US1972162A - Heater element electron emitting cathode - Google Patents

Heater element electron emitting cathode Download PDF

Info

Publication number
US1972162A
US1972162A US423935A US42393530A US1972162A US 1972162 A US1972162 A US 1972162A US 423935 A US423935 A US 423935A US 42393530 A US42393530 A US 42393530A US 1972162 A US1972162 A US 1972162A
Authority
US
United States
Prior art keywords
filament
coating
heater element
refractory
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US423935A
Inventor
Warley L Parrott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Lamp Co
Original Assignee
Westinghouse Lamp Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Lamp Co filed Critical Westinghouse Lamp Co
Priority to US423935A priority Critical patent/US1972162A/en
Application granted granted Critical
Publication of US1972162A publication Critical patent/US1972162A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/22Heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49096Resistor making with envelope or housing with winding

Definitions

  • Another object of this invention is'to provide an electrically insulated non-inductive heater element for an indirectly heated cathode.
  • Another object of this invention is to provide,
  • This non-inductive type heater element is first .mounted upon a refractory core member and 0 annealed at elevated temperatures approximating 1400 C. to set the turns of the coil in position on the core.
  • the assembly of coil and core is then sprayed with a coating of refractory insulating materials, and again baked to elevated temperatures to effect a consolidation of the coating material to the wire coil and core assembly.
  • the electrically insulated non-inductive coil type heater element is then ready for use in the indirectly heated cathode of the electron discharge 0 device set forth in the present application above identified.
  • FIG. 1 is in enlarged detail, a side elevational .p'arent application Serial view of a parallel wound twin turn helical filament of the non-inductive type
  • FIG. 2 an enlarged side elevational view of a refractory core member
  • Fig. 3 ari enlarged side elevational view of the coil filament with the core member in position
  • Fig. 4 an enlarged side elevational view of the assembled coil and core member with a surface coating of refractory insulating material
  • Fig. 5 a side elevational view of the cathode sleeve member with the insulating end plug members in position;
  • Fig. 6 a side elevational view of the cathode assembly with the sleeve and end plug members in cross section.
  • Figs. 4 and 6 substantially coincide with Figs. 1 and 2 of the copending No. 402,559 above identiiied.
  • -I mount the'twin coil heater element upon a core of refractory material of substantially the same approximate diameter as the mandrel upon which the coil is wound, properly positioning the coil thereon, and then subject the filament to an anneal operation such as by passing the mounted coil through a high temperature heat zone, preferably in a non-oxidizing atmosphere for the'85 requisite time interval to effect the removal of work hardening efiects.
  • a high temperature heat zone preferably in a non-oxidizing atmosphere for the'85 requisite time interval to effect the removal of work hardening efiects.
  • the annealed coil and refractory insulating core is then removed from the furnace and the exterior surface of the wire sprayed with a coating of refractory insulating material suspended in an organic binder such as amylacetate-nitrocellulose admixture, after which the assembly of helical filament, core and coating is again baked at about 1400 C. for a few minutes to drive off the binder of the coating and to consolidate the refractory insulating coating to the surface of the wire.
  • the refractory coating thus applied is about .004 inch thick, and weighs in the neighborhood of about 10 milligrams per coil.
  • the specific composition of the refractory insulating core and sprayed coating may be widely varied depending upon the refractory metal employed, the desired operating temperature of the filament and the like factors. I have found that a substantially pure aluminium oxide, A120: to which has been added a small proportion of fritno then ready for mounting in 2 ting agent, such as tale, is most suitable for the purposes of the present invention.
  • This particular insulating material is disclosed in copending application by C. V. Iredell, Serial No. 308,139 filed September 24, 1928, which application'is assigned to the same assignee as the present invention.
  • the core may be prepared by the extrusion method of forming refractory insulators. which has heretofore been disclosed in copending application by J. W. Marden and F. H. Driggs, Serial No. 233,543 filed November 16, 1927 which application is also assigned to the same assignee as the present invention.
  • I may, however, employ refractory insulating material in formingthe core and in coating the wire of a composition of materials such as set forth in copending application by F. H. Driggs, Serial No. 306,291, filed September 15, 1928.
  • the most satisfactory coating for most purposes as well as the most inexpensive and readily applied is talc, chemically identified as magnesium silicate. This compound may be readily purchased upon the market in a state of fair degree of purity and under the temperature conditions of operation of the present type heater element is sufficiently refractory for all practical purposes, and has the desirable dielectric property at that operating temperature.
  • the completed annealed and insulating twin coiled helical heater element thus prepared is the cathode elemerit of an electrode discharge device, as is shown in Fig. 2.
  • the heater element of the present invention by first positioning the parallel wound twin turn helical filament l of Fig. l, comprised of a refractory filamentary conductor such as tungsten wire, such as may be prepared in accordance with the practice set forth in copending continuation in part application Serial. No. 423,933, above identified, upon the refractory core member 2, Fig. 2 as is indicated in Fig. 3, subject the assembly to an annealing operation at temperatures approximating .1400" C.
  • a refractory filamentary conductor such as tungsten wire
  • a refractory insulating coating 3 which is preferably comprised of finely divided talc suspended in an organic solvent such as amylacetate containing a proportion of a suitable binder, such as nitro-cellulose, and then bake the assembly again at temperatures approximating 1400" C. to consolidate the coil, core and coating material to make a composite body.
  • the assembled, annealed, coated and baked heater element is then ready for incorporation in an indirectly heated cathode assembly comprising a metal sleeve member 4 having an exterior thermionically active coating 5 and end plug members 6 and '7, substantially as described and claimed in the above identified copending parent application.
  • a heater element for an electron emitting hot cathode comprised of a double helical filament the convolutions thereof lying substantially in the same circumferential plane in parallel spaced relationship between the turns thereof,
  • a refractory core member comprised of metal oxides, and an exterior refractory insulating coating cemented thereto.
  • a heater element for an indirectly heated thermionic cathode which comprises shaping a refractory metal filament into a twin coil helical filament having the terminals extending from one end, inserting in said helical filament a core of refractory insulating material, annealing said filament and core at elevated temperatures to position the turns ofthe helix thereon and'thereafter applying to the filament surface a refractory insulating coating.
  • a heater element for an indirectly heated thermionic cathode which comprises shaping a refractory metal filament into a double helix coil type filament having the terminals thereof extending from one end and the convolutions of said helices ly in substantially the same circumferential plane in relative parallel spaced relationship, mounting said coil on a refractory insulating core member, an nealing said coil and core member to set the coil turns in position in said core member, exteriorly coating the assembly with refractory insulating material and thereafter heating to elevated temperatures to cement the exterior refractory coating to said assembly.
  • An indirectly heated hot cathode heater els ment comprising a non-inductively v wound filament, said filament being in the form of a double helix, a core member of refractory insulat material, a thin coating of refractory insulating material on the exterior surface of said core member and said filament to consolidate said core member, filament and coating into a uni structure.
  • An indirectly heated hot cathode heater element comprising a refractory insulating core member, a twin helical filament around said core member, the convolutions of said filament lying in substantially the same circumferential plane and in substantially parallel relationship, the ends of said filament being substantially straight and extending along a portion of the le of said core member, a coating of insulat ,2-
  • An indirectly heated hot cathode heater element comprising a refractory insulating core member, a double helical coil type filament around said member, the convolutions of said helices lying in substantially the same circumferential plane and in relative parallel spaced relationship, one pair of convolutions being further spaced from'a next succeeding pair than are the convolutions of the respective pair spaced from each other, and a thin coating of refractory insulating material on said member, and said filament to consolidate said coating, member and filament into a unitary structure.
  • a heater element comprising placing a filament around a core of a refractory insulating material, heating both the filament and core to position said filament on said core, and applying a coating of refractory insulating material to said filament.
  • a heater element comprising placing a filament around a core of refractory insulating material, heating both the filament and core to position said filament on said core, applying a coating of refractory insulating material to said filament and core, and consolidating said coating, core and filament into a unitary structure.
  • a heater element comprising coiling a filament in the form of a double helix, annealing said coiled filament to set the convolutions thereof and coating the convolutions of said coil with an insulating material.

