US1989652A - Method for finishing internal gears - Google Patents

Method for finishing internal gears Download PDF

Info

Publication number
US1989652A
US1989652A US626769A US62676932A US1989652A US 1989652 A US1989652 A US 1989652A US 626769 A US626769 A US 626769A US 62676932 A US62676932 A US 62676932A US 1989652 A US1989652 A US 1989652A
Authority
US
United States
Prior art keywords
gear
finishing
tool
teeth
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US626769A
Inventor
Robert S Drummond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Machining Technology Co
Original Assignee
National Broach and Machine Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Broach and Machine Co filed Critical National Broach and Machine Co
Priority to US626769A priority Critical patent/US1989652A/en
Application granted granted Critical
Publication of US1989652A publication Critical patent/US1989652A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/06Shaving the faces of gear teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/02Lapping gear teeth
    • B23F19/04Lapping spur gears by making use of a correspondingly shaped counterpart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/02Loading, unloading or chucking arrangements for workpieces
    • B23F23/06Chucking arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/47Burnishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/47Burnishing
    • Y10T29/477Burnishing of gear article

Definitions

  • the invention relates to machines for finishing gears and it is the object of the present invention to obtain a construction for nishing internal gears and pinions for intermeshing with the same having teeth either parallel to or at an angle to the axis of rotation.
  • the invention consists in the construction as hereinafter set forth.
  • Figure 1 is a perspective view of the machine
  • Figure 2 is an enlarged perspective view of an internal gear and its finishing pinion in intermeshing relation
  • Figure 3 is a longitudinal section in the plane of the axis of the work spindle
  • Figure 4 is a horizontal section through the internal gear showing the finishing pinion in engagement therewith; l,
  • Figure 5 is an end elevation of Figure 4.
  • the finishing tool which is in the form of a pinion having teeth conjugate to the teeth of the internal gear wheel A but at a different helical angle so that when said gear and pinion are in intermeshing relation their axes will stand at an angle to each other.
  • This angular dierence is limited to fall within 3 and 30 and consequently the gears when running in intermeshing relation will have progressive sliding contact with each other in a direction obliquely across the face of the tool. If the work gear is reciprocated axially thereof this rubbing contact will be distributed over the full width of the gear:
  • the machine is provided with a frame C having mounted thereon the head stock D for the spindle of the finishing tool B.
  • the work A is mounted on a tail stock E but this tail stock is capable of angular adjustment. Preferably this is accomplished by mounting the tail stock upon a column F which is adjustable around a segmental bed G on the frame C.
  • the tail stock E is directly connected to a cross head H which is slidable upon horizontal ways I on a second head J vertically adjustable on the column F.
  • the internal gear wheel A to be finished is mounted i'n a suitable chuck K journaled on the spindle L in the tail stock, and a split collet K adjustable in a tapering socket in the chuck K by means of a screw K2 serves to clamp the ring gear in position. Adjustment for proper helix angle is accomplished by moving the column F around on the segmental ways G and by vertically adjusting the head J the gear A is intermeshed with the finishing tool B. Rotary mo tion is then imparted to the tool B by suitable means not shown which will run this tool in mesh with the internal gear wheel.
  • the tool B is a helical pinion which is in mesh with a straight tooth internal gear wheel A.
  • a gear of any desired helical angle may be finished in the same manner by a tool of the proper helical angle. It is essential however, that the axis of the tool and the axis of the gear should be atan angle to each other within the limits of 3 and 30.
  • the tool is formed of hard material and is provided with a groove B' in the teeth thereof which extends upon opposite sides of the theoretical point of contact O between the tool and the work gear. This will produce a cutting action when the gears are run in intermeshing relation and in pressure contact with each other, but this cutting tool fonnslthe subject matter of my application for patent Serial No.
  • the reverse operation may be performed by using the internal gear as the tool and finishing therewith an external gear or pinion.
  • the interaction will be the same'but by imparting the axial reciprocation to the work the finishing operation will be spread over the entire width of the teeth.
  • finishing external gears comprising running the external gear to be finished in mesh with a finishing tool having internal conjugate teeth, the axes of said gear and tool being crossed at an angle less than '30 and lying in no common plane and axially feeding said external gear to thereby finish the entire tooth surface of said gear.
  • finishing gears comprising selecting a finishing tool having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, the helical angleI of said finishing tool differing yfrom the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing tool on rotatable members having their axes crossed at said angle less than 30, rotating one of said members thereby driving the other member through the intermeshing engagement of said gear and tool, applying pressure to said driven member to obtain pressure c ontact between ⁇ the teeth of said gear and tool and feeding one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface vof said gear.
  • finishing gears comprising selecting a finishing tool having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, thehelical angle of said finishing tool differing from the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing tool on rotatable members having their axes crossed at said angle less than 30, rotating one of said members thereby driving the other member through the intermeshing engagement of said gear and tool, applying resistance to the rotation of said driven member to obtain pressure contact between the teeth of said gear and tool and feeding one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear.
  • the method of finishing gears comprising selecting a nishing tool having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, the helical angle of said finishing tool differing from the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing tool on rotatable members having their axes crossed at said angle less than 30, rotating one of said members ⁇ thereby driving the other member through the intermeshing engagement of said gear and tool, applying a predetermined pressure on one of said members toward the axis of the other member thereby obtaining pressure contact between the teeth of said gear and tool and feeding one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear.
  • the method of lapping gears comprising selecting a finishing lap having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, the helical angle of said finishing lap differing from the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing lap on rotatable members having their axes crossed at said angle less than 30, applying abrasive to the tooth surfaces of said lap and gear, rotating one of said members thereby driving the other member through the intermeshing engagement of said gear and lap, applying pressure to said driven member to obtain pressure contact between the teeth of said gear and lap and axially reciprocating one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear.

