US1764715A - Automatic furnace control - Google Patents

Automatic furnace control Download PDF

Info

Publication number
US1764715A
US1764715A US125558A US12555826A US1764715A US 1764715 A US1764715 A US 1764715A US 125558 A US125558 A US 125558A US 12555826 A US12555826 A US 12555826A US 1764715 A US1764715 A US 1764715A
Authority
US
United States
Prior art keywords
jet
gas
nozzles
air
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US125558A
Inventor
Herbert H Dow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Priority to US125558A priority Critical patent/US1764715A/en
Application granted granted Critical
Publication of US1764715A publication Critical patent/US1764715A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply

Definitions

  • This invention relates more particularly to control of furnaces for boilers and other uses. Efforts have heretofore been made to effect an automatic control of furnace firing '5 Where a liquid fuel is used, the temperature being the governing factor, but a system adapted to regulate with respect to efficiency of combustion, and applicable generally irrespective of the character of fuel used, is
  • FIG. 1 is a diagrammatic representation of one embodiment of my invention
  • Fig. 2 is a similar showing of certain details.
  • the invention involves a means forfeeding a fuel to a combustion zone, and a means for feeding the oxygen for combustion, one or the other or both of such feed means being controlled by the character of the combustion gases.
  • a boiler setting 1 comprising a primary combustion chamber 2 with a tubular boiler unit 3,, and another combustion chamber; with a second boiler unit 5, followed by a further unit 6, steam-connected or separate as desired, is provided with feeders 7,, 8, supplying powdered fuel from-a bin 9 through ducts 10, 11. Air for combustion is supplied from a blast fan 12 through tuyeres 13, being pref- AUTOMATIC FURNACE CONTROL 1926. Serial No. 125,553.
  • a discharge pipe 22 on the same side of the plunger leads to a discharge port or nozzle 23.
  • a generally similar nozzle 24 is placed in opposed relation to the nozzle 23 or at least in such a position as to act oppositely on a movable element 25.
  • the discharge port or nozzle 24 connects with the pump 21, and from the same side of the plunger a pipe 26 leads from the atmosphere through'the heat exchanger 20.
  • a gas of constant quality is conveniently secured for the opposing nozzle.
  • some other gas of constant quality could likewise be used.
  • the movable member 25 preferably takes the form of a rotor having blades such that in the path of the discharge fromthe nozzles 23 and 24, the rotor will be correspondingly turned, and as will be seen from the arrangement of the pumping means, the blasts of combustion gases from the furnace and the blasts of air respectively will be pumped in alternation so as to impinge upon the movable element 25.
  • a train of gearing 27 from the movable member 25 operates a quadrant gear 28, and mounted inconnection with the latter is a pivoted arm 29, there being a lostmotion connection between the quadrant gear and thearm, for instance by the-arrangement of spaced lugs 30 on the quadrant through which adjustable set screws 31 are placed so.
  • the set screws I may be so adjusted as toallow of average movements being communicated from the rotor 25 wlthout affecting the arm 29, but on exceeding the so predetermined range, the r arm 29 will be correspondingly swung aside.
  • a rheostat R Located in relation with the arm 29 is a series of contacts of a rheostat R, this being electrically connected with a motor driving the fan 12, for'instance such motor may be of shunt wound type and the rheostat B may control the field F thereof, current being 4 taken from mains 32 which are connected with a suitable source.
  • a setting may be made in which the motions imparted by the blasts of flue gas and air are equal for some particular optimum carbon dioxide content as checked by chemical analysis of the flue gas, and at which setting, the to and fro movements of the quadrant being equal, no progressive movement of the rheostat arm will occur and no consequent change in fan speed will be thereby caused. Instead the fan speed and air supply will remain constant.
  • Such predetermined setting will then constitute the standard for the operation of the device, which may then act to 'maintainthat standard in subsequent operations, since when the relative amount of carbon dioxide as delivered through the jet 23 increases, it will tend to overrun the rotor 25 as compared with the return movement occasioned by the air jet 24. Conversely, if the proportion of carbon dioxide as delivered from the furnace products by the jet 23 should decrease,-the effect upon the rotor 25 will be less than that of the air blast from jet 24, and correspondingly the rotor will run the train of gearing in that direction cumulatively to move the arm 29 across the rheostat and regulate the motor accordingly.
  • the device will function to maintain optimum furnace conditions over the practicable range of boiler or furnace rating or operating duty since if the fuel feed be changed either for increased or decreased duty, the CO content being thereby affected, the automatic device will change the air supply accordingly and restore the optimum condition.
  • a method of feeding a combustion zone which comprises translating into a differential rotative mechanical motion the dynamic energy of opposingly operating jets of the gaseous combustion products and of a gas of uniform composition, and thereby gauging the feed of a component supplied to the combust-ion zone.
  • a method of feeding a combustion zone which comprises translating into a differential rotative mechanical motion the dynamic energy of opposingly operating jets of the gaseous combustion products and of a gas of uniform composition, and thereby gauging the blowing of air to the combustion zone.
