US1734150A - Loaded transmission system - Google Patents

Loaded transmission system Download PDF

Info

Publication number
US1734150A
US1734150A US23032927A US1734150A US 1734150 A US1734150 A US 1734150A US 23032927 A US23032927 A US 23032927A US 1734150 A US1734150 A US 1734150A
Authority
US
United States
Prior art keywords
phantom
circuit
loading
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
T Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US1734150A publication Critical patent/US1734150A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/005Arrangement or mounting of seats in vehicles, e.g. dismountable auxiliary seats
    • B60N2/01Arrangement of seats relative to one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • H01B11/16Cables, e.g. submarine cables, with coils or other devices incorporated during cable manufacture

Definitions

  • Thisv invention relates to a loaded transmission system, and particularly toone comprising physical circuits having a phantom superimposed thereon, the said phantom being loaded to transmit a frequency or range of frequencies differing from that for Which the physical circuits are loaded.
  • FIG. 2a represents symbolically the capacities existing in the loaded circuit'shovvn in Fig. 2
  • F ig. 3 shows a circuit in Which the invention is embodied
  • Fig. 3a shovvs symbolically the capacities existing in the circuit of Fig. 3.
  • L1 and L2 represent tvvo'circuits that may be employed as the side circuits of a phantom.
  • the frequency range for carrier transmission was so great that it required lthe spacing of the carrier loadinor coils at a distance ⁇ of slightly over 900 fgeet apart. I have found that by reducing the upper limit of the carrier frequency to approximately 13,000 cycles,
  • the side circuit loading coils may be spaced apart a distance that is approximately three times the spacing for the system employing 30,000 cycles as the upper limit; that is to say, the spacing for a cut-off frequency of 13,000 cycles is approximately 2800 feet. Since the spacing'of phantom loading coils upon toll entrance cables in which carrier frequencies are not employed upon the side circuits is approximately 6,000 feet, it became apparent lthat by 'extending the'loading section ofthe side circuit to 3,000 feet it would be possible to load both the phantom and the side circuits at every other side circuit loading point.
  • lV shows the disposition of the side Ycircuitloading coils upon physical'circuits :25 which will be assume-d to have no phantom circuit superimposed thereon but which Lcofuld' be so used.
  • These coils 1, 2, 3 and 1, 2 and 3, which comprise the windings enclose-d VVwithin the dotted lines, may be assumed to aobe ⁇ spaced approximately 3,000 feet apart.
  • the capacity of 'the section A-B wouldbe made up of'I the -fcapacity a between one-half of the coil 1 at Ivthe point A, capacity b representing that between windings 6 and 7 of the phantom load- ?160 ingcoilglt, .the capacity c representing that 'ofthe side' circuit conductors between A and 'Bi and yanotherV capacity a representing that "offene-half of the side circuit coil 2y at the loading point B.
  • the neXt succeeding loadbetween B and C,
  • vsame action has b'eenitaken with respect vto i. ⁇ the phantom coil 5 at theloading point G.
  • the capacity of section AuB differs from that of section B-C by the magnitude of the capacity b.
  • the foregoing statement assumes, of course, that the capacities of the side circuit conductors between A and B and between B and C are equal, which would be substantially so.
  • the introduction of the capacity d into the side circuit A-B causes an impedance irregularity which, through its uniform recurrence, would impair transmission. This"diiiiculty may 'be remedied inthe "manner shown in Fig.
  • the capacity of the loading section A--B comprises the ⁇ capacities a, -i 5105 Vfb', c and a.
  • the capacity ofthe loadingisection B-C likewisey c'omprises'the capacities ab, c'and a. Since one-half ofthe'loading -coil capacityl of Ieachiphantom l'oa'di'ng'coil is added to every loading section, it is not.

Description

Nv. 5, 1929. r. sHAw LOADED TRANSMISSION SYSTEM INVENTOA Z Shaw ATTORNEY Filed Nov. 1. 1927 tra sanas THOMAS SHAW, OF HACKENSACK, NEW JERSEY, ASSIGNOR TO AMERICAN TELEPHONE AND' TELEGRAPH COMPANY, .A CORPORATION OF NEW YORK LOADED TRANSMISSION SYSTEM Application led November 1, 1927. Serial No. 230,329.`
Thisv invention relates to a loaded transmission system, and particularly toone comprising physical circuits having a phantom superimposed thereon, the said phantom being loaded to transmit a frequency or range of frequencies differing from that for Which the physical circuits are loaded.
Transmission systems have been devised and used heretofore in Which the range of frequencies transmitted by the phantom circuit differs from that transmitted by the physical circuits constituting the sides of the phantom. The patent to Shaw, 1,501,926, which issued on July 22, 1924, discloses a transmission system in Which both the phantom circuit and the physical circuits constituting its sides are loaded, the said phantom circuit being used for the transmission of frequencies Within the voice range, for eX- ample, from 200 to 7500 cycles, and the side circuits for the transmission of carrier frequencies up to, for example, 30,000 cycles. The Wide range of carrier frequencies employed, required the loading of the side circuits to be spaced at relatively short intervals, slightly over 900 feet. On the other hand, since the frequency range of the currents transmitted over the phantom circuit Was relatively much narrower than that of the sides, the spacing of the phantom circuit loading was equal to six times that of the side circuit loading. Thus, at every sixth loading point upon the side circuits, Ya phantom loading coil would also be connected With the circuit. As has been pointed out carefully in detail in the said patent to Shaw and also in the patent to Martin and Shaw, 1,501,959 that issued on July 22, 1924, the connection of the phantom windings With the physical circuits at every siXth loading point upon the side circuits introduces a diculty that can be eliminated only by the use at the phantomside circuit loading point of a special side circuit coil, namely, one that differs from t-he other side circuit coils connected With the same conductors and also of a special phantom coil which differs materially from phantom coils for voice frequency loading Where carrier currents are not employed uponthe side circuits. Briefly stated, Where the range of frequencies transmitted by the side circuits is radically different from the range transmitted by the phantom, itis necessary to employ special loading units at the points Where both the side circuits and the phantom circuit are loaded, the side circuit coils of the said unit being different from other side circuit coils employed,and the phantom coil differing from the type of coil that Would be employed upon the phantom if carrier .currents Were not transmitted over the sides. The necessity for providing special coils is undesirable from a manufacturing as Well as a service standpoint.- 'lt has been foundpossible to produce a system in which not only may the same side circuit coil be employed in the phantom loading unit as is employed at 'other points upon the side circuit, but also the same phantom coil may be'employed as Would be used upon any phantom circuit in `which carrier frequencies Were not transmitted over the side circuits thereof. My invention resides in such a system.
This invention will be clearly understood from the following description when read in connection With the attached drawing, in which Figures 1 and 2 illustrate the description ofthe development of the invention; Fig. 2a represents symbolically the capacities existing in the loaded circuit'shovvn in Fig. 2; F ig. 3 shows a circuit in Which the invention is embodied, and Fig. 3a shovvs symbolically the capacities existing in the circuit of Fig. 3.
ln Fig. 1, L1 and L2 represent tvvo'circuits that may be employed as the side circuits of a phantom. In the system of the prior art, as exemplified by the said patent to Shaw, the frequency range for carrier transmission Was so great that it required lthe spacing of the carrier loadinor coils at a distance `of slightly over 900 fgeet apart. I have found that by reducing the upper limit of the carrier frequency to approximately 13,000 cycles,
the side circuit loading coils may be spaced apart a distance that is approximately three times the spacing for the system employing 30,000 cycles as the upper limit; that is to say, the spacing for a cut-off frequency of 13,000 cycles is approximately 2800 feet. Since the spacing'of phantom loading coils upon toll entrance cables in which carrier frequencies are not employed upon the side circuits is approximately 6,000 feet, it became apparent lthat by 'extending the'loading section ofthe side circuit to 3,000 feet it would be possible to load both the phantom and the side circuits at every other side circuit loading point. By adopting Vthis ratio of spacing of the side 2o circuit coils to the phantom coils, that is to -say,"atwo-to-one ratio, and by arranging the phantom coil windings at the combined phan- ,fitomssideV circuit loading` points in the manner -hereinafter described, it is possible to -wemploy the same side circuit coil at `the phantom-*side loading point and also to employ vthe same phantom loading coil at that point aswould be employed upon the phantom circuit' of a system in which carrier currents 80j are not transmitted over the sides. The features that render this possible will be appar- 1entfrom the consideration of Figs. 1, 2 and 22. Fig. lV shows the disposition of the side Ycircuitloading coils upon physical'circuits :25 which will be assume-d to have no phantom circuit superimposed thereon but which Lcofuld' be so used. These coils 1, 2, 3 and 1, 2 and 3, which comprise the windings enclose-d VVwithin the dotted lines, may be assumed to aobe `spaced approximately 3,000 feet apart.
'If a phantom circuit were superimposed upon thefpairs L1 'and L2, and such phantom were f loaded in the manner shown by the coils It Y 'and 5 of Fig. 2, that is to say, by the conirne'ction ofthe coil windings into the side Y k'.'cilcuits'at every other loading point upon V*tlieside circuit, the distribution of the capacities between the windings of the side Icircuit-coils, of the phantom coils and between 2150 fthe conductors of each side circuit, would be "as shown in Fig. 2". Assuming as a loading section the distance from the midpoint of the windings atpone loading point to the midv point of the windings upon the same circuit :w f iatan' adjacent loading point, the capacity of 'the section A-B wouldbe made up of'I the -fcapacity a between one-half of the coil 1 at Ivthe point A, capacity b representing that between windings 6 and 7 of the phantom load- ?160 ingcoilglt, .the capacity c representing that 'ofthe side' circuit conductors between A and 'Bi and yanotherV capacity a representing that "offene-half of the side circuit coil 2y at the loading point B. The neXt succeeding loadbetween B and C,
vsame action has b'eenitaken with respect vto i. `the phantom coil 5 at theloading point G.
seen, therefore, that the capacity of section AuB differs from that of section B-C by the magnitude of the capacity b. The foregoing statement assumes, of course, that the capacities of the side circuit conductors between A and B and between B and C are equal, which would be substantially so. The introduction of the capacity d into the side circuit A-B causes an impedance irregularity which, through its uniform recurrence, would impair transmission. This"diiiiculty may 'be remedied inthe "manner shown in Fig. 3, in -which the phantom coil windings are split, one-half being located upon that sideoft'heside-circuit loading coil 1 toward the loading point D, and the other half of each ofthephantom coilpwindingsbein'g located upon that side of theside circuit loading coill toward the-loadingpoint B. lThus,
4it will be seen in Fig. 3 that the winding D6 of Fig. 2 has been divided intoequal halves designated 6 vand 6, and,similarly, the other windings of the phantom'loading coil 4 have been divided `and connected upon opposite sides of the side circuit coil-1. rIhe It will be seenfrom Fig.'3.showing the capacity distribution of the coilsand conductors of Fig. 3 that the capacity of each side .circuit is substantially equal to that'of every-:other .i100
side circuit, so that no impedance irregularity occurs 'at any; point thereon. If the capacities of each half of a phantom` coil winding `be represented byy b', the capacity of the loading section A--B comprises the `capacities a, -i 5105 Vfb', c and a. The capacity ofthe loadingisection B-C likewisey c'omprises'the capacities ab, c'and a. Since one-half ofthe'loading -coil capacityl of Ieachiphantom l'oa'di'ng'coil is added to every loading section, it is not. necessary to have side circuit'fcoils-'atthe combined phantom-side floading points that differ from the 'otheriside-circuit coils eniployed at the points where the. phantom is 'not loaded. It will be apparent that in'thesystem just described the capacity 'increment ofthe side circuits due'to lthe vkconnection therein of one-half'fflthe'phantomloading coil winding at each combinedloading point will occur at opposite 'ends ofadjacent'l'oad-s, ing sections, that' is to say, iniv the section A-B, it is at the `left-hand end, whereas in the section B-C' it is at the right-hand end. The position of thecapacity increment wi`thin the limits of the loading section, h'oweven is n-ot a matter vof importance from thestand- -point of impedance irregularity.
It will therefore beapparent that by choosing the ratio' ofv Spacingofftfhe side circuit loading coils v`to f .the f phantom -iloajding` lcoils 1 v130
US23032927 1926-11-05 1927-11-01 Loaded transmission system Expired - Lifetime US1734150A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1734213X 1926-11-05

Publications (1)

Publication Number Publication Date
US1734150A true US1734150A (en) 1929-11-05

Family

ID=10889469

Family Applications (2)

Application Number Title Priority Date Filing Date
US156736A Expired - Lifetime US1734213A (en) 1926-11-05 1926-12-23 Motor-car body
US23032927 Expired - Lifetime US1734150A (en) 1926-11-05 1927-11-01 Loaded transmission system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US156736A Expired - Lifetime US1734213A (en) 1926-11-05 1926-12-23 Motor-car body

Country Status (4)

Country Link
US (2) US1734213A (en)
BE (1) BE338546A (en)
FR (1) FR626664A (en)
GB (1) GB271704A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3058769A (en) * 1958-06-25 1962-10-16 Corwin D Willson Stock-car domestic ensembles
US3097876A (en) * 1961-11-15 1963-07-16 Corwin D Willson Family car ensembles

Also Published As

Publication number Publication date
US1734213A (en) 1929-11-05
GB271704A (en) 1927-06-02
FR626664A (en) 1927-09-16
BE338546A (en)

Similar Documents

Publication Publication Date Title
US4012733A (en) Distribution power line communication system including a messenger wire communications link
US1734150A (en) Loaded transmission system
US4099036A (en) Remote power supply system for a coaxial line with repeaters subjected to the influence of external electric fields
US2675428A (en) Cable balance
US1561782A (en) Inductance coil
US2235018A (en) Electric filter arrangement
US2013140A (en) Translating circuit
US2938084A (en) Hybrid branching networks
US2110278A (en) Translating circuit
US1624682A (en) Electrical network
US1942488A (en) Electric wave filter
US1824579A (en) Aerial receiving system for wireless signaling
US1593640A (en) Neutralization of inductive interference
US2172923A (en) Antenna coupler
US2238260A (en) Electric filter arrangement
US1950127A (en) Communication system
US2099800A (en) Shielded circuits for open wire lines
US1530537A (en) Electrical transposition system
US1587813A (en) Loading-coil case
US308020A (en) Telephone-circuit
US1736814A (en) Electrical transposition system
US1676627A (en) Method and means for reducing cross talk in carrier-current signaling systems
US2518271A (en) Device for reduction of cross talk between two coaxial pairs of a telephone cable
US1198214A (en) Telephone system.
US1472451A (en) Phantomed signaling circuits