US20010007636A1 - System and method for increased flow uniformity - Google Patents

System and method for increased flow uniformity Download PDF

Info

Publication number
US20010007636A1
US20010007636A1 US09/794,539 US79453901A US2001007636A1 US 20010007636 A1 US20010007636 A1 US 20010007636A1 US 79453901 A US79453901 A US 79453901A US 2001007636 A1 US2001007636 A1 US 2001007636A1
Authority
US
United States
Prior art keywords
packet
flow
microsteps
period
microstep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/794,539
Other versions
US6394771B2 (en
Inventor
Robert Butterfield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CareFusion 303 Inc
Original Assignee
Butterfield Robert D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Butterfield Robert D. filed Critical Butterfield Robert D.
Priority to US09/794,539 priority Critical patent/US6394771B2/en
Publication of US20010007636A1 publication Critical patent/US20010007636A1/en
Application granted granted Critical
Publication of US6394771B2 publication Critical patent/US6394771B2/en
Assigned to IISBC BANK USA reassignment IISBC BANK USA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALARIS MEDICAL SYSTEMS, INC.
Assigned to HSBC BANK USA reassignment HSBC BANK USA SECURITY AGREEMENT Assignors: ALARIS MEDICAL SYSTEMS, INC.
Assigned to ALARIS MEDICAL, INC. reassignment ALARIS MEDICAL, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: ALARIS MEDICAL SYSTEMS, INC.
Assigned to ALARIS MEDICAL SYSTEMS, INC. reassignment ALARIS MEDICAL SYSTEMS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALARIS MEDICAL, INC.
Assigned to ALARIS MEDICAL SYSTEMS, INC. reassignment ALARIS MEDICAL SYSTEMS, INC. SECURITY AGREEMENT Assignors: HSBC BANK USA
Assigned to CITICORP NORTH AMERICA, INC. reassignment CITICORP NORTH AMERICA, INC. SECURITY AGREEMENT Assignors: ALARIS MEDICAL SYSTEMS, INC.
Assigned to ALARIS MEDICAL SYSTEMS, INC. reassignment ALARIS MEDICAL SYSTEMS, INC. RELEASE OF SECURITY AGREEMENT Assignors: CITICORP NORTH AMERICA, INC.
Assigned to CARDINAL HEALTH 303, INC. reassignment CARDINAL HEALTH 303, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALARIS MEDICAL SYSTEMS, INC.
Assigned to CAREFUSION 303, INC. reassignment CAREFUSION 303, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CARDINAL HEALTH 303, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/082Machines, pumps, or pumping installations having flexible working members having tubular flexible members the tubular flexible member being pressed against a wall by a number of elements, each having an alternating movement in a direction perpendicular to the axes of the tubular member and each having its own driving mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0213Pulses per unit of time (pulse motor)

