US20010023860A1 - Excimer laser ablation process control of multilaminate materials - Google Patents

Excimer laser ablation process control of multilaminate materials Download PDF

Info

Publication number
US20010023860A1
US20010023860A1 US09/863,215 US86321501A US2001023860A1 US 20010023860 A1 US20010023860 A1 US 20010023860A1 US 86321501 A US86321501 A US 86321501A US 2001023860 A1 US2001023860 A1 US 2001023860A1
Authority
US
United States
Prior art keywords
layer
laminated
layers
thermal expansion
target region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/863,215
Inventor
Russell Beste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/863,215 priority Critical patent/US20010023860A1/en
Publication of US20010023860A1 publication Critical patent/US20010023860A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material

Definitions

  • the instant invention relates to ablation patterning, particularly to ablation patterning of multilaminate materials.
  • a beam of laser energy is directed against an exposed surface of a body to be ablated.
  • the laser energy is absorbed by the material and, as a result of photochemical, thermal and other effects, localized explosions of the material occur, driving away, for each explosion, tiny fragments of the material.
  • the process requires that significant amounts of energy be both absorbed and retained within small volumes of the material until sufficient energy is accumulated in each small volume to exceed a threshold energy density at which explosions occur.
  • Polymeric materials such as polyimides, are well suited for use in the process because such materials have a high absorptivity for U.V. light while having a relatively low thermal diffusivity for limiting the spread of the absorbed energy away from the volume where the energy was absorbed. Thus, the energy level quickly builds above the required energy density threshold.
  • One aspect of the invention is a method of ablating holes in a material, the method comprising providing a laminated material comprising first and second layers, said first and second layers having different coefficients of thermal expansion, said first layer having within it a hole, wherein a target region of said second layer in said laminated material is not laminated to said first layer but is surrounded entirely by laminated regions wherein the first layer is laminated to the second layer; providing a laser source producing energy of a wavelength and a power level that can ablate material from said first layer, changing the temperature of the laminated material so as to place said target region under tension; and directing said laser source onto said target region and ablating a portion thereof.
  • the coefficient of thermal expansion of the first laminate layer may be greater than or less than that of the second laminate layer.
  • a further aspect of the invention is a method of preparing a laminated material for laser ablation, comprising laminating a first layer to a second layer, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that when the laminated substrate is formed, a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.
  • a further aspect of the invention is a laminated material comprising first and second layers, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.
  • Excimer laser ablation enables precise drilling and/or ablation processes to less than one micron. To be useful, however, many such ablated devices must be laminated to other polymeric materials. Since the ablation process is often very precise, it is useful from a manufacturing point of view in many instances to ablate the polymer after the lamination process. Furthermore, because of the unique optical focusing requirements of the excimer laser it is important to the manufacturing process that the material to be ablated be flat, with a typical peak-to peak roughness of less than about 20 microns, i.e., ⁇ 10 microns for a given ablation operation.
  • the typical of choice for excimer laser ablation is polyimide. Since polyimide has the lowest coefficient of expansion of most commonly used polymers, maintaining requisite flatness during an ablation process can be very difficult, as any change in temperature can cause materials (e.g., the polyimide component of the multilaminate) to become under compression. In such a scenario, surface flatness is no longer maintained. In order to maintain surface flatness for an ablation operation, it is desirable that the ablated material be under surface tension relative to its laminate layer.
  • the instant invention addresses this problem in a method which comprises providing a laminated material comprising first and second layers, said first and second layers having different coefficients of thermal expansion, said first layer having within it a hole, wherein a target region of said second layer in said laminated material is not laminated to said first layer but is surrounded entirely by laminated regions wherein the first layer is laminated to the second layer; providing a laser source producing energy of a wavelength and a power level that can ablate material from said first layer; changing the temperature of the laminated material so as to place said target region under tension; and directing said laser source onto said target region and ablating a portion thereof.
  • the coefficient of thermal expansion of the first laminate layer may be greater than or less than that of the second laminate layer.
  • the instant invention also provides a method of preparing a laminated material for laser ablation, comprising laminating a first layer to a second layer, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that when the laminated substrate is formed, a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.
  • the instant invention also provides a laminated material comprising first and second layers, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.
  • the lamination process will be conducted at an elevated temperature relative to the temperature at which the material will be drilled or ablated.
  • An example of such a laminate is polyimide laminated to polyethylene, where the polyethylene layer has a small window relative to the total size of the laminate cut out where the laser ablation will occur. In this case, upon cooling after the lamination process, the window will enlarge during cooling, and put the polyimide in tension.
  • the lamination process will be conducted at a reduced temperature relative to the temperature at which the material will be ablated.
  • a large window relative to the total size of the laminate is provides, such that the laminate heating results in window size growth, thereby placing the polyimide in tension.