  • a method of feeding a combustion zone which comprises translating into a difierential rotative mechanical motion the dynamic energy of opposingly perating jets of the gaseous combustion products and of air respectively, and thereby gauging the blowing of air supply to the combustion zope.
  • apparatus of the character described including a furnace, means for controlling the air supply thereto, said means including a nozzle delivering a propulsive jet of gases 0 from the combustion chamber and a member located in the range thereof and movable in response to such jet.
  • apparatus of the character described including a furnace and means for supplying 'a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, one delivering a jet of gases from the combustion chamber and the other delivering a jet of a gas of con- 40 stant quality, and a member located in the 'range thereof and differentially movable in response to such jets.
  • control means including opposed nozzles, one delivering a jet of gases from the combustion chamber and the other delivering a jet of a gas of con- 40 stant quality, and a member located in the 'range thereof and differentially movable in response to such jets.
  • apparatus of the character described including a-furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, one delivering a jet of gas from the combustion chamber and the other delivering ajet of a gas of constant quality, and a rotatable member located in the range thereof and regulating the power operating the supply means.
  • apparatus of the character described including a furnace, means for controlling the air supply thereto, said means including opposed nozzles, one delivering a jet of gases from the combustion chamber and the other delivering a jet of a gas of constant quality,
  • apparatus of the character described including a furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, one delivering a jet of gas from the combustion chamber and the other delivering a jet of a gas ofconstant quality, a rotatable member located in the range thereof,'a rheostat actuated by said rotatable member, and a motor gOXGl'IlQCl by said rheostat and operating the aforesaid supply means.
  • apparatus of the character described including a furnace and means for supplying air thereto, means for controlling the supply, said control means including opposed noz-' zles, one delivering a jet of gas from the combustion chamber and the other delivering a jet of "a gas of constant quality, a rotatable 7 member located in the range thereof, a rheo stat actuated by said rotatable member, and a motor governed by said rheostat and operating the aforesaid air-supply means.
  • apparatus of the character described including a furnace" and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas from the con'ibustion' chamber and a jetof a gas of constant quality, means for equalizing the temperature of such gases, and, a-rotatable member located in the range of said nozzles and regulating the power operating the aforesaid supply means.
  • apparatus of the character described including a furnace and means for supplying air thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing" the temperature of such gases, and a rotatable member located in the range of said nozzles and regulating the power operating the aforesaid supply means.
  • apparatus of the character described including a furnace and means for supplying a COD'llJllSt-lOII component thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas fromthe combustion chamber and a jet of a gas of constant quality, means for equaiizing the temperature of such gases, a rotatable member located-in the rear of said nozzles, a rheostat actuated by said rotatable member, and a motor governed by said rheostat and operating the aforesaid supply means.
  • apparatus of the character described including a furnace and means 'for supplying air thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively ajet of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the temperature of such gases, a rotatable member located in the range of said nozzles, a rheostat actuated by said rotatable member, and a motel-governed by said rheostat and operating the aforesaid supply means.
  • apparatus of the character described including a furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the temperature of such gases.
  • a rotatable member located in the range of said nozzles, a rheostat, an adjustable lostmotion connection between said rotatable member and said rheostat, and a motor governed by said rheostat and operating the aforesaid supply'means.
  • apparatus of the character described including a furnace and means for supplying air as a combustion component thereto, meansfor controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet ot gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the tem wrature of such gases, a rotatable member located in the range of said nozzles, a rheostat, an adjustable lostmotion connection between said rotatable member and said rheostat. and a' motor gorerned by said rhcostat and operating the aforesaid supply means.
  • control means including opposed nozzles, means for said control means including opposed nozzles, means for adjusting the position of said nozzles, means for discharging from said nozzles respectively a ct of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the temperature of such gases, a rotatable member located in adjusting the position of said nozzles, means for discharging from said nozzles respective- 1y a jet of gas from the combustion chamber and a jet of a gas oi? constant quality, means for equalizing the ten'iperature of such gases,
  • a rotatable member located in the range of said nozzles, a rheostat, an adj ustable lostmotion connection between said rotatable member and said rheosta't, and a motor verned by said rheostat and operating the aforesaid supply means.
  • apparatus of the character described including a furnace and means for supplying air as a combustion component thereto, means for controlling the supply,