Definitions

  • the present invention relates generally to a system and method for controlling the flow of fluids through a conduit, and in particular to controlling a pump acting on a conduit for increasing the uniformity of the fluid flow through the conduit.
  • a pumping mechanism engages a length of conduit or tubing of a flexible administration set to pump the parenteral fluid to the patient at a selected flow rate.
  • a peristaltic pump is one commonly used type of pumping mechanism and employs the sequential occlusion of the administration set tubing to move the fluid through the tubing to the patient.
  • Linear-type peristaltic pumps typically include a row of adjacent, reciprocating pumping fingers that are sequentially urged against the fluid administration set tubing to occlude adjacent segments of that tubing in a wave-like action to force fluid through the tubing.
  • the reciprocating, sequential motion of the fingers is accomplished in one arrangement by the use of a cam shaft rotated by a drive motor.
  • Disposed along the length of the cam shaft are a plurality of adjacent cams having generally symmetrical lobe geometries with one cam operating each finger.
  • the cams are disposed along the cam shaft so that adjacent lobes project at different angular positions relative to the cam shaft.
  • the fingers in turn advance and retract sequentially in accordance with the angular positions of the respective cam lobes and rotation of the cam shaft.
  • the drive motor typically comprises a step motor having a certain number of motor steps per complete rotation of its armature; for example, two-hundred steps per 360 degrees of rotation.
  • a pump cycle is defined as a complete cycle of the pumping mechanism. For example, in the case of a twelve-finger linear peristaltic pump, a pump cycle is complete when all twelve fingers have engaged the fluid conduit and returned to the positions they had at the start of the cycle. In many such systems, when the pump mechanism has completed a full cycle the step motor will have also traveled through 360 degrees of rotation, thereby causing it to have travelled through all of its steps in that rotation.
  • step volume a discrete volume of fluid or “step volume” being pumped through the conduit.
  • An inherent characteristic of linear peristaltic pumps is that step volumes vary from other step to step, and at certain points over a pump cycle the step volume may even be negative (i.e., reverse flow). This reverse flow results when the outlet side fingers of the linear peristaltic pump are retracted from the tubing and a reverse flow surge backfills the tubing pumping segment due to a pressure difference between the pumping segment and the downstream segment.
  • microstepping In part to address concerns for low flow rates, a motor drive technique known as “microstepping” was developed, wherein each motor step was subdivided into a series of smaller microsteps. For example, each motor step might be subdivided into up to eight different microsteps. Those microsteps could then be grouped into “packets” of microsteps, with each packet having essentially the same volume as other packets.
  • Microstepping has been found to increase flow uniformity and significantly reduce motor noise. Microstepping involves driving the step motor through a step with a series of current magnitude states that generate small angular displacements of the field vector position. The sum of these displacements equals that of one step. Because instantaneous torque is approximately a sinusoidal function of angular displacement of a motor's field vector position from its rotor position, a smaller angular displacement results in a lower instantaneous torque. A lower instantaneous torque generates an angular acceleration at the leading edge of each “microstep” smaller than that generated at the leading edge of each step in “full step” drive mode.
  • the motor can instead moves through a series of distinct incremental microsteps, each of which involves only a portion of the movement turn of an entire step.
  • the duration of each microstep was typically fixed at a nominal value, such as 2.36 milliseconds.
  • An entire packet of microsteps would often be made in relatively rapid succession, followed by a “non-flow time” during which no motor movement would occur.
  • the average flowrate was adjusted by reducing or increasing the volume in the packets (i.e., by adjusting the number of microsteps in each packets), and also by adjusting the non-flow time (i.e., the time between microsteps in which the motor was not moving).
  • the non-flow period could be actively varied in order to change the average flow rate as well as to enhance other system functions.
  • U.S. patent application Ser. No. 08/688,698 to Butterfield entitled FLUID FLOW RESISTANCE MONITORING SYSTEM, which is incorporated herein by reference in its entirety, describes a system that varies fluid delivery, including non-flow periods, using a pseudorandom code.
  • the non-flow time might become relatively large.
  • a desired flow rate of 0.1 ml/hr might involve a non-flow period on the order of 200 seconds.
  • ECRI Emergency Care Research Institute
  • the present invention provides a system and method for controlling the flow of fluid in a conduit acted on by a pumping mechanism by controlling the movement of the pumping mechanism to obtain increased flow uniformity.
  • a system for controlling the flow of fluid through a conduit in response to a selected flow rate to provide more uniform flow comprising a pumping mechanism acting on the conduit to control the flow of the fluid through the conduit, the pumping mechanism including a plurality of pumping devices that compress the conduit in a predetermined pumping pattern to cause fluid movement through the conduit, the mechanism moving in successive steps of movement of the pumping devices through a complete pumping cycle.
  • a memory in which is stored a quantity of fluid that flows through the conduit corresponding to each movement step of the pumping mechanism; and a processor is adapted to select and group successive steps of movement of the pumping devices in packets to pump as close to the target flow volume as possible in each packet of steps; the processor being further adapted divide the steps into microsteps and to cause the pump motor to drive through the microsteps so as to having within each packet microsteps with equal periods to the other microstep periods in that packet.
  • the pumping mechanism moves through the microsteps assigned to each packet during all or substantially all of the packet time period, so that the waiting period during which the mechanism does not move is minimized or eliminated.
  • the pumping mechanism comprises a step motor driving the pumping devices into and out of contact with the fluid conduit in the predetermined pattern to cause fluid to flow through the conduit, the memory stores a volume of fluid flow through the conduit that corresponds to each step of the step motor, wherein the processor controls the step motor to move in movement microsteps having microstep periods that are determined as a function of the flow volume for the microstep period and in the particular packet.
  • the processor selects the microstep period based on the flow rate, with the length of the microstep period selected being inversely proportional to the flow rate selected.
  • the pumping mechanism passes at high or maximum speed through a series of pump steps during which the sum total flow is essentially zero.
  • FIG. 1 is a polar graph of the volume pumped per motor step over one pump cycle of a common linear peristaltic pump
  • FIG. 2 is a linear graphical representation of the pump cycle shown in FIG. 1;
  • FIG. 3 is a graphical representation of fluid flow superimposed over packet time periods with a substantial waiting period
  • FIG. 4 is a graphical representation of fluid flow superimposed over packet time periods where the waiting period is relatively small.
  • FIG. 5 is a schematic illustration of a linear peristaltic fluid delivery system embodying features of the invention and employing a position sensor and step motor under processor control to move parenteral fluid from a fluid reservoir to a patient.
  • FIGS. 1 and 2 a pump cycle flow pattern for a typical linear peristaltic pump, with the pump having a motor cycle of 200 steps.
  • FIG. 1 shows a polar graph of the pump cycle flow pattern
  • FIG. 2 shows a linear graph of the same pattern.
  • step volume the volume pumped by that step (step volume) can be determined. Step volumes can be determined by means well known to those skilled in the art, such as by gravimetric measurement.
  • FIG. 2 presents the same data as FIG. 1 except in a linear graphical format.
  • Individual motor steps 10 are shown beginning at a reference point “0” defined at the intersection of the X and Y axes and each subsequent motor step is represented along the X-axis.
  • the pump cycle flow pattern 12 resulting from the individual step volumes pumped corresponding to each motor step rotated is shown.
  • Zero flow is represented by the X-axis 22
  • positive flow is represented by the positive Y-axis 24
  • negative flow is represented by the negative Y-axis 26 .
  • a net reverse or negative flow period 28 is also illustrated.
  • different volumes are pumped per step during the pump cycle 30 .
  • Increased flow uniformity can be achieved by dividing motor steps into microsteps and then grouping those microsteps into “packets” having equal periods T P and generally equal fluid volumes Q P , as set forth in FIG. 3.
  • packets are composed of four, five, and two microsteps 32 , respectively.
