged for 20 seconds at approximately 15000 rpm. A 50 ⁇ L aliquot of plasma from each blood sample was transferred to a second microcentrifuge tube. A 150 ⁇ L aliquot of chilled acetonitrile was added to the plasma and the preparation is vortexed for 5 seconds. A 450 ⁇ L aliquot of chilled sodium phosphate (0.1 M, pH 7.2) was then added. The contents in the microcentrifuge tubes were vortexed for 5 seconds and centrifuged for 20 seconds at approximately 15000 rpm. The supernatant was transferred to an HPLC autosampler set at 4° C. and analyzed (50 ⁇ L injections).
  • the HPLC system consisted of the following Shimadzu components: LC-10AT pump, SCL-10A system controller, RF 535 fluorescence detector, SIL-10A autosampler (set at 4° C.), and CTO-10A column oven (temperature set at 30° C.).
  • the HPLC parameters were as follows: excitation at 370 nm and emission at 435 nm; flow rate at 2 mL/min.
  • the HPLC column was a Hypersil ODS, 15 cm ⁇ 4.5 mm i.d., 5 pm particle size.
  • the mobile phase was 75% 25 nM sodium phosphate, pH 6.5/25% acetonitrile (v/v) with 25 mM tetrabutylammonium dihydrogen phosphate added as an ion-impairing reagent.
  • the prodrug provides camptothecin plasma levels which are equivalent to those attained from direct injection of camptothecin in organic co-solvents.
  • the graph provides the mean with standard deviation for five rats which received prodrug and six rats which received camptothecin.
US09/733,817 1998-08-07 2000-12-08 Water soluble prodrugs of hindered alcohols Expired - Lifetime US6451776B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/733,817 US6451776B2 (en) 1998-08-07 2000-12-08 Water soluble prodrugs of hindered alcohols
US10/208,647 US6872838B2 (en) 1998-08-07 2002-07-29 Water soluble prodrugs of hindered alcohols
US10/991,348 US7244718B2 (en) 1998-08-07 2004-11-17 Water soluble prodrugs of hindered alcohols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/131,385 US6204257B1 (en) 1998-08-07 1998-08-07 Water soluble prodrugs of hindered alcohols
US09/733,817 US6451776B2 (en) 1998-08-07 2000-12-08 Water soluble prodrugs of hindered alcohols

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/131,385 Division US6204257B1 (en) 1998-08-07 1998-08-07 Water soluble prodrugs of hindered alcohols

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/208,647 Division US6872838B2 (en) 1998-08-07 2002-07-29 Water soluble prodrugs of hindered alcohols

Publications (2)

Publication Number Publication Date
US20010025035A1 true US20010025035A1 (en) 2001-09-27
US6451776B2 US6451776B2 (en) 2002-09-17

Family

ID=22449234

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/131,385 Expired - Lifetime US6204257B1 (en) 1998-08-07 1998-08-07 Water soluble prodrugs of hindered alcohols
US09/733,817 Expired - Lifetime US6451776B2 (en) 1998-08-07 2000-12-08 Water soluble prodrugs of hindered alcohols
US10/208,647 Expired - Fee Related US6872838B2 (en) 1998-08-07 2002-07-29 Water soluble prodrugs of hindered alcohols
US10/991,348 Expired - Fee Related US7244718B2 (en) 1998-08-07 2004-11-17 Water soluble prodrugs of hindered alcohols

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/131,385 Expired - Lifetime US6204257B1 (en) 1998-08-07 1998-08-07 Water soluble prodrugs of hindered alcohols

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/208,647 Expired - Fee Related US6872838B2 (en) 1998-08-07 2002-07-29 Water soluble prodrugs of hindered alcohols
US10/991,348 Expired - Fee Related US7244718B2 (en) 1998-08-07 2004-11-17 Water soluble prodrugs of hindered alcohols

Country Status (27)

Country Link
US (4) US6204257B1 (US20010025035A1-20010927-C00058.png)
EP (2) EP1683803A1 (US20010025035A1-20010927-C00058.png)
JP (1) JP4554081B2 (US20010025035A1-20010927-C00058.png)
KR (1) KR100662799B1 (US20010025035A1-20010927-C00058.png)
CN (2) CN1198834C (US20010025035A1-20010927-C00058.png)
AT (1) ATE319723T1 (US20010025035A1-20010927-C00058.png)
AU (1) AU769755B2 (US20010025035A1-20010927-C00058.png)
BR (1) BR9912853A (US20010025035A1-20010927-C00058.png)
CA (1) CA2339834C (US20010025035A1-20010927-C00058.png)
CY (1) CY1105043T1 (US20010025035A1-20010927-C00058.png)
CZ (1) CZ304020B6 (US20010025035A1-20010927-C00058.png)
DE (1) DE69930269T2 (US20010025035A1-20010927-C00058.png)
DK (1) DK1102776T3 (US20010025035A1-20010927-C00058.png)
ES (1) ES2268876T3 (US20010025035A1-20010927-C00058.png)
HK (1) HK1047939B (US20010025035A1-20010927-C00058.png)
HU (1) HU229401B1 (US20010025035A1-20010927-C00058.png)
IL (1) IL141316A (US20010025035A1-20010927-C00058.png)
MX (1) MXPA01001431A (US20010025035A1-20010927-C00058.png)
NO (1) NO330357B1 (US20010025035A1-20010927-C00058.png)
NZ (1) NZ509795A (US20010025035A1-20010927-C00058.png)
PL (1) PL198141B1 (US20010025035A1-20010927-C00058.png)
PT (1) PT1102776E (US20010025035A1-20010927-C00058.png)
RU (1) RU2235727C2 (US20010025035A1-20010927-C00058.png)
TR (1) TR200100772T2 (US20010025035A1-20010927-C00058.png)
UA (1) UA73479C2 (US20010025035A1-20010927-C00058.png)
WO (1) WO2000008033A1 (US20010025035A1-20010927-C00058.png)
ZA (1) ZA200101039B (US20010025035A1-20010927-C00058.png)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050107385A1 (en) * 2003-09-09 2005-05-19 Xenoport, Inc. Aromatic prodrugs of propofol, compositions and uses thereof
US20060041011A1 (en) * 2004-07-12 2006-02-23 Xenoport, Inc. Prodrugs of propofol, compositions and uses thereof
US20060100160A1 (en) * 2004-07-12 2006-05-11 Xenoport, Inc. Amino acid derived prodrugs of propofol, compositions and uses thereof
US20060205969A1 (en) * 2004-12-23 2006-09-14 Xenoport, Inc. Amino acid derived prodrugs of propofol, compositions, uses and crystalline forms thereof
US20080221069A1 (en) * 2005-09-02 2008-09-11 Auspex Pharmaceuticals, Inc. Novel Therapeutic Agents for the Treatment of Cancer, Metabolic Diseases and Skin Disorders
US20080234229A1 (en) * 2005-08-18 2008-09-25 Auspex Pharmaceuticals, Inc. Novel Therapeutic Agents for the Treatment of Cancer, Metabolic Diseases and Skin Disorders
US20080248093A1 (en) * 2003-10-24 2008-10-09 Auspex Pharmaceuticals, Inc. pH sensitive prodrugs of 2,6-diisopropylphenol
EP2292577A1 (en) 2007-05-09 2011-03-09 Pharmacofore, Inc. (+)-stereoisomer of 2,6-di-sec-butylphenol and analogs thereof
EP2392559A1 (en) 2007-05-09 2011-12-07 Pharmacofore, Inc. Therapeutic compounds

