US1698049A - Process of making cellulosic esters containing halogen-substituted fatty-acid groups - Google Patents
Process of making cellulosic esters containing halogen-substituted fatty-acid groups Download PDFInfo
- Publication number
- US1698049A US1698049A US247742A US24774228A US1698049A US 1698049 A US1698049 A US 1698049A US 247742 A US247742 A US 247742A US 24774228 A US24774228 A US 24774228A US 1698049 A US1698049 A US 1698049A
- Authority
- US
- United States
- Prior art keywords
- acid
- halogen
- substituted
- substituted fatty
- cellulose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B3/00—Preparation of cellulose esters of organic acids
- C08B3/14—Preparation of cellulose esters of organic acids in which the organic acid residue contains substituents, e.g. NH2, Cl
Definitions
- This invention relates to processes of making cellulosic esters containing halogen-substituted fatty acid groups.
- One object of the invention is to provide a simplified and relatively inexpensive process for making such esters by a single reaction. Other objects will hereinafter appear.
- esters may be made by subjecting cellulosic material to the coaction of a halogen-substituted fatty acid containing more than five carbon atoms and an organic acid anhydrid which impels this esterification but does not itself contribute any cellulose esterifying groups to the product. Moreover, the anhydrid is converted into an acid which does not contribute any groups to the ester.
- halogen-substituted fatty acids contain more than five carbon atoms
- useful cellulose esters containing them can be prepared by our process by a single reaction. is thus the determining factor and not the alpha or other position of the halogen atoms. The greater the number of carbon atoms, provided there are more than five, the morev readily can the esterification be brought about in spite of the opposing effect of the halogen atoms.
- stearic acid is readily esterified with cellulose by our process, while halogen-substituted caproic acid is esterified more slowly.
- the intermediate members of the halogen-substituted fatty acid series such as halogen-substituted heptylic, caprylic, pelargonic, capric, lauric, myristic, palmitic and margaric acids can be esterified with cellulose with intermediate ease of reaction.
- halogen-substitutedhigher fatty acids which we can employ, we prefer to selectthe mono, di, tri or tetra brom or chlor members of the series.
- the correspondmg 1od1n'e compounds are expenslve.
- anhydrids other than halogen-substituted .ones can also be employed, such as methoxy' acetic anhydrid and its higher alkyl homologues beginning with ethoxy acetic anhydrid. It is a characteristic of all of the above named anhydrids that they do not contribute groups to the ester.
- the celluloseesters produced contain no chloracetic groups when chloracetic anhydrid is employed, nor any methoxy acetic groups when methoxy acetic anhydrid is used.
- cellulosic materials to be esterified we can use any customarily employed in the manufacture of the hitherto known cellulosic esters, For instance, cotton fiber tissue paper, clean cotton, surgical cotton wool, and even bleached sulfite wood pulp are useful .These materials, especially the cotton ones,
- our ,process can be applied to the esterification of chemically affected cellulosic materials, such as so-called hydrocellulose, reverted cellulose from the viscose or cuprammonium processes, lower cellulose nitrates, lower ethyl celluloses, etc.
- the temperature at which our process .is conducted must obviously be above the melting point of the ingredients of the esterifying" bath, but it should not rise to a point where, the products are degraded, as indicated by the poor quality of ,films prepared from the resulting esters.
- the melting points of the esterifying baths are lower than the melting strong splvent action upon the acids which are employed, thus tending to insure good working baths. It is convenient, although not essential, to have an additional solvent present which will not enter into the reaction.
- monochloraoetic acid to be useful for this purpose. And as the reaction proceeds, further amounts of monochlorace'tic acid are formed and likewise add to the fluidity of the bath Under these circumstances, temperatures between 50 C. and 80 C. are satisfactory, to C. being preferred.
- the reaction can be hastened and more thorough results obtained when a catalyst is present-
- Zinc chlorid is likewise usable, as well as the red phosphorus and chlorine of United States Patent N 0. 1,591,590, William R. lVebb and Carl J. Malm, July 6, 1926. y I
- a reaction bath is prepared by warming at 60 to 65 C. for 1 to 2 'hours the following mixture,8 parts by weight. of cellulose, 40 parts by weight of chloracetic anhydrid, 20 parts by weight of chloracetic acid and .05 parts by weight of magnesium perchlorate trihydrate.
- the standard bath For conveniencewe shall hereinafter refer to this as the standard bath.
- Into this bath there are thoroughly stirred 15part's by weight of alpha bromo stearic acid and 4 parts by weight .of acetic acid.
- acetic acid this halogen-substituted stearic acid is readily prepared by brominating oleic the reaction is complete, as indicated by the formation ofv a clear homogeneous dope, which is precipitated in methyl alcohol and the product washed with the-same substance.
- the product contains 23% of bromine, is
- the first-named acid may be prepared by adding chlorine to the acid formed upon sap'onification of linseed oil). After 6 hours at 60 to 65 C. the solution becomes clear enough and is poured with agitation into methyl alcohol and the precipitate washed with said alcohol.
- the cellulose aceto-tetrachloro stearate 'thus produced contains 14% of chlorine and is soluble in acetone and chloroform or mixtures of them, but not in benzene. It forms flexible, transparent films'of very low inflammability.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
Patented Jan. 8, 1929.
HANS T. CLARKE AND CARL J. MALM, or ROCHESTER, NEW Y RK, ASSIGNORS T0 EAST- MAN KODAK COMPANY, or ROCHESTER, new YORK, A coRroRA'rIoN OF NEW YORK.
PROCESS OF MAKING CELLULOSIG ESTEBS CONTAINING HALOGEN-SUBSTITUTED FATTY-ACID GROUPS.
No Drawing.
This invention relates to processes of making cellulosic esters containing halogen-substituted fatty acid groups. One object of the invention is to provide a simplified and relatively inexpensive process for making such esters by a single reaction. Other objects will hereinafter appear.
We have found that such esters may be made by subjecting cellulosic material to the coaction of a halogen-substituted fatty acid containing more than five carbon atoms and an organic acid anhydrid which impels this esterification but does not itself contribute any cellulose esterifying groups to the product. Moreover, the anhydrid is converted into an acid which does not contribute any groups to the ester.
The presence of substituted halogens in fatty acids either retards or prevents the formation of cellulose esters of such acids under conditions which will formuseful or substantially undegraded esters. When the fatty acid contains five, carbon atoms or less, the inhibiting effect of the halogen, whether the latter be in the alpha or other-position,
prevents esterification for all practical purposes But when the halogen-substituted fatty acids contain more than five carbon atoms, useful cellulose esters containing them can be prepared by our process by a single reaction. is thus the determining factor and not the alpha or other position of the halogen atoms. The greater the number of carbon atoms, provided there are more than five, the morev readily can the esterification be brought about in spite of the opposing effect of the halogen atoms. stearic acid is readily esterified with cellulose by our process, while halogen-substituted caproic acid is esterified more slowly. The intermediate members of the halogen-substituted fatty acid series, such as halogen-substituted heptylic, caprylic, pelargonic, capric, lauric, myristic, palmitic and margaric acids can be esterified with cellulose with intermediate ease of reaction. Of the halogen-substitutedhigher fatty acids which we can employ, we prefer to selectthe mono, di, tri or tetra brom or chlor members of the series. The correspondmg 1od1n'e compounds are expenslve.
The length of the carbon chain For example, halogen-substituted Application filed January 18, 1928. Serial No. 247,742.
,mixtures of them. The reaction can be-carried out using mono, di andtrichlor and brom propionic and butyric anhydrids. But they are relatively too expensive, without any compensating advantage. Likewise/the corresponding iodine-substituted acetic, propionic and butyric anhydrids cost too much. But anhydrids other than halogen-substituted .ones can also be employed, such as methoxy' acetic anhydrid and its higher alkyl homologues beginning with ethoxy acetic anhydrid. It is a characteristic of all of the above named anhydrids that they do not contribute groups to the ester. For example, the celluloseesters produced contain no chloracetic groups when chloracetic anhydrid is employed, nor any methoxy acetic groups when methoxy acetic anhydrid is used.