Description

p 1934- w. PARROTT HEATER ELEMENT ELECTRON EMITTING CATHODE Filed Jan. 28, 1930 ATTORN EY Patented Sept. 4, 1934 PATENT OFFICE 1,972,162 HEATER ELEMENT ELECTRON EMITTING OATH Warley L. Parrott, East Orange, N.
Lamp Company,
West ghouse of Pennsylvania ODE 1., assignor to a corporation Application January 28, 1930, Serial No. 423,935
11 Claims. (01. 25027.5)
This invention is a continuation in part ap-- plication of copending application Serial No..
402,559 filed October 26, 1929 by Warley L. Parrott and is assigned to the same assigneeas the present application.
It is one of the objects of this invention to provide a heater element for an indirectly heated cathode which when energized by the passage of an electric current therethrough is substantially non-inductive.
Another object of this invention is'to provide an electrically insulated non-inductive heater element for an indirectly heated cathode.
Another object of this invention is to provide,
a method of producing a non-inductive; electrically insulated heater element foran indirectly heated cathode.
Other objects and advantages will become apparent as the invention ismore fully disclosed.
In accordance with the objects of this invention I employ a parallel wound twin coiled helical filament formed in accordance with the invention set forth in copending application Serial No.
423,933, filed January 28, 1930, which application,
is also a continuation-in-part application of copending application 402,559 filed October 26, 1929 and which also is assigned to the same assignee as the present invention.
This non-inductive type heater element is first .mounted upon a refractory core member and 0 annealed at elevated temperatures approximating 1400 C. to set the turns of the coil in position on the core. The assembly of coil and core is then sprayed with a coating of refractory insulating materials, and again baked to elevated temperatures to effect a consolidation of the coating material to the wire coil and core assembly. The electrically insulated non-inductive coil type heater element is then ready for use in the indirectly heated cathode of the electron discharge 0 device set forth in the present application above identified.
Before further disclosing the present invention reference should be made to the accompanying drawing, wherein Fig. 1 is in enlarged detail, a side elevational .p'arent application Serial view of a parallel wound twin turn helical filament of the non-inductive type;
Fig. 2, an enlarged side elevational view of a refractory core member;
Fig. 3 ari enlarged side elevational view of the coil filament with the core member in position;
Fig. 4 an enlarged side elevational view of the assembled coil and core member with a surface coating of refractory insulating material;
Fig. 5 a side elevational view of the cathode sleeve member with the insulating end plug members in position; and
,Fig. 6 a side elevational view of the cathode assembly with the sleeve and end plug members in cross section.
It will be noted that Figs. 4 and 6 substantially coincide with Figs. 1 and 2 of the copending No. 402,559 above identiiied.
'In the specifications of the parent application it is stated To insure the retaining of the turns fof the twin coil in proper spaced relationship,
-I mount the'twin coil heater element upon a core of refractory material of substantially the same approximate diameter as the mandrel upon which the coil is wound, properly positioning the coil thereon, and then subject the filament to an anneal operation such as by passing the mounted coil through a high temperature heat zone, preferably in a non-oxidizing atmosphere for the'85 requisite time interval to effect the removal of work hardening efiects. I have found that tungsten coils are thus annealed when heated to l40 0 C. for a period of about 15 minutes.
The annealed coil and refractory insulating core is then removed from the furnace and the exterior surface of the wire sprayed with a coating of refractory insulating material suspended in an organic binder such as amylacetate-nitrocellulose admixture, after which the assembly of helical filament, core and coating is again baked at about 1400 C. for a few minutes to drive off the binder of the coating and to consolidate the refractory insulating coating to the surface of the wire. The refractory coating thus applied is about .004 inch thick, and weighs in the neighborhood of about 10 milligrams per coil.
The specific composition of the refractory insulating core and sprayed coating, may be widely varied depending upon the refractory metal employed, the desired operating temperature of the filament and the like factors. I have found that a substantially pure aluminium oxide, A120: to which has been added a small proportion of fritno then ready for mounting in 2 ting agent, such as tale, is most suitable for the purposes of the present invention.
This particular insulating material is disclosed in copending application by C. V. Iredell, Serial No. 308,139 filed September 24, 1928, which application'is assigned to the same assignee as the present invention. The core may be prepared by the extrusion method of forming refractory insulators. which has heretofore been disclosed in copending application by J. W. Marden and F. H. Driggs, Serial No. 233,543 filed November 16, 1927 which application is also assigned to the same assignee as the present invention.
I may, however, employ refractory insulating material in formingthe core and in coating the wire of a composition of materials such as set forth in copending application by F. H. Driggs, Serial No. 306,291, filed September 15, 1928. The most satisfactory coating for most purposes as well as the most inexpensive and readily applied is talc, chemically identified as magnesium silicate. This compound may be readily purchased upon the market in a state of fair degree of purity and under the temperature conditions of operation of the present type heater element is sufficiently refractory for all practical purposes, and has the desirable dielectric property at that operating temperature.
The completed annealed and insulating twin coiled helical heater element thus prepared is the cathode elemerit of an electrode discharge device, as is shown in Fig. 2.
In accordance with this invention I prepare the heater element of the present invention by first positioning the parallel wound twin turn helical filament l of Fig. l, comprised of a refractory filamentary conductor such as tungsten wire, such as may be prepared in accordance with the practice set forth in copending continuation in part application Serial. No. 423,933, above identified, upon the refractory core member 2, Fig. 2 as is indicated in Fig. 3, subject the assembly to an annealing operation at temperatures approximating .1400" C. in hydrogen, to set the coil turns thereon, spray the exterior surface thereof with a refractory insulating coating 3 which is preferably comprised of finely divided talc suspended in an organic solvent such as amylacetate containing a proportion of a suitable binder, such as nitro-cellulose, and then bake the assembly again at temperatures approximating 1400" C. to consolidate the coil, core and coating material to make a composite body.
