US20010009099A1 - Thermal expansion valve - Google Patents

Thermal expansion valve Download PDF

Info

Publication number
US20010009099A1
US20010009099A1 US09/750,117 US75011700A US2001009099A1 US 20010009099 A1 US20010009099 A1 US 20010009099A1 US 75011700 A US75011700 A US 75011700A US 2001009099 A1 US2001009099 A1 US 2001009099A1
Authority
US
United States
Prior art keywords
valve
diaphragm
thermal expansion
plug body
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/750,117
Other versions
US6427243B2 (en
Inventor
Kazuto Kobayashi
Asao Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Assigned to FUJIKOKI CORPORATION reassignment FUJIKOKI CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATO, ASAO, KOBAYASHI, KAZUTO
Publication of US20010009099A1 publication Critical patent/US20010009099A1/en
Application granted granted Critical
Publication of US6427243B2 publication Critical patent/US6427243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/17Size reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/32Weight

Definitions

  • the present invention relates to a thermal expansion valve used in a refrigeration cycle.
  • a thermal expansion valve used in the refrigeration cycle of an air conditioning device on a vehicle and the like comprised of a valve body including a high-pressure refrigerant passage through which liquid-phase refrigerant to be decompressed travels and a low-pressure refrigerant passage through which gas-phase refrigerant travels, and a valve hole formed to the high-pressure refrigerant passage; a valve means that is driven to move toward or away from the valve hole of the valve body for changing the opening of the valve hole; a pressure working housing mounted to the valve body for detecting the temperature of the gas-phase refrigerant, the housing equipped with a diaphragm for driving the valve means and controlling the movement thereof, and a pressure equalizing chamber communicated to the low-pressure refrigerant passage and an airtight chamber separated by the diaphragm and filled with a predetermined refrigerant; and a plug body for sealing the predetermined refrigerant filled into the airtight chamber through a hole formed to the outer
  • the thermal expansion valve 10 - 1 comprises a prism-shaped valve body 30 made for example of aluminum, and a first passage 32 through which refrigerant flowing in from a condenser 5 and a receiver 6 toward an evaporator 8 constituting the refrigeration cycle 11 travels, and a second passage 34 through which refrigerant flowing in from the evaporator 8 toward a compressor 4 travels, the first and second passages formed mutually separately with one passage placed above the other in the valve body.
  • the first passage 32 of the valve of FIG. 5 is equipped with an orifice 32 a , a valve chamber 35 , a spherical valve means 32 b placed to the upper stream side of the passage 32 for controlling the quantity of refrigerant that passes through the orifice 32 a , and an adjustment screw 39 of a spring 32 d that presses the valve means 32 b toward the orifice 32 a through a valve member 32 c .
  • the adjustment screw 39 having a screw portion 39 f is movably screwed onto a mounting hole 30 a communicated to the valve chamber 35 of the first passage 32 through the lower end surface of the valve body 30 , with an o-ring mounted to the adjustment screw 39 that secures the airtight state with the valve body 30 .
  • the adjustment screw 39 and the pressurizing spring 32 d adjust the opening of the valve means 32 b against the orifice 32 a.
  • Reference number 321 refers to an entrance port through which the refrigerant sent out from the receiver 6 toward the evaporator 8 enters.
  • a valve chamber 35 is connected to the entrance port 321
  • reference number 322 refers to an exit port of the refrigerant flowing toward the evaporator 8 .
  • reference number 50 refers to bolt holes for mounting the expansion valve to position, and the bottom region of the valve body 30 is formed narrower than the other regions.
  • the valve body 30 is equipped with a small-diameter hole 37 and a large-diameter hole 38 having a larger diameter than the hole 37 , which open or close the orifice 32 a by providing drive force to the valve means 32 corresponding to the exit temperature of the evaporator 8 of the valve body 30 , the holes 37 and 38 being formed in coaxial relations with the orifice 32 a .
  • the upper end of the valve body 30 is equipped with a screw hole 36 to which the power element unit 36 including an airtight chamber is fixed.
  • the power element unit 36 comprises a diaphragm 36 a made for example of stainless steel, and an upper pressure working chamber 36 b and a lower pressure working chamber 36 c welded and sealed to each other with the diaphragm 36 a sandwiched in between, forming two airtight chambers above and under the diaphragm.
  • An upper lid 36 d made of stainless steel defines the upper pressure working chamber 36 b together with the diaphragm 36 a , and is equipped with a hole 362 and a plug body 36 k for sealing the predetermined refrigerant working as a diaphragm driving fluid in the upper chamber.
  • the plug body 36 k is made for example of stainless steel, which is formed either through cutting or forging, and welded onto the hole 362 of the upper lid 36 d for securing an airtight chamber.
  • the lower lid 36 h is screwed onto the screw hole 361 through a packing 40 .
  • the lower pressure working chamber 36 c is communicated to the second passage 34 via a pressure equalizing hole 36 e formed concentrically to the center line of the orifice 32 a .
  • the refrigerant exiting the evaporator 8 flows into the second passage 34 , and the passage 34 acts as the gas-phase refrigerant passage.
  • the pressure of the refrigerant flowing through passage 34 is loaded to the lower pressure working chamber 36 c via the pressure equalizing hole 36 e .
  • 342 is the entrance port through which the refrigerant sent out from the evaporator 8 enters
  • 341 is the exit port through which the refrigerant sent toward the compressor exits.
  • a heat sensing shaft 36 f made of aluminum is equipped to the valve body, with a large-diameter dish shaped peak portion 312 formed to contact the center area of the lower surface of the diaphragm 36 a within the lower pressure working chamber.
  • the shaft 36 f is slidably mounted inside the large-diameter hole 38 and penetrates through the second passage 34 , transmitting the refrigerant exit temperature of the evaporator 8 to the lower pressure working chamber 36 c , and providing drive force by sliding inside the large-diameter hole 38 corresponding to the displacement of the diaphragm 36 a accompanied by the pressure difference of the upper pressure working chamber 36 b and the lower pressure working chamber 36 c .
  • a working shaft 37 f made of stainless steel and having a smaller diameter than the heat sensing shaft 36 f is slidably mounted inside the small-diameter hole 37 for pressing the valve means 32 b corresponding to the displacement of the heat sensing shaft 36 f and resisting to the elastic force of the biasing means 32 d .
  • the upper end region of the heat sensing shaft 36 f comprises a peak portion 312 that acts as the receiving portion of the diaphragm 36 a , and a large-diameter portion 314 that slides within the lower pressure working chamber 36 c .