  • the area under each microstep corresponds to the fluid flow volume Q MS for that microstep, with the sum of the fluid flow volumes within each packet (i.e., Q P ) being approximately the same as the total volume for the other packets.
  • the grouping or “packetizing” may actually be conducted at the step level, whereby different steps are assigned to packets, and the steps are then broken into smaller microsteps within the packet. Because different steps and microsteps can have different volumes Q S , Q MS , the number of steps and microsteps can vary from packet to packet to maintain generally equal packet fluid volumes Q P .
  • the packet volume Q P for a particular packet is thus defined as the sum of all step and/or microstep volumes in that packet, as follows:
  • the packet volume is usually not precisely equal from packet to packet.
  • the packet volume Q P can be held relatively constant from packet to packet, even where the step and microstep volumes Q S , Q MS vary widely.
  • packets are assigned at the step level, and the steps are then divided into microsteps.
  • different steps may be divided into different numbers of microsteps. For example, the first step in a packet may be divided into an initial large number of microsteps, the second divided into half as many microsteps, the third into one-fourth as many microsteps, and so on, with the number of microsteps per step decreasing until a single microstep per step is used.
  • the process is reversed, with the third-to-last step being divided into the same number of steps as the third step, the second-to-last being divided into the same number of microsteps as was the second step, and the last step being divided into the same initial large number as was the first step.
  • the steps are broken into microsteps as set forth in Table A: NUMBER OF CORRESPONDING STEP # MICROSTEPS 1 8 2 4 3 2 4 1 5 1 6 1 7 2 8 4 9 8
  • each step may be divided into the same number of microsteps. For example, all steps might be divided into 4 microsteps.
  • microsteps 32 each have fixed, generally identical (and relatively small) periods T MS , as shown by way of example in FIG. 3.
  • Microstep periods for typical pumps are on the order of just a few milliseconds.
  • a relatively large waiting period of pump inactivity T W can be used to extend the packet period T P to the desired value.
  • the waiting period T W varies from packet to packet, depending on the number of microsteps in the packet.
  • the waiting period T W can become quite large when the microstep periods T MS are small. For example, for a flow rate of 0.1 ml/hr can involve a waiting period T W (i.e., non-flow period) on the order of 200 seconds.
  • the current invention eliminates or minimizes the waiting period T W by enlarging the individual microstep periods T MS .
  • the microstep periods T MS are extended so that, in total within a packet, they encompass all or substantially all of the packet period T P , thereby eliminating or at least minimizing the waiting period T W .
  • the motor may not actually be moving during the entirety of each microstep period T MS . Due to the mechanical and electrical characteristics and behavior of step motors, microstep movement is usually not consistent throughout the microstep period T MS . For example, as depicted in FIG.
  • the microstep may involve substantial motor movement at the very beginning of the microstep period T MS , with that movement slowing down afterward so that toward the end of the microstep period T MS there may in fact be little or no movement of the motor.
  • This time of non-movement is generally small, however, and does not create substantial non-flow times.
  • the waiting period T W at the end of each packet is not completely eliminated, but is instead brought down to a very low value.
  • the waiting period T W is held generally constant, preferably at a very low value, from packet to packet. This is in contrast to systems that hold the step or microstep period T MS constant and instead vary the waiting period T W to achieve desired flow rates.
  • the waiting period T W is so small as to almost negligible.
  • the microstep periods T MS are generally constant within each particular packet, with the microstep periods T MS in a packet generally equal to the packet period T P divided by the number of microsteps in that period. For example, in Packet 1 from FIG. 4, there are 4 microsteps, so that each microstep period T MS 1 is equal to or about 1 ⁇ 4 of the total packet period T P . For packet 2 , which has 5 microsteps, the microstep period T MS 2 is equal to about 1 ⁇ 5 of the total packet period T P .
  • the microstep period is generally defined as follows:
  • N MS is the number of microsteps in the packet.
  • the microstep period could be determined for each microstep individually, possibly taking into account the volume delivered in the particular microstep.
  • the microstep period T MS may be a function of the total packet period T P , the total volume delivered in the packet Q P , and the volume delivered by the particular microstep Q MS .
  • An equation such as the following might be employed:
  • T MS T P *( Q MS /Q P ) (4)
  • the system can increase the number of microsteps in each packet (thereby increasing the packet volume Q P ). Alternatively (or additionally), the system can increase the flow rate by decreasing the packet period T P . To decrease the flow rate, the system can decrease the number of microsteps per packet and/or increase the packet period T P .
  • the packet volume Q P (and therefore the number of microsteps) in each packet is held at a generally constant value for all flow rates in specific range.
  • the packet volume Q P is maintained at the 5-6 ⁇ level for flow rates under 50 ml/hr.
  • one revolution of the pump mechanism usually delivers in the range of about 165 to 200 microliters. Thus, it takes about five or so complete revolutions of the pump mechanism to deliver a milliliter of fluid. These five or so complete revolutions involve over 1000 steps, so that delivery of a milliliter of fluid is spread across over 1000 steps.
  • a significant number of back-to-back steps in each revolution do not, in total, produce significant fluid flow. For example, in the pump cycle flow pattern depicted in FIG. 1, the arc identified as 21 produces, in total, essentially zero fluid flow.
  • FIG. 5 is a block diagram of a fluid delivery system 40 incorporating aspects of the current invention.
  • the fluid delivery system includes a fluid delivery conduit 42 acted upon by a pumping mechanism 46 driven by a pump motor 44 .
  • the pumping mechanism 46 comprises a rotating cam shaft 48 coupled to the pump motor 44 and moving a series of peristaltic elements 50 .
  • the peristaltic elements 50 operate on the conduit 42 to move fluid from a fluid source 52 , through the conduit 42 , and into a patient 54 via a cannula 56 .
  • a user input device 58 such as a keypad, provides operator instructions, such as flow rate selection, to a processor 60 .
  • the processor 60 controls the operation of the pump motor 44 driving the pumping mechanism 46 .
  • a motor position sensor 62 determines the position of the motor 44 and pumping mechanism 46 and provides a position signal to the processor 60 .
  • a memory 64 may be provided to store and provide appropriate information, such as tables of information relating to volume per step and/or microstep.
  • the system may include various elements for monitoring system parameters, such as those set forth in pending U.S. patent application Ser. Nos. 08/688,698 and 08/526,468.
  • the system may include a pressure sensor 66 coupled to the conduit 42 to sense pressure in the conduit.
  • An analog-to-digital converter 68 (“A-to-D”) receives the analog pressure output signals from the sensor 66 and converts them to a digital format at a particular sample rate controlled by the processor 60 .
  • the processor 60 receives the digital pressure signals, processes them as described in more detail below and calculates the resistance to flow.
  • a display 70 may be included to present system information, such as resistance or flow rate, and one or more alarms 72 may be provided to indicate an unsatisfactory operational parameter.
  • the selection of a flow rate is made at the keypad 58 and is received by the processor 60 .
  • the user may also select at the keypad 58 between operational modes, such as variable pressure mode (for low flows where high flow uniformity is critical) and resistance monitoring mode (such as the resistance monitoring mode described in pending U.S. patent application Ser. No. 08/688,698).
  • a fluid delivery system in accordance with the current invention may include one or more modes of operation, with use of the increased flow uniformity elements and method steps only allowed during certain of the operational modes.
  • a fluid delivery system may have a first mode, such as a resistance monitoring mode, during which monitoring of system parameters such as resistance might be interfered with by the uniformity elements and methods. Accordingly, the system might prohibit use of the heightened flow uniformity elements and methods during operation in the first mode.
  • a fluid delivery system may have a second mode, such as a variable pressure mode, during which the system permits operation of the uniformity elements and methods.
  • the system will not allow the user to select incompatible combinations of flow rates and operational modes.
  • the use of a heightened flow uniformity mode may be restricted to flow rates of 50 ml/hr or less. Accordingly, the system would not allow the user to select a combination of a heightened flow uniformity mode with a flow rate over 50 ml/hr.

