US20010002330A1 - Rolling ball connector - Google Patents

Rolling ball connector Download PDF

Info

Publication number
US20010002330A1
US20010002330A1 US09768112 US76811201A US2001002330A1 US 20010002330 A1 US20010002330 A1 US 20010002330A1 US 09768112 US09768112 US 09768112 US 76811201 A US76811201 A US 76811201A US 2001002330 A1 US2001002330 A1 US 2001002330A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
recited
semiconductor assembly
substrate
comprises
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09768112
Other versions
US6358627B2 (en )
Inventor
Joseph Benenati
Claude Bertin
William Chen
Thomas Dinan
Wayne Ellis
Wayne Howell
John Knickerbocker
Mark Pierson
William Tonti
Jerzy Zalesinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries Inc
Original Assignee
Benenati Joseph A.
Bertin Claude L.
Chen William T.
Dinan Thomas E.
Ellis Wayne F.
Howell Wayne J.
Knickerbocker John U.
Pierson Mark V.
Tonti William R.
Zalesinski Jerzy M.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/1319Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0233Deformable particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10234Metallic balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10992Using different connection materials, e.g. different solders, for the same connection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness

Abstract

An integrated circuit assembly has pads of a chip electrically connected to pads of a substrate with rolling metal balls. A pliable material bonds the balls in movable contact with pads of the chip and substrate. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding thermal stress altogether. Reliability of the connections is substantially improved as compared with C4 solder bumps, and chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal mismatch.