  • the lower end region of the heat sensing shaft 36 f contacts the upper end region of the working shaft 37 f , and the lower end region of the working shaft 37 f contacts the valve means 32 b .
  • the heat sensing shaft 36 f and the working shaft 37 f constitute a valve driving shaft 318 .
  • the peak portion 312 and the large diameter portion 314 can be formed integrally.
  • valve driving shaft 318 extending from the lower surface of the diaphragm 36 a to the orifice 32 a of the first passage 32 is concentrically arranged within the pressure equalizing hole 36 e .
  • the portion 37 e of the working shaft 37 f that penetrates the orifice 32 a is formed narrower than the inner diameter of the orifice 32 a , and the refrigerant travels through the orifice 32 a .
  • the heat sensing shaft 36 f is equipped with an O-ring 36 g that acts as a sealing member securing the seal between the first passage 32 and the second passage 34 .
  • a known diaphragm drive fluid is filled inside the upper pressure working chamber 36 b of the pressure working housing 36 d .
  • the heat of the refrigerant flowing through the second passage 34 after exiting the evaporator 8 is transmitted to the diaphragm drive fluid via the valve drive shaft 318 exposed to the second passage 34 or the pressure equalizing hole 36 e communicated to the second passage 34 , and via the diaphragm 36 a.
  • the diaphragm drive fluid filled inside the upper pressure chamber 36 b gasifies corresponding to the transmitted heat, and loads pressure onto the upper surface of the diaphragm 36 a .
  • the diaphragm 36 a is displaced in the vertical direction corresponding to the difference in the pressure of the diaphragm drive gas loaded to the upper surface thereof and the pressure loaded to the lower surface thereof.
  • the temperature of the low-pressure gas-phase refrigerant at the exit side of the evaporator 8 (being sent out from the evaporator) is transmitted to the upper pressure working chamber 36 b , and corresponding to the transmitted temperature, the pressure in the upper pressure working chamber 36 b changes, and the exit temperature of the evaporator 8 rises.
  • the heat sensing shaft 36 f or valve drive shaft is driven downward pressing down the valve means 32 b , thereby increasing the opening of the orifice 32 a .
  • This increases the amount of refrigerant being supplied to the evaporator 8 , and reduces the temperature of the evaporator 8 .
  • the temperature of the refrigerant exiting the evaporator 8 is reduced.
  • the valve means 32 b is driven to the opposite direction, reducing the opening of the orifice 32 a , reducing the amount of refrigerant supplied to the evaporator, and thereby increases the temperature of the evaporator 8 .
  • the heat sensing shaft 36 f is a member having a relatively large diameter, and this member together with a working shaft constitute the valve drive shaft.
  • another prior art example of the thermal expansion valve includes a valve drive shaft formed of a rod member.
  • the thermal expansion valve 10 - 2 according to the prior art using this rod member is shown in FIG. 7.
  • the movement of the thermal expansion valve shown in FIG. 7 is similar to the thermal expansion valve shown in FIG. 5, and the members provided with the same reference numbers as used in FIGS. 5 and 6 refer to either identical or equivalent parts.
  • the components constituting the refrigeration cycle, such as the compressor, the condenser, the receiver and the evaporator, are not shown in FIG. 7.
  • the heat sensing portion 318 equipped with a heat sensing structure works as the heat sensing shaft 361 f , and a diaphragm 36 a contacts the surface thereof.
  • the heat sensing portion 318 includes a large-diameter stopper portion 312 that receives the diaphragm 36 a , a large-diameter portion 314 having one end surface attached to the back surface of the stopper portion 312 and the center area of the other end surface formed into a protrusion 315 that is slidably inserted to the lower pressure working chamber 36 c , and an integrally-formed continuous rod member 316 having one end surface fit into the protrusion 315 formed to the large-diameter portion 314 and the other end surface attached to a valve means 32 b via a portion 371 f corresponding to the working shaft.
  • the heat sensing shaft 361 f constituting the rod member 316 is exposed to the second passage, and the heat of the refrigerant vapor is transmitted therethrough.
  • the rod member 316 working as the heat sensing shaft 361 f is driven to move back and forth traversing the passage 34 along with the displacement of the diaphragm 36 a in the power element unit 36 . With this movement, a clearance (gap) communicating the passage 32 and the passage 34 is formed along the rod portion 316 .
  • an O-ring 42 is mounted in a large-diameter hole 38 ′ that contacts the outer circumference of the rod portion 316 , and thereby, the O-ring is placed between the two passages.
  • a push nut 41 working as a detent nut is fixed to the rod portion 316 inside the large-diameter hole 38 ′ and adjacent to the O-ring 42 , preventing the O-ring from moving by the force working in the longitudinal direction (the direction toward the power element portion 36 ) provided by the refrigerant pressure of the passage 321 and the coil spring 32 d.
  • the plug body 36 k of the conventional thermal expansion valve and the welding of the plug body 36 k and the hole 362 is disclosed for example in Japanese Patent Laid-Open Publications No. 6-185833 and No. 8-226567.
  • This type of thermal expansion valve is used to constitute a part of the refrigeration cycle of an air conditioning device on a vehicle, and is either placed inside the engine room with the compressor, the evaporator, the receiver and the like, or inside the passenger room with the evaporator. Therefore, the size of the valve must be reduced as much as possible.
  • the size of the power element unit was the problem in trying to miniaturize the thermal expansion valve. That is, as shown in the cross-sectional drawing of FIG. 8, the plug body 36 k of the power element unit 36 of the conventional thermal expansion valve is formed so that the diameter d 1 at the peak portion 36 k 1 is set in the range of 5.4-5.5 mm, the diameter d 2 at the bottom portion 36 k 2 is set in the range of 1.5-1.6 mm, and the height h from the bottom portion 36 k 2 to the peak portion 36 k 1 is set in the range of 4.7-4.8 mm.
  • the diameter d 3 of the diaphragm 36 a of the power element unit 36 is set to 39 mm, as shown in the cross-sectional view of FIG. 9 together with the upper lid 36 d .
  • the size of the power element unit was not considered according to the conventional thermal expansion valve.
  • the present invention aims at miniaturizing the plug body included in the power element unit of a thermal expansion valve, and to further provide a miniaturized thermal expansion valve realized by the miniaturization of the plug body. Moreover, the present invention realizes, without having to change the structure of the thermal expansion valve, the miniaturization of the plug body leading to the miniaturization of the thermal expansion valve as a whole enabled by the miniaturization of the diaphragm.