Abstract

The instant invention discloses a method of ablating holes in a material, using a laminated material comprising first and second layers, said first and second layers having different coefficients of thermal expansion, said first layer having within it a hole, wherein a target region of said second layer in said laminated material is not laminated to said first layer but is surrounded entirely by laminated regions wherein the first layer is laminated to the second layer; providing a laser source producing energy of a wavelength and a power level that can ablate material from said first layer; changing the temperature of the laminated material so as to place said target region under tension; and directing said laser source onto said target region and ablating a portion thereof.

Description

    TECHNICAL FIELD
  • The instant invention relates to ablation patterning, particularly to ablation patterning of multilaminate materials. [0001]
  • BACKGROUND OF THE INVENTION
  • The use of ablation patterning of various polymeric materials, e.g., polyimides, is known. U.S. Pat. No. 4,508,749, for example, disclosed the use of ultraviolet (U.V.) radiation for etching through a polyimide layer. This patent is primarily directed to producing tapered openings through a polyimide layer for exposing surface areas of an underlying layer of metal. Electrical connections are then made through the openings to the metal layer. U.S. Pat. No. 5,236,551 likewise disclosed ablation etching for patterning a polymeric material layer which is then used as an etch mask for etch patterning, using wet or chemical etchants, an underlying layer of metal. [0002]
  • In a typical ablation process, a beam of laser energy is directed against an exposed surface of a body to be ablated. The laser energy is absorbed by the material and, as a result of photochemical, thermal and other effects, localized explosions of the material occur, driving away, for each explosion, tiny fragments of the material. The process requires that significant amounts of energy be both absorbed and retained within small volumes of the material until sufficient energy is accumulated in each small volume to exceed a threshold energy density at which explosions occur. [0003]
  • Polymeric materials, such as polyimides, are well suited for use in the process because such materials have a high absorptivity for U.V. light while having a relatively low thermal diffusivity for limiting the spread of the absorbed energy away from the volume where the energy was absorbed. Thus, the energy level quickly builds above the required energy density threshold. [0004]
  • When an excimer laser is used, because of the unique optical focusing requirements of the excimer laser it is important to the manufacturing process that the material to be ablated be flat, with a typical peak-to peak roughness of less than about 20 microns, i.e., ±10 microns for a given ablation operation. This need an others are addressed by the instant invention. [0005]
  • SUMMARY OF THE INVENTION
  • One aspect of the invention is a method of ablating holes in a material, the method comprising providing a laminated material comprising first and second layers, said first and second layers having different coefficients of thermal expansion, said first layer having within it a hole, wherein a target region of said second layer in said laminated material is not laminated to said first layer but is surrounded entirely by laminated regions wherein the first layer is laminated to the second layer; providing a laser source producing energy of a wavelength and a power level that can ablate material from said first layer, changing the temperature of the laminated material so as to place said target region under tension; and directing said laser source onto said target region and ablating a portion thereof. The coefficient of thermal expansion of the first laminate layer may be greater than or less than that of the second laminate layer. [0006]
  • A further aspect of the invention is a method of preparing a laminated material for laser ablation, comprising laminating a first layer to a second layer, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that when the laminated substrate is formed, a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions. [0007]
  • A further aspect of the invention is a laminated material comprising first and second layers, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.[0008]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Before the present method of excimer laser ablation process control is described, it is to be understood that this invention is not limited to the particular methodology, devices and formulations described, as such methods, devices and formulations may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. [0009]
  • It must be noted that as used herein and in the appended claims, the singular forms “a,” “and,” and “the ” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a formulation” includes mixtures of different formulations, reference to “an analog” refers to one or mixtures of analogs, and reference to “the method of treatment” includes reference to equivalent steps and methods known to those skilled in the art, and so forth. [0010]
  • Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices and materials are now described. All publications mentioned herein are incorporated herein by reference in their entirety for the purpose of describing and disclosing devices, formulations and methodologies which are described in the publication and which might be used in connection with the presently described invention. [0011]
  • Excimer laser ablation enables precise drilling and/or ablation processes to less than one micron. To be useful, however, many such ablated devices must be laminated to other polymeric materials. Since the ablation process is often very precise, it is useful from a manufacturing point of view in many instances to ablate the polymer after the lamination process. Furthermore, because of the unique optical focusing requirements of the excimer laser it is important to the manufacturing process that the material to be ablated be flat, with a typical peak-to peak roughness of less than about 20 microns, i.e., ±10 microns for a given ablation operation. [0012]
  • The typical of choice for excimer laser ablation is polyimide. Since polyimide has the lowest coefficient of expansion of most commonly used polymers, maintaining requisite flatness during an ablation process can be very difficult, as any change in temperature can cause materials (e.g., the polyimide component of the multilaminate) to become under compression. In such a scenario, surface flatness is no longer maintained. In order to maintain surface flatness for an ablation operation, it is desirable that the ablated material be under surface tension relative to its laminate layer. [0013]
  • The instant invention addresses this problem in a method which comprises providing a laminated material comprising first and second layers, said first and second layers having different coefficients of thermal expansion, said first layer having within it a hole, wherein a target region of said second layer in said laminated material is not laminated to said first layer but is surrounded entirely by laminated regions wherein the first layer is laminated to the second layer; providing a laser source producing energy of a wavelength and a power level that can ablate material from said first layer; changing the temperature of the laminated material so as to place said target region under tension; and directing said laser source onto said target region and ablating a portion thereof. The coefficient of thermal expansion of the first laminate layer may be greater than or less than that of the second laminate layer. [0014]
  • The instant invention also provides a method of preparing a laminated material for laser ablation, comprising laminating a first layer to a second layer, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that when the laminated substrate is formed, a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions. [0015]
  • The instant invention also provides a laminated material comprising first and second layers, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions. [0016]
  • Thus, in an embodiment where cooling of the laminate places the ablation material in tension, the lamination process will be conducted at an elevated temperature relative to the temperature at which the material will be drilled or ablated. An example of such a laminate is polyimide laminated to polyethylene, where the polyethylene layer has a small window relative to the total size of the laminate cut out where the laser ablation will occur. In this case, upon cooling after the lamination process, the window will enlarge during cooling, and put the polyimide in tension. [0017]
  • In an embodiment where heating of the laminate places the ablation material in tension, the lamination process will be conducted at a reduced temperature relative to the temperature at which the material will be ablated. Typically, a large window relative to the total size of the laminate is provides, such that the laminate heating results in window size growth, thereby placing the polyimide in tension. [0018]

Claims (5)

What is claimed is:
1. A method of ablating holes in a material, comprising:
providing a laminated material comprising first and second layers, said first and second layers having different coefficients of thermal expansion, said first layer having within it a hole, wherein a target region of said second layer in said laminated material is not laminated to said first layer but is surrounded entirely by laminated regions wherein the first layer is laminated to the second layer;
providing a laser source producing energy of a wavelength and a power level that can ablate material from said first layer;
changing the temperature of the laminated material so as to place said target region under tension;
directing said laser source onto said target region and ablating a portion thereof.
2. The method of
claim 1
, wherein the coefficient of thermal expansion of the first laminate layer is greater than that of the second laminate layer.
3. The method of
claim 1
, wherein the coefficient of thermal expansion of the second laminate layer is greater than that of the first laminate layer.
4. A method of preparing a laminated material for laser ablation, comprising:
laminating a first layer to a second layer, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that when the laminated substrate is formed, a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.
5. A laminated material comprising first and second layers, wherein said first and second layers have different coefficients of thermal expansion, and wherein said second layer has an interior hole such that a region of the first layer aligned with said hole is not laminated to the second layer and is surrounded by laminated regions.
US09/863,215 1999-07-14 2001-05-22 Excimer laser ablation process control of multilaminate materials Abandoned US20010023860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/863,215 US20010023860A1 (en) 1999-07-14 2001-05-22 Excimer laser ablation process control of multilaminate materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/353,125 US6288360B1 (en) 1999-07-14 1999-07-14 Excimer laser ablation process control of multilaminate materials
US09/863,215 US20010023860A1 (en) 1999-07-14 2001-05-22 Excimer laser ablation process control of multilaminate materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/353,125 Division US6288360B1 (en) 1999-07-14 1999-07-14 Excimer laser ablation process control of multilaminate materials

Publications (1)

Publication Number Publication Date
US20010023860A1 true US20010023860A1 (en) 2001-09-27

Family

ID=23387868

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/353,125 Expired - Lifetime US6288360B1 (en) 1999-07-14 1999-07-14 Excimer laser ablation process control of multilaminate materials
US09/616,582 Expired - Fee Related US6369354B1 (en) 1999-07-14 2000-07-14 Excimer laser ablation process control of multilaminate materials
US09/863,215 Abandoned US20010023860A1 (en) 1999-07-14 2001-05-22 Excimer laser ablation process control of multilaminate materials

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/353,125 Expired - Lifetime US6288360B1 (en) 1999-07-14 1999-07-14 Excimer laser ablation process control of multilaminate materials
US09/616,582 Expired - Fee Related US6369354B1 (en) 1999-07-14 2000-07-14 Excimer laser ablation process control of multilaminate materials

Country Status (10)

Country Link
US (3) US6288360B1 (en)
EP (1) EP1214171B1 (en)
JP (1) JP2003504214A (en)
AT (1) ATE500919T1 (en)
AU (1) AU770886B2 (en)
CA (1) CA2377855C (en)
DE (1) DE60045712D1 (en)
ES (1) ES2360429T3 (en)
MX (1) MXPA02000407A (en)
WO (1) WO2001005551A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234167B1 (en) 1998-10-14 2001-05-22 Chrysalis Technologies, Incorporated Aerosol generator and methods of making and using an aerosol generator
US6288360B1 (en) * 1999-07-14 2001-09-11 Aradigm Corporation Excimer laser ablation process control of multilaminate materials
US6971383B2 (en) * 2001-01-24 2005-12-06 University Of North Carolina At Chapel Hill Dry powder inhaler devices, multi-dose dry powder drug packages, control systems, and associated methods
US6491233B2 (en) 2000-12-22 2002-12-10 Chrysalis Technologies Incorporated Vapor driven aerosol generator and method of use thereof
US6799572B2 (en) 2000-12-22 2004-10-05 Chrysalis Technologies Incorporated Disposable aerosol generator system and methods for administering the aerosol
US6701921B2 (en) 2000-12-22 2004-03-09 Chrysalis Technologies Incorporated Aerosol generator having heater in multilayered composite and method of use thereof
US6681998B2 (en) 2000-12-22 2004-01-27 Chrysalis Technologies Incorporated Aerosol generator having inductive heater and method of use thereof
US6501052B2 (en) 2000-12-22 2002-12-31 Chrysalis Technologies Incorporated Aerosol generator having multiple heating zones and methods of use thereof
US6568390B2 (en) 2001-09-21 2003-05-27 Chrysalis Technologies Incorporated Dual capillary fluid vaporizing device
US6640050B2 (en) 2001-09-21 2003-10-28 Chrysalis Technologies Incorporated Fluid vaporizing device having controlled temperature profile heater/capillary tube
US6642477B1 (en) * 2001-10-23 2003-11-04 Imra America, Inc. Method for laser drilling a counter-tapered through-hole in a material
US6804458B2 (en) 2001-12-06 2004-10-12 Chrysalis Technologies Incorporated Aerosol generator having heater arranged to vaporize fluid in fluid passage between bonded layers of laminate
US6681769B2 (en) 2001-12-06 2004-01-27 Crysalis Technologies Incorporated Aerosol generator having a multiple path heater arrangement and method of use thereof
US6701922B2 (en) 2001-12-20 2004-03-09 Chrysalis Technologies Incorporated Mouthpiece entrainment airflow control for aerosol generators
US7677411B2 (en) 2002-05-10 2010-03-16 Oriel Therapeutics, Inc. Apparatus, systems and related methods for processing, dispensing and/or evaluatingl dry powders
US6889690B2 (en) * 2002-05-10 2005-05-10 Oriel Therapeutics, Inc. Dry powder inhalers, related blister devices, and associated methods of dispensing dry powder substances and fabricating blister packages
EP1535349B1 (en) * 2002-06-27 2014-06-25 Oriel Therapeutics, Inc. Apparatus, systems and related methods for processing, dispensing and/or evaluating non-pharmaceutical dry powders
US7377277B2 (en) * 2003-10-27 2008-05-27 Oriel Therapeutics, Inc. Blister packages with frames and associated methods of fabricating dry powder drug containment systems
US7451761B2 (en) * 2003-10-27 2008-11-18 Oriel Therapeutics, Inc. Dry powder inhalers, related blister package indexing and opening mechanisms, and associated methods of dispensing dry powder substances
US20060134387A1 (en) * 2004-12-20 2006-06-22 William Gottermeier Multilayer article formed by adhesive ablation
CN102626828A (en) * 2012-04-26 2012-08-08 江苏大学 Method and device for producing micro micro pits with high efficiency based on laser shock waves
CN104175001B (en) * 2014-08-26 2016-04-27 江苏大学 A kind of micro-pit array manufacturing installation of laser and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770560A (en) * 1971-10-21 1973-11-06 American Cyanamid Co Composite laminate with a thin, perforated outer layer and cavitated bonded backing member
US4786558A (en) * 1986-01-31 1988-11-22 Toray Industries, Ltd. Composite film and antistatic composite film comprising a swellable inorganic silicate
US5296291A (en) * 1989-05-05 1994-03-22 W. R. Grace & Co.-Conn. Heat resistant breathable films
US5833759A (en) * 1996-11-08 1998-11-10 W. L. Gore & Associates, Inc. Method for preparing vias for subsequent metallization

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987987A (en) * 1982-11-12 1984-05-21 Japan Atom Energy Res Inst Method for extending metallic foil
US4508749A (en) 1983-12-27 1985-04-02 International Business Machines Corporation Patterning of polyimide films with ultraviolet light
US5208068A (en) * 1989-04-17 1993-05-04 International Business Machines Corporation Lamination method for coating the sidewall or filling a cavity in a substrate
US5049974A (en) * 1989-05-15 1991-09-17 Roger Corporation Interconnect device and method of manufacture thereof
DE4002039A1 (en) * 1990-01-24 1991-07-25 Pelz Ernst Erpe Vertrieb Cutting holes in wooden panel by variable laser beam - applying beam at points along pattern and fitting coloured stoppers or other decorative markers into holes
US5236551A (en) 1990-05-10 1993-08-17 Microelectronics And Computer Technology Corporation Rework of polymeric dielectric electrical interconnect by laser photoablation
JP2833875B2 (en) * 1991-04-16 1998-12-09 キヤノン株式会社 Method of manufacturing ink jet head and machine for manufacturing the same
US5374469A (en) * 1991-09-19 1994-12-20 Nitto Denko Corporation Flexible printed substrate
JPH05147223A (en) 1991-12-02 1993-06-15 Matsushita Electric Ind Co Ltd Ink jet head
JP3348744B2 (en) * 1993-08-18 2002-11-20 ブラザー工業株式会社 Nozzle plate manufacturing method
US5536579A (en) * 1994-06-02 1996-07-16 International Business Machines Corporation Design of high density structures with laser etch stop
GB9418412D0 (en) * 1994-09-13 1994-11-02 Xaar Ltd Removal of material from inkjet printheads
US5925206A (en) * 1997-04-21 1999-07-20 International Business Machines Corporation Practical method to make blind vias in circuit boards and other substrates
US5932315A (en) * 1997-04-30 1999-08-03 Hewlett-Packard Company Microfluidic structure assembly with mating microfeatures
JPH11170076A (en) * 1997-12-09 1999-06-29 Sumitomo Metal Ind Ltd Manufacture of titanium covered steel
US6288360B1 (en) * 1999-07-14 2001-09-11 Aradigm Corporation Excimer laser ablation process control of multilaminate materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770560A (en) * 1971-10-21 1973-11-06 American Cyanamid Co Composite laminate with a thin, perforated outer layer and cavitated bonded backing member
US4786558A (en) * 1986-01-31 1988-11-22 Toray Industries, Ltd. Composite film and antistatic composite film comprising a swellable inorganic silicate
US5296291A (en) * 1989-05-05 1994-03-22 W. R. Grace & Co.-Conn. Heat resistant breathable films
US5833759A (en) * 1996-11-08 1998-11-10 W. L. Gore & Associates, Inc. Method for preparing vias for subsequent metallization

Also Published As

Publication number Publication date
US6369354B1 (en) 2002-04-09
EP1214171A4 (en) 2003-07-02
JP2003504214A (en) 2003-02-04
EP1214171B1 (en) 2011-03-09
MXPA02000407A (en) 2004-05-21
AU6889800A (en) 2001-02-05
CA2377855C (en) 2006-11-14
ES2360429T3 (en) 2011-06-03
ATE500919T1 (en) 2011-03-15
AU770886B2 (en) 2004-03-04
CA2377855A1 (en) 2001-01-25
US6288360B1 (en) 2001-09-11
EP1214171A1 (en) 2002-06-19
DE60045712D1 (en) 2011-04-21
WO2001005551A1 (en) 2001-01-25

Similar Documents

Publication Publication Date Title
US6288360B1 (en) Excimer laser ablation process control of multilaminate materials
EP0430116B1 (en) Method for forming through holes in a polyimide substrate
Baudach et al. Ablation experiments on polyimide with femtosecond laser pulses
JP4643889B2 (en) Laser processing system and method
KR100287526B1 (en) Method employing uv laser pulses of varied energy density to form depthwise self-limiting blind vias in multilayered targets
US6677552B1 (en) System and method for laser micro-machining
US20020190038A1 (en) Laser ablation technique
JP2003506216A (en) Circuit singulation system and method
US5536579A (en) Design of high density structures with laser etch stop
KR20060099517A (en) Laser processing of a locally heated target material
JP2007530292A (en) Pulsed laser treatment with controlled thermal and physical modification.
JPH08274064A (en) Method of patterning multilayer work
US6222156B1 (en) Laser repair process for printed wiring boards
GB2286787A (en) Selective machining by dual wavelength laser
JP2760288B2 (en) Via hole forming method and film cutting method
US20040195221A1 (en) Method and apparatus for laser ablative modification of dielectric surfaces
JP2000202664A (en) Lasder drilling method
KR100504234B1 (en) Laser drilling method
JPH01296623A (en) Thin film elimination
US7655152B2 (en) Etching
JPH11773A (en) Laser beam machine and its method
JPH0982803A (en) Method and device for formation of via hole
JPS61229492A (en) Formation of through-hole to substrate
JP3245820B2 (en) Laser drilling method
JPH03487A (en) Laser beam trimming device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION