US1742557A - Noncorrosive aluminum alloy - Google Patents

Noncorrosive aluminum alloy Download PDF

Info

Publication number
US1742557A
US1742557A US90422A US9042226A US1742557A US 1742557 A US1742557 A US 1742557A US 90422 A US90422 A US 90422A US 9042226 A US9042226 A US 9042226A US 1742557 A US1742557 A US 1742557A
Authority
US
United States
Prior art keywords
magnesium
aluminum
alloys
alloy
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US90422A
Inventor
Sterner-Rainer Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Lurgi Corp
Original Assignee
American Lurgi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Lurgi Corp filed Critical American Lurgi Corp
Application granted granted Critical
Publication of US1742557A publication Critical patent/US1742557A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to aluminum alloys resistant to the action of corrosive agents and particularly to sea-water and to the production of such alloys.
  • the treatment of the magnesium-aluminum alloys to render the corrosion-resistant comprises-a suitable thermal treatmentv advantageously in conjunction with suitable additions to the alloy.
  • the effect of the thermal treatment of the invention in increasing the resistance of the th alloys to corrosion is related to the fact that, g-ty t l b i th b t f d in the presence of corrosive agents, otential differences arise between the lssimilar crystals of heterogeneous alloys, that is to say, of alloys made up, in the solid state, of crystals of more than one physical type. These otential difl'erences give'rise to intercrystalline electrolytic action and greatly accelerate corrosion.
  • magnesium-aluminum alloys containing 10% of magnesium may be held for about an hour at a temperature of about 420 C.
  • magnesium in the e magnesium-poor a-type crystals the
  • a similar result is caused to cool down from a temperature of about 420 C. over a period of 5 to 8 hours.
  • the very .low solubility of the above-named addition substances prevents properties of the alloys, without giving rise to lntercrystallinepotential difierences in the alloys, but also increases the amount of the corrosion-reducing substances, such as antimony, bismuth, and cadmium, which may be added without causing a substantial intercrystalline potential difference in the alloys.
  • An alloy composition within the scope of the present invention is:
  • chromium solidification begins at about 8009, with 3% chromium at about 900, and with 4% chromium at about 1000.
  • compositions included within the scope of the present invention comprise:
  • Remainder aluminum Magnesium 3 to 6% Cadmium 1.5% Remainder aluininu 3. Manganese 2% Chromium ).5%
  • metal of the iron, group is intended to include manganese which, although it is not included in group 8 of the Periodic System, performs the same function in this invention as the y metals of the iron group proper.
  • Amprocess of making corrosion-resistant alloys which comprises subjecting an alloy of aluminum and magnesium containing not more than about 10 per cent of magnesium to an elevated tem erature below its melting point until the al oy contains substantially only one crystal type.
  • a process of making corrosion-resistant alloys which comprises subjecting an alloy of aluminum and magnesium containing not more than about 10 per cent of magnesium to a temperature of about 420 C. until the alloy contains substantially only one crystal type.
  • a corrosion-resistant alloy of aluminum and magnesium containing not more than about 10% of magnesium and being free from magnesium-rich ,B-type crystals.
  • alloy being free rom magnesium-rich ,B-type crystals and containing at least one metal of the group comprising antimony, bismuth and cadmium, and at least one metal of. the iron group.

Description

Patented 7, p 1930 mm; mama-Banana,- or
- Lunar oonromrromor NEW roax,
noncomsrvn rm: Io Drawing. Application filed February 84, 1926, Serial Io. 90,482, and in Switzerland December 17,
The present invention relates to aluminum alloys resistant to the action of corrosive agents and particularly to sea-water and to the production of such alloys. g
It is well known that the alloys of aluminum and magnesium hitherto available are very deficient in resistance to the corroslve action of air, water and weather, and for this reason they have not been put to the extensive use which their advantageous mechanical properties would otherwise have indicated.
It has now been found, however, that cer tain aluminum-magnesium alloys may be made, suitable for uses'where corrosion-resisting properties are required, by means of suitabletreatment hereinafter more fully described.
The treatment of the magnesium-aluminum alloys to render the corrosion-resistant comprises-a suitable thermal treatmentv advantageously in conjunction with suitable additions to the alloy.
The effect of the thermal treatment of the invention in increasing the resistance of the th alloys to corrosionis related to the fact that, g-ty t l b i th b t f d in the presence of corrosive agents, otential differences arise between the lssimilar crystals of heterogeneous alloys, that is to say, of alloys made up, in the solid state, of crystals of more than one physical type. These otential difl'erences give'rise to intercrystalline electrolytic action and greatly accelerate corrosion.
Scientific research has shown that at ordinary telnperatures aluminum can hold magnesium in solid solution to the extent of about 10%. -However, the casting of an aluminum alloy containing up to 10% magnesium does not result in castings of homogeneous crystal structure as might be expected. On the con trary, clue to the high crystallization speed of the intermetallic'compound Al Mg (containing over 37% magnesium), and to the low rate of diffusion, segregation occurs and structures of poor resistance to corrosion are formed. The high rate of crystallization results in the first crystals'bcing of higher magnesium content than can be held in solid solution at ordinary temperatures. Since these first ,B-type crystals are richer in magnesium p 7 umrao mm- PArENr OFFICE,
NECKABSULI, GERMANY, 'ASSIGNOB TO AMERICAN N. Y A CORPORATION Oil NEW YORK above described is high, for a time sufiicient to permit of substantially complete diffusion. In .this way there is produced a magnesium-aluminum alloy free from intercrystalline potential differences and of surprising resistance to corrosive agents. v 1
For instance, magnesium-aluminum alloys containing 10% of magnesium may be held for about an hour at a temperature of about 420 C. Under magnesium in the e magnesium-poor a-type crystals, the
1nto -type crystals so that the resulting alloy conslsts entirely of crystals of the same these conditions the excess ,B-type crystals diffuses into crystal-structure between which there is substantially no potential difference.
A similar result is caused to cool down from a temperature of about 420 C. over a period of 5 to 8 hours.
A 5 to 20% valuable etching reagent for the determination of the presence of the diverse crystal types and for following the diffusion and omogenizing' of the structure of the alloy. ;-Of further value in increasing the reslstance tocorrosion of alloys of this type is the addition to the alloys of substances which obtained if the casting is solution of chromic acid is a tend to produce protective oxide coatings or I films on, the surface of with the air. I
It has been found that antimony, bismuth and cadmium answer the requirements above set forth and form highly suit-able addition agents, either alone or in admixture, in
the alloy in contact aluminum alloys of ;the type under consideration.
However, the very .low solubility of the above-named addition substances prevents properties of the alloys, without giving rise to lntercrystallinepotential difierences in the alloys, but also increases the amount of the corrosion-reducing substances, such as antimony, bismuth, and cadmium, which may be added without causing a substantial intercrystalline potential difference in the alloys.
An alloy composition within the scope of the present invention is:
Magnesium 3 to 6% Manganese 1 to 4% Antimony up to 1% Remainder aluminum.
When the chromium is added to the alloys it should not be in amounts greater than 2%,
and preferably less than 1%, because of its efiect in raising the solidification temperature of the alloys. For instance, with 2% chromium solidification begins at about 8009, with 3% chromium at about 900, and with 4% chromium at about 1000.
It is notnecessary that all ofthe above mentioned types of addition substances be present in the alloys, as, for instance, magnesium-manganese-aluminum alloys, -when produced according to the teachings of the present invention, afford very considerable advantages over hitherto known aluminum alloys. The same is true when, instead of manganese or magnesium, small quantities of antimony, bismuth, or cadmium enter into the composition of the'alloy.
Further alloy compositions included within the scope of the present invention comprise:
1. Magnesium; 3 to 6% Manganese 1 to 4% Chromium 0.5%
. Remainder aluminum 2. Magnesium 3 to 6% Cadmium 1.5% Remainder aluininu 3. Manganese 2% Chromium ).5%
Antimony 3% Remainder aluminum In the following claims the term metal of the iron, group is intended to include manganese which, although it is not included in group 8 of the Periodic System, performs the same function in this invention as the y metals of the iron group proper.
I claim:
1. Amprocess of making corrosion-resistant alloys, which comprises subjecting an alloy of aluminum and magnesium containing not more than about 10 per cent of magnesium to an elevated tem erature below its melting point until the al oy contains substantially only one crystal type.
, 2. A process of making corrosion-resistant alloys, which comprises subjecting an alloy of aluminum and magnesium containing not more than about 10 per cent of magnesium to a temperature of about 420 C. until the alloy contains substantially only one crystal type.
3. process of making corrosion-resistant alloys, which comprises subjecting an alloy of aluminum and magnesium containing not more than about 10 per cent of magnesium at a temperature until the ,8 crystals have disappeared.
4. corrosion-resistant alloy of aluminum and magnesium, the magnesium content of which does not substantially exceedthe solid solubility of magnesium in aluminum, said alloy being free crystals.
5. A corrosion-resistant alloy of aluminum and magnesium containing not more than about 10% of magnesium and being free from magnesium-rich ,B-type crystals.
6. A corrosion resistant alloy of aluminum and magnesium, the magnesium-content of which does not substantially exceed the solid solubility of ma alloy being free rom magnesium-rich ,B-type crystals and containing at least one metal of the group comprising antimony, bismuth and cadmium.
7. A corrosion-resistant alloy of aluminum and magnesium, the magnesium content of which does not substantially exceed the solid solubility of ma nesium in aluminum, said,
alloy being free rom magnesium-rich ,B-type crystals and containing at least one metal of the group comprising antimony, bismuth and cadmium, and at least one metal of. the iron group.
8. A corrosion-resistant alloy of aluminum and magnesium, the magnesium content of which does not substantially exceed the solid solubility of magnesium in aluminum, said 10. A corrosion-resistant ,alloy' of aluminum and magnesium, the magnesium content esium in aluminum, said rom magnesium-rich fl-type ROLAND STERNER-RAINER.
US90422A 1925-12-17 1926-02-24 Noncorrosive aluminum alloy Expired - Lifetime US1742557A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1742557X 1925-12-17