As the cellulosic materials to be esterified, we can use any customarily employed in the manufacture of the hitherto known cellulosic esters, For instance, cotton fiber tissue paper, clean cotton, surgical cotton wool, and even bleached sulfite wood pulp are useful .These materials, especially the cotton ones,
are sufficiently undegraded when they enter the reaction, so that they yield esters of good. flexibility. Of course, our ,process can be applied to the esterification of chemically affected cellulosic materials, such as so-called hydrocellulose, reverted cellulose from the viscose or cuprammonium processes, lower cellulose nitrates, lower ethyl celluloses, etc.
The temperature at which our process .is conducted must obviously be above the melting point of the ingredients of the esterifying" bath, but it should not rise to a point where, the products are degraded, as indicated by the poor quality of ,films prepared from the resulting esters. The melting points of the esterifying baths are lower than the melting strong splvent action upon the acids which are employed, thus tending to insure good working baths. It is convenient, although not essential, to have an additional solvent present which will not enter into the reaction. We have found monochloraoetic acid to be useful for this purpose. And as the reaction proceeds, further amounts of monochlorace'tic acid are formed and likewise add to the fluidity of the bath Under these circumstances, temperatures between 50 C. and 80 C. are satisfactory, to C. being preferred.
The reaction can be hastened and more thorough results obtained when a catalyst is present- We may use any of the customary esterifying catalysts, but we prefer the milder ones, such as the perchlorates disclosed in United States Patent No. 1,645,915, Carl J. Malm, October 18, 1927, process of making cellulose esters of organic acids. Zinc chlorid is likewise usable, as well as the red phosphorus and chlorine of United States Patent N 0. 1,591,590, William R. lVebb and Carl J. Malm, July 6, 1926. y I
We shall now describe several examples of our invention, but it will be understood that the latter is not limited to the illustrative details thus set forth, except as indicated in the appended claims. A reaction bath is prepared by warming at 60 to 65 C. for 1 to 2 'hours the following mixture,8 parts by weight. of cellulose, 40 parts by weight of chloracetic anhydrid, 20 parts by weight of chloracetic acid and .05 parts by weight of magnesium perchlorate trihydrate. For conveniencewe shall hereinafter refer to this as the standard bath. Into this bath there are thoroughly stirred 15part's by weight of alpha bromo stearic acid and 4 parts by weight .of acetic acid. By maintaining a temperature between 60 and 65 0., a clear dope forms in about 6 hours, indicating the completion of the reaction. The product is isolated by pouring intomethyl alcohol and washing the precipitate with this same liquid. The cellulose-aceto-alpha-bromo-stearate thus produced contains 11.3% of bromine I and is soluble in acetone, chloroform, benzene,
or mixtures of these, and can be deposited from its solutions in the form of transparentflexible films which are substantially noninflamma'ble,that is, will not burn with a sustained flame when held in the presence of an igniting flame.
In another example of our invention there are stirred into the standard bath hereinabove described 17 parts by weight of 9-l0-dibromo stearic acid and 7 parts by weight of acid).- 'After about 6 hours at 60 to 65 C.
acetic acid (this halogen-substituted stearic acid is readily prepared by brominating oleic the reaction is complete, as indicated by the formation ofv a clear homogeneous dope, which is precipitated in methyl alcohol and the product washed with the-same substance.
The product contains 23% of bromine, is
soluble in acetone, in chloroform and in benzone, or mixtures of these liqulds, andde- 'of dichloro stearic' acid (obtained by chlorinating oleic acid) and 5 parts by weight of acetic acid. After 6 hours at 60 to 65 C. the clear dope is poured into methyl alcohol with vigorous stirring and the precipitate washed until purified. It contains 8.5% of chlorine and is soluble in acetone and in chloroform, or mixtures of them; but isinsoluble in benzene. It yields flexible, transparent films.
In yet a different example of our invention there are added to the standard bath hereinabove described 14 parts by weight of tetrachloro steario acid'and 5 parts by weight of acetic acid (the first-named acid may be prepared by adding chlorine to the acid formed upon sap'onification of linseed oil). After 6 hours at 60 to 65 C. the solution becomes clear enough and is poured with agitation into methyl alcohol and the precipitate washed with said alcohol. The cellulose aceto-tetrachloro stearate 'thus produced contains 14% of chlorine and is soluble in acetone and chloroform or mixtures of them, but not in benzene. It forms flexible, transparent films'of very low inflammability.
In another example of our invention 10 parts by weight of alpha bromo caproic acid and 4 parts by weight of acetic acid are stirred intothe standard bath hereinabove described." This is heated at 60 to 65 C.
produced by our process yield flexible films or filaments without softeners or plastifiers, but chloroform-soluble or acetone-soluble plastifiers or softeners heretofore used with cellulose acetates may be employed with them, triphenyl and tricresyl phosphates being examples of the large number that can be employed. Our compounds can be mixed or laminated with cellulose nitrate or acetate by means of acommon solvent. Films of them can be backed with a cellulose acetate layer or with hygroscopic nitrocellulose coatings to prevent static, or nitrocellulose or acetate films may be backed with thin layers of our compounds. In short, our process can produce products of technical importance in thepreparation of films for photographic purposes, filaments for rayon, lacquers, artificial leather, moldable plastics, etc.
Having thus described ourinvention, What we claim as new and desire to secure by Letters Patent is:
1. In the process of making cellulosic esters containing halogen-substituted fatty acid groups, subjecting cellulosic material to the ooaction of a halogen substituted fatty acid containing more than five carbon atoms and an organic acid anhydrid which impels such .esterification but is free from celluloseesterifying groups and during the esterification is converted into a compound that is also free from cellulose-esterifying groups.
2. In the processof making cellulosic esters containing halogen-substituted fatty acid grou s, treating cellulosic material with an esteri ying bath containing a halogensubstituted fatty acid having more than live carbon atoms and a halogen-substituted fatty acid anhydrid having less than ten carbon atoms.
3. In the process of making cellulose esters containing halogen-substituted fatty acid groups, treating cellulosic material with an esterifying bath containing a halogen-substituted fatty acid having'more than five carbon atoms, and chloracetic anhydrid.
4. In the process of making cellulosic esters containing a halogen-substituted stearic acid group, subjecting cellulosic material to the coaction'of a corresponding halogen-substituted stearic acid and a halogensubstituted fatty acid anhydrid having "less than ten carbon atoms.
5. In the process of making a cellulose est-er containing a brom-substituted stearic acid group, treating cellulosic material in a bath.
containing brom-substituted stearic acid and chloracetic anhydrid. Signed at Rochester, New York,-this 10th day of January, 1928.
HANS T. CLARKE. CARL. J. MALM.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US247742A US1698049A (en) | 1928-01-18 | 1928-01-18 | Process of making cellulosic esters containing halogen-substituted fatty-acid groups |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US247742A US1698049A (en) | 1928-01-18 | 1928-01-18 | Process of making cellulosic esters containing halogen-substituted fatty-acid groups |
Publications (1)
Publication Number | Publication Date |
---|---|
US1698049A true US1698049A (en) | 1929-01-08 |
Family
ID=22936185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US247742A Expired - Lifetime US1698049A (en) | 1928-01-18 | 1928-01-18 | Process of making cellulosic esters containing halogen-substituted fatty-acid groups |
Country Status (1)
Country | Link |
---|---|
US (1) | US1698049A (en) |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2980491A (en) * | 1955-06-15 | 1961-04-18 | Segal Leon | Textile fibers comprising perfluoroalkanoyl esters of cellulose and process of making the same |
US3409386A (en) * | 1964-10-01 | 1968-11-05 | Universal Oil Prod Co | Reaction of halocycloalkenyl acyl halide with polyesters, polyamides and textiles |
US5446079A (en) * | 1990-11-30 | 1995-08-29 | Eastman Chemical Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
US5545681A (en) * | 1993-12-20 | 1996-08-13 | The Procter & Gamble Company | pH-Modified polymer compositions with enhanced biodegradability |
US5594068A (en) * | 1993-05-28 | 1997-01-14 | Eastman Chemical Company | Cellulose ester blends |
US6193841B1 (en) | 1998-11-30 | 2001-02-27 | Eastman Chemical Company | Shaped, plastic articles comprising a cellulose fiber, a cellulose ester, and a non-ionic surfactant |
US6228895B1 (en) | 1996-10-11 | 2001-05-08 | Eastman Chemical Company | Method for plasticizing a composition comprised of cellulose fiber and a cellulose ester |
US6388069B1 (en) | 1999-02-10 | 2002-05-14 | Eastman Chemical Company | Corn fiber for the production of advanced chemicals and materials:arabinoxylan and arabinoxylan derivatives made therefrom |
US20030171458A1 (en) * | 2002-01-16 | 2003-09-11 | Buchanan Charles M. | Novel carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same |
US20060267243A1 (en) * | 2005-05-26 | 2006-11-30 | Debra Tindall | Method for compounding polymer pellets with functional additives |
EP2279725A2 (en) | 2003-02-05 | 2011-02-02 | Corium International | Hydrogel compositions for tooth whitening |
WO2012177482A1 (en) | 2011-06-23 | 2012-12-27 | Eastman Chemical Company | Filters having improved degradation and methods of making them |
WO2012177483A1 (en) | 2011-06-23 | 2012-12-27 | Eastman Chemical Company | Cellulose esters having mixed-phase titanium dioxide particles for improved degradation |
EP2601939A2 (en) | 2003-09-12 | 2013-06-12 | Corium International, Inc. | Hydrogel compositions with an erodible backing member |
WO2014099468A1 (en) | 2012-12-20 | 2014-06-26 | Eastman Chemical Company | Surface attachment of particles to cellulose ester fibers |
US9068063B2 (en) | 2010-06-29 | 2015-06-30 | Eastman Chemical Company | Cellulose ester/elastomer compositions |
US9273195B2 (en) | 2010-06-29 | 2016-03-01 | Eastman Chemical Company | Tires comprising cellulose ester/elastomer compositions |
WO2017031171A1 (en) | 2015-08-17 | 2017-02-23 | The Johns Hopkins University | In situ forming composite material for tissue restoration |
US9624311B2 (en) | 2011-10-25 | 2017-04-18 | VTIP Intellectual Properties, Inc. | Regioselectively substituted cellulose esters and efficient methods of preparing them |
WO2017117554A1 (en) | 2015-12-30 | 2017-07-06 | Corium International, Inc. | Systems and methods for long term transdermal administration |
US9708472B2 (en) | 2011-12-07 | 2017-07-18 | Eastman Chemical Company | Cellulose esters in highly-filled elastomeric systems |
WO2017156364A2 (en) | 2016-03-11 | 2017-09-14 | Solutia Inc. | Cellulose ester multilayer interlayers |
WO2018089573A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Cellulose ester and impact modifier compositions and articles made using these compositions |
WO2018089599A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Polymer-based resin compositions derived from cellulose and articles made using these compositions |
WO2018089575A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Cellulose ester and ethylene vinyl acetate compositions and articles made using these compositions |
WO2018160587A1 (en) | 2017-02-28 | 2018-09-07 | Eastman Chemical Company | Cellulose acetate fibers in nonwoven fabrics |
US10077342B2 (en) | 2016-01-21 | 2018-09-18 | Eastman Chemical Company | Elastomeric compositions comprising cellulose ester additives |
WO2018191065A1 (en) | 2017-04-13 | 2018-10-18 | Eastman Chemical Company | Process for producing cellulose ester/acrylic composite latex particles |
US10195826B2 (en) | 2016-03-11 | 2019-02-05 | Solutia Inc. | Cellulose ester multilayer interlayers |
WO2019055267A1 (en) | 2017-09-12 | 2019-03-21 | Solutia Inc. | Laminated glass and interlayers comprising cellulose esters |
US10293577B2 (en) | 2014-12-08 | 2019-05-21 | Solutia Inc. | Polyvinyl acetal and cellulose ester multilayer interlayers |
US10293582B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293579B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293585B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293583B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293580B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293584B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10300682B2 (en) | 2016-03-11 | 2019-05-28 | Solutia Inc. | Cellulose ester multilayer interplayers |
US10364345B2 (en) | 2014-12-08 | 2019-07-30 | Solutia Inc. | Monolithic interlayers of cellulose ester polyvinyl acetal polymer blends |
WO2019160906A1 (en) | 2018-02-13 | 2019-08-22 | Eastman Chemical Company | Cellulose ester and polymeric aliphatic polyester compositions and articles |
US10463768B2 (en) | 2014-08-15 | 2019-11-05 | The Johns Hopkins University | Composite material for tissue restoration |
WO2019217765A1 (en) | 2018-05-09 | 2019-11-14 | The Johns Hopkins University | Nanofiber-hydrogel composites for cell and tissue delivery |
WO2019217767A1 (en) | 2018-05-09 | 2019-11-14 | The Johns Hopkins University | Nanofiber-hydrogel composites for enhanced soft tissue replacement and regeneration |
WO2019238892A1 (en) | 2018-06-15 | 2019-12-19 | Taminco Bvba | Treatment of poultry or pigs for reducing the feed conversion ratio or increasing their bodyweight gain |
WO2020018614A2 (en) | 2018-07-19 | 2020-01-23 | Eastman Chemical Company | Cellulose ester and elastomer compositions |
WO2021138389A1 (en) | 2020-01-03 | 2021-07-08 | Eastman Chemical Company | Molded articles for use with terpene containing oils |
US11118313B2 (en) | 2019-03-21 | 2021-09-14 | Eastman Chemical Company | Ultrasonic welding of wet laid nonwoven compositions |
WO2021183631A1 (en) | 2020-03-11 | 2021-09-16 | Eastman Chemical Company | Low hydroxyl content cellulose ester and polymeric aliphatic polyester compositions and articles |
US11191853B2 (en) | 2014-08-15 | 2021-12-07 | The Johns Hopkins University | Post-surgical imaging marker |
US11230811B2 (en) | 2018-08-23 | 2022-01-25 | Eastman Chemical Company | Recycle bale comprising cellulose ester |
US11286619B2 (en) | 2018-08-23 | 2022-03-29 | Eastman Chemical Company | Bale of virgin cellulose and cellulose ester |
US11299854B2 (en) | 2018-08-23 | 2022-04-12 | Eastman Chemical Company | Paper product articles |
US11306433B2 (en) | 2018-08-23 | 2022-04-19 | Eastman Chemical Company | Composition of matter effluent from refiner of a wet laid process |
US11313081B2 (en) | 2018-08-23 | 2022-04-26 | Eastman Chemical Company | Beverage filtration article |
US11319262B2 (en) | 2019-10-31 | 2022-05-03 | Eastman Chemical Company | Processes and systems for making recycle content hydrocarbons |
US11332885B2 (en) | 2018-08-23 | 2022-05-17 | Eastman Chemical Company | Water removal between wire and wet press of a paper mill process |
US11332888B2 (en) | 2018-08-23 | 2022-05-17 | Eastman Chemical Company | Paper composition cellulose and cellulose ester for improved texturing |
US11339537B2 (en) | 2018-08-23 | 2022-05-24 | Eastman Chemical Company | Paper bag |
US11365357B2 (en) | 2019-05-24 | 2022-06-21 | Eastman Chemical Company | Cracking C8+ fraction of pyoil |
US11390996B2 (en) | 2018-08-23 | 2022-07-19 | Eastman Chemical Company | Elongated tubular articles from wet-laid webs |
US11390991B2 (en) | 2018-08-23 | 2022-07-19 | Eastman Chemical Company | Addition of cellulose esters to a paper mill without substantial modifications |
US11396726B2 (en) | 2018-08-23 | 2022-07-26 | Eastman Chemical Company | Air filtration articles |
US11401660B2 (en) | 2018-08-23 | 2022-08-02 | Eastman Chemical Company | Broke composition of matter |