  • the present invention provides a thermal expansion valve comprising a valve means that changes the opening of a valve hole and controls the quantity of flow of refrigerant flowing into an evaporator in a refrigeration cycle, and a power element unit equipped with a plug body that seals a predetermined refrigerant in an airtight chamber defined by a diaphragm that controls the movement of the valve means, wherein the diameter D 1 of the peak portion of the plug body is within the range of 2 mm ⁇ D 1 ⁇ 5.4 mm.
  • the diameter of the diaphragm constituting the power element unit is within the range of 34.5-35.5 mm.
  • the thermal expansion valve comprises a valve body including a high-pressure refrigerant passage through which liquid-phase refrigerant to be decompressed travels and a low-pressure refrigerant passage through which gas-phase refrigerant travels, and a valve hole formed to the high-pressure refrigerant passage, a valve means that is driven to move toward or away from the valve hole of the valve body for changing the opening of the valve hole, a power element unit including a diaphragm that drives the valve means and controls the movement thereof, and an airtight chamber defined by the diaphragm, the power element unit mounted to the valve body for detecting the temperature of the refrigerant traveling through the low-pressure refrigerant passage, and a plug body that seals the refrigerant filled into the chamber through a hole formed to the outer wall of the power element unit, wherein the plug body is welded onto the peripheral area of the hole, the diameter D 1 of the peak portion of the plug body being within the range of 2
  • the thermal expansion valve according to the present invention equipped with a power element unit, including a plug body formed into a specific shape as disclosed above, contributes to reducing the size of the diaphragm and the size of the power element unit, and thereby realizes miniaturization of the thermal expansion valve as a whole.
  • FIG. 1 is a vertical cross-sectional view showing one embodiment of the thermal expansion valve according to the present invention
  • FIG. 2 is a cross-sectional view showing the shape of the plug body used in FIG. 1;
  • FIG. 3 is a cross-sectional view showing the shape of the diaphragm used in FIG. 1;
  • FIG. 4 is a vertical cross-sectional view showing another embodiment of the thermal expansion valve according to the present invention.
  • FIG. 5 is a vertical cross-sectional view showing the structure of a conventional thermal expansion valve
  • FIG. 6 is a perspective view showing the outline of the thermal expansion valve of FIG. 5;
  • FIG. 7 is a vertical cross-sectional view showing the structure of another conventional thermal expansion valve
  • FIG. 8 is a cross-sectional view showing the shape of the plug body used in the conventional thermal expansion valve.
  • FIG. 9 is a cross-sectional view showing the shape of the diaphragm used in the conventional thermal expansion valve.
  • FIG. 1 is a vertical cross-sectional view showing one embodiment of a thermal expansion valve 10 - 3 according to the present invention.
  • the present valve 10 - 3 is formed similarly as the thermal expansion valve 10 - 1 shown in FIG. 5 except that in the present valve, a small-sized plug body 60 k is used instead of the plug body 36 k constituting the power element unit 36 .
  • the structure of the present valve 10 - 3 is identical to the structure of the thermal expansion valve 10 - 1 of FIG. 5, except that since the present valve utilizes a small-sized plug body 60 k , the size of the diaphragm 60 a is reduced, and as a result, the power element unit 60 is miniaturized.
  • the plug body 60 k is formed for example by forging.
  • the same components that act similarly as the components of the thermal expansion valve 10 - 1 of FIG. 5 are provided with the same reference numbers, and the explanations thereof are omitted.
  • the cross-sectional shape of the plug body 60 k of the thermal expansion valve 10 - 3 is as shown in FIG. 2.
  • the diameter D 1 of the peak portion 60 k 1 is in the range of 2 mm ⁇ D 1 ⁇ 5.4 mm
  • the diameter D 2 of the bottom portion 60 k 2 is in the range of 0.5 mm ⁇ D 2 ⁇ 1.5 mm
  • the height H from the peak portion 60 k 1 to the bottom portion 60 k 2 is in the range of 1.5 mm ⁇ H ⁇ 4.7 mm.
  • D 1 should be in the range of 2.9 mm ⁇ D 1 ⁇ 3.1 mm
  • D 2 should be in the range of 1.1 mm ⁇ D 2 ⁇ 1.3 mm
  • H 2 should be in the range of 2.2 mm ⁇ H 2 ⁇ 2.4 mm.
  • the shape of the plug body 60 k of the thermal expansion valve 10 - 3 according to the present invention is determined in consideration of the miniaturization limit related to the processing of the plug body 60 k and the automated plug supply, and the welding strength to be provided when the plug body is welded through projection welding and the like to the hole 362 formed to the upper lid 36 d of the power element unit 60 . Since the diameter d 1 of the peak 36 k 1 of the plug body 36 k shown in FIG. 8 in the thermal expansion valve 10 - 1 of FIG.
  • the diameter D 1 of the peak portion k 1 of the present plug body 60 k is in the range of 2 mm ⁇ D 1 ⁇ 5.4 mm, the size of the plug body 60 k in the power element unit 60 of the present thermal expansion valve 10 - 3 is reduced. This will enable the size of the power element unit 60 to be reduced, and thus realizes the miniaturization of the thermal expansion valve 10 - 3 as a whole.
  • the diameter D 2 of the bottom portion 60 k 2 of the plug body 60 k is in the range of 0.5 mm ⁇ D 2 ⁇ 1.5 mm, and the height H of the plug body 60 k is in the range of 1.5 mm ⁇ H ⁇ 4.7 mm.
  • the diaphragm 60 a of the power element unit 60 has a cross-sectional shape as shown with an upper lid 36 d in FIG. 3, wherein further to using a small plug body 60 k , the diameter D 3 of the diaphragm 60 a is reduced to the range of 34.5-35.5 mm. Accordingly, the diaphragm of the present embodiment is miniaturized compared to the conventional diaphragm 36 a of the power element unit 36 having a diameter d 3 of 39 mm.
  • FIG. 4 is a vertical cross-sectional view showing another embodiment of the thermal expansion valve 10 - 4 of the present invention.
  • the present valve 10 - 4 is similar to the thermal expansion valve 10 - 2 shown in FIG. 7, except that a small-sized plug body 60 k is utilized instead of the plug body 36 k constituting the power element unit 36 .
  • the only structural difference of the present valve 10 - 4 compared to the structure of the valve 10 - 2 of FIG. 7 is that the diaphragm 60 a is miniaturized, and as a result, the power element unit 60 as a whole is miniaturized by the use of the small plug body 60 k . Accordingly, in the present explanation of the embodiment of FIG.
  • FIG. 1 and FIG. 4 The embodiments of the thermal expansion valve according to the present invention are shown in FIG. 1 and FIG. 4. However, the present invention is not limited to the two embodiments shown above, but can also be applied to a thermal expansion valve where the valve body is driven by a power element unit that includes a diaphragm defining an airtight chamber filled with a predetermined refrigerant and sealed using a plug body.
  • the thermal expansion valve according to the present invention can be miniaturized as a whole by the use of a plug body having a specific form. Moreover, the miniaturization of the diaphragm leads to the miniaturization of the power element unit, and the present invention contributes to realizing a thermal expansion valve having a reduced size, by providing a miniaturized power element unit without changing the other conventional structural members.