Description

Hm 29 E935. R. s. DRUMMOND METHOD FOR FINISHING INTERNAL GERS Filed July 3o, 19:52 2 sheets-sheet 1 .13am 29, i935., R. s. DRUMMOND METHOD FOR FINISHING INTERNAL GEARS Filed July 30, 1932 2 Sheets-Sheet 2 Um Mw/jaw vb MM50 www@ Cil
Patented Jan. 29, i935 STATES PATENT OFFICE METHOD FOR FINISHING INTERNAL GEARS Application July 30, 1932, Serial No. 626,769
8 Claims. (Cl. 29-90) The invention relates to machines for finishing gears and it is the object of the present invention to obtain a construction for nishing internal gears and pinions for intermeshing with the same having teeth either parallel to or at an angle to the axis of rotation. To this end the invention consists in the construction as hereinafter set forth.
In the drawings:
Figure 1 is a perspective view of the machine;
Figure 2 is an enlarged perspective view of an internal gear and its finishing pinion in intermeshing relation;
Figure 3 is a longitudinal section in the plane of the axis of the work spindle;
Figure 4 is a horizontal section through the internal gear showing the finishing pinion in engagement therewith; l,
Figure 5 is an end elevation of Figure 4.
Heretofore external gears have been finished by running same in mesh 'with a finishing tool in the form of a mating gear having conjugate teeth, the axes of the two gears being non-intersecting, having no common plane and being at a limited angle to each other (see my co-pending applications, Serial No. 604,575, filed April 11, 1932 and Serial No. 547,704, filed June 29, 1931). The finishing may be effected either through lapping, cutting, or burnishing, but in each case the relation of the work andthe finishing tool will be the same. It is the object of the present invention to finish internal gear wheels and pinions for the same by a similar action which is accomplished as follows: A is the internal gear wheel to be finished having its teeth at any desired helical angle. B is the finishing tool which is in the form of a pinion having teeth conjugate to the teeth of the internal gear wheel A but at a different helical angle so that when said gear and pinion are in intermeshing relation their axes will stand at an angle to each other. This angular dierence is limited to fall within 3 and 30 and consequently the gears when running in intermeshing relation will have progressive sliding contact with each other in a direction obliquely across the face of the tool. If the work gear is reciprocated axially thereof this rubbing contact will be distributed over the full width of the gear:
As shown in Figure 1, the machine is provided with a frame C having mounted thereon the head stock D for the spindle of the finishing tool B. The work A is mounted on a tail stock E but this tail stock is capable of angular adjustment. Preferably this is accomplished by mounting the tail stock upon a column F which is adjustable around a segmental bed G on the frame C. The tail stock E is directly connected to a cross head H which is slidable upon horizontal ways I on a second head J vertically adjustable on the column F.
The internal gear wheel A to be finished is mounted i'n a suitable chuck K journaled on the spindle L in the tail stock, and a split collet K adjustable in a tapering socket in the chuck K by means of a screw K2 serves to clamp the ring gear in position. Adjustment for proper helix angle is accomplished by moving the column F around on the segmental ways G and by vertically adjusting the head J the gear A is intermeshed with the finishing tool B. Rotary mo tion is then imparted to the tool B by suitable means not shown which will run this tool in mesh with the internal gear wheel. If the operation is lapping, suitable abrasive material is introduced between the teeth of the intermeshing gears, or if on the other hand the operation is cut-y ting, the tool is properly fashioned for this purpose. Pressure contact is obtained either by cramping the tool in mesh with the gear, 0r as shown in Figure 1, by providing a power tail stock in which the intermeshing gears M con' neet the spindle L to a hydraulic brake (not shown) within thev tail stock. Axial motion is also imparted to the work gear during the finishing operation, thereby spreading the action over the entire surface of the gear. This axial movement can be obtained by reciprocating the head H upon the horizontal ways I'by any suitable mechanism (not shown) As shown in Figure 2, the tool B is a helical pinion which is in mesh with a straight tooth internal gear wheel A. However, in place of a straight tooth gear, a gear of any desired helical angle may be finished in the same manner by a tool of the proper helical angle. It is essential however, that the axis of the tool and the axis of the gear should be atan angle to each other within the limits of 3 and 30.
As shown in Figure 4, instead of using the tool for lapping the gear, the tool is formed of hard material and is provided with a groove B' in the teeth thereof which extends upon opposite sides of the theoretical point of contact O between the tool and the work gear. This will produce a cutting action when the gears are run in intermeshing relation and in pressure contact with each other, but this cutting tool fonnslthe subject matter of my application for patent Serial No.
626,768, filed July 30, 1932 and will not therefore be further described in detail.
In place of finishing an internal gear with an exterior gear or pinion, the reverse operation may be performed by using the internal gear as the tool and finishing therewith an external gear or pinion. In each case the interaction will be the same'but by imparting the axial reciprocation to the work the finishing operation will be spread over the entire width of the teeth.