Description

June 17, 1930. H ow 1,764,715
' AUTOMATIC FURNACE CONTROL Filed Jul 28,, 1926 2 Sheets-Sheet 1 [NVEN TOR.
A TTORN ]L V8 June 17, 1930. H. H. DOW ,7 ,71
AUTOMATIC FURNACE CONTROL Filed my 28, 1926 2 Sheets-Sheet 2 I INVENTOR. .flerwz J1. 170w ATTORNE J.
Patented June 17, 1930 UNITED STATES PATENT OFFICE HERBERT DOW, OF MIDLAND, MICHIGAN, ASSIGNOR TO THE CHEMICAL COM- i PANY, OF MIDLAND, MICHIGAN, A CORPORATION OF MICHIGAN Application filed July 28,
This invention relates more particularly to control of furnaces for boilers and other uses. Efforts have heretofore been made to effect an automatic control of furnace firing '5 Where a liquid fuel is used, the temperature being the governing factor, but a system adapted to regulate with respect to efficiency of combustion, and applicable generally irrespective of the character of fuel used, is
highly desirable.
To the accomplishment of the foregoing and related ends, the invention, then, consists of the features hereinafter described and particularly pointed out inthe claims, the following description and the annexeddrawing setting forthbut oneof various forms in which the principle of the invention may be used.
In said annexed drawing Fig. 1 is a diagrammatic representation of one embodiment of my invention; and Fig. 2 is a similar showing of certain details.
In its general aspects, the invention involves a means forfeeding a fuel to a combustion zone, and a means for feeding the oxygen for combustion, one or the other or both of such feed means being controlled by the character of the combustion gases.-
In the illustrative form shown, a boiler setting 1 comprising a primary combustion chamber 2 with a tubular boiler unit 3,, and another combustion chamber; with a second boiler unit 5, followed by a further unit 6, steam-connected or separate as desired, is provided with feeders 7,, 8, supplying powdered fuel from-a bin 9 through ducts 10, 11. Air for combustion is supplied from a blast fan 12 through tuyeres 13, being pref- AUTOMATIC FURNACE CONTROL 1926. Serial No. 125,553.
through a heat exchanger 20 to a pump 21, preferably of reciprocating plunger type and driven by a belt, gearing or other suitable means. From the'pump 21, a discharge pipe 22 on the same side of the plunger leads to a discharge port or nozzle 23. A generally similar nozzle 24 is placed in opposed relation to the nozzle 23 or at least in such a position as to act oppositely on a movable element 25. The discharge port or nozzle 24 connects with the pump 21, and from the same side of the plunger a pipe 26 leads from the atmosphere through'the heat exchanger 20. In this manner a gas of constant quality is conveniently secured for the opposing nozzle. However, some other gas of constant quality could likewise be used. By theme of a single pump acting on both air and the combustion gases an equalization of feed is realized which would otherwise be diflicultly attained unlessa plurality of pumps were employed. However, detail changes in this re spect may be made as preferred.
The movable member 25 preferably takes the form of a rotor having blades such that in the path of the discharge fromthe nozzles 23 and 24, the rotor will be correspondingly turned, and as will be seen from the arrangement of the pumping means, the blasts of combustion gases from the furnace and the blasts of air respectively will be pumped in alternation so as to impinge upon the movable element 25. A train of gearing 27 from the movable member 25 operates a quadrant gear 28, and mounted inconnection with the latter is a pivoted arm 29, there being a lostmotion connection between the quadrant gear and thearm, for instance by the-arrangement of spaced lugs 30 on the quadrant through which adjustable set screws 31 are placed so.
to bear against the respective sides of the arm 29. In this manner, the set screws I may be so adjusted as toallow of average movements being communicated from the rotor 25 wlthout affecting the arm 29, but on exceeding the so predetermined range, the r arm 29 will be correspondingly swung aside. Located in relation with the arm 29 is a series of contacts of a rheostat R, this being electrically connected with a motor driving the fan 12, for'instance such motor may be of shunt wound type and the rheostat B may control the field F thereof, current being 4 taken from mains 32 which are connected with a suitable source.
are drawn off by way of pipes 17 (r 18 and passing through the heat exchanger 20 are averaged in temperature with air coming through the air pipe, and the'pump 21 forces blasts alternately .through the nozzles 23- and 24. By reason of the difference in efiective mass of the combustion gases in accordance with the carbon dioxide content, a blast of combustion gas .will tend, other things being equal, to drive the rotor 25*toa greater extent than a corresponding blast of air. By initially adjusting the angle of attack of the nozzles 23 and 2 1 respectively, a setting may be made in which the motions imparted by the blasts of flue gas and air are equal for some particular optimum carbon dioxide content as checked by chemical analysis of the flue gas, and at which setting, the to and fro movements of the quadrant being equal, no progressive movement of the rheostat arm will occur and no consequent change in fan speed will be thereby caused. Instead the fan speed and air supply will remain constant. Such predetermined setting will then constitute the standard for the operation of the device, which may then act to 'maintainthat standard in subsequent operations, since when the relative amount of carbon dioxide as delivered through the jet 23 increases, it will tend to overrun the rotor 25 as compared with the return movement occasioned by the air jet 24. Conversely, if the proportion of carbon dioxide as delivered from the furnace products by the jet 23 should decrease,-the effect upon the rotor 25 will be less than that of the air blast from jet 24, and correspondingly the rotor will run the train of gearing in that direction cumulatively to move the arm 29 across the rheostat and regulate the motor accordingly. It will thus be seen thatwith change in carbon dioxide content as expressed in its effect in causing motion of the rotor as compared with the motion from the air blasts, the rheostat will be moved to accelerate, or to slow down the fan supplying the air to the combustion chamber.
Increase in carbon dioxide will cause an acceleration of the fan and a consequent in crease in air supply to the combustion zone, while decrease in the proportion of carbon dioxide jetted upon the rotor will cause the rheostat to slow down the motor and lessen the feed of air to the furnace.
- Such changes in air supply will tend to restore the carbon dioxide content in the fluegas to the optimum value, and as soon as that value is reached, the equality of rotative effects of the two jets will have been restored and the quadrant will oscillate through equal arcs and no further progressive movement of the rheostat arm will ensue until a change in Co content demands it,
but it will remain in the new position corresponding to the new rate'of air supply. It
will be seen therefore that the device will function to maintain optimum furnace conditions over the practicable range of boiler or furnace rating or operating duty since if the fuel feed be changed either for increased or decreased duty, the CO content being thereby affected, the automatic device will change the air supply accordingly and restore the optimum condition.
WVhile for illustration, I have shown the feed control as connected to the air supply, I contemplate in some instances controlling the fuel supply. As alrule however, it is more convenient to effect the control on the air supply on thegeneral lines indicated. This particular form of control system may also be installed in existent furnaces where equipment as designed for handling the fuel is of widely varied type. Moreover instead of controlling the drive of a fan supplying the air, I may in some cases control a damper supplying the air for the combustion zone. Where it is preferred to control the fuel instead of or along with the air, this may be.
Other modes of applying the principle of my invention may be used, change being;
made in the features set forth, provided the means or steps stated in any of the following claims or the equivalent of such be employed.
I therefore particularly point out and distinctly claim as my invention 1. A method of feeding a combustion zone, which comprises translating into a differential rotative mechanical motion the dynamic energy of opposingly operating jets of the gaseous combustion products and of a gas of uniform composition, and thereby gauging the feed of a component supplied to the combust-ion zone.
2. A method of feeding a combustion zone, which comprises translating into a differential rotative mechanical motion the dynamic energy of opposingly operating jets of the gaseous combustion products and of a gas of uniform composition, and thereby gauging the blowing of air to the combustion zone.
'3. A method of feeding a combustion zone, which comprises translating into a difierential rotative mechanical motion the dynamic energy of opposingly perating jets of the gaseous combustion products and of air respectively, and thereby gauging the blowing of air supply to the combustion zope.
l. In a method'of feeding a combustion zone by controlling the ratio of fuel and air 0 supply, the steps which consist in directing alternate opposed jets of air and flue gas, respectively, upon a member rotatable in opposite directions by the dynamic effect of said jets and employing excess rotation of said rotatable member in one said direction to initiate action of mechanism controlling said rotation. 5. In apparatus of the character described, including a furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including a nozzle delivering a propulsive jet of gases from the combustion chamber, and a member located in the range thereof and movable in response to such jet. I
6. In apparatus of the character described, including a furnace, means for controlling the air supply thereto, said means including a nozzle delivering a propulsive jet of gases 0 from the combustion chamber and a member located in the range thereof and movable in response to such jet.
.7. In apparatus of the character described, including a furnace and means for supplying 'a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, one delivering a jet of gases from the combustion chamber and the other delivering a jet of a gas of con- 40 stant quality, and a member located in the 'range thereof and differentially movable in response to such jets. 8. In apparatus of the character described, including a furnace, means for controlling the air supply thereto, said means including opposed nozzles, one delivering a jet of gases from the combustion chamber and the otherdelivering a jet of a of constant quality, and a member located in the range thereof 5 and differentially movable in response to such jets. a