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204257B1 (en) * 1998-08-07 2001-03-20 Universtiy Of Kansas Water soluble prodrugs of hindered alcohols
DK1105096T3 (da) * 1998-08-19 2004-03-08 Skyepharma Canada Inc Injicerbare vandige propofoldispersioner
US6362172B2 (en) * 2000-01-20 2002-03-26 Bristol-Myers Squibb Company Water soluble prodrugs of azole compounds
US6362234B1 (en) * 2000-08-15 2002-03-26 Vyrex Corporation Water-soluble prodrugs of propofol for treatment of migrane
US6448401B1 (en) * 2000-11-20 2002-09-10 Bristol-Myers Squibb Company Process for water soluble azole compounds
UA75136C2 (en) * 2001-04-20 2006-03-15 Debiopharm Sa A modified cyclosporine which can be used as prodrugs. and application thereof
AU2002334675A1 (en) * 2001-09-26 2003-04-07 Theravance, Inc. Substituted phenol compounds useful for anesthesia and sedation
KR101016969B1 (ko) * 2001-12-21 2011-02-25 에이자이 아이엔씨. 알콜 및 페놀의 수용성 포스포노옥시메틸 유도체를제조하는 방법
MXPA04006325A (es) * 2001-12-28 2005-03-31 Guilford Pharm Inc Formulaciones farmaceuticas de base acuosa de promedicamentos solubles en agua de propofol.
NZ535484A (en) * 2002-04-08 2009-01-31 Mgi Gp Inc Pharmaceutical compositions containing fospropofol (O-phosphonooxymethylpropofol) and methods of administering same
ITRM20020306A1 (it) 2002-05-31 2003-12-01 Sigma Tau Ind Farmaceuti Esteri in posizione 20 di camptotecine.
AU2002950713A0 (en) 2002-08-09 2002-09-12 Vital Health Sciences Pty Ltd Carrier
ZA200504940B (en) * 2003-01-28 2006-09-27 Xenoport Inc Amino acid derived prodrugs of propofol, compositions and uses thereof
AU2003901815A0 (en) * 2003-04-15 2003-05-01 Vital Health Sciences Pty Ltd Phosphate derivatives
US7834043B2 (en) * 2003-12-11 2010-11-16 Abbott Laboratories HIV protease inhibiting compounds
KR20060124619A (ko) * 2003-12-17 2006-12-05 엠쥐아이 쥐피, 아이엔씨. 연장된 진정을 위해 프로포폴의 수용성 프로드럭을투여하는 방법
CN102174076A (zh) 2004-04-15 2011-09-07 普罗特奥里克斯公司 用于抑制蛋白酶体酶的化合物
US8198270B2 (en) * 2004-04-15 2012-06-12 Onyx Therapeutics, Inc. Compounds for proteasome enzyme inhibition
US7232818B2 (en) * 2004-04-15 2007-06-19 Proteolix, Inc. Compounds for enzyme inhibition
AU2005243140A1 (en) * 2004-05-10 2005-11-24 Proteolix, Inc. Synthesis of amino acid keto-epoxides
CA2565407A1 (en) * 2004-05-10 2005-11-24 Proteolix, Inc. Compounds for enzyme inhibition
CA2571726C (en) 2004-07-06 2013-05-21 Abbott Laboratories Prodrugs of hiv protease inhibitors
US20060014677A1 (en) * 2004-07-19 2006-01-19 Isotechnika International Inc. Method for maximizing efficacy and predicting and minimizing toxicity of calcineurin inhibitor compounds
KR20070053214A (ko) * 2004-08-26 2007-05-23 니콜라스 피라말 인디아 리미티드 신규 생분해성 링커를 함유하는 프로드럭
EP1791521A4 (en) * 2004-09-17 2009-10-21 Eisai Corp North America METHODS OF ADMINISTERING PROPOFOL PROMOTERS WITH WATER SOLUBLE
JP5221343B2 (ja) 2005-06-17 2013-06-26 バイタル ヘルス サイエンシズ プロプライアタリー リミティド 担体
CA2614185A1 (en) * 2005-07-12 2007-01-18 Mgi Gp, Inc. Methods of dosing propofol prodrugs for inducing mild to moderate levels of sedation
EP2277561B1 (en) 2005-08-18 2012-09-19 Zimmer GmbH Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
WO2007032263A1 (ja) * 2005-09-13 2007-03-22 Eisai R & D Management Co., Ltd. 安定性が改善されたクロロメチルフォスフェイト誘導体を含む組成物およびその製造方法
NZ568068A (en) 2005-11-09 2011-10-28 Proteolix Inc Compounds for enzyme inhibition
NZ573759A (en) 2006-06-19 2012-03-30 Proteolix Inc Peptide epoxyketones for proteasome inhibition
WO2008045189A2 (en) * 2006-10-05 2008-04-17 Eisai Corporation Of North America Aqueous based pharmaceutical formulations of water-soluble prodrugs of propofol