Abstract

A thermal expansion valve 10-3 includes a passage 32 through which refrigerant enters a prism-shaped body 30 from a receiver, and a valve means 32 b placed within a valve chamber 35 for controlling the opening of an orifice 32 a. The refrigerant returning from an evaporator 8 travels through a passage 34 toward a compressor 4. A power element 60 that drives the valve means 32 b via a heat sensing shaft 36 f comprises a disk-shaped housing 36 d and a diaphragm 60 a placed within said housing, which constitute a pressure working chamber 36 b. A working gas is filled inside said pressure working chamber 36 b and sealed thereto by a plug body 60 k. The diameter size of the diaphragm 60 a and the whole size of the plug body 60 k are reduced in order to miniaturize and reduce the weight of the thermal expansion valve as a whole.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a thermal expansion valve used in a refrigeration cycle. [0001]
  • DESCRIPTION OF THE RELATED ART
  • Heretofore, a thermal expansion valve used in the refrigeration cycle of an air conditioning device on a vehicle and the like comprised of a valve body including a high-pressure refrigerant passage through which liquid-phase refrigerant to be decompressed travels and a low-pressure refrigerant passage through which gas-phase refrigerant travels, and a valve hole formed to the high-pressure refrigerant passage; a valve means that is driven to move toward or away from the valve hole of the valve body for changing the opening of the valve hole; a pressure working housing mounted to the valve body for detecting the temperature of the gas-phase refrigerant, the housing equipped with a diaphragm for driving the valve means and controlling the movement thereof, and a pressure equalizing chamber communicated to the low-pressure refrigerant passage and an airtight chamber separated by the diaphragm and filled with a predetermined refrigerant; and a plug body for sealing the predetermined refrigerant filled into the airtight chamber through a hole formed to the outer wall of the pressure working housing. [0002]
  • This type of prior-art thermal expansion valve is shown in the vertical cross-sectional view of FIG. 5, which shows the state where the valve is equipped in a refrigeration cycle of the air conditioning device on a vehicle, the schematic outline view thereof shown in FIG. 6. In FIG. 5, the thermal expansion valve [0003] 10-1 comprises a prism-shaped valve body 30 made for example of aluminum, and a first passage 32 through which refrigerant flowing in from a condenser 5 and a receiver 6 toward an evaporator 8 constituting the refrigeration cycle 11 travels, and a second passage 34 through which refrigerant flowing in from the evaporator 8 toward a compressor 4 travels, the first and second passages formed mutually separately with one passage placed above the other in the valve body. Moreover, the first passage 32 of the valve of FIG. 5 is equipped with an orifice 32 a, a valve chamber 35, a spherical valve means 32 b placed to the upper stream side of the passage 32 for controlling the quantity of refrigerant that passes through the orifice 32 a, and an adjustment screw 39 of a spring 32 d that presses the valve means 32 b toward the orifice 32 a through a valve member 32 c. The adjustment screw 39 having a screw portion 39 f is movably screwed onto a mounting hole 30 a communicated to the valve chamber 35 of the first passage 32 through the lower end surface of the valve body 30, with an o-ring mounted to the adjustment screw 39 that secures the airtight state with the valve body 30. The adjustment screw 39 and the pressurizing spring 32 d adjust the opening of the valve means 32 b against the orifice 32 a.
  • [0004] Reference number 321 refers to an entrance port through which the refrigerant sent out from the receiver 6 toward the evaporator 8 enters. A valve chamber 35 is connected to the entrance port 321, and reference number 322 refers to an exit port of the refrigerant flowing toward the evaporator 8. In FIG. 6, reference number 50 refers to bolt holes for mounting the expansion valve to position, and the bottom region of the valve body 30 is formed narrower than the other regions. The valve body 30 is equipped with a small-diameter hole 37 and a large-diameter hole 38 having a larger diameter than the hole 37, which open or close the orifice 32 a by providing drive force to the valve means 32 corresponding to the exit temperature of the evaporator 8 of the valve body 30, the holes 37 and 38 being formed in coaxial relations with the orifice 32 a. The upper end of the valve body 30 is equipped with a screw hole 36 to which the power element unit 36 including an airtight chamber is fixed.
  • The [0005] power element unit 36 comprises a diaphragm 36 a made for example of stainless steel, and an upper pressure working chamber 36 b and a lower pressure working chamber 36 c welded and sealed to each other with the diaphragm 36 a sandwiched in between, forming two airtight chambers above and under the diaphragm. An upper lid 36 d made of stainless steel defines the upper pressure working chamber 36 b together with the diaphragm 36 a, and is equipped with a hole 362 and a plug body 36 k for sealing the predetermined refrigerant working as a diaphragm driving fluid in the upper chamber. The plug body 36 k is made for example of stainless steel, which is formed either through cutting or forging, and welded onto the hole 362 of the upper lid 36 d for securing an airtight chamber. The lower lid 36 h is screwed onto the screw hole 361 through a packing 40. The lower pressure working chamber 36 c is communicated to the second passage 34 via a pressure equalizing hole 36 e formed concentrically to the center line of the orifice 32 a. The refrigerant exiting the evaporator 8 flows into the second passage 34, and the passage 34 acts as the gas-phase refrigerant passage. The pressure of the refrigerant flowing through passage 34 is loaded to the lower pressure working chamber 36 c via the pressure equalizing hole 36 e. Further, 342 is the entrance port through which the refrigerant sent out from the evaporator 8 enters, and 341 is the exit port through which the refrigerant sent toward the compressor exits.
  • A [0006] heat sensing shaft 36 f made of aluminum is equipped to the valve body, with a large-diameter dish shaped peak portion 312 formed to contact the center area of the lower surface of the diaphragm 36 a within the lower pressure working chamber. The shaft 36 f is slidably mounted inside the large-diameter hole 38 and penetrates through the second passage 34, transmitting the refrigerant exit temperature of the evaporator 8 to the lower pressure working chamber 36 c, and providing drive force by sliding inside the large-diameter hole 38 corresponding to the displacement of the diaphragm 36 a accompanied by the pressure difference of the upper pressure working chamber 36 b and the lower pressure working chamber 36 c. Moreover, a working shaft 37 f made of stainless steel and having a smaller diameter than the heat sensing shaft 36 f is slidably mounted inside the small-diameter hole 37 for pressing the valve means 32 b corresponding to the displacement of the heat sensing shaft 36 f and resisting to the elastic force of the biasing means 32 d. The upper end region of the heat sensing shaft 36 f comprises a peak portion 312 that acts as the receiving portion of the diaphragm 36 a, and a large-diameter portion 314 that slides within the lower pressure working chamber 36 c. The lower end region of the heat sensing shaft 36 f contacts the upper end region of the working shaft 37 f, and the lower end region of the working shaft 37 f contacts the valve means 32 b. The heat sensing shaft 36 f and the working shaft 37 f constitute a valve driving shaft 318. Further, the peak portion 312 and the large diameter portion 314 can be formed integrally.