9. In apparatus of the character described, including a-furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, one delivering a jet of gas from the combustion chamber and the other delivering ajet of a gas of constant quality, and a rotatable member located in the range thereof and regulating the power operating the supply means.
l v 10. In apparatus of the character described, including a furnace, means for controlling the air supply thereto, said means including opposed nozzles, one delivering a jet of gases from the combustion chamber and the other delivering a jet of a gas of constant quality,
"and a rotatable member located in the range thereof and regulating the power operating the supply means.
11.- In apparatus of the character described, including a furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, one delivering a jet of gas from the combustion chamber and the other delivering a jet of a gas ofconstant quality, a rotatable member located in the range thereof,'a rheostat actuated by said rotatable member, and a motor gOXGl'IlQCl by said rheostat and operating the aforesaid supply means. a
12. In apparatus of the character described, including a furnace and means for supplying air thereto, means for controlling the supply, said control means including opposed noz-' zles, one delivering a jet of gas from the combustion chamber and the other delivering a jet of "a gas of constant quality, a rotatable 7 member located in the range thereof, a rheo stat actuated by said rotatable member, and a motor governed by said rheostat and operating the aforesaid air-supply means.
13. In apparatus of the character described. including a furnace" and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas from the con'ibustion' chamber and a jetof a gas of constant quality, means for equalizing the temperature of such gases, and, a-rotatable member located in the range of said nozzles and regulating the power operating the aforesaid supply means.
14. In apparatus of the character described, including a furnace and means for supplying air thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing" the temperature of such gases, and a rotatable member located in the range of said nozzles and regulating the power operating the aforesaid supply means.
15. In apparatus of the character described, includinga furnace and means for supplying a COD'llJllSt-lOII component thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas fromthe combustion chamber and a jet of a gas of constant quality, means for equaiizing the temperature of such gases, a rotatable member located-in the rear of said nozzles, a rheostat actuated by said rotatable member, and a motor governed by said rheostat and operating the aforesaid supply means.
16. In apparatus of the character described. including a furnace and means 'for supplying air thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively ajet of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the temperature of such gases, a rotatable member located in the range of said nozzles, a rheostat actuated by said rotatable member, and a motel-governed by said rheostat and operating the aforesaid supply means.
17. In apparatus of the character described, including a furnace and means for supplying a combustion component thereto, means for controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the temperature of such gases. a rotatable member located in the range of said nozzles, a rheostat, an adjustable lostmotion connection between said rotatable member and said rheostat, and a motor governed by said rheostat and operating the aforesaid supply'means.
18. In apparatus of the character described, including a furnace and means for supplying air as a combustion component thereto, meansfor controlling the supply, said control means including opposed nozzles, means for discharging from said nozzles respectively a jet ot gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the tem wrature of such gases, a rotatable member located in the range of said nozzles, a rheostat, an adjustable lostmotion connection between said rotatable member and said rheostat. and a' motor gorerned by said rhcostat and operating the aforesaid supply means.
19. In apparatus of the character described, including a furnace and means for supplying a combustion component thereto,
means for controlling the supply, said control means including opposed nozzles, means for said control means including opposed nozzles, means for adjusting the position of said nozzles, means for discharging from said nozzles respectively a ct of gas from the combustion chamber and a jet of a gas of constant quality, means for equalizing the temperature of such gases, a rotatable member located in adjusting the position of said nozzles, means for discharging from said nozzles respective- 1y a jet of gas from the combustion chamber and a jet of a gas oi? constant quality, means for equalizing the ten'iperature of such gases,
a rotatable member located in the range of said nozzles, a rheostat, an adj ustable lostmotion connection between said rotatable member and said rheosta't, and a motor verned by said rheostat and operating the aforesaid supply means.
20. In apparatus of the character described, including a furnace and means for supplying air as a combustion component thereto, means for controlling the supply,
US125558A 1926-07-28 1926-07-28 Automatic furnace control Expired - Lifetime US1764715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US125558A US1764715A (en) 1926-07-28 1926-07-28 Automatic furnace control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US125558A US1764715A (en) 1926-07-28 1926-07-28 Automatic furnace control