What I claim as my invention is:
1. The method of finishing internal gears comprising running the internal gear to be nished in mesh with a finishing tool having external conjugate teeth, the axes of said gear and tool being crossed at an angle less than30 and lying in no common plane and axially feeding said internal gear to thereby finish the entire tooth surface of said gear.
2. The method of finishing external gears comprising running the external gear to be finished in mesh with a finishing tool having internal conjugate teeth, the axes of said gear and tool being crossed at an angle less than '30 and lying in no common plane and axially feeding said external gear to thereby finish the entire tooth surface of said gear.
3. The method of finishing a straight tooth internal gear comprising running the straight tooth internal gear in mesh with a finishing tool having external helical conjugate teeth and a helical angle less than 30, the axes of said gear and tool being crossed at an angle less than 30 and lying in no common plane and axially reciprocating said internal gear to thereby finish the entire tooth surface of said gear.
4. The method of finishing gears comprising selecting a finishing tool having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, the helical angleI of said finishing tool differing yfrom the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing tool on rotatable members having their axes crossed at said angle less than 30, rotating one of said members thereby driving the other member through the intermeshing engagement of said gear and tool, applying pressure to said driven member to obtain pressure c ontact between `the teeth of said gear and tool and feeding one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface vof said gear.
5. The method of finishing gears comprising selecting a finishing tool having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, thehelical angle of said finishing tool differing from the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing tool on rotatable members having their axes crossed at said angle less than 30, rotating one of said members thereby driving the other member through the intermeshing engagement of said gear and tool, applying resistance to the rotation of said driven member to obtain pressure contact between the teeth of said gear and tool and feeding one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear.
6. The method of finishing gears comprising selecting a nishing tool having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, the helical angle of said finishing tool differing from the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing tool on rotatable members having their axes crossed at said angle less than 30, rotating one of said members `thereby driving the other member through the intermeshing engagement of said gear and tool, applying a predetermined pressure on one of said members toward the axis of the other member thereby obtaining pressure contact between the teeth of said gear and tool and feeding one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear.
7. The method of lapping gears comprising selecting a finishing lap having teeth conjugate to the teeth of the gear to be finished and adapted to have an internal-external meshing engagement with said gear, the helical angle of said finishing lap differing from the helical angle of said gear such that during said intermeshing engagement the axis of said gear is crossed at an angle less than 30 with the axis of said finishing tool, mounting said gear and said finishing lap on rotatable members having their axes crossed at said angle less than 30, applying abrasive to the tooth surfaces of said lap and gear, rotating one of said members thereby driving the other member through the intermeshing engagement of said gear and lap, applying pressure to said driven member to obtain pressure contact between the teeth of said gear and lap and axially reciprocating one of said members relative to the other in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear.
8. The method of lapping an internal gear comprising selecting a finishing lap, having external teeth conjugate to the internal teeth of the gear to be finished and adapted to mesh therewith, the helical angle of said finishing lap difiering from the helical angle of said internal gear such'fthat when said gear and lap are in intermeshing engagement the yaxis, of said gear is crossed at an angle of less than 30 with the axis of said finishing lap, mounting said gear and said lap on rotatable members having their axes crossed at said angle less than 30, applying abrasive to the teeth of said gear and lap, rotating said external lap thereby driving said internal gear, applying resistance to rotationof said driven internal gear thereby obtaining pressure contact between the teeth of said gear and lap and reciprocating said internal gear relative to said lap in the direction of the axis of said gear thereby finishing the entire tooth surface of said gear. l
ROBERT S. DRUMMOND.
US626769A 1932-07-30 1932-07-30 Method for finishing internal gears Expired - Lifetime US1989652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US626769A US1989652A (en) 1932-07-30 1932-07-30 Method for finishing internal gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US626769A US1989652A (en) 1932-07-30 1932-07-30 Method for finishing internal gears