US20080161400A1 (en) * 2006-10-26 2008-07-03 Xenoport, Inc. Use of forms of propofol for treating diseases associated with oxidative stress
EP2578248B1 (en) 2007-04-10 2021-05-19 Zimmer, Inc. An antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20090005444A1 (en) * 2007-06-21 2009-01-01 Xenoport, Inc. Use of propofol prodrugs for treating alcohol withdrawal, central pain, anxiety or pruritus
FI20070574A0 (fi) * 2007-07-30 2007-07-30 Kuopion Yliopisto Vesiliukoinen propofolin etylideenifosfaatti-aihiolääke
EP2188870A1 (en) * 2007-09-13 2010-05-26 Aerosat Corporation Communication system with broadband antenna
US8427384B2 (en) 2007-09-13 2013-04-23 Aerosat Corporation Communication system with broadband antenna
WO2009036322A1 (en) * 2007-09-14 2009-03-19 Xenoport, Inc. Use of propofol prodrugs for treating neuropathic pain
US20090075947A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched fospropofol
ES2578905T5 (es) 2007-10-04 2020-03-18 Onyx Therapeutics Inc Inhibidores de proteasa epoxi cetona peptídicos cristalinos y la síntesis de ceto-epóxidos de aminoácidos
US20090098209A1 (en) * 2007-10-15 2009-04-16 University Of Kansas Pharmaceutical compositions containing water-soluble derivatives of propofol and methods of administering same via pulmonary administration
WO2009120162A1 (ru) * 2008-03-25 2009-10-01 Zhukovskij Oleg Igorevich Субстанция "ua' orion"
EP2291348A4 (en) * 2008-05-20 2013-05-15 Neurogesx Inc WATER-SOLUBLE ACETAMINOPHENANALOGA
RU2010151953A (ru) 2008-05-20 2012-06-27 Ньюроджесэкс, Инк. (Us) Карбонатные продукты и способы их применения
WO2010047737A2 (en) 2008-09-02 2010-04-29 Micurx Pharmaceuticals, Inc. Antimicrobial indoline compounds for treatment of bacterial infections
WO2010048298A1 (en) 2008-10-21 2010-04-29 Proteolix, Inc. Combination therapy with peptide epoxyketones
CN101798302B (zh) 2009-02-06 2014-11-05 上海盟科药业有限公司 抗生素类药物1-(邻-氟苯基)二氢吡啶酮的合成及生产的方法和工艺
AR075899A1 (es) 2009-03-20 2011-05-04 Onyx Therapeutics Inc Tripeptidos epoxicetonas cristalinos inhibidores de proteasa
CN101845057B (zh) * 2009-03-27 2013-10-23 四川大学 取代苯酚的甲缩醛磷酸盐麻醉镇静药用化合物及制备方法
GB0905834D0 (en) 2009-04-03 2009-05-20 Seps Pharma Nv Phosphonyl-containing phenolic derivatives useful as medicaments
KR101821823B1 (ko) * 2009-05-07 2018-01-24 리전츠 오브 더 유니버스티 오브 미네소타 트립톨라이드 전구약물
US9150600B2 (en) 2009-05-07 2015-10-06 Regents Of The University Of Minnesota Triptolide prodrugs
CN101648973B (zh) * 2009-09-03 2012-05-30 漆又毛 水溶性紫杉烷及制备方法
JP5919196B2 (ja) 2009-11-13 2016-05-18 オニキス セラピューティクス, インク.Onyx Therapeutics, Inc. 転移抑制のためのペプチドエポキシケトンの使用
EP2531047A4 (en) 2010-02-05 2014-03-19 Phosphagenics Ltd CARRIER WITH AN UNINUTRALIZED TOCOPHERYL PHOSPHATE
CN102153607B (zh) * 2010-02-11 2015-07-15 湖南方盛华美医药科技有限公司 水溶性喜树碱衍生物及包含其的药物组合物
BR112012022060A2 (pt) 2010-03-01 2018-05-08 Onyx Therapeutics Inc composto para a inibição de imunoproteassoma
AU2011235597B2 (en) 2010-03-30 2015-07-16 Phosphagenics Limited Transdermal delivery patch
RU2012147246A (ru) 2010-04-07 2014-05-20 Оникс Терапьютикс, Инк. Кристаллический пептидный эпоксикетонный ингебитор иммунопротеасомы
US8399535B2 (en) * 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
WO2012033952A1 (en) 2010-09-10 2012-03-15 Micurx Pharmaceuticals, Inc. 3 - phenyl- 2 -oxo- 1, 3 -oxazolidines for treatment of bacterial infections
HUE028411T2 (en) * 2010-12-02 2016-12-28 Univ Kansas Precursors and derivatives of 6-cyclohexyl-1-hydroxy-4-methylpyridin-2 (1H) -one \ t
WO2012122586A1 (en) 2011-03-15 2012-09-20 Phosphagenics Limited New composition
ITMI20110580A1 (it) * 2011-04-08 2012-10-09 Chemelectiva S R L Iintermedi utili per la preparazione di fospropofol e processo per la loro preparazione
UY34072A (es) 2011-05-17 2013-01-03 Novartis Ag Derivados sustituidos de indol
WO2013044064A1 (en) 2011-09-22 2013-03-28 Neurogesx, Inc. Acetaminophen conjugates, compositions and methods of use thereof
CN102516258B (zh) * 2011-11-11 2014-06-25 正大天晴药业集团股份有限公司 水溶性维生素e衍生物修饰的脂溶性抗癌药物化合物和制剂、该化合物的制备方法及应用
CN102382133B (zh) * 2011-12-02 2016-03-23 陕西合成药业股份有限公司 一种磷丙泊酚钠的制备及纯化方法
TW201414751A (zh) 2012-07-09 2014-04-16 歐尼克斯治療公司 肽環氧酮蛋白酶抑制劑之前驅藥物
US9580459B2 (en) * 2013-04-26 2017-02-28 Metselex, Inc. Water-soluble ursodeoxycholic acid prodrugs
EP3052562B1 (en) 2013-10-01 2017-11-08 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
EP3099304A4 (en) * 2014-01-31 2018-01-10 Mayo Foundation for Medical Education and Research Novel therapeutics for the treatment of glaucoma
KR102428252B1 (ko) 2014-02-21 2022-08-02 상하이 미큐알엑스 파마슈티컬 컴퍼니 리미티드 치료적 투여용 수용성 o-카보닐 포스포르아미데이트 전구약물
WO2015138137A1 (en) 2014-03-12 2015-09-17 Zimmer, Inc. Melt-stabilized ultra high molecular weight polyethylene and method of making the same
MX2017005236A (es) 2014-10-21 2017-07-26 Abbvie Inc Profarmacos de carbidopa y l-dopa y metodos de uso.
AU2015358476B2 (en) 2014-12-03 2019-08-15 Zimmer, Inc. Antioxidant-infused ultra high molecular weight polyethylene
CN106674270A (zh) * 2015-11-11 2017-05-17 陕西合成药业股份有限公司 一种磷丙泊酚钠无水合物及晶型及其制备方法和用途
CN106674269A (zh) * 2015-11-11 2017-05-17 陕西合成药业股份有限公司 一种磷丙泊酚钠四水合物及晶型及其制备方法和用途
CN106674268A (zh) * 2015-11-11 2017-05-17 陕西合成药业股份有限公司 一种磷丙泊酚钠三水合物及晶型及其制备方法和用途
JP6882321B2 (ja) 2015-12-09 2021-06-02 フォスファージニクス リミテッド 医薬製剤
WO2017147146A1 (en) * 2016-02-23 2017-08-31 Concentric Analgesics, Inc. Prodrugs of phenolic trpv1 agonists
US20190224220A1 (en) * 2016-04-20 2019-07-25 Abbvie Inc. Carbidopa and L-Dopa Prodrugs and Methods of Use
WO2017205632A1 (en) * 2016-05-27 2017-11-30 The Johns Hopkins University Buccal, sublingual and intranasal delivery of fospropofol
US11929552B2 (en) 2016-07-21 2024-03-12 Astronics Aerosat Corporation Multi-channel communications antenna
CN110662733A (zh) 2016-12-21 2020-01-07 埃维科生物技术有限公司 方法
US10992052B2 (en) 2017-08-28 2021-04-27 Astronics Aerosat Corporation Dielectric lens for antenna system
US10174138B1 (en) * 2018-01-25 2019-01-08 University Of Massachusetts Method for forming highly reactive olefin functional polymers
CN109456360B (zh) * 2018-12-17 2021-05-14 河南中医药大学 一种磷丙泊酚钠的制备方法
CN113286796A (zh) * 2019-01-30 2021-08-20 四川科伦博泰生物医药股份有限公司 喜树碱衍生物及其水溶性前药、包含其的药物组合物及其制备方法和用途
US11478490B1 (en) 2021-03-30 2022-10-25 Epalex Corporation Fospropofol formulations
US11547714B2 (en) 2020-02-05 2023-01-10 Epalex Corporation Fospropofol salts, methods and compositions
US11628178B2 (en) 2019-03-26 2023-04-18 Epalex Corporation Fospropofol methods and compositions
US11439653B1 (en) 2021-03-30 2022-09-13 Epalex Corporation Fospropofol formulations
WO2021228150A1 (zh) * 2020-05-13 2021-11-18 成都百裕制药股份有限公司 大麻素衍生物及其制备方法和在医药上的应用
AU2022253902A1 (en) 2021-04-10 2023-11-02 Profoundbio Us Co. Folr1 binding agents, conjugates thereof and methods of using the same
AU2022262644A1 (en) 2021-04-23 2023-11-09 Profoundbio Us Co. Anti-cd70 antibodies, conjugates thereof and methods of using the same
TW202320857A (zh) 2021-07-06 2023-06-01 美商普方生物製藥美國公司 連接子、藥物連接子及其結合物及其使用方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829151A (en) 1952-11-03 1958-04-01 Dow Chemical Co Chlorotoloxy-ethyl phosphates
US3271314A (en) 1958-12-04 1966-09-06 Ethyl Corp 2, 6-diisopropylphenol
GB1146173A (en) 1966-06-18 1969-03-19 Geigy Uk Ltd Production of triaryl phosphates
US3723578A (en) 1970-10-13 1973-03-27 Gaf Corp Phosphate esters of ethers of thiol substituted phenols
US4171272A (en) 1977-12-02 1979-10-16 Fmc Corporation Turbine lubricant
FR2601259B1 (fr) 1986-07-11 1990-06-22 Rhone Poulenc Chimie Nouvelles compositions tensio-actives a base d'esters phosphoriques leur procede de preparation et leur application a la formulation de matieres actives.
US4894456A (en) 1987-03-31 1990-01-16 Research Triangle Institute Synthesis of camptothecin and analogs thereof
US5244903A (en) 1987-03-31 1993-09-14 Research Triangle Institute Camptothecin analogs as potent inhibitors of topoisomerase I
US5053512A (en) 1987-04-14 1991-10-01 Research Triangle Institute Total synthesis of 20(S) and 20(R)-camptothecin and compthothecin derivatives
US5106742A (en) 1987-03-31 1992-04-21 Wall Monroe E Camptothecin analogs as potent inhibitors of topoisomerase I
US5122526A (en) 1987-03-31 1992-06-16 Research Triangle Institute Camptothecin and analogs thereof and pharmaceutical compositions and method using them
US4981968A (en) 1987-03-31 1991-01-01 Research Triangle Institute Synthesis of camptothecin and analogs thereof
US5364858A (en) 1987-03-31 1994-11-15 Research Triangle Institute Camptothecin analogs as potent inhibitors of topoisomerase I
US5049668A (en) 1989-09-15 1991-09-17 Research Triangle Institute 10,11-methylenedioxy-20(RS)-camptothecin analogs
US5122606A (en) 1987-04-14 1992-06-16 Research Triangle Institute 10,11-methylenedioxy camptothecins
US5180722A (en) 1987-04-14 1993-01-19 Research Triangle Institute 10,11-methylenedioxy-20(RS)-camptothecin and 10,11-methylenedioxy-20(S)-camptothecin analogs
MY103951A (en) 1988-01-12 1993-10-30 Kao Corp Detergent composition
CA2014539C (en) 1989-04-17 2000-07-25 Shinichiro Umeda Water borne metallic coating composition
US5091211A (en) 1989-08-17 1992-02-25 Lord Corporation Coating method utilizing phosphoric acid esters
JPH03209414A (ja) 1990-01-12 1991-09-12 Nikon Corp 焦点調節装置
WO1992006596A1 (en) 1990-10-17 1992-04-30 Tomen Corporation Method and composition for enhancing uptake and transport of bioactive agents in plants
MX9308012A (es) 1992-12-24 1994-08-31 Bristol Myers Squibb Co Eteres fosfonooximetilicos de derivados de taxano, solubles en agua y composiciones farmaceuticas que los incluyen.
US5646176A (en) 1992-12-24 1997-07-08 Bristol-Myers Squibb Company Phosphonooxymethyl ethers of taxane derivatives
CA2129288C (en) 1993-08-17 2000-05-16 Jerzy Golik Phosphonooxymethyl esters of taxane derivatives
US5731355A (en) * 1994-03-22 1998-03-24 Zeneca Limited Pharmaceutical compositions of propofol and edetate
US5786344A (en) * 1994-07-05 1998-07-28 Arch Development Corporation Camptothecin drug combinations and methods with reduced side effects
US5646159A (en) 1994-07-20 1997-07-08 Research Triangle Institute Water-soluble esters of camptothecin compounds
IT1270093B (it) 1994-09-28 1997-04-28 Zambon Spa Processo per la purificazione di 2,6-diisopropilfenolo
TW354293B (en) 1995-06-06 1999-03-11 Bristol Myers Squibb Co Prodrugs of paclitaxel derivatives
US5804682A (en) 1995-11-29 1998-09-08 Henkel Corporation Aqueous dispersions of polyamides
US5637625A (en) 1996-03-19 1997-06-10 Research Triangle Pharmaceuticals Ltd. Propofol microdroplet formulations
US5746973A (en) 1996-07-10 1998-05-05 Naraghi; Ali Method for reducing odorant depletion
EP1056754B1 (en) * 1998-01-29 2003-10-22 Bristol-Myers Squibb Company Phosphate derivatives of diaryl 1,3,4-oxadiazolone
US6204257B1 (en) * 1998-08-07 2001-03-20 Universtiy Of Kansas Water soluble prodrugs of hindered alcohols