Description

    FIELD OF THE INVENTION
  • This invention generally relates to electrical connectors for semiconductor components. More particularly, it relates to a connector between an integrated circuit chip and a substrate. Even more particularly, it relates to a connector that provides a high degree of relief from thermal stress to provide a very reliable joint between an integrated circuit chip or package and a thermal expansion mismatched substrate. [0001]
  • BACKGROUND OF THE INVENTION
  • Reliable interconnection of semiconductor integrated circuit chips and supporting substrates depends on avoiding stresses, including thermal expansion stresses, that can crack interconnects. Usually integrated circuits are mounted on supporting substrates made of material with a coefficient of thermal expansion that differs from the coefficient of thermal expansion of the material of the integrated circuit. For example, the integrated circuit may be formed of monocrystalline silicon with a coefficient of thermal expansion of 2.5×10[0002] −6 per ° C. and the supporting substrate may be formed of a ceramic material, such as alumina, with a coefficient of thermal expansion of 5.8×10−6 per ° C. In operation, the integrated circuit chip generates heat which raises the temperature of both the chip and the supporting substrate. Because of different temperatures and different coefficients of thermal expansion, the chip and substrate expand and contract different amounts. This difference in expansion imposes stresses on connections, such as the relatively rigid C4 solder bumps that are frequently used to provide an area array interconnection between a chip and a substrate. The stress on the solder bumps is directly proportional to (1) the magnitude of the temperature difference, (2) the distance of an individual bump from the neutral or central point of the solder bump array, and (3) the difference in the coefficients of thermal expansion of the material of the semiconductor device and the substrate, and inversely proportional to the height of the solder bond, that is the spacing between the IC chip and the support substrate.
  • Several factors are currently compounding the problem. As the solder bumps become smaller in diameter in order to accommodate the need for a greater density of interconnects between chip and substrate, the overall height of each solder bump decreases, reducing the fatigue life of the solder bumps. In addition, integrated circuit chip sizes are increasing which increases the distance of the outer solder bumps from the neutral point of the solder bump array, which in turn reduces the fatigue life of the solder bump. Furthermore, chips are now being directly mounted on substrates, such as PC boards, that have substantially larger coefficients of thermal expansion than ceramic, adding substantially to the stress on connectors. Thus, a better solution is needed that provides a way to reduce thermal stress and to provide a more reliable electrical connection, and this solution is provided by the following invention. [0003]
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to provide a semiconductor assembly having connections with improved reliability. [0004]
  • It is another object of the present invention to provide a semiconductor assembly having connections that reduce thermal expansion mismatch stress and resist thermal fatigue and cracking due to thermal cycling. [0005]
  • It is another object of the present invention to provide an electrical connection between two substrates wherein a solid conductor in the connection is in substantially movable electrical contact with at least one of the substrates. [0006]
  • It is another object of the present invention to provide a pliable conductive material to facilitate the substantially movable conductor. [0007]
  • It is another object of the present invention to provide a movable conductor that can roll or slide. [0008]
  • It is another object of the present invention to provide a movable conductor that can stretch or bend a magnitude exceeding the elastic limit of a uniform metal. [0009]
  • It is a feature of one embodiment of the present invention that the movable contact is substantially elastic movement. [0010]
  • It is a feature of the present invention that the conductive material is an adhesive that bonds and provides electrical connection while permitting elastic movement of the movable conductor. [0011]
  • It is an advantage of the present invention that thermal stress is avoided despite large disparities in thermal expansion coefficient between chip and substrate. [0012]
  • It is an advantage of the present invention that a semiconductor assembly has good electrical connections while thermal stress is avoided despite large disparities in thermal expansion coefficient between chip and substrate. [0013]
  • These and other objects, features, and advantages of the invention are accomplished by providing a semiconductor assembly comprising a first substrate and a second substrate. The first substrate has a first contact pad and the second substrate has a second contact pad. In addition, the assembly includes a solid conductor and a material bonding the solid conductor wherein the solid conductor is in substantially movable contact with the first contact pad. [0014]
  • In one embodiment an integrated circuit chip has pads electrically connected to pads of a substrate through a metal ball and a pliable material. The pliable material bonds the metal ball in substantially movable contact with the pads. Because the ball is relatively free to move through the pliable material, thermal expansion differences that would ordinarily cause stress in an immovable joint simply cause the ball to roll across the pads as the chip and substrate freely expand or contract at their different rates. Thus, stress is avoided and reliability of the connection is substantially improved as compared with fixed connectors of the prior art. [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features, and advantages of the invention will be apparent from the following detailed description of the invention, as illustrated in the accompanying drawings, in which: [0016]
  • FIG. 1 is a cross sectional view showing a chip and substrate electrically connected by ball conductors and conductive paste; [0017]
  • FIG. 2 is a cross sectional view of a ball conductor comprising a core and a highly conductive coating, the core comprising a base metal or a polymer, the highly conductive coating comprising a noble metal, such as gold; [0018]
  • FIG. 3[0019] a is a cross sectional views of an alternate embodiment in which the ball conductor has conductive paste on one side and a stable fillet on the other side, the stable fillet being solder or a cured conductive adhesive;
  • FIG. 3[0020] b is a cross sectional views of another embodiment in which the ball conductor has stable fillets on both sides, the stable fillet being solder or a cured conductive adhesive;
  • FIG. 3[0021] c is are a cross sectional view of the embodiment of FIG. 3b in a stretched configuration in response to differential thermal expansion of chip and substrate;
  • FIGS. 4[0022] a-4 c are cross sectional views illustrating the steps of fabricating the connection of FIG. 1;
  • FIG. 5[0023] a is a cross sectional view and FIGS. 5b-5 c three dimensional views showing the application of the present invention for chip or wafer burn-in.
  • FIG. 6[0024] a is a cross sectional view showing an embodiment of the invention in which a frame adds mechanical strength;
  • FIG. 6[0025] b is a cross sectional view showing an embodiment of the invention in which stable fillets, such as C4 solder bumps or cured adhesive, add mechanical strength;
  • FIG. 7 is a three dimensional view showing chips mounted on cards according to the present invention; [0026]
  • FIG. 8 is a cross sectional view showing an alternate embodiment of the invention in which conductive adhesive is formed as columns, the ball conductor being embedded in each column; and [0027]
  • FIG. 9[0028] a and 9 b are cross sectional views showing an alternate embodiment of the invention in which a plurality of ball conductors comprising a core and a highly conductive coating are deformed during mounting to ensure connection to all ball conductors.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In one embodiment, the present invention provides an integrated circuit assembly in which pads of a first substrate are electrically connected to pads of a second substrate with rolling metal balls. A pliable material bonds the balls in movable contact with the pads. Because the balls are relatively free to move, thermal expansion differences that would ordinarily cause enormous stresses in the attached joints of the prior art, simply cause rolling of the balls of the present invention, avoiding stress altogether. Thus, reliability of the connections is substantially improved, and silicon chips can be safely directly mounted to such substrates as PC boards, despite substantial thermal expansion mismatch. [0029]
  • Conductive ball [0030] 20 and conductive paste 22 are used to connect each pad 24 of chip 26 with pad 27 of substrate 28, as shown in FIG. 1. Conductive ball 20 preferably has a dimension approximately equal to the width of pad 24, the connection between pad 24 and pad 27, or the separation distance between pad 24 and pad 27, as shown in FIG. 1. Conductive ball 20 can be a solid metal ball, formed of a material such as gold or copper. Conductive ball 20′ can also have a layered structure with base 30 and highly conductive coating 32 as shown in FIG. 2. Base 30 is formed of a base metal, such as copper, aluminum, or iron, or it can be formed of a polymer with significantly greater compliance than a metal or solder, such as silicone filled with particles of alumina or silica. The particles improve the mechanical properties of the ball, making it more stiff. Alternatively, base 30 can be formed of a metal filled polymer, such as silicone filled with gold, silver, or graphite. Although coating 32 is preferred, in this case it may not be necessary to provide a highly conductive coating. Highly conductive coating 32 is preferably a noble metal, such as gold, to avoid corrosion and provide low electrical resistance electrical contact, as is well known in the art. Conductive coating 32 can also be formed of copper, copper-nickel-gold, or another metal. Conductive coating 32 is provided with a thickness in the range from 200A to 100 micrometers, more preferably in the range 0.5 to 5 micrometers.
  • Conductive paste [0031] 22 is formed of a material such as a metal filled conductive paste, for example, Polymer Metal Composite Paste (PMC) and Epo-tek, manufactured by Epoxy Technology. PMC is formed of a high temperature epoxy filled with a metal, such as gold. PMC has an resistivity of 10-30 micro-ohm-cm. and a viscosity of 75,000 to 200,000 PS.
  • Conductive paste [0032] 22 makes electrical contact with pad 24, pad 27, and with conductive ball 20. While continuing to maintain electrical contact with paste 22, conductive ball 20 can roll or otherwise move through conductive paste 22. Preferably, paste 22 wets to ball 20 and maintains this wetting contact to ball 20 as ball 20 moves. Thus, electrical connection between pads 24 and 26 is maintained through paste 22 and ball 20 while chip 26 moves laterally with respect to substrate 28 in response to differential thermal expansion forces. Ball 20 rolls as chip 26 and substrate 28 move. In addition to providing improved reliability with respect to thermal expansion, this embodiment of the invention also provides advantage in that chips are mounted face down without the use of lead containing solder, avoiding a source of alpha particles that can cause soft errors while chip 26 is operating.
  • While providing paste [0033] 22 on both sides of ball 20 allows free movement for both chip 26 and substrate 28 as ball 20 moves through paste 22, substantial movement and stress-free results can also be achieved by providing conductive paste 22 on only one side of ball 20. Stable fillet 38, such as solder or cured conductive adhesive is used on the other side, as shown in FIG. 3a. Conductive adhesives include cured PMC and cured Epo-tek. In the case illustrated in FIG. 3a, conductive ball 20 is fixed to chip 26 with stable fillet 38 while conductive paste is provided between ball 20 and substrate 28. Of course, the roles of chip 26 and substrate 28 can be reversed, and stable fillet 38 can be applied on the side of substrate 28 while paste 22 is applied on the side of chip 26.
  • Furthermore, if ball [0034] 20, 20′ is sufficiently compliant for the size of chip 26, temperature range, and height, stable fillets 38 can be provided on both sides, as shown in FIG. 3b. The ability of ball 20′ to stretch accommodates differential thermal expansion, as shown in FIG. 3c. Gold coated polymer ball 20′ provides enormous compliance compared with standard metal ball 20 or standard lead-tin solder bumps. Alternatively, gold coated polymer ball 20′ can be replaced with a gold coated polymer column to further improve reliability. Thus, in many applications, rolling or sliding of ball 20 can be replaced with stretching or bending of gold coated polymer ball 20′, as shown in FIG. 3c. Because of the enormously greater stretching permitted by polymer ball 20′ as compared with metal ball 20 or a C4 solder bump, a connector formed with polymer ball 20′ is considered to provide a substantially movable contact there between. Ball 20′ can now be attached on both sides with stable fillets 38, such as solder or a cured adhesive while still providing a substantially low-stress, flexible contact. Because of the enormous elastic flexibility of polymer ball 20′, chip 26 and substrate 28 still have substantial freedom to move, the movement stretching gold coated polymer ball 20′ without exceeding its elastic limit. Stable fillets 38 on either side of polymer ball 20′ have advantage in that they provide a strong permanent mechanical connection of chip 26 with substrate 28.
  • Steps in fabrication of the assembly are illustrated in FIGS. 4[0035] a-4 c. In the first step, conductive paste deposit 40 a, is applied to each pad 24 of chip 26, as shown in FIG. 4a. Similarly, a conductive paste deposit is applied to each pad of substrate 28 (not shown). In the next step, vacuum holder 42 is used to pick up array 44 of balls 20 corresponding to the location of pads 24 and 27 on chip 26 and substrate 28. Array 44 of balls 20 is pushed down into paste deposits 40 a, as shown in FIG. 4c, on chip 26 and vacuum is released, providing balls 20 in electrical connection with compressed paste 22, which in turn is electrically connected to pad 24. In the next step, substrate 28, also having paste deposits, is aligned and pressed down on balls 20, as shown in FIG. 1. The mechanical and electrical connection between chip 26 and substrate 28 through ball 20 and paste 22 on either side of ball 20 is now complete. Alternatively, array 44 of balls 20 can first be mounted on substrate 28, and chip 24 mounted thereon.
  • A fabrication technique similar to that illustrated in FIGS. 4[0036] a-4 c can be used to provide a stable fillet on one or both sides of solder ball 20. Stable fillets include conductive polymeric adhesive, conductive epoxy, and solder. In this case, a curing step or elevated temperature reflow step is provided after the ball has been inserted in the deposit of conductive material shown in FIG. 4c. For the embodiment of the invention having cured epoxy on both sides of ball 20, a single curing step can be used to cure the epoxy on both sides. Solder paste can be used to provide solder fillets on one or both sides of ball 20, and in this case, an elevated temperature reflow is used in place of a cure.
  • The present invention is applicable for temporary chip attach for test and burn-in, as shown in FIGS. 5[0037] a-5 d. Individual chips 26 are temporarily mounted on test and burn-in substrates 28′ with the ball 20 and conductive paste 22 connectors of the present invention, as shown in FIGS. 5a and 5 b. Similarly, entire wafer 46 is mounted on a temporary test head 48 with the ball 20 and conductive paste 22 connectors of the present invention, as shown in FIGS. 5c and 5 d. Expansion differences as temperature changes for elevated temperature test or burn-in are accommodated by the movable contacts. After testing and burning-in of chips 26 or wafer 46 is complete, chips 26 or wafer 46 can be removed from test and burn-in substrates 28′ or test head 48. Conductive paste 22 permits disassembly after test and burn-in are complete without any damage to chip 26 and substrate 28 or to wafer 46 and test head 48.
  • While adhesive properties of paste [0038] 22 are sufficient to hold chip 26 in place on substrate 28, mechanical hold-down 50 can also be used, as shown in FIG. 6a to prevent excessive movement of chip 26. Mechanical hold-down 50 is connected to substrate 28 with adhesive or solder layer 52. Space 54 is provided, permitting the small amount of lateral movement of chip 26 needed to accommodate thermal expansion while mechanical hold-down 50 prevents vertical movement. Mechanical hold-down 50 can also serve to electrically shield chip 26 and to provide a heat sink for chip 26. In an alternative embodiment, substantially fixed contacts, such as C4 solder bumps or cured conductive adhesive 56, is used near neutral point 0.000 (or center) of chip 26, providing certain mechanical connection, while rolling ball connectors 20, 20′ are used toward the perimeter of chip 26 to accommodate differential thermal expansion between chip and substrate, as shown in FIG. 6b.
  • Multiple chips connected with movable connectors of the present invention can be provided on a single substrate, as shown in FIG. 7. Substrate [0039] 28 can be a card, flex, ceramic substrate, lead frame, or any other substrate.
  • In addition to stable fillets, conductive adhesive can be formed as columns, [0040] 60 as shown in FIG. 8, to provide a higher standoff and more reliable joint. Conductive ball 20 serves to stiffen column 60 permitting column 60 to taller. Column 60 is formed of electrically conductive adhesive (ECA), such as polymer metal composite paste, an epoxy filled with metal particles, as described herein above. The ECA is first deposited on substrate 28. Then an array of balls is placed with a technique such as vacuum suction cups. ECA is also deposited on matching pads for chip 26 and the chip is aligned and placed on substrate 28.
  • In an alternate embodiment, polymer ball [0041] 20′ of FIG. 2 is provided as shown in FIG. 9a, and then compressed and deformed during mounting, as shown in FIG. 9b, ensuring a good connection as height mismatch among pads is accommodated. Pads 24, 27 are formed of multilevel thin films comprising copper and nickel. The pad surfaces are first roughened by plating palladium dendrites on the nickel pads, as is well known in the art. After ball 20′ is placed between chip pad 24 and substrate pad 27, mechanical force is provided against the roughened pad surfaces to create a reliable interconnection. This technique can be used for a reliable chip-substrate connection or a substrate-printed wiring board connection. Alternatively solder can be used to provide connection between deformable polymer ball 20′ and pads 24, 27. Polymer ball 20′ can also be configured in a shape, such as a column, to increase height and further improve reliability.
  • While several embodiments of the invention, together with modifications thereof, have been described in detail herein and illustrated in the accompanying drawings, it will be evident that various further modifications are possible without departing from the scope of the invention. Nothing in the above specification is intended to limit the invention more narrowly than the appended claims. The examples given are intended only to be illustrative rather than exclusive. [0042]
  • What is claimed is: [0043]

Claims (40)

  1. 1. A semiconductor assembly comprising:
    a first substrate, a second substrate, and a contact there between, said first substrate having a first contact pad, said second substrate having a second contact pad, said contact comprising:
    a solid conductor, said solid conductor having a dimension about equal to a dimension of said contact; and
    a material bonding said solid conductor to said first contact pad wherein said solid conductor is in substantially movable electrical contact with said first contact pad.
  2. 2. A semiconductor assembly as recited in
    claim 1
    , wherein said first substrate comprises an integrated circuit chip, a chip carrier, a printed circuit board, a flex, or a card.
  3. 3. A semiconductor assembly as recited in
    claim 1
    , wherein said second substrate comprises a an integrated circuit chip, a chip carrier, a printed circuit board, a flex, or a card.
  4. 4. A semiconductor assembly as recited in
    claim 1
    , wherein said solid conductor comprises a metal.
  5. 5. A semiconductor assembly as recited in
    claim 4
    , wherein said solid conductor comprises a metal ball.
  6. 6. A semiconductor assembly as recited in
    claim 1
    , wherein said solid conductor comprises a polymer.
  7. 7. A semiconductor assembly as recited in
    claim 6
    , wherein said polymer comprises a conductor coated polymer.
  8. 8. A semiconductor assembly as recited in
    claim 7
    , wherein said conductor coated polymer comprises a ball.
  9. 9. A semiconductor assembly as recited in
    claim 6
    , wherein said polymer comprises a conductive polymer.
  10. 10. A semiconductor assembly as recited in
    claim 9
    , wherein said conductive polymer comprises a metal filled polymer.
  11. 11. A semiconductor assembly as recited in
    claim 6
    , wherein said polymer provides a resilient connector.
  12. 12. A semiconductor assembly as recited in
    claim 1
    , wherein said bonding material comprises a pliable material.
  13. 13. A semiconductor assembly as recited in
    claim 12
    , wherein said pliable material comprises a metal filled epoxy.
  14. 14. A semiconductor assembly as recited in
    claim 1
    , wherein said bonding material provides a stable fillet.
  15. 15. A semiconductor assembly as recited in
    claim 14
    , wherein said stable fillet comprises an adhesive.
  16. 16. A semiconductor assembly as recited in
    claim 15
    , wherein said adhesive comprises a conductive adhesive.
  17. 17. A semiconductor assembly as recited in
    claim 14
    , wherein said stable fillet comprises a solder.
  18. 18. A semiconductor assembly as recited in
    claim 1
    , wherein said substantially movable contact involves rolling.
  19. 19. A semiconductor assembly as recited in
    claim 1
    , wherein said substantially movable contact comprises sliding.
  20. 20. A semiconductor assembly as recited in
    claim 1
    , wherein said substantially movable contact comprises stretching or bending.
  21. 21. A semiconductor assembly as recited in
    claim 20
    , wherein said stretching or bending is of a magnitude exceeding the elastic limit of lead-tin solder.
  22. 22. A semiconductor assembly as recited in
    claim 1
    , further comprising a physical stop to prevent excess chip movement of said first substrate.
  23. 23. A semiconductor assembly as recited in
    claim 1
    , wherein said first contact pad is on a surface, said surface defining a plane, said solid conductor being in movable contact in a direction parallel to said plane.
  24. 24. A semiconductor assembly as recited in
    claim 23
    , wherein said solid conductor is capable of rolling in a direction parallel to said plane.
  25. 25. A semiconductor assembly as recited in
    claim 23
    , wherein said movable contact comprises substantial elastic deformation.
  26. 26. A semiconductor assembly as recited in
    claim 1
    , wherein said substantially movable contact comprises stretching or bending.
  27. 27. A semiconductor assembly as recited in
    claim 1
    , further comprising a plurality of said movable electrical contacts.
  28. 28. A semiconductor assembly as recited in
    claim 27
    , further comprising at least one substantially fixed contact.
  29. 29. A semiconductor assembly as recited in
    claim 28
    , wherein said at least one substantially fixed contact is located near a neutral point of said first substrate.
  30. 30. A semiconductor assembly as recited in
    claim 1
    , further comprising a second material bonding said solid conductor to said second contact pad wherein said solid conductor is in substantially movable electrical contact with said second contact pad.
  31. 31. A semiconductor assembly as recited in
    claim 1
    , further comprising a second material bonding said solid conductor to said second contact pad wherein said solid conductor is in substantially fixed electrical contact with said second contact pad.
  32. 32. A semiconductor assembly as recited in
    claim 1
    , said contact having a height, said dimension being about equal to said height.
  33. 33. A semiconductor assembly as recited in
    claim 1
    , said first pad having a width, said dimension being about equal to said width.
  34. 34. A method of fabricating an assembly, comprising the steps of:
    (a) providing a first substrate and a second substrate, said first substrate having a first contact pad, said second substrate having a second contact pad;
    (b) providing a first material on said first contact pad;
    (c) providing a solid conductor on said first material, said solid conductor having a dimension about equal to a dimension of the contact;
    (d) providing a second material on said second substrate; and
    (e) bonding said second substrate to said solid conductor, wherein said solid conductor is in substantially movable electrical contact with said first contact pad after fabrication is complete.
  35. 35. A method of fabricating as recited in
    claim 34
    , wherein said first substrate comprises a burn-in substrate and said second substrate comprises a chip and wherein said method further comprises the step of burning in said chip.
  36. 36. A method of fabricating as recited in
    claim 35
    , further comprising the step of removing said chip from said substrate and mounting said burned-in chip in a final package.
  37. 37. A method of fabricating as recited in
    claim 34
    , wherein said first substrate comprises a temporary test head and said second substrate comprises a wafer and wherein said method further comprises the step of burning-in said wafer.
  38. 38. A method of fabricating as recited in
    claim 37
    , further comprising the step of removing said wafer from said test head, dicing said burned-in wafer into chips, and mounting said burned-in chip into final packages.
  39. 39. A method of fabricating as recited in
    claim 34
    , wherein said first and second substrates each have an array of contact pads and said providing step (c) comprises providing an array of solid conductors simultaneously, one for each contact pad.
  40. 40. A method of fabricating as recited in
    claim 39
    , wherein said providing step (c) comprises providing each said conductor of said array of solid conductors with a vacuum device having an array of vacuum ports.
US09768112 1999-04-03 2001-01-23 Rolling ball connector Active US6358627B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09303290 US6177729B1 (en) 1999-04-03 1999-04-03 Rolling ball connector
US09768112 US6358627B2 (en) 1999-04-03 2001-01-23 Rolling ball connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09768112 US6358627B2 (en) 1999-04-03 2001-01-23 Rolling ball connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09303290 Division US6177729B1 (en) 1999-04-03 1999-04-03 Rolling ball connector

Publications (2)

Publication Number Publication Date
US20010002330A1 true true US20010002330A1 (en) 2001-05-31
US6358627B2 US6358627B2 (en) 2002-03-19

Family

ID=23171372

Family Applications (2)

Application Number Title Priority Date Filing Date
US09303290 Expired - Fee Related US6177729B1 (en) 1999-04-03 1999-04-03 Rolling ball connector
US09768112 Active US6358627B2 (en) 1999-04-03 2001-01-23 Rolling ball connector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09303290 Expired - Fee Related US6177729B1 (en) 1999-04-03 1999-04-03 Rolling ball connector

Country Status (1)

Country Link
US (2) US6177729B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230824A1 (en) * 2004-04-16 2005-10-20 Elpida Memory, Inc BGA semiconductor device having a dummy bump
US20080268570A1 (en) * 2005-09-22 2008-10-30 Chipmos Technologies Inc. Fabricating process of a chip package structure
US20090127704A1 (en) * 2007-11-20 2009-05-21 Fujitsu Limited Method and System for Providing a Reliable Semiconductor Assembly
US20120112357A1 (en) * 2010-11-05 2012-05-10 Stmicroelectronics, Inc. System and method for relieving stress and improving heat management in a 3d chip stack having an array of inter-stack connections
US20120153426A1 (en) * 2010-12-16 2012-06-21 Tessera Research Llc Void-free wafer bonding using channels
US8653671B2 (en) 2010-11-05 2014-02-18 Stmicroelectronics, Inc. System for relieving stress and improving heat management in a 3D chip stack

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010024127A1 (en) * 1998-03-30 2001-09-27 William E. Bernier Semiconductor testing using electrically conductive adhesives
US7423337B1 (en) * 2002-08-19 2008-09-09 National Semiconductor Corporation Integrated circuit device package having a support coating for improved reliability during temperature cycling
US6352881B1 (en) 1999-07-22 2002-03-05 National Semiconductor Corporation Method and apparatus for forming an underfill adhesive layer
US7394153B2 (en) * 1999-12-17 2008-07-01 Osram Opto Semiconductors Gmbh Encapsulation of electronic devices
WO2001044865A1 (en) 1999-12-17 2001-06-21 Osram Opto Semiconductors Gmbh Improved encapsulation for organic led device
WO2001045140A3 (en) 1999-12-17 2002-01-03 Osram Opto Semiconductors Gmbh Encapsulation for organic led device
US6821888B2 (en) * 2000-07-07 2004-11-23 Chartered Semiconductor Manufacturing Ltd. Method of copper/copper surface bonding using a conducting polymer for application in IC chip bonding
JP3770104B2 (en) * 2001-05-10 2006-04-26 三菱電機株式会社 Electronic device and the joining member
DE10135308B4 (en) * 2001-07-19 2006-01-12 Infineon Technologies Ag The electronic component and corresponding production method
US7301222B1 (en) 2003-02-12 2007-11-27 National Semiconductor Corporation Apparatus for forming a pre-applied underfill adhesive layer for semiconductor wafer level chip-scale packages
US20040256737A1 (en) * 2003-06-20 2004-12-23 Min-Lung Huang [flip-chip package substrate and flip-chip bonding process thereof]
US7242097B2 (en) * 2003-06-30 2007-07-10 Intel Corporation Electromigration barrier layers for solder joints
US20050003650A1 (en) 2003-07-02 2005-01-06 Shriram Ramanathan Three-dimensional stacked substrate arrangements
US20050003652A1 (en) * 2003-07-02 2005-01-06 Shriram Ramanathan Method and apparatus for low temperature copper to copper bonding
US8641913B2 (en) * 2003-10-06 2014-02-04 Tessera, Inc. Fine pitch microcontacts and method for forming thereof
US7495179B2 (en) * 2003-10-06 2009-02-24 Tessera, Inc. Components with posts and pads
US7462936B2 (en) 2003-10-06 2008-12-09 Tessera, Inc. Formation of circuitry with modification of feature height
US7709968B2 (en) * 2003-12-30 2010-05-04 Tessera, Inc. Micro pin grid array with pin motion isolation
US7176043B2 (en) * 2003-12-30 2007-02-13 Tessera, Inc. Microelectronic packages and methods therefor
US8207604B2 (en) * 2003-12-30 2012-06-26 Tessera, Inc. Microelectronic package comprising offset conductive posts on compliant layer
WO2005093816A1 (en) * 2004-03-05 2005-10-06 Infineon Technologies Ag Semiconductor device for radio frequency applications and method for making the same
GB0406434D0 (en) * 2004-03-22 2004-04-28 Dage Prec Ind Ltd High speed pull test device
US7282375B1 (en) 2004-04-14 2007-10-16 National Semiconductor Corporation Wafer level package design that facilitates trimming and testing
US20050258527A1 (en) * 2004-05-24 2005-11-24 Chippac, Inc. Adhesive/spacer island structure for multiple die package
US8552551B2 (en) * 2004-05-24 2013-10-08 Chippac, Inc. Adhesive/spacer island structure for stacking over wire bonded die
US7170187B2 (en) * 2004-08-31 2007-01-30 International Business Machines Corporation Low stress conductive polymer bump
DE102004048095A1 (en) * 2004-09-30 2006-04-06 Carl Zeiss Industrielle Messtechnik Gmbh Stylus and Taststiftwechselhalterung for a coordinate measuring machine
JP5592055B2 (en) 2004-11-03 2014-09-17 テッセラ,インコーポレイテッド Improvement of the laminated packaging
US7361990B2 (en) * 2005-03-17 2008-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing cracking of high-lead or lead-free bumps by matching sizes of contact pads and bump pads
US7221053B2 (en) * 2005-03-21 2007-05-22 Infineon Technologies Ag Integrated device and electronic system
US7825512B2 (en) * 2005-09-12 2010-11-02 Hewlett-Packard Development Company, L.P. Electronic package with compliant electrically-conductive ball interconnect
US8067267B2 (en) * 2005-12-23 2011-11-29 Tessera, Inc. Microelectronic assemblies having very fine pitch stacking
US8058101B2 (en) * 2005-12-23 2011-11-15 Tessera, Inc. Microelectronic packages and methods therefor
US8310060B1 (en) * 2006-04-28 2012-11-13 Utac Thai Limited Lead frame land grid array
KR100833209B1 (en) 2006-11-28 2008-05-28 삼성전자주식회사 Cte mismatch free column type rotation joint and semiconductor device including the same
US9947605B2 (en) 2008-09-04 2018-04-17 UTAC Headquarters Pte. Ltd. Flip chip cavity package
US9761435B1 (en) 2006-12-14 2017-09-12 Utac Thai Limited Flip chip cavity package
US9082607B1 (en) * 2006-12-14 2015-07-14 Utac Thai Limited Molded leadframe substrate semiconductor package
EP2637202A3 (en) 2007-09-28 2014-03-12 Tessera, Inc. Flip chip interconnection with etched posts on a microelectronic element joined to etched posts on a substrate by a fusible metal and corresponding manufacturing method
US20100044860A1 (en) * 2008-08-21 2010-02-25 Tessera Interconnect Materials, Inc. Microelectronic substrate or element having conductive pads and metal posts joined thereto using bond layer
US9011570B2 (en) 2009-07-30 2015-04-21 Lockheed Martin Corporation Articles containing copper nanoparticles and methods for production and use thereof
US9072185B2 (en) * 2009-07-30 2015-06-30 Lockheed Martin Corporation Copper nanoparticle application processes for low temperature printable, flexible/conformal electronics and antennas
US9449900B2 (en) * 2009-07-23 2016-09-20 UTAC Headquarters Pte. Ltd. Leadframe feature to minimize flip-chip semiconductor die collapse during flip-chip reflow
US8486305B2 (en) 2009-11-30 2013-07-16 Lockheed Martin Corporation Nanoparticle composition and methods of making the same
US8575732B2 (en) 2010-03-11 2013-11-05 Utac Thai Limited Leadframe based multi terminal IC package
US8330272B2 (en) 2010-07-08 2012-12-11 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
US9159708B2 (en) 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US8482111B2 (en) 2010-07-19 2013-07-09 Tessera, Inc. Stackable molded microelectronic packages
US8580607B2 (en) 2010-07-27 2013-11-12 Tessera, Inc. Microelectronic packages with nanoparticle joining
KR101075241B1 (en) 2010-11-15 2011-11-01 테세라, 인코포레이티드 Microelectronic package with terminals on dielectric mass
US8853558B2 (en) 2010-12-10 2014-10-07 Tessera, Inc. Interconnect structure
US20120146206A1 (en) 2010-12-13 2012-06-14 Tessera Research Llc Pin attachment
US20120161312A1 (en) * 2010-12-23 2012-06-28 Hossain Md Altaf Non-solder metal bumps to reduce package height
KR101128063B1 (en) 2011-05-03 2012-04-23 테세라, 인코포레이티드 Package-on-package assembly with wire bonds to encapsulation surface
US8618659B2 (en) 2011-05-03 2013-12-31 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US8872318B2 (en) 2011-08-24 2014-10-28 Tessera, Inc. Through interposer wire bond using low CTE interposer with coarse slot apertures
US8836136B2 (en) 2011-10-17 2014-09-16 Invensas Corporation Package-on-package assembly with wire bond vias
US8946757B2 (en) 2012-02-17 2015-02-03 Invensas Corporation Heat spreading substrate with embedded interconnects
US8372741B1 (en) 2012-02-24 2013-02-12 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9449905B2 (en) 2012-05-10 2016-09-20 Utac Thai Limited Plated terminals with routing interconnections semiconductor device
US9029198B2 (en) 2012-05-10 2015-05-12 Utac Thai Limited Methods of manufacturing semiconductor devices including terminals with internal routing interconnections
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9391008B2 (en) 2012-07-31 2016-07-12 Invensas Corporation Reconstituted wafer-level package DRAM
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US8975738B2 (en) 2012-11-12 2015-03-10 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US9136254B2 (en) 2013-02-01 2015-09-15 Invensas Corporation Microelectronic package having wire bond vias and stiffening layer
US9034696B2 (en) 2013-07-15 2015-05-19 Invensas Corporation Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
US8883563B1 (en) 2013-07-15 2014-11-11 Invensas Corporation Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US9023691B2 (en) 2013-07-15 2015-05-05 Invensas Corporation Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US20150076714A1 (en) 2013-09-16 2015-03-19 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US9082753B2 (en) 2013-11-12 2015-07-14 Invensas Corporation Severing bond wire by kinking and twisting
US9087815B2 (en) 2013-11-12 2015-07-21 Invensas Corporation Off substrate kinking of bond wire
US9379074B2 (en) 2013-11-22 2016-06-28 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9263394B2 (en) 2013-11-22 2016-02-16 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9214454B2 (en) 2014-03-31 2015-12-15 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9502372B1 (en) 2015-04-30 2016-11-22 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US9633971B2 (en) 2015-07-10 2017-04-25 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9490222B1 (en) 2015-10-12 2016-11-08 Invensas Corporation Wire bond wires for interference shielding
US9917038B1 (en) 2015-11-10 2018-03-13 Utac Headquarters Pte Ltd Semiconductor package with multiple molding routing layers and a method of manufacturing the same
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795047A (en) 1972-06-15 1974-03-05 Ibm Electrical interconnect structuring for laminate assemblies and fabricating methods therefor
FR2492164B1 (en) 1980-10-15 1987-01-23 Radiotechnique Compelec Process for simultaneous production of multiple electrical connections, in particular for the electrical connection of a semiconductor micro-plate
JPS59195837A (en) 1983-04-21 1984-11-07 Sharp Corp Chip bonding method for large-scale integrated circuit
US4545610A (en) 1983-11-25 1985-10-08 International Business Machines Corporation Method for forming elongated solder connections between a semiconductor device and a supporting substrate
US4604644A (en) 1985-01-28 1986-08-05 International Business Machines Corporation Solder interconnection structure for joining semiconductor devices to substrates that have improved fatigue life, and process for making
US4661192A (en) 1985-08-22 1987-04-28 Motorola, Inc. Low cost integrated circuit bonding process
US5014111A (en) * 1987-12-08 1991-05-07 Matsushita Electric Industrial Co., Ltd. Electrical contact bump and a package provided with the same
US5001542A (en) * 1988-12-05 1991-03-19 Hitachi Chemical Company Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
JPH03284857A (en) 1990-03-30 1991-12-16 Fujitsu Ltd Manufacture of semiconductor device
US5221417A (en) 1992-02-20 1993-06-22 At&T Bell Laboratories Conductive adhesive film techniques
US5591941A (en) 1993-10-28 1997-01-07 International Business Machines Corporation Solder ball interconnected assembly
US5551627A (en) * 1994-09-29 1996-09-03 Motorola, Inc. Alloy solder connect assembly and method of connection
KR100206866B1 (en) 1995-10-19 1999-07-01 구본준 Semiconductor apparatus
US5795818A (en) * 1996-12-06 1998-08-18 Amkor Technology, Inc. Integrated circuit chip to substrate interconnection and method
US6082610A (en) * 1997-06-23 2000-07-04 Ford Motor Company Method of forming interconnections on electronic modules

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230824A1 (en) * 2004-04-16 2005-10-20 Elpida Memory, Inc BGA semiconductor device having a dummy bump
US8164186B2 (en) * 2004-04-16 2012-04-24 Elpida Memory, Inc. BGA semiconductor device having a dummy bump
US20080268570A1 (en) * 2005-09-22 2008-10-30 Chipmos Technologies Inc. Fabricating process of a chip package structure
US7749806B2 (en) * 2005-09-22 2010-07-06 Chipmos Technologies Inc. Fabricating process of a chip package structure
US20090127704A1 (en) * 2007-11-20 2009-05-21 Fujitsu Limited Method and System for Providing a Reliable Semiconductor Assembly
US8487428B2 (en) * 2007-11-20 2013-07-16 Fujitsu Limited Method and system for providing a reliable semiconductor assembly
US20120112357A1 (en) * 2010-11-05 2012-05-10 Stmicroelectronics, Inc. System and method for relieving stress and improving heat management in a 3d chip stack having an array of inter-stack connections
US8564137B2 (en) * 2010-11-05 2013-10-22 Stmicroelectronics, Inc. System for relieving stress and improving heat management in a 3D chip stack having an array of inter-stack connections
US8653671B2 (en) 2010-11-05 2014-02-18 Stmicroelectronics, Inc. System for relieving stress and improving heat management in a 3D chip stack
US20120153426A1 (en) * 2010-12-16 2012-06-21 Tessera Research Llc Void-free wafer bonding using channels
US8652935B2 (en) * 2010-12-16 2014-02-18 Tessera, Inc. Void-free wafer bonding using channels

Also Published As

Publication number Publication date Type
US6358627B2 (en) 2002-03-19 grant
US6177729B1 (en) 2001-01-23 grant

Similar Documents

Publication Publication Date Title
US4998885A (en) Elastomeric area array interposer
US5530376A (en) Reusable carrier for burn-in/testing of non packaged die
US6528892B2 (en) Land grid array stiffener use with flexible chip carriers
US5806181A (en) Contact carriers (tiles) for populating larger substrates with spring contacts
US5783465A (en) Compliant bump technology
US6086386A (en) Flexible connectors for microelectronic elements
US6046911A (en) Dual substrate package assembly having dielectric member engaging contacts at only three locations
US7719121B2 (en) Microelectronic packages and methods therefor
US6178629B1 (en) Method of utilizing a replaceable chip module
US6767819B2 (en) Apparatus with compliant electrical terminals, and methods for forming same
US5815000A (en) Method for testing semiconductor dice with conventionally sized temporary packages
US6916181B2 (en) Remountable connector for land grid array packages
US5878485A (en) Method for fabricating a carrier for testing unpackaged semiconductor dice
US7070419B2 (en) Land grid array connector including heterogeneous contact elements
US6208157B1 (en) Method for testing semiconductor components
US6869290B2 (en) Circuitized connector for land grid array
US5578934A (en) Method and apparatus for testing unpackaged semiconductor dice
US5477933A (en) Electronic device interconnection techniques
US5810609A (en) Socket for engaging bump leads on a microelectronic device and methods therefor
US5983492A (en) Low profile socket for microelectronic components and method for making the same
US5926951A (en) Method of stacking electronic components
US5065282A (en) Interconnection mechanisms for electronic components
US7709968B2 (en) Micro pin grid array with pin motion isolation
US5225633A (en) Bridge chip interconnect system
US6830460B1 (en) Controlled compliance fine pitch interconnect

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

SULP Surcharge for late payment

Year of fee payment: 11

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910