Publications (1)

Publication Number Publication Date
US1764715A true US1764715A (en) 1930-06-17

Family

ID=22420290

Family Applications (1)

Application Number Title Priority Date Filing Date
US125558A Expired - Lifetime US1764715A (en) 1926-07-28 1926-07-28 Automatic furnace control

Country Status (1)

Country Link
US (1) US1764715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330260A (en) * 1979-01-31 1982-05-18 Jorgensen Lars L S Method and apparatus for regulating the combustion in a furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330260A (en) * 1979-01-31 1982-05-18 Jorgensen Lars L S Method and apparatus for regulating the combustion in a furnace

Similar Documents

Publication Publication Date Title
US1764715A (en) Automatic furnace control
US2393042A (en) Axial flow fan
US1338922A (en) Regulating combustion-furnaces
US2387583A (en) Aircraft heating means
US1151611A (en) Chimney draft device.
US4452585A (en) Combustion air blower surge control for a melting furnace
US2498089A (en) Level controller
US2141604A (en) Control system
US1154207A (en) Thermostatic control of furnaces.
US1848185A (en) Open hearth furnace control
US1754965A (en) Oombttstion-contbol appabattts
US1167343A (en) Furnace regulation.
US3514085A (en) Combustion chamber atmosphere control
US1767004A (en) Method of utilizing fuel gas produced under conditions of varying pressure
US3121409A (en) Method and apparatus for controlling the air supply to a pulverized coal firing system
US1484934A (en) Regulator
US1209597A (en) Fuel feeder and controller.
US2215941A (en) Air volume regulator and control for fluid fuel burners
US1695472A (en) Furnace-controlling apparatus
US1920323A (en) rossman
US1377308A (en) Control system for oil-burners
US684152A (en) Apparatus for feeding pulverized fuel to a plurality of fire-boxes.
US1400549A (en) Combustion-regulating means
US1345652A (en) Furnace construction
SU823429A1 (en) Control device for dust coal fuel supply to blast furnace