Publications (1)

Publication Number Publication Date
US1742557A true US1742557A (en) 1930-01-07

Family

ID=4566101

Family Applications (1)

Application Number Title Priority Date Filing Date
US90422A Expired - Lifetime US1742557A (en) 1925-12-17 1926-02-24 Noncorrosive aluminum alloy

Country Status (1)

Country Link
US (1) US1742557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496451B1 (en) * 1970-04-10 1974-02-14
JPS5565344A (en) * 1978-10-27 1980-05-16 Sumitomo Light Metal Ind Ltd High strength aluminum alloy with superior formability and corrosion resistance, and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496451B1 (en) * 1970-04-10 1974-02-14
JPS5565344A (en) * 1978-10-27 1980-05-16 Sumitomo Light Metal Ind Ltd High strength aluminum alloy with superior formability and corrosion resistance, and manufacture thereof
JPS5826426B2 (en) * 1978-10-27 1983-06-02 住友軽金属工業株式会社 Manufacturing method for strong aluminum alloy with excellent formability and corrosion resistance

Similar Documents

Publication Publication Date Title
US3794531A (en) Method of using a highly stable aluminum alloy in the production of recrystallization hardened products
US4173469A (en) Magnesium alloys
US2204568A (en) Magnesium alloy
US1742557A (en) Noncorrosive aluminum alloy
US3653880A (en) Magnesium cast alloys with little tendency to hot-crack
US2715577A (en) Copper-base alloys
JPS5918457B2 (en) Magnesium-based alloy with high mechanical strength and low corrosion tendency
US3718460A (en) Mg-Al-Si ALLOY
US2290022A (en) Aluminum alloy
US4462960A (en) Zinc anode alloy for sacrificial anodes
US1852442A (en) Zinc-base die-casting alloy
US2464918A (en) Magnesium base alloys
US2185453A (en) Method of heat treating magnesium base alloys
US2720459A (en) Highly wear-resistant zinc base alloy
US2290023A (en) Aluminum alloy
US1663215A (en) Zinc-base alloy
US2045242A (en) Alloy
US1341774A (en) Metal alloy
US2045244A (en) Alloy
US2290018A (en) Aluminum alloy
US2045247A (en) Alloy
US2045237A (en) Alloy
US2026589A (en) Alloy
US3388987A (en) Cathodic protection alloys
USRE18600E (en) Zinc base die casting alloy