Abstract

A system for increasing the volumetric flow uniformity of fluid pumped through a conduit by an infusion pump. A pumping mechanism operates in identifiable step movements that are broken down into microstep movements that are then grouped into packets. The pumping mechanism controls the period of each microstep, so that the sum of the microstep periods in a packet is essentially equal to the packet period, with little or no waiting time on the motor. The motor preferably begins moving the assigned microsteps in each packet immediately upon the beginning of the time period, but controls the period of the microsteps for that packet.

Description

    BACKGROUND
  • The present invention relates generally to a system and method for controlling the flow of fluids through a conduit, and in particular to controlling a pump acting on a conduit for increasing the uniformity of the fluid flow through the conduit. [0001]
  • In certain systems used for infusing parenteral fluids intravenously to a patient, a pumping mechanism engages a length of conduit or tubing of a flexible administration set to pump the parenteral fluid to the patient at a selected flow rate. A peristaltic pump is one commonly used type of pumping mechanism and employs the sequential occlusion of the administration set tubing to move the fluid through the tubing to the patient. [0002]
  • Linear-type peristaltic pumps typically include a row of adjacent, reciprocating pumping fingers that are sequentially urged against the fluid administration set tubing to occlude adjacent segments of that tubing in a wave-like action to force fluid through the tubing. The reciprocating, sequential motion of the fingers is accomplished in one arrangement by the use of a cam shaft rotated by a drive motor. Disposed along the length of the cam shaft are a plurality of adjacent cams having generally symmetrical lobe geometries with one cam operating each finger. The cams are disposed along the cam shaft so that adjacent lobes project at different angular positions relative to the cam shaft. The fingers in turn advance and retract sequentially in accordance with the angular positions of the respective cam lobes and rotation of the cam shaft. [0003]
  • The drive motor typically comprises a step motor having a certain number of motor steps per complete rotation of its armature; for example, two-hundred steps per 360 degrees of rotation. Typically, a pump cycle is defined as a complete cycle of the pumping mechanism. For example, in the case of a twelve-finger linear peristaltic pump, a pump cycle is complete when all twelve fingers have engaged the fluid conduit and returned to the positions they had at the start of the cycle. In many such systems, when the pump mechanism has completed a full cycle the step motor will have also traveled through 360 degrees of rotation, thereby causing it to have travelled through all of its steps in that rotation. [0004]
  • Each incremental movement of the motor causes a corresponding incremental movement of the cams and fingers and results in a discrete volume of fluid or “step volume” being pumped through the conduit. An inherent characteristic of linear peristaltic pumps is that step volumes vary from other step to step, and at certain points over a pump cycle the step volume may even be negative (i.e., reverse flow). This reverse flow results when the outlet side fingers of the linear peristaltic pump are retracted from the tubing and a reverse flow surge backfills the tubing pumping segment due to a pressure difference between the pumping segment and the downstream segment. [0005]
  • In one effort to increase the flow uniformity within a peristaltic pump cycle, the design of the pumping mechanism was tailored. For example, tailored, non-symmetrical cam lobes have been developed to accelerate, decelerate or limit the advancement of the pumping fingers as they engage and disengage segments of the tubing. Some of these designs have resulted in increased uniformity of volumes pumped per motor step at a particular design flow rate. However, it has been found that the effectiveness of these designs decreases at flow rates that differ significantly from the design flow rate. [0006]
  • Another approach to increasing flow uniformity is described in U.S. Pat. No. 5,716,194 to Butterfield et al., entitled [0007] SYSTEM FOR INCREASING FLOW UNIFORMITY, the contents of which are incorporated herein by reference. In U.S. Pat. No. 5,716,194, flow uniformity was enhanced by grouping several adjacent steps into larger “supersteps,” with each superstep comprised of a group of steps. By carefully grouping of the steps, supersteps can be created in such a way that each superstep has essentially the same volume of fluid as the other supersteps. For example, one superstep may consist of 7 relatively low-volume motor steps, while another superstep may consist of 3 larger-volume motor steps. By associating more of the low-volume motor steps on the first superstep, the total volume of the first superstep approximately equals the total volume of the second superstep. With supersteps of generally equal volume and period, flow uniformity is enhanced.
  • For lower flow rates, the use of such supersteps can require long pauses in pump operation between the steps. A single motor step may, for example, produce a bolus of fluid which, to produce flow at the desired flow rate, requires substantial time to elapse before the next motor step occurs. Moreover, in some cases, even with long pauses between steps, a particularly large-volume step may cause the system to momentarily exceed the desired flow rate. The problem of such large-volume steps could be increased by the use of supersteps that consist of more than one step. [0008]
  • Various modifications to fluid pump drive systems can be made to address uniformity at low flow rates, including the addition of a gear train and/or development of a pump having a greater number of steps per revolution. Such modifications can, however, be expensive in that they typically require development of an entirely new pump mechanism. [0009]
  • In part to address concerns for low flow rates, a motor drive technique known as “microstepping” was developed, wherein each motor step was subdivided into a series of smaller microsteps. For example, each motor step might be subdivided into up to eight different microsteps. Those microsteps could then be grouped into “packets” of microsteps, with each packet having essentially the same volume as other packets. [0010]
  • Microstepping has been found to increase flow uniformity and significantly reduce motor noise. Microstepping involves driving the step motor through a step with a series of current magnitude states that generate small angular displacements of the field vector position. The sum of these displacements equals that of one step. Because instantaneous torque is approximately a sinusoidal function of angular displacement of a motor's field vector position from its rotor position, a smaller angular displacement results in a lower instantaneous torque. A lower instantaneous torque generates an angular acceleration at the leading edge of each “microstep” smaller than that generated at the leading edge of each step in “full step” drive mode. The effect is to spread the large acceleration that normally occurs at the beginning of a step over the entire step as a series of small accelerations, thus reducing the level of acoustic noise. Thus, rather than turning through an entire step in near-instantaneous fashion, the motor can instead moves through a series of distinct incremental microsteps, each of which involves only a portion of the movement turn of an entire step. [0011]
  • Several existing systems make use of microsteps in various drive motors, including fluid pump motors. For example, U.S. patent application Ser. No. 08/526,468 to Holdaway, entitled “[0012] OPEN-LOOP STEP MOTOR CONTROL SYSTEM,” which is incorporated herein by reference in its entirety, describes using microsteps in driving an infusion pump step motor.
  • In existing implementations, the duration of each microstep was typically fixed at a nominal value, such as 2.36 milliseconds. An entire packet of microsteps would often be made in relatively rapid succession, followed by a “non-flow time” during which no motor movement would occur. The average flowrate was adjusted by reducing or increasing the volume in the packets (i.e., by adjusting the number of microsteps in each packets), and also by adjusting the non-flow time (i.e., the time between microsteps in which the motor was not moving). [0013]
  • The non-flow period could be actively varied in order to change the average flow rate as well as to enhance other system functions. For example, U.S. patent application Ser. No. 08/688,698 to Butterfield, entitled [0014] FLUID FLOW RESISTANCE MONITORING SYSTEM, which is incorporated herein by reference in its entirety, describes a system that varies fluid delivery, including non-flow periods, using a pseudorandom code. For very low flow rates, the non-flow time might become relatively large. For example, a desired flow rate of 0.1 ml/hr might involve a non-flow period on the order of 200 seconds.
  • In fluid driving systems, there are circumstances wherein maximum flow uniformity is desirable. For example, in parenteral infusion of some fluids that require very low flow rates, such as certain fast acting (i.e., short half-life) drugs, it can be desirable to maintain minimal fluctuation of the instantaneous flow rate. This need for minimal fluctuation of the flow rate can become most acute in the lower ranges of flow typically produced by commercial peristaltic infusion devices, such as the range from 0.1 to 1.0 ml/hr. [0015]
  • Some organizations, such as the Emergency Care Research Institute (ECRI), have promulgated ratings of flow uniformity based on the interval between “flow steps” at the lowest flow rate achieved. Such ratings, although typically somewhat indefinite, can provide useful guidelines. For example, ECRI rates an infusion pumps flow uniformity as “excellent” if less than 20 seconds elapse between “flow steps” at the “lowest rate programmable.” Assuming that the ECRI rating is based on having steps of equal volume, many current commercial devices are far from meeting such criteria. [0016]
  • Hence those skilled in the art have recognized the need for increasing flow uniformity, particularly at low flow rates. The present invention fulfills these needs and others. [0017]
  • SUMMARY OF THE INVENTION
  • Briefly, and in general terms, the present invention provides a system and method for controlling the flow of fluid in a conduit acted on by a pumping mechanism by controlling the movement of the pumping mechanism to obtain increased flow uniformity. In one aspect, a system for controlling the flow of fluid through a conduit in response to a selected flow rate to provide more uniform flow is provided wherein the system comprises a pumping mechanism acting on the conduit to control the flow of the fluid through the conduit, the pumping mechanism including a plurality of pumping devices that compress the conduit in a predetermined pumping pattern to cause fluid movement through the conduit, the mechanism moving in successive steps of movement of the pumping devices through a complete pumping cycle. Included is a memory in which is stored a quantity of fluid that flows through the conduit corresponding to each movement step of the pumping mechanism; and a processor is adapted to select and group successive steps of movement of the pumping devices in packets to pump as close to the target flow volume as possible in each packet of steps; the processor being further adapted divide the steps into microsteps and to cause the pump motor to drive through the microsteps so as to having within each packet microsteps with equal periods to the other microstep periods in that packet. [0018]
  • In a further aspect, the pumping mechanism moves through the microsteps assigned to each packet during all or substantially all of the packet time period, so that the waiting period during which the mechanism does not move is minimized or eliminated. [0019]
  • In a more detailed aspect, the pumping mechanism comprises a step motor driving the pumping devices into and out of contact with the fluid conduit in the predetermined pattern to cause fluid to flow through the conduit, the memory stores a volume of fluid flow through the conduit that corresponds to each step of the step motor, wherein the processor controls the step motor to move in movement microsteps having microstep periods that are determined as a function of the flow volume for the microstep period and in the particular packet. [0020]
  • In yet another aspect, the processor selects the microstep period based on the flow rate, with the length of the microstep period selected being inversely proportional to the flow rate selected. [0021]
  • In yet another aspect, the pumping mechanism passes at high or maximum speed through a series of pump steps during which the sum total flow is essentially zero. [0022]
  • Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the features of the invention. [0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a polar graph of the volume pumped per motor step over one pump cycle of a common linear peristaltic pump; [0024]
  • FIG. 2 is a linear graphical representation of the pump cycle shown in FIG. 1; [0025]
  • FIG. 3 is a graphical representation of fluid flow superimposed over packet time periods with a substantial waiting period; [0026]
  • FIG. 4 is a graphical representation of fluid flow superimposed over packet time periods where the waiting period is relatively small; and [0027]
  • FIG. 5 is a schematic illustration of a linear peristaltic fluid delivery system embodying features of the invention and employing a position sensor and step motor under processor control to move parenteral fluid from a fluid reservoir to a patient. [0028]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings with more particularity, wherein like reference numerals in the separate views indicate like or corresponding elements, there is shown in FIGS. 1 and 2 a pump cycle flow pattern for a typical linear peristaltic pump, with the pump having a motor cycle of 200 steps. FIG. 1 shows a polar graph of the pump cycle flow pattern, while FIG. 2 shows a linear graph of the same pattern. [0029]
  • In FIG. 1, individual motor steps [0030] 10 are shown beginning at a reference point “0” and sequentially move in equal angular increments in a clockwise direction over a complete 200-step rotation returning to the reference point “0”. The pump cycle flow pattern 12 results. Zero flow is represented by a circle 14, positive flow 16 is represented outside the circle, and negative flow 18 is represented inside the circle. A net reverse or negative flow period is illustrated by the arc 20, with a net zero flow period illustrated by the arc 21. By referring to the portion of the pattern corresponding to a particular motor step, the volume pumped by that step (step volume) can be determined. Step volumes can be determined by means well known to those skilled in the art, such as by gravimetric measurement.
  • FIG. 2 presents the same data as FIG. 1 except in a linear graphical format. Individual motor steps [0031] 10 are shown beginning at a reference point “0” defined at the intersection of the X and Y axes and each subsequent motor step is represented along the X-axis. The pump cycle flow pattern 12 resulting from the individual step volumes pumped corresponding to each motor step rotated is shown. Zero flow is represented by the X-axis 22, positive flow is represented by the positive Y-axis 24 and negative flow is represented by the negative Y-axis 26. A net reverse or negative flow period 28 is also illustrated. As is apparent from an observation of both FIGS. 1 and 2, different volumes are pumped per step during the pump cycle 30.
  • Increased flow uniformity can be achieved by dividing motor steps into microsteps and then grouping those microsteps into “packets” having equal periods T[0032] P and generally equal fluid volumes QP, as set forth in FIG. 3. In the embodiment depicted in FIG. 3, three adjacent packets are composed of four, five, and two microsteps 32, respectively. The area under each microstep corresponds to the fluid flow volume QMS for that microstep, with the sum of the fluid flow volumes within each packet (i.e., QP) being approximately the same as the total volume for the other packets.
  • Note that the grouping or “packetizing” may actually be conducted at the step level, whereby different steps are assigned to packets, and the steps are then broken into smaller microsteps within the packet. Because different steps and microsteps can have different volumes Q[0033] S, QMS, the number of steps and microsteps can vary from packet to packet to maintain generally equal packet fluid volumes QP. The packet volume QP for a particular packet is thus defined as the sum of all step and/or microstep volumes in that packet, as follows:
  • QP=QΣQS  (1)
  • or [0034]
  • QP=ΣQMS  (2)
  • Because of variations in the step and microstep volumes, the packet volume is usually not precisely equal from packet to packet. However, by carefully selecting and grouping the steps and/or microsteps for each packet, the packet volume Q[0035] P can be held relatively constant from packet to packet, even where the step and microstep volumes QS, QMS vary widely.
  • In one embodiment of the invention, packets are assigned at the step level, and the steps are then divided into microsteps. In a further embodiment, different steps may be divided into different numbers of microsteps. For example, the first step in a packet may be divided into an initial large number of microsteps, the second divided into half as many microsteps, the third into one-fourth as many microsteps, and so on, with the number of microsteps per step decreasing until a single microstep per step is used. At the end of the packet, the process is reversed, with the third-to-last step being divided into the same number of steps as the third step, the second-to-last being divided into the same number of microsteps as was the second step, and the last step being divided into the same initial large number as was the first step. As an example of such an embodiment, in a packet of 9 steps, the steps are broken into microsteps as set forth in Table A: [0036]
    NUMBER OF
    CORRESPONDING
    STEP # MICROSTEPS
    1 8
    2 4
    3 2
    4 1
    5 1
    6 1
    7 2
    8 4
    9 8
  • Noted that the particular embodiment depicted in Table A has a set limit of eight for the number of microsteps into which any step can be divided. [0037]
  • In another embodiment, each step may be divided into the same number of microsteps. For example, all steps might be divided into 4 microsteps. [0038]
  • In typical infusion systems, the pump motor rapidly advances through each microstep, so that microsteps [0039] 32 each have fixed, generally identical (and relatively small) periods TMS, as shown by way of example in FIG. 3. Microstep periods for typical pumps are on the order of just a few milliseconds. Thus, in order to achieve the desired flow rate while maintaining a generally constant packet period TP, a relatively large waiting period of pump inactivity TW can be used to extend the packet period TP to the desired value. In such systems, the waiting period TW varies from packet to packet, depending on the number of microsteps in the packet. As was discussed previously, for low flow rates the waiting period TW can become quite large when the microstep periods TMS are small. For example, for a flow rate of 0.1 ml/hr can involve a waiting period TW (i.e., non-flow period) on the order of 200 seconds.
  • As depicted in FIG. 4, the current invention eliminates or minimizes the waiting period T[0040] W by enlarging the individual microstep periods TMS. By controlling the pump motor to very slowly pass through the microsteps, the microstep periods TMS are extended so that, in total within a packet, they encompass all or substantially all of the packet period TP, thereby eliminating or at least minimizing the waiting period TW. Note that the motor may not actually be moving during the entirety of each microstep period TMS. Due to the mechanical and electrical characteristics and behavior of step motors, microstep movement is usually not consistent throughout the microstep period TMS. For example, as depicted in FIG. 4a, the microstep may involve substantial motor movement at the very beginning of the microstep period TMS, with that movement slowing down afterward so that toward the end of the microstep period TMS there may in fact be little or no movement of the motor. This time of non-movement is generally small, however, and does not create substantial non-flow times.
  • In an embodiment of the invention, the waiting period T[0041] W at the end of each packet is not completely eliminated, but is instead brought down to a very low value. In a further embodiment, the waiting period TW is held generally constant, preferably at a very low value, from packet to packet. This is in contrast to systems that hold the step or microstep period TMS constant and instead vary the waiting period TW to achieve desired flow rates.
  • In the particular embodiment of FIG. 4, the waiting period T[0042] W is so small as to almost negligible. The microstep periods TMS are generally constant within each particular packet, with the microstep periods TMS in a packet generally equal to the packet period TP divided by the number of microsteps in that period. For example, in Packet 1 from FIG. 4, there are 4 microsteps, so that each microstep period TMS 1 is equal to or about ¼ of the total packet period TP. For packet 2, which has 5 microsteps, the microstep period TMS 2 is equal to about ⅕ of the total packet period TP. Thus, the microstep period is generally defined as follows:
  • TMS=TP/NMS  (3)
  • where N[0043] MS is the number of microsteps in the packet.
  • In an alternate embodiment, the microstep period could be determined for each microstep individually, possibly taking into account the volume delivered in the particular microstep. As an example, the microstep period T[0044] MS may be a function of the total packet period TP, the total volume delivered in the packet QP, and the volume delivered by the particular microstep QMS. An equation such as the following might be employed:
  • T MS =T P*(Q MS /Q P)  (4)
  • Information regarding the volumes Q[0045] MS and/or QP might be held in a table that the system processor consults for the various steps and microsteps.
  • To increase the flow rate, the system can increase the number of microsteps in each packet (thereby increasing the packet volume Q[0046] P). Alternatively (or additionally), the system can increase the flow rate by decreasing the packet period TP. To decrease the flow rate, the system can decrease the number of microsteps per packet and/or increase the packet period TP.
  • In a preferred embodiment of the invention, the packet volume Q[0047] P (and therefore the number of microsteps) in each packet is held at a generally constant value for all flow rates in specific range. In a more specific embodiment, the packet volume QP is maintained at the 5-6 μlevel for flow rates under 50 ml/hr. By maintaining the packet volume QP generally constant, the system does not have to redetermine the appropriate number of microsteps for each packet every time the flow rate is changed.
  • In a typical pump mechanism having 200 steps per revolution, one revolution of the pump mechanism usually delivers in the range of about 165 to 200 microliters. Thus, it takes about five or so complete revolutions of the pump mechanism to deliver a milliliter of fluid. These five or so complete revolutions involve over 1000 steps, so that delivery of a milliliter of fluid is spread across over 1000 steps. However, due to the physical characteristics and operation of most peristaltic devices, a significant number of back-to-back steps in each revolution do not, in total, produce significant fluid flow. For example, in the pump cycle flow pattern depicted in FIG. 1, the arc identified as 21 produces, in total, essentially zero fluid flow. Rather than try to apportion these series of low or even negative flow steps out across various packets, it has been found to be effective to simply run the motor at maximum or relatively high speed through the series of steps in [0048] arc 21. For example, the series of steps in the zero sum fluid flow arc might be traversed by the pump in a very short time, on the order of 100 milliseconds. Because the sum total of the flow in the series of steps in arc 21 is zero, such a rapid advancement through those steps helps to enhance the flow uniformity.
  • FIG. 5 is a block diagram of a [0049] fluid delivery system 40 incorporating aspects of the current invention. The fluid delivery system includes a fluid delivery conduit 42 acted upon by a pumping mechanism 46 driven by a pump motor 44. In the embodiment shown, the pumping mechanism 46 comprises a rotating cam shaft 48 coupled to the pump motor 44 and moving a series of peristaltic elements 50. The peristaltic elements 50 operate on the conduit 42 to move fluid from a fluid source 52, through the conduit 42, and into a patient 54 via a cannula 56.
  • A [0050] user input device 58, such as a keypad, provides operator instructions, such as flow rate selection, to a processor 60. The processor 60 controls the operation of the pump motor 44 driving the pumping mechanism 46. A motor position sensor 62 determines the position of the motor 44 and pumping mechanism 46 and provides a position signal to the processor 60. A memory 64 may be provided to store and provide appropriate information, such as tables of information relating to volume per step and/or microstep.
  • The system may include various elements for monitoring system parameters, such as those set forth in pending U.S. patent application Ser. Nos. 08/688,698 and 08/526,468. For example, the system may include a [0051] pressure sensor 66 coupled to the conduit 42 to sense pressure in the conduit. An analog-to-digital converter 68 (“A-to-D”) receives the analog pressure output signals from the sensor 66 and converts them to a digital format at a particular sample rate controlled by the processor 60. The processor 60 receives the digital pressure signals, processes them as described in more detail below and calculates the resistance to flow. A display 70 may be included to present system information, such as resistance or flow rate, and one or more alarms 72 may be provided to indicate an unsatisfactory operational parameter.
  • In the embodiment depicted in FIG. 5, the selection of a flow rate is made at the [0052] keypad 58 and is received by the processor 60. The user may also select at the keypad 58 between operational modes, such as variable pressure mode (for low flows where high flow uniformity is critical) and resistance monitoring mode (such as the resistance monitoring mode described in pending U.S. patent application Ser. No. 08/688,698).
  • A fluid delivery system in accordance with the current invention may include one or more modes of operation, with use of the increased flow uniformity elements and method steps only allowed during certain of the operational modes. For example, a fluid delivery system may have a first mode, such as a resistance monitoring mode, during which monitoring of system parameters such as resistance might be interfered with by the uniformity elements and methods. Accordingly, the system might prohibit use of the heightened flow uniformity elements and methods during operation in the first mode. Such a fluid delivery system may have a second mode, such as a variable pressure mode, during which the system permits operation of the uniformity elements and methods. [0053]
  • In a preferred embodiment, the system will not allow the user to select incompatible combinations of flow rates and operational modes. For example, in a particular embodiment, the use of a heightened flow uniformity mode may be restricted to flow rates of 50 ml/hr or less. Accordingly, the system would not allow the user to select a combination of a heightened flow uniformity mode with a flow rate over 50 ml/hr. [0054]
  • While the invention has been illustrated and described in terms of certain preferred embodiments, it is clear that the invention can be subject to numerous modifications and adaptations within the ability of those skilled in the art. Thus, it should be understood that various changes in form, detail and usage of the present invention may be made without departing from the spirit and scope of the invention. [0055]