Publications (1)

Publication Number Publication Date
US1989652A true US1989652A (en) 1935-01-29

Family

ID=24511774

Family Applications (1)

Application Number Title Priority Date Filing Date
US626769A Expired - Lifetime US1989652A (en) 1932-07-30 1932-07-30 Method for finishing internal gears

Country Status (1)

Country Link
US (1) US1989652A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2595460A (en) * 1948-03-24 1952-05-06 Jabour Joseph Method and apparatus for generating helical grooves
US2931274A (en) * 1956-05-28 1960-04-05 Nat Broach & Mach Method of and apparatus for internal gear shaving
US3125838A (en) * 1964-03-24 Method for finishing tooth surfaces of
US3126755A (en) * 1964-03-31 Rotary piston engine
US3353392A (en) * 1965-06-21 1967-11-21 Nat Broach & Mach Pitch diameter rounder
US4309802A (en) * 1980-07-16 1982-01-12 Illinois Tool Works Inc. Ring gear burnishing machine
US6170156B1 (en) * 1999-03-24 2001-01-09 General Motors Corporation Gear tooth smoothing and shaping process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125838A (en) * 1964-03-24 Method for finishing tooth surfaces of
US3126755A (en) * 1964-03-31 Rotary piston engine
US2595460A (en) * 1948-03-24 1952-05-06 Jabour Joseph Method and apparatus for generating helical grooves
US2931274A (en) * 1956-05-28 1960-04-05 Nat Broach & Mach Method of and apparatus for internal gear shaving
US3353392A (en) * 1965-06-21 1967-11-21 Nat Broach & Mach Pitch diameter rounder
US3353391A (en) * 1965-06-21 1967-11-21 Nat Broach & Mach Method and apparatus for correcting ovality of annular gears
US4309802A (en) * 1980-07-16 1982-01-12 Illinois Tool Works Inc. Ring gear burnishing machine
US6170156B1 (en) * 1999-03-24 2001-01-09 General Motors Corporation Gear tooth smoothing and shaping process

Similar Documents

Publication Publication Date Title
US2228967A (en) Method of completing gear finishing tools
US1642179A (en) Method for finishing gear teeth
DE102011120449A1 (en) Method for grinding toothed workpieces and apparatus designed for this purpose
DE2041483C3 (en) TROCHOID GEAR PAIRING
US1948071A (en) Method and equipment for lapping spur-helical and internal gears
US1989652A (en) Method for finishing internal gears
US1989651A (en) Method of finishing gears
US2291537A (en) Method of cutting gears
GB309870A (en) Method and apparatus for lapping spur gears
US3417510A (en) Method and means for crowning teeth
US2923053A (en) End mill having uninterrupted continuously-curved flute surfaces
US3060643A (en) Threaded rotary member for generating spur and helical gear teeth, and method and means for using the same
US2978964A (en) Method and apparatus for cutting gears
US1175066A (en) Method of finishing gear-teeth.
US2910808A (en) Method and apparatus for grinding gears
US1830952A (en) Method of and apparatus for grinding gears
US2850851A (en) Gear grinding machines
US2008474A (en) Apparatus for turning noncircular work
US2824556A (en) Method and means for shaping and trimming helically formed grinding wheels
US2387167A (en) Generative gear grinding machine with feed controlling slide
US3054226A (en) Apparatus for honing gears
US2608906A (en) Machine for cutting clutches
US2362764A (en) Cam operated crowning attachment for gear finishing machines
US1357815A (en) Method of producing hobs
US1145513A (en) Method of grinding gear-wheels.