  • As explained, the [0007] valve driving shaft 318 extending from the lower surface of the diaphragm 36 a to the orifice 32 a of the first passage 32 is concentrically arranged within the pressure equalizing hole 36 e. The portion 37 e of the working shaft 37 f that penetrates the orifice 32 a is formed narrower than the inner diameter of the orifice 32 a, and the refrigerant travels through the orifice 32 a. The heat sensing shaft 36 f is equipped with an O-ring 36 g that acts as a sealing member securing the seal between the first passage 32 and the second passage 34.
  • A known diaphragm drive fluid is filled inside the upper [0008] pressure working chamber 36 b of the pressure working housing 36 d. The heat of the refrigerant flowing through the second passage 34 after exiting the evaporator 8 is transmitted to the diaphragm drive fluid via the valve drive shaft 318 exposed to the second passage 34 or the pressure equalizing hole 36 e communicated to the second passage 34, and via the diaphragm 36 a.
  • The diaphragm drive fluid filled inside the [0009] upper pressure chamber 36 b gasifies corresponding to the transmitted heat, and loads pressure onto the upper surface of the diaphragm 36 a. The diaphragm 36 a is displaced in the vertical direction corresponding to the difference in the pressure of the diaphragm drive gas loaded to the upper surface thereof and the pressure loaded to the lower surface thereof.
  • The vertical displacement of the center area of the [0010] diaphragm 36 a is transmitted via the valve drive shaft to the valve means 32 b, thereby moving the valve means 32 b closer to or away from the valve seat of the orifice 32 a. As a result, the flow of the refrigerant is controlled.
  • The temperature of the low-pressure gas-phase refrigerant at the exit side of the evaporator [0011] 8 (being sent out from the evaporator) is transmitted to the upper pressure working chamber 36 b, and corresponding to the transmitted temperature, the pressure in the upper pressure working chamber 36 b changes, and the exit temperature of the evaporator 8 rises. In other words, when the heat load of the evaporator increases, the pressure of the upper pressure working chamber 86 b rises, and correspondingly, the heat sensing shaft 36 f or valve drive shaft is driven downward pressing down the valve means 32 b, thereby increasing the opening of the orifice 32 a. This increases the amount of refrigerant being supplied to the evaporator 8, and reduces the temperature of the evaporator 8. In contrast, the temperature of the refrigerant exiting the evaporator 8 is reduced. In other words, if the heat load of the evaporator is reduced, the valve means 32 b is driven to the opposite direction, reducing the opening of the orifice 32 a, reducing the amount of refrigerant supplied to the evaporator, and thereby increases the temperature of the evaporator 8.
  • According to the thermal expansion valve shown in FIG. 5, the [0012] heat sensing shaft 36 f is a member having a relatively large diameter, and this member together with a working shaft constitute the valve drive shaft. However, another prior art example of the thermal expansion valve includes a valve drive shaft formed of a rod member. The thermal expansion valve 10-2 according to the prior art using this rod member is shown in FIG. 7. The movement of the thermal expansion valve shown in FIG. 7 is similar to the thermal expansion valve shown in FIG. 5, and the members provided with the same reference numbers as used in FIGS. 5 and 6 refer to either identical or equivalent parts. Further, the components constituting the refrigeration cycle, such as the compressor, the condenser, the receiver and the evaporator, are not shown in FIG. 7.
  • The [0013] heat sensing portion 318 equipped with a heat sensing structure works as the heat sensing shaft 361 f, and a diaphragm 36 a contacts the surface thereof. The heat sensing portion 318 includes a large-diameter stopper portion 312 that receives the diaphragm 36 a, a large-diameter portion 314 having one end surface attached to the back surface of the stopper portion 312 and the center area of the other end surface formed into a protrusion 315 that is slidably inserted to the lower pressure working chamber 36 c, and an integrally-formed continuous rod member 316 having one end surface fit into the protrusion 315 formed to the large-diameter portion 314 and the other end surface attached to a valve means 32 b via a portion 371 f corresponding to the working shaft. The heat sensing shaft 361 f constituting the rod member 316 is exposed to the second passage, and the heat of the refrigerant vapor is transmitted therethrough.
  • The [0014] rod member 316 working as the heat sensing shaft 361 f is driven to move back and forth traversing the passage 34 along with the displacement of the diaphragm 36 a in the power element unit 36. With this movement, a clearance (gap) communicating the passage 32 and the passage 34 is formed along the rod portion 316. In order to prevent such communication, an O-ring 42 is mounted in a large-diameter hole 38′ that contacts the outer circumference of the rod portion 316, and thereby, the O-ring is placed between the two passages. Moreover, a push nut 41 working as a detent nut is fixed to the rod portion 316 inside the large-diameter hole 38′ and adjacent to the O-ring 42, preventing the O-ring from moving by the force working in the longitudinal direction (the direction toward the power element portion 36) provided by the refrigerant pressure of the passage 321 and the coil spring 32 d.
  • The [0015] plug body 36 k of the conventional thermal expansion valve and the welding of the plug body 36 k and the hole 362 is disclosed for example in Japanese Patent Laid-Open Publications No. 6-185833 and No. 8-226567.
  • SUMMARY OF THE INVENTION
  • This type of thermal expansion valve is used to constitute a part of the refrigeration cycle of an air conditioning device on a vehicle, and is either placed inside the engine room with the compressor, the evaporator, the receiver and the like, or inside the passenger room with the evaporator. Therefore, the size of the valve must be reduced as much as possible. [0016]
  • However, according to the conventional thermal expansion valve, the size of the power element unit was the problem in trying to miniaturize the thermal expansion valve. That is, as shown in the cross-sectional drawing of FIG. 8, the [0017] plug body 36 k of the power element unit 36 of the conventional thermal expansion valve is formed so that the diameter d1 at the peak portion 36 k 1 is set in the range of 5.4-5.5 mm, the diameter d2 at the bottom portion 36 k 2 is set in the range of 1.5-1.6 mm, and the height h from the bottom portion 36 k 2 to the peak portion 36 k 1 is set in the range of 4.7-4.8 mm. Moreover, the diameter d3 of the diaphragm 36 a of the power element unit 36 is set to 39 mm, as shown in the cross-sectional view of FIG. 9 together with the upper lid 36 d. The size of the power element unit was not considered according to the conventional thermal expansion valve.
  • Therefore, the present invention aims at miniaturizing the plug body included in the power element unit of a thermal expansion valve, and to further provide a miniaturized thermal expansion valve realized by the miniaturization of the plug body. Moreover, the present invention realizes, without having to change the structure of the thermal expansion valve, the miniaturization of the plug body leading to the miniaturization of the thermal expansion valve as a whole enabled by the miniaturization of the diaphragm. [0018]
  • In order to achieve the above objects, the present invention provides a thermal expansion valve comprising a valve means that changes the opening of a valve hole and controls the quantity of flow of refrigerant flowing into an evaporator in a refrigeration cycle, and a power element unit equipped with a plug body that seals a predetermined refrigerant in an airtight chamber defined by a diaphragm that controls the movement of the valve means, wherein the diameter D[0019] 1 of the peak portion of the plug body is within the range of 2 mm≦D1<5.4 mm.