Claims (2)

What is claimed is:
1. A system for controlling the flow of fluid in a fluid delivery system, substantially as set forth herein.
2. A method for delivering a fluid in a fluid delivery system, substantially as set forth herein.
US09/794,539 1998-08-03 2001-02-26 System and method for increased flow uniformity Expired - Lifetime US6394771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/794,539 US6394771B2 (en) 1998-08-03 2001-02-26 System and method for increased flow uniformity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/128,302 US6193480B1 (en) 1998-08-03 1998-08-03 System and method for increased flow uniformity
US09/794,539 US6394771B2 (en) 1998-08-03 2001-02-26 System and method for increased flow uniformity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/128,302 Continuation US6193480B1 (en) 1998-08-03 1998-08-03 System and method for increased flow uniformity

Publications (2)

Publication Number Publication Date
US20010007636A1 true US20010007636A1 (en) 2001-07-12
US6394771B2 US6394771B2 (en) 2002-05-28

Family

ID=22434665

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/128,302 Expired - Lifetime US6193480B1 (en) 1998-08-03 1998-08-03 System and method for increased flow uniformity
US09/794,539 Expired - Lifetime US6394771B2 (en) 1998-08-03 2001-02-26 System and method for increased flow uniformity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/128,302 Expired - Lifetime US6193480B1 (en) 1998-08-03 1998-08-03 System and method for increased flow uniformity

Country Status (9)

Country Link
US (2) US6193480B1 (en)
EP (1) EP1105648B1 (en)
JP (1) JP4647784B2 (en)
AT (1) ATE292242T1 (en)
AU (1) AU5544899A (en)
CA (1) CA2338554C (en)
DE (1) DE69924502T2 (en)
ES (1) ES2239851T3 (en)
WO (1) WO2000008337A2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050214129A1 (en) * 2004-03-26 2005-09-29 Greene Howard L Medical infusion pump with closed loop stroke feedback system and method
US20100296955A1 (en) * 2007-09-20 2010-11-25 Fresenius Vial Sas Linear peristaltic pump with fingers and membrane and finger for such a pump
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985870B2 (en) 2002-01-11 2006-01-10 Baxter International Inc. Medication delivery system
US20030204419A1 (en) * 2002-04-30 2003-10-30 Wilkes Gordon J. Automated messaging center system and method for use with a healthcare system
US10173008B2 (en) 2002-01-29 2019-01-08 Baxter International Inc. System and method for communicating with a dialysis machine through a network
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US8234128B2 (en) 2002-04-30 2012-07-31 Baxter International, Inc. System and method for verifying medical device operational parameters
US20030201697A1 (en) * 2002-04-30 2003-10-30 Richardson William R. Storage device for health care facility
US20030225596A1 (en) * 2002-05-31 2003-12-04 Richardson Bill R. Biometric security for access to a storage device for a healthcare facility
US7404809B2 (en) * 2004-10-12 2008-07-29 Iradimed Corporation Non-magnetic medical infusion device
US7267661B2 (en) * 2002-06-17 2007-09-11 Iradimed Corporation Non-magnetic medical infusion device
US7553295B2 (en) 2002-06-17 2009-06-30 Iradimed Corporation Liquid infusion apparatus
DE10246469A1 (en) * 2002-10-04 2004-04-15 Applica Gmbh Pump with peristaltic drive for medical applications, has cam segments with defined ratio between lamella height and stroke
WO2005057344A2 (en) * 2003-12-04 2005-06-23 Irm, Llc Material conveying system including control
US20050180856A1 (en) * 2004-01-14 2005-08-18 Bach David T. Drive technology for peristaltic and rotary pumps
US7338260B2 (en) * 2004-03-17 2008-03-04 Baxier International Inc. System and method for controlling current provided to a stepping motor
JP2010510033A (en) * 2006-11-21 2010-04-02 バクスター・インターナショナル・インコーポレイテッド System and method for remote monitoring and / or management of infusion therapy
US8105282B2 (en) * 2007-07-13 2012-01-31 Iradimed Corporation System and method for communication with an infusion device
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
IT1392231B1 (en) * 2008-10-09 2012-02-22 Ragazzini S R L MANAGEMENT METHOD
US8554579B2 (en) 2008-10-13 2013-10-08 Fht, Inc. Management, reporting and benchmarking of medication preparation
US9677555B2 (en) 2011-12-21 2017-06-13 Deka Products Limited Partnership System, method, and apparatus for infusing fluid
JP5629172B2 (en) * 2010-03-29 2014-11-19 テルモ株式会社 Extravasation detection device and infusion system
US9144644B2 (en) 2011-08-02 2015-09-29 Baxter International Inc. Infusion pump with independently controllable valves and low power operation and methods thereof
US11295846B2 (en) 2011-12-21 2022-04-05 Deka Products Limited Partnership System, method, and apparatus for infusing fluid
US9675756B2 (en) 2011-12-21 2017-06-13 Deka Products Limited Partnership Apparatus for infusing fluid
EP2911641B1 (en) 2012-10-26 2018-10-17 Baxter Corporation Englewood Improved work station for medical dose preparation system
SG11201503190RA (en) 2012-10-26 2015-05-28 Baxter Corp Englewood Improved image acquisition for medical dose preparation system
EP2938371B1 (en) 2012-12-31 2019-08-28 Gambro Lundia AB Occlusion detection in delivery of fluids
CN105979983A (en) 2014-02-11 2016-09-28 史密斯医疗Asd公司 Pump startup algorithms and related systems and methods
EP3161778A4 (en) 2014-06-30 2018-03-14 Baxter Corporation Englewood Managed medical information exchange
CN106794302B (en) 2014-09-18 2020-03-20 德卡产品有限公司 Device and method for infusing fluid through a tube by heating the tube appropriately
US11575673B2 (en) 2014-09-30 2023-02-07 Baxter Corporation Englewood Central user management in a distributed healthcare information management system
US11107574B2 (en) 2014-09-30 2021-08-31 Baxter Corporation Englewood Management of medication preparation with formulary management
WO2016090091A1 (en) 2014-12-05 2016-06-09 Baxter Corporation Englewood Dose preparation data analytics
EP3265989A4 (en) 2015-03-03 2018-10-24 Baxter Corporation Englewood Pharmacy workflow management with integrated alerts
JP6691551B2 (en) 2015-04-15 2020-04-28 ガンブロ・ルンディア・エービーGambro Lundia Ab Treatment system with injector pressure priming
CA2985719C (en) 2015-06-25 2024-03-26 Gambro Lundia Ab Medical device system and method having a distributed database
WO2018114346A1 (en) 2016-12-21 2018-06-28 Gambro Lundia Ab Medical device system including information technology infrastructure having secure cluster domain supporting external domain
AU2018388965A1 (en) 2017-12-19 2020-07-02 Smiths Medical Asd, Inc. Infusion pump systems and methods for administration sets
US11268506B2 (en) 2017-12-22 2022-03-08 Iradimed Corporation Fluid pumps for use in MRI environment
KR20210042378A (en) 2018-08-16 2021-04-19 데카 프로덕츠 리미티드 파트너쉽 Medical pump