US11401659B2 (en) | 2018-08-23 | 2022-08-02 | Eastman Chemical Company | Process to produce a paper article comprising cellulose fibers and a staple fiber |
US11408128B2 (en) | 2018-08-23 | 2022-08-09 | Eastman Chemical Company | Sheet with high sizing acceptance |
US11414791B2 (en) | 2018-08-23 | 2022-08-16 | Eastman Chemical Company | Recycled deinked sheet articles |
US11414818B2 (en) | 2018-08-23 | 2022-08-16 | Eastman Chemical Company | Dewatering in paper making process |
US11421385B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Soft wipe comprising cellulose acetate |
US11420784B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Food packaging articles |
US11421387B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Tissue product comprising cellulose acetate |
US11441267B2 (en) | 2018-08-23 | 2022-09-13 | Eastman Chemical Company | Refining to a desirable freeness |
US11466408B2 (en) | 2018-08-23 | 2022-10-11 | Eastman Chemical Company | Highly absorbent articles |
WO2022216473A1 (en) | 2021-04-08 | 2022-10-13 | Eastman Chemical Company | Ophthalmic articles made from cellulose ester compositions having high toughness and dimensional stability |
US11479919B2 (en) | 2018-08-23 | 2022-10-25 | Eastman Chemical Company | Molded articles from a fiber slurry |
US11492755B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Waste recycle composition |
US11492757B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Composition of matter in a post-refiner blend zone |
US11492756B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Paper press process with high hydrolic pressure |
US11512433B2 (en) | 2018-08-23 | 2022-11-29 | Eastman Chemical Company | Composition of matter feed to a head box |
US11519132B2 (en) | 2018-08-23 | 2022-12-06 | Eastman Chemical Company | Composition of matter in stock preparation zone of wet laid process |
US11525215B2 (en) | 2018-08-23 | 2022-12-13 | Eastman Chemical Company | Cellulose and cellulose ester film |
US11530516B2 (en) | 2018-08-23 | 2022-12-20 | Eastman Chemical Company | Composition of matter in a pre-refiner blend zone |
US11639579B2 (en) | 2018-08-23 | 2023-05-02 | Eastman Chemical Company | Recycle pulp comprising cellulose acetate |
US11802251B2 (en) | 2019-02-04 | 2023-10-31 | Eastman Chemical Company | Feed location for gasification of plastics and solid fossil fuels |
WO2023242076A1 (en) | 2022-06-13 | 2023-12-21 | Lego A/S | Cellulose ester polymer composition having low coefficient of friction |
US11939534B2 (en) | 2019-11-07 | 2024-03-26 | Eastman Chemical Company | Recycle content alpha olefins and fatty alcohols |
US11946000B2 (en) | 2019-05-24 | 2024-04-02 | Eastman Chemical Company | Blend small amounts of pyoil into a liquid stream processed into a gas cracker |
US11945998B2 (en) | 2019-10-31 | 2024-04-02 | Eastman Chemical Company | Processes and systems for making recycle content hydrocarbons |
US12031091B2 (en) | 2019-05-24 | 2024-07-09 | Eastman Chemical Company | Recycle content cracked effluent |
US12104121B2 (en) | 2019-11-07 | 2024-10-01 | Eastman Chemical Company | Recycle content mixed esters and solvents |
-
1928
- 1928-01-18 US US247742A patent/US1698049A/en not_active Expired - Lifetime
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2980491A (en) * | 1955-06-15 | 1961-04-18 | Segal Leon | Textile fibers comprising perfluoroalkanoyl esters of cellulose and process of making the same |
US3409386A (en) * | 1964-10-01 | 1968-11-05 | Universal Oil Prod Co | Reaction of halocycloalkenyl acyl halide with polyesters, polyamides and textiles |
US5446079A (en) * | 1990-11-30 | 1995-08-29 | Eastman Chemical Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
US5559171A (en) * | 1990-11-30 | 1996-09-24 | Eastman Chemical Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
US5580911A (en) * | 1990-11-30 | 1996-12-03 | Eastman Chemical Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
US5599858A (en) * | 1990-11-30 | 1997-02-04 | Eastman Chemical Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
US5900322A (en) * | 1990-11-30 | 1999-05-04 | Eastman Chemical Company | Aliphatic-