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576127B2 (en) 2003-09-09 2009-08-18 Xenoport, Inc. Aromatic prodrugs of propofol, compositions and uses thereof
US20050107385A1 (en) * 2003-09-09 2005-05-19 Xenoport, Inc. Aromatic prodrugs of propofol, compositions and uses thereof
US20060287525A1 (en) * 2003-09-09 2006-12-21 Xenoport, Inc. Aromatic prodrugs of propofol, compositions and uses thereof
US7230003B2 (en) 2003-09-09 2007-06-12 Xenoport, Inc. Aromatic prodrugs of propofol, compositions and uses thereof
US20080248093A1 (en) * 2003-10-24 2008-10-09 Auspex Pharmaceuticals, Inc. pH sensitive prodrugs of 2,6-diisopropylphenol
US7691904B2 (en) 2003-10-24 2010-04-06 Auspex Pharmaceuticals, Inc pH sensitive prodrugs of 2,6-diisopropylphenol
US20090005352A1 (en) * 2004-07-12 2009-01-01 Xenoport, Inc. Prodrugs of Propofol, Compositions and Uses Thereof
US20060100160A1 (en) * 2004-07-12 2006-05-11 Xenoport, Inc. Amino acid derived prodrugs of propofol, compositions and uses thereof
US20060041011A1 (en) * 2004-07-12 2006-02-23 Xenoport, Inc. Prodrugs of propofol, compositions and uses thereof
US7241807B2 (en) 2004-07-12 2007-07-10 Xenoport, Inc. Prodrugs of propofol, compositions and uses thereof
US7645792B2 (en) 2004-07-12 2010-01-12 Xenoport, Inc. Prodrugs of propofol, compositions and uses thereof
US7550506B2 (en) 2004-07-12 2009-06-23 Xenoport, Inc. Amino acid derived prodrugs of propofol, compositions and uses thereof
US20060205969A1 (en) * 2004-12-23 2006-09-14 Xenoport, Inc. Amino acid derived prodrugs of propofol, compositions, uses and crystalline forms thereof
US7619110B2 (en) 2004-12-23 2009-11-17 Xenoport, Inc. Amino acid derived prodrugs of propofol, compositions, uses and crystalline forms thereof
US20080234229A1 (en) * 2005-08-18 2008-09-25 Auspex Pharmaceuticals, Inc. Novel Therapeutic Agents for the Treatment of Cancer, Metabolic Diseases and Skin Disorders
US7589239B2 (en) 2005-09-02 2009-09-15 Auspex Pharmaceuticals Therapeutic agents for the treatment of cancer, metabolic diseases and skin disorders
US20080221069A1 (en) * 2005-09-02 2008-09-11 Auspex Pharmaceuticals, Inc. Novel Therapeutic Agents for the Treatment of Cancer, Metabolic Diseases and Skin Disorders
EP2292577A1 (en) 2007-05-09 2011-03-09 Pharmacofore, Inc. (+)-stereoisomer of 2,6-di-sec-butylphenol and analogs thereof
EP2301908A1 (en) 2007-05-09 2011-03-30 Pharmacofore, Inc. (-)-stereoisomer of 2,6-di-sec-butylphenol and analogs thereof for promoting antiemetic effect and treatment of nausea and vomiting
EP2392559A1 (en) 2007-05-09 2011-12-07 Pharmacofore, Inc. Therapeutic compounds
EP2810927A1 (en) 2007-05-09 2014-12-10 Sowood Healthcare LLC Therapeutic compounds