The assembled, annealed, coated and baked heater element is then ready for incorporation in an indirectly heated cathode assembly comprising a metal sleeve member 4 having an exterior thermionically active coating 5 and end plug members 6 and '7, substantially as described and claimed in the above identified copending parent application.
Having broadly and specifically identified the nature and scope of the present invention it is apparent that many modifications and departures thereof maybe made from the specific embodi- .ment disclosed-herein without substantially departing from the nature and scope of the invention as set forth in the following claims.
What is claimed is:
1. A heater element for an electron emitting hot cathode comprised of a double helical filament the convolutions thereof lying substantially in the same circumferential plane in parallel spaced relationship between the turns thereof,
i crease a refractory core member comprised of metal oxides, and an exterior refractory insulating coating cemented thereto.
2. The method of manufacturing a heater element for an indirectly heated thermionic cathode which comprises shaping a refractory metal filament into a twin coil helical filament having the terminals extending from one end, inserting in said helical filament a core of refractory insulating material, annealing said filament and core at elevated temperatures to position the turns ofthe helix thereon and'thereafter applying to the filament surface a refractory insulating coating.
3. The method of manufacturing a heater element for an indirectly heated thermionic cathode which comprises shaping a refractory metal filament into a double helix coil type filament having the terminals thereof extending from one end and the convolutions of said helices ly in substantially the same circumferential plane in relative parallel spaced relationship, mounting said coil on a refractory insulating core member, an nealing said coil and core member to set the coil turns in position in said core member, exteriorly coating the assembly with refractory insulating material and thereafter heating to elevated temperatures to cement the exterior refractory coating to said assembly.
4. The method of manufacturing a non=inductive heater element for an indirectly heated thermionic cathode which comprises shaping a. tungsten filamentary conductor into a double helix coil having the terminals extending from one end thereof, the convolutions of said coil substantially in the same circumferential plane and essentially in parallel spaced relationship aith the turns of one of said helices inrelative close spaced relationship with the turns of the other, inserting in said coil a refractory core member comprised substantially of refractory metal oxides, subjecting the assembly to a temperature approximating 1400 C. to anneal said coil to said core member, coating the exterior of said assembly with refractory insulating material, and heating the assembly to elevated temperatures to consolidate the coating to the assembly.
5. An indirectly heated hot cathode heater els ment comprising a non-inductively v wound filament, said filament being in the form of a double helix, a core member of refractory insulat material, a thin coating of refractory insulating material on the exterior surface of said core member and said filament to consolidate said core member, filament and coating into a uni structure.
6. An indirectly heated hot cathode heater ele= ment comprising a refractory insulating 1.1 1.5 a non-inductively wound filament around sai means, said filament being a double helix with the convolutions thereof lying in substantially the same circumferential plane and in substem tially parallel spaced relationship, a thin coating of refractory insulating material on the exterior surface of said means and filament to consolidate said means, filament and coating into a unitary structure.
7. An indirectly heated hot cathode heater element comprising a refractory insulating core member, a twin helical filament around said core member, the convolutions of said filament lying in substantially the same circumferential plane and in substantially parallel relationship, the ends of said filament being substantially straight and extending along a portion of the le of said core member, a coating of insulat ,2-
tile
HEQ
terial on the exterior surface of said filament and core member to consolidate said core, filament and coating into a unitary structure.
8. An indirectly heated hot cathode heater element comprising a refractory insulating core member, a double helical coil type filament around said member, the convolutions of said helices lying in substantially the same circumferential plane and in relative parallel spaced relationship, one pair of convolutions being further spaced from'a next succeeding pair than are the convolutions of the respective pair spaced from each other, and a thin coating of refractory insulating material on said member, and said filament to consolidate said coating, member and filament into a unitary structure.
9. The method of manufacturing a heater element comprising placing a filament around a core of a refractory insulating material, heating both the filament and core to position said filament on said core, and applying a coating of refractory insulating material to said filament.
10. The method of manufacturing a heater element comprising placing a filament around a core of refractory insulating material, heating both the filament and core to position said filament on said core, applying a coating of refractory insulating material to said filament and core, and consolidating said coating, core and filament into a unitary structure.
11. The method of manufacturing a heater element comprising coiling a filament in the form of a double helix, annealing said coiled filament to set the convolutions thereof and coating the convolutions of said coil with an insulating material.
WARLEY L. PARRO'IT.
US423935A 1930-01-28 1930-01-28 Heater element electron emitting cathode Expired - Lifetime US1972162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US423935A US1972162A (en) 1930-01-28 1930-01-28 Heater element electron emitting cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US423935A US1972162A (en) 1930-01-28 1930-01-28 Heater element electron emitting cathode