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346705A (en) 1980-10-09 1982-08-31 Baxter Travenol Laboratories, Inc. Metering apparatus having rate compensation circuit
US4657486A (en) 1984-01-13 1987-04-14 Stempfle Julius E Portable infusion device
US4653987A (en) 1984-07-06 1987-03-31 Tsuyoshi Tsuji Finger peristaltic infusion pump
US4595495A (en) * 1985-02-22 1986-06-17 Eldex Laboratories, Inc. Programmable solvent delivery system and process
JPS61228872A (en) 1985-04-01 1986-10-13 シャープ株式会社 Liquid drug injection apparatus
JPS6232969A (en) 1985-08-05 1987-02-12 日機装株式会社 Infusion apparatus
US4718576A (en) 1985-12-23 1988-01-12 Oximetrix, Inc. Fluid infusion pumping apparatus
US4795314A (en) 1987-08-24 1989-01-03 Cobe Laboratories, Inc. Condition responsive pump control utilizing integrated, commanded, and sensed flowrate signals
US5074756A (en) 1988-05-17 1991-12-24 Patient Solutions, Inc. Infusion device with disposable elements
US4909710A (en) 1989-10-23 1990-03-20 Fisher Scientific Company Linear peristaltic pump
US5105140A (en) 1990-01-11 1992-04-14 Baxer International Inc. Peristaltic pump motor drive
US5055001A (en) * 1990-03-15 1991-10-08 Abbott Laboratories Volumetric pump with spring-biased cracking valves
US5165874A (en) 1990-05-04 1992-11-24 Block Medical, Inc. Disposable infusion apparatus and peristaltic pump for use therewith
US5078683A (en) 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
GB9104097D0 (en) * 1991-02-27 1991-04-17 Univ Hospital London Dev Corp Computer controlled positive displacement pump for physiological flow stimulation
US5213573A (en) 1991-08-05 1993-05-25 Imed Corporation Iv administration set infiltration monitor
US5716194A (en) 1994-09-12 1998-02-10 Ivac Medical Systems, Inc. System for increasing flow uniformity

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313308B2 (en) * 2004-03-26 2012-11-20 Hospira, Inc. Medical infusion pump with closed loop stroke feedback system and method
US20050214129A1 (en) * 2004-03-26 2005-09-29 Greene Howard L Medical infusion pump with closed loop stroke feedback system and method
US20100296955A1 (en) * 2007-09-20 2010-11-25 Fresenius Vial Sas Linear peristaltic pump with fingers and membrane and finger for such a pump
US8894391B2 (en) * 2007-09-20 2014-11-25 Fresenius Vial Sas Linear peristaltic pump with fingers and membrane and finger for such a pump
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US11599854B2 (en) 2011-08-19 2023-03-07 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11004035B2 (en) 2011-08-19 2021-05-11 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11376361B2 (en) 2011-12-16 2022-07-05 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US11933650B2 (en) 2012-03-30 2024-03-19 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US11623042B2 (en) 2012-07-31 2023-04-11 Icu Medical, Inc. Patient care system for critical medications
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11596737B2 (en) 2013-05-29 2023-03-07 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11433177B2 (en) 2013-05-29 2022-09-06 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11868161B2 (en) 2017-12-27 2024-01-09 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11029911B2 (en) 2017-12-27 2021-06-08 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush

Also Published As

Publication number Publication date
US6394771B2 (en) 2002-05-28
CA2338554A1 (en) 2000-02-17
AU5544899A (en) 2000-02-28
DE69924502T2 (en) 2006-02-16
ATE292242T1 (en) 2005-04-15
ES2239851T3 (en) 2005-10-01
JP2003524720A (en) 2003-08-19
EP1105648A1 (en) 2001-06-13
CA2338554C (en) 2008-12-02
EP1105648B1 (en) 2005-03-30
WO2000008337A2 (en) 2000-02-17
JP4647784B2 (en) 2011-03-09
DE69924502D1 (en) 2005-05-04
US6193480B1 (en) 2001-02-27

Similar Documents

Publication Publication Date Title
US6394771B2 (en) System and method for increased flow uniformity
US5716194A (en) System for increasing flow uniformity
CA2387158C (en) For driving step motors without overshoot
JP3589300B2 (en) Infusion control method by infusion pump
JP4836934B2 (en) System and method for controlling the current provided to a stepping motor
US4810168A (en) Low pulsation pump device
EP0541279A1 (en) Electronically controlled infusion devices and arrangements
US4838860A (en) Infusion pump
US8864474B2 (en) Method and apparatus for a peristaltic pump
RU2005107310A (en) DEVICE FOR SELECTIVE REGULATION OF FLOW RATE OF A FLUID
EP1826404A2 (en) Nutating pump with reduced pulsations in output flow
EP1838964A2 (en) Drive technology for peristaltic and rotary pumps
JP3540010B2 (en) Drive control device for plunger reciprocating pump
JP4092831B2 (en) Liquid feeding device
JPS6321370A (en) Pulsation-free constant flow rate pump
US20220160963A1 (en) Method for setting an operational parameter in a medical device
JPS63309274A (en) Transfusion pump
US20030113220A1 (en) Eccentric device peristaltic pump
JPH0815245A (en) Gradient controller for liquid chromatography
JP2008088827A (en) Rotary displacement pump

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: IISBC BANK USA, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:ALARIS MEDICAL SYSTEMS, INC.;REEL/FRAME:013403/0338

Effective date: 20011016

AS Assignment

Owner name: HSBC BANK USA, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALARIS MEDICAL SYSTEMS, INC.;REEL/FRAME:013484/0017

Effective date: 20021030

AS Assignment

Owner name: ALARIS MEDICAL SYSTEMS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ALARIS MEDICAL, INC.;REEL/FRAME:014201/0592

Effective date: 20030630

Owner name: ALARIS MEDICAL SYSTEMS, INC., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:HSBC BANK USA;REEL/FRAME:014220/0171

Effective date: 20030630

Owner name: ALARIS MEDICAL, INC., CALIFORNIA

Free format text: MERGER;ASSIGNOR:ALARIS MEDICAL SYSTEMS, INC.;REEL/FRAME:014220/0417

Effective date: 20030630

Owner name: CITICORP NORTH AMERICA, INC., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALARIS MEDICAL SYSTEMS, INC.;REEL/FRAME:014220/0315

Effective date: 20030630

AS Assignment

Owner name: ALARIS MEDICAL SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:CITICORP NORTH AMERICA, INC.;REEL/FRAME:015703/0127

Effective date: 20040707

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CARDINAL HEALTH 303, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ALARIS MEDICAL SYSTEMS, INC.;REEL/FRAME:017015/0588

Effective date: 20041013

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CAREFUSION 303, INC.,CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CARDINAL HEALTH 303, INC.;REEL/FRAME:023800/0598

Effective date: 20090801

Owner name: CAREFUSION 303, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CARDINAL HEALTH 303, INC.;REEL/FRAME:023800/0598

Effective date: 20090801

FPAY Fee payment

Year of fee payment: 12