Also Published As

Publication number Publication date
US6451776B2 (en) 2002-09-17
HUP0200317A3 (en) 2004-07-28
PL198141B1 (pl) 2008-05-30
US20050090431A1 (en) 2005-04-28
UA73479C2 (uk) 2005-08-15
CZ2001479A3 (cs) 2001-09-12
US6872838B2 (en) 2005-03-29
PT1102776E (pt) 2007-02-28
EP1102776B1 (en) 2006-03-08
RU2235727C2 (ru) 2004-09-10
ZA200101039B (en) 2002-02-05
HUP0200317A2 (en) 2002-06-29
TR200100772T2 (tr) 2001-12-21
CY1105043T1 (el) 2010-03-03
US7244718B2 (en) 2007-07-17
NO330357B1 (no) 2011-04-04
HK1047939B (zh) 2005-11-18
IL141316A0 (en) 2002-03-10
ATE319723T1 (de) 2006-03-15
CN1198834C (zh) 2005-04-27
AU769755B2 (en) 2004-02-05
IL141316A (en) 2004-06-20
JP4554081B2 (ja) 2010-09-29
CZ304020B6 (cs) 2013-08-28
US6204257B1 (en) 2001-03-20
CA2339834A1 (en) 2000-02-17
EP1683803A1 (en) 2006-07-26
AU5339499A (en) 2000-02-28
ES2268876T3 (es) 2007-03-16
DE69930269T2 (de) 2006-12-07
NO20010659D0 (no) 2001-02-07
DK1102776T3 (da) 2006-07-10
KR20010079627A (ko) 2001-08-22
HU229401B1 (en) 2013-12-30
DE69930269D1 (de) 2006-05-04
CN1680402A (zh) 2005-10-12
MXPA01001431A (es) 2002-11-29
HK1047939A1 (en) 2003-03-14
JP2002522443A (ja) 2002-07-23
CN1357000A (zh) 2002-07-03
EP1102776A1 (en) 2001-05-30
WO2000008033A1 (en) 2000-02-17
BR9912853A (pt) 2001-10-30
CA2339834C (en) 2011-01-25
NZ509795A (en) 2003-10-31
US20030176324A1 (en) 2003-09-18
NO20010659L (no) 2001-04-06
PL347211A1 (en) 2002-03-25
KR100662799B1 (ko) 2007-01-02

Similar Documents

Publication Publication Date Title
US6451776B2 (en) Water soluble prodrugs of hindered alcohols
AU2008212060B2 (en) Process for preparing water-soluble phosphonooxymethyl derivatives of alcohol and phenol
ES2710380T3 (es) Compuestos y usos de los mismos para la modulación de hemoglobina
AU697856B2 (en) Brefeldin A derivatives and their utility in the treatment of cancer
ZA200404423B (en) Genes encoding for carbon metabolism ad energy producing proteins
CN116583529A (zh) 阿比特龙衍生物及其制备方法
EP0532328A2 (en) Novel lignans, intermediates thereof and a process for preparing the intermediates

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: UNIVERSITY OF KANSAS, KANSAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STELLA, VALENTINO J.;ZYGMUNT, JAN J.;GEORG, INGRID GUNDA;AND OTHERS;SIGNING DATES FROM 19980908 TO 19980928;REEL/FRAME:024957/0695

FPAY Fee payment

Year of fee payment: 12