Publications (1)

Publication Number Publication Date
US1972162A true US1972162A (en) 1934-09-04

Family

ID=23680774

Family Applications (1)

Application Number Title Priority Date Filing Date
US423935A Expired - Lifetime US1972162A (en) 1930-01-28 1930-01-28 Heater element electron emitting cathode

Country Status (1)

Country Link
US (1) US1972162A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421652A (en) * 1943-08-02 1947-06-03 Sprague Electric Co Electrical conductor
US2445257A (en) * 1944-07-03 1948-07-13 Gen Electric X Ray Corp Thermionic emitting device
US3280452A (en) * 1963-11-26 1966-10-25 Rca Corp Method of manufacturing heaters for electron discharge devices
US3345598A (en) * 1964-04-25 1967-10-03 Telefunken Patent Circuit element
US3432900A (en) * 1964-08-17 1969-03-18 Sylvania Electric Prod Method of making a pencil type indirectly heated cathode
US3727166A (en) * 1969-03-27 1973-04-10 Erd Corp Noninductive twisted-wire resistor
US4149104A (en) * 1976-12-15 1979-04-10 Hitachi, Ltd. Method of manufacturing a coil heater of an indirectly-heated type cathode electrode of electronic tubes
US20040173352A1 (en) * 2000-07-13 2004-09-09 Mullen Bryon David Gravel packing apparatus having an integrated sensor and method for use of same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421652A (en) * 1943-08-02 1947-06-03 Sprague Electric Co Electrical conductor
US2445257A (en) * 1944-07-03 1948-07-13 Gen Electric X Ray Corp Thermionic emitting device
US3280452A (en) * 1963-11-26 1966-10-25 Rca Corp Method of manufacturing heaters for electron discharge devices
US3345598A (en) * 1964-04-25 1967-10-03 Telefunken Patent Circuit element
US3432900A (en) * 1964-08-17 1969-03-18 Sylvania Electric Prod Method of making a pencil type indirectly heated cathode
US3727166A (en) * 1969-03-27 1973-04-10 Erd Corp Noninductive twisted-wire resistor
US4149104A (en) * 1976-12-15 1979-04-10 Hitachi, Ltd. Method of manufacturing a coil heater of an indirectly-heated type cathode electrode of electronic tubes
US20040173352A1 (en) * 2000-07-13 2004-09-09 Mullen Bryon David Gravel packing apparatus having an integrated sensor and method for use of same
US7100690B2 (en) 2000-07-13 2006-09-05 Halliburton Energy Services, Inc. Gravel packing apparatus having an integrated sensor and method for use of same

Similar Documents

Publication Publication Date Title
US2287460A (en) Insulated heater and method of manufacture
US2218345A (en) Incandescent lamp
US2864025A (en) Infrared ray generating device
US1972162A (en) Heater element electron emitting cathode
US2269081A (en) Method of manufacturing cathodes for electron tubes
US2075910A (en) Thermionic cathode
US2888592A (en) Cathode structure
US2258836A (en) Cathode heater
US2043720A (en) Thermionic cathode heater and method of making it
US2845690A (en) Electrical components and methods
GB465119A (en) Improvements in the manufacture of coiled-coil filaments for incandescent electric lamps and the like
US2371205A (en) Coiled
US2394474A (en) Coiled filament or cathode and its manufacture
US2171234A (en) Discharge device and electrode
US2499192A (en) Dispenser type cathode
US2014539A (en) Electron tube
US3307974A (en) Method of forming thermionic cathodes
US3736458A (en) Filamentary electrode and fabrication thereof
US2589521A (en) Heater
US3294125A (en) Electrode coil and method
US2831140A (en) Cataphoretically coated heater insulator assembly
US3160946A (en) Electrical heaters
US1975870A (en) Indirectly heated cathode
US1777253A (en) Oxide cathode
US1989819A (en) Method of manufacturing electron discharge devices