  • According to another feature of the thermal expansion valve of the present invention, the diameter of the diaphragm constituting the power element unit is within the range of 34.5-35.5 mm. [0020]
  • In yet another aspect of the present invention, the thermal expansion valve comprises a valve body including a high-pressure refrigerant passage through which liquid-phase refrigerant to be decompressed travels and a low-pressure refrigerant passage through which gas-phase refrigerant travels, and a valve hole formed to the high-pressure refrigerant passage, a valve means that is driven to move toward or away from the valve hole of the valve body for changing the opening of the valve hole, a power element unit including a diaphragm that drives the valve means and controls the movement thereof, and an airtight chamber defined by the diaphragm, the power element unit mounted to the valve body for detecting the temperature of the refrigerant traveling through the low-pressure refrigerant passage, and a plug body that seals the refrigerant filled into the chamber through a hole formed to the outer wall of the power element unit, wherein the plug body is welded onto the peripheral area of the hole, the diameter D[0021] 1 of the peak portion of the plug body being within the range of 2 mm≦D1<5.4 mm, and the diameter of the diaphragm being within the range of 34.5-35.5 mm.
  • The thermal expansion valve according to the present invention equipped with a power element unit, including a plug body formed into a specific shape as disclosed above, contributes to reducing the size of the diaphragm and the size of the power element unit, and thereby realizes miniaturization of the thermal expansion valve as a whole. [0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a vertical cross-sectional view showing one embodiment of the thermal expansion valve according to the present invention; [0023]
  • FIG. 2 is a cross-sectional view showing the shape of the plug body used in FIG. 1; [0024]
  • FIG. 3 is a cross-sectional view showing the shape of the diaphragm used in FIG. 1; [0025]
  • FIG. 4 is a vertical cross-sectional view showing another embodiment of the thermal expansion valve according to the present invention; [0026]
  • FIG. 5 is a vertical cross-sectional view showing the structure of a conventional thermal expansion valve; [0027]
  • FIG. 6 is a perspective view showing the outline of the thermal expansion valve of FIG. 5; [0028]
  • FIG. 7 is a vertical cross-sectional view showing the structure of another conventional thermal expansion valve; [0029]
  • FIG. 8 is a cross-sectional view showing the shape of the plug body used in the conventional thermal expansion valve; and [0030]
  • FIG. 9 is a cross-sectional view showing the shape of the diaphragm used in the conventional thermal expansion valve. [0031]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The embodiment of the present invention will now be explained with reference to the drawings. [0032]
  • FIG. 1 is a vertical cross-sectional view showing one embodiment of a thermal expansion valve [0033] 10-3 according to the present invention. The present valve 10-3 is formed similarly as the thermal expansion valve 10-1 shown in FIG. 5 except that in the present valve, a small-sized plug body 60 k is used instead of the plug body 36 k constituting the power element unit 36. Moreover, the structure of the present valve 10-3 is identical to the structure of the thermal expansion valve 10-1 of FIG. 5, except that since the present valve utilizes a small-sized plug body 60 k, the size of the diaphragm 60 a is reduced, and as a result, the power element unit 60 is miniaturized. The plug body 60 k is formed for example by forging. Accordingly, in the present explanation of the embodiment of FIG. 1, the same components that act similarly as the components of the thermal expansion valve 10-1 of FIG. 5 are provided with the same reference numbers, and the explanations thereof are omitted. The cross-sectional shape of the plug body 60 k of the thermal expansion valve 10-3 is as shown in FIG. 2. In the present embodiment, the diameter D1 of the peak portion 60 k 1 is in the range of 2 mm≦D1<5.4 mm, the diameter D2 of the bottom portion 60 k 2 is in the range of 0.5 mm≦D2<1.5 mm, and the height H from the peak portion 60 k 1 to the bottom portion 60 k 2 is in the range of 1.5 mm≦H<4.7 mm. According to the best mode for carrying out the embodiment, D1 should be in the range of 2.9 mm≦D1<3.1 mm, D2 should be in the range of 1.1 mm≦D2<1.3 mm, and H2 should be in the range of 2.2 mm≦H2<2.4 mm.
  • The shape of the [0034] plug body 60 k of the thermal expansion valve 10-3 according to the present invention is determined in consideration of the miniaturization limit related to the processing of the plug body 60 k and the automated plug supply, and the welding strength to be provided when the plug body is welded through projection welding and the like to the hole 362 formed to the upper lid 36 d of the power element unit 60. Since the diameter d1 of the peak 36 k 1 of the plug body 36 k shown in FIG. 8 in the thermal expansion valve 10-1 of FIG. 5 is set to 5.4-5.5 mm, and since the diameter D1 of the peak portion k1 of the present plug body 60 k is in the range of 2 mm≦D1<5.4 mm, the size of the plug body 60 k in the power element unit 60 of the present thermal expansion valve 10-3 is reduced. This will enable the size of the power element unit 60 to be reduced, and thus realizes the miniaturization of the thermal expansion valve 10-3 as a whole. Similarly, the diameter D2 of the bottom portion 60 k 2 of the plug body 60 k is in the range of 0.5 mm≦D2<1.5 mm, and the height H of the plug body 60 k is in the range of 1.5 mm≦H<4.7 mm.
  • Moreover, the [0035] diaphragm 60 a of the power element unit 60 has a cross-sectional shape as shown with an upper lid 36 d in FIG. 3, wherein further to using a small plug body 60 k, the diameter D3 of the diaphragm 60 a is reduced to the range of 34.5-35.5 mm. Accordingly, the diaphragm of the present embodiment is miniaturized compared to the conventional diaphragm 36 a of the power element unit 36 having a diameter d3 of 39 mm.
  • FIG. 4 is a vertical cross-sectional view showing another embodiment of the thermal expansion valve [0036] 10-4 of the present invention. The present valve 10-4 is similar to the thermal expansion valve 10-2 shown in FIG. 7, except that a small-sized plug body 60 k is utilized instead of the plug body 36 k constituting the power element unit 36. The only structural difference of the present valve 10-4 compared to the structure of the valve 10-2 of FIG. 7 is that the diaphragm 60 a is miniaturized, and as a result, the power element unit 60 as a whole is miniaturized by the use of the small plug body 60 k. Accordingly, in the present explanation of the embodiment of FIG. 4, the components that are equivalent to and act similarly as the components in the thermal expansion valve 10-2 of FIG. 7 are provided with the same reference numbers, and the explanations thereof are omitted. Moreover, the small-sized plug body 60 k and the diaphragm 60 a utilized in the embodiment of FIG. 4 are the same as those shown in FIG. 2 and FIG. 3.
  • The embodiments of the thermal expansion valve according to the present invention are shown in FIG. 1 and FIG. 4. However, the present invention is not limited to the two embodiments shown above, but can also be applied to a thermal expansion valve where the valve body is driven by a power element unit that includes a diaphragm defining an airtight chamber filled with a predetermined refrigerant and sealed using a plug body. [0037]
  • The thermal expansion valve according to the present invention can be miniaturized as a whole by the use of a plug body having a specific form. Moreover, the miniaturization of the diaphragm leads to the miniaturization of the power element unit, and the present invention contributes to realizing a thermal expansion valve having a reduced size, by providing a miniaturized power element unit without changing the other conventional structural members. [0038]

Claims (3)

We claim:
1. A thermal expansion valve comprising:
a valve means that changes the opening of a valve hole and controls the quantity of flow of refrigerant flowing into an evaporator in a refrigeration cycle; and
a power element unit equipped with a plug body that seals a predetermined refrigerant in an airtight chamber defined by a diaphragm that controls the movement of said valve means;
wherein the diameter D1 of the peak portion of said plug body ranges between 2 mm≦D1<5.4 mm.
2. A thermal expansion valve according to
claim 1
, wherein the diameter of said diaphragm ranged from 34.5 to 35.5 mm.
3. A thermal expansion valve comprising:
a valve body including a high-pressure refrigerant passage through which liquid-phase refrigerant to be decompressed travels and a low-pressure refrigerant passage through which gas-phase refrigerant travels, and a valve hole formed to said high-pressure refrigerant passage;
a valve means that is driven to move toward or away from said valve hole of said valve body for changing the opening of said valve hole;
a power element unit including a diaphragm that drives said valve means and controls the movement thereof, and an airtight chamber defined by said diaphragm, said power element unit mounted to said valve body for detecting the temperature of said refrigerant traveling through said low-pressure refrigerant passage; and
a plug body that seals the refrigerant filled into said chamber through a hole formed to the outer wall of said power element unit;
wherein said plug body is welded onto the peripheral area of said hole, the diameter D1 of the peak portion of said plug body ranging between 2 mm≦D1<5.4 mm, and the diameter of said diaphragm ranging from 34.5 to 35.5 mm.
US09/750,117 2000-01-18 2000-12-29 Thermal expansion valve Expired - Lifetime US6427243B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-008956 2000-01-18
JP2000008956A JP2001201212A (en) 2000-01-18 2000-01-18 Temperature expansion valve

Publications (2)

Publication Number Publication Date
US20010009099A1 true US20010009099A1 (en) 2001-07-26
US6427243B2 US6427243B2 (en) 2002-08-06

Family

ID=18537164

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/750,117 Expired - Lifetime US6427243B2 (en) 2000-01-18 2000-12-29 Thermal expansion valve

Country Status (5)

Country Link
US (1) US6427243B2 (en)
EP (1) EP1118822B1 (en)
JP (1) JP2001201212A (en)
KR (1) KR100725972B1 (en)
DE (1) DE60111784T2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130074536A1 (en) * 2010-04-16 2013-03-28 Jugurtha BENOUALI Thermostatic Expansion Device And Air Conditioning Loop Comprising Such A Thermostatic Expansion Device
US20140041405A1 (en) * 2011-04-27 2014-02-13 Zhejiang Sanhua Co., Ltd. Thermal expansion valve
US20150185738A1 (en) * 2012-08-07 2015-07-02 Zhejiang Sanhua Automotive Components Co., Ltd. Thermoregulator
US9726407B2 (en) 2012-02-20 2017-08-08 Denso Corporation Expansion valve for a refrigeration cycle
US10330214B2 (en) * 2016-09-02 2019-06-25 Fujikoki Corporation Control valve

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002225546A (en) * 2001-01-31 2002-08-14 Fuji Koki Corp Temperature type expansion valve
JP4041334B2 (en) * 2002-04-08 2008-01-30 株式会社不二工機 Expansion valve and refrigeration cycle
JP2005164208A (en) * 2003-12-05 2005-06-23 Fuji Koki Corp Expansion valve
CN100441925C (en) * 2005-08-12 2008-12-10 浙江三花制冷集团有限公司 Temp expansion valve
CN100420886C (en) * 2005-08-12 2008-09-24 浙江三花制冷集团有限公司 Temp expansion valve
CN100420887C (en) * 2005-09-13 2008-09-24 浙江三花制冷集团有限公司 Thermal expansion valve
CN100473881C (en) * 2005-12-02 2009-04-01 浙江三花制冷集团有限公司 Heating-power expansion valve
KR100723448B1 (en) * 2006-08-10 2007-05-30 (주)종합건축사사무소환경건축 Joiner for frame of window and doors
US8267329B2 (en) * 2007-01-26 2012-09-18 Fujikoki Corporation Expansion valve with noise reduction means
DE102008060699A1 (en) * 2008-12-08 2010-06-10 Behr Gmbh & Co. Kg Evaporator for a refrigeration circuit
JP2011027374A (en) * 2009-07-29 2011-02-10 Fuji Koki Corp Expansion valve
KR101366380B1 (en) * 2011-12-15 2014-02-25 주식회사 두원전자 Adjusting jig for expansion valve and method of adjusting superheating using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341169Y2 (en) * 1987-06-16 1991-08-29
EP0513568B1 (en) * 1991-05-14 1997-01-29 DEUTSCHE CONTROLS GmbH Expansion valve
JP2930490B2 (en) * 1992-12-16 1999-08-03 株式会社テージーケー Method of sealing a temperature-sensitive gas to the temperature-sensitive part of the expansion valve
JPH06294471A (en) * 1993-04-05 1994-10-21 Kiyohara Masako Diaphragm type fluid controller
JP3207716B2 (en) * 1994-12-22 2001-09-10 株式会社不二工機 Temperature expansion valve
JPH1089809A (en) * 1996-09-18 1998-04-10 Fuji Koki:Kk Expansion valve
JP3842354B2 (en) * 1996-11-14 2006-11-08 株式会社不二工機 Temperature expansion valve
US5881997A (en) * 1997-11-24 1999-03-16 Fujikin Incorporated Metal diaphragm type valve
JPH11223425A (en) * 1998-02-10 1999-08-17 Fujikoki Corp Expansion valve
JPH11294905A (en) * 1998-04-16 1999-10-29 Denso Corp Temperature type expansion valve
JP3786518B2 (en) 1998-04-23 2006-06-14 株式会社テージーケー Expansion valve with solenoid valve
US6062484A (en) * 1998-05-20 2000-05-16 Eaton Corporation Modular thermal expansion valve and cartridge therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130074536A1 (en) * 2010-04-16 2013-03-28 Jugurtha BENOUALI Thermostatic Expansion Device And Air Conditioning Loop Comprising Such A Thermostatic Expansion Device
US9459030B2 (en) * 2010-04-16 2016-10-04 Valeo Systemes Thermiques Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device
US20140041405A1 (en) * 2011-04-27 2014-02-13 Zhejiang Sanhua Co., Ltd. Thermal expansion valve
US9587864B2 (en) * 2011-04-27 2017-03-07 Zhejiang Sanhua Co., Ltd. Thermal expansion valve
US9726407B2 (en) 2012-02-20 2017-08-08 Denso Corporation Expansion valve for a refrigeration cycle
US20150185738A1 (en) * 2012-08-07 2015-07-02 Zhejiang Sanhua Automotive Components Co., Ltd. Thermoregulator
US10007281B2 (en) * 2012-08-07 2018-06-26 Zhejiang Sanhua Automotive Components Co., Ltd. Thermoregulator
US10330214B2 (en) * 2016-09-02 2019-06-25 Fujikoki Corporation Control valve

Also Published As

Publication number Publication date
EP1118822A3 (en) 2002-01-02
JP2001201212A (en) 2001-07-27
US6427243B2 (en) 2002-08-06
EP1118822B1 (en) 2005-07-06
EP1118822A2 (en) 2001-07-25
DE60111784D1 (en) 2005-08-11
KR20010076283A (en) 2001-08-11
DE60111784T2 (en) 2006-04-27
KR100725972B1 (en) 2007-06-11

Similar Documents

Publication Publication Date Title
US6427243B2 (en) Thermal expansion valve
KR20060041893A (en) Expansion valve
US6145753A (en) Expansion valve
KR20120104946A (en) Expansion valve
EP0871000B1 (en) Thermal expansion valve
US6415985B1 (en) Thermal expansion valve
US7185826B2 (en) Expansion valve
US6394360B2 (en) Expansion valve
US6560982B2 (en) Thermal expansion valve
US6209793B1 (en) Thermostatic expansion valve in which a valve seat is movable in a flow direction of a refrigerant
US6354509B1 (en) Thermal expansion valve
EP1343064B1 (en) Pressure control valve
JP2003065634A (en) Expansion valve
KR101027488B1 (en) Expansion valve
JP2773373B2 (en) Expansion valve for refrigeration cycle
JPH11142026A (en) Expansion valve
JPH11182982A (en) Expansion valve
JPH11182984A (en) Expansion valve
JP2000346494A (en) Temperature type expansion valve

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJIKOKI CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, KAZUTO;KATO, ASAO;REEL/FRAME:011684/0735

Effective date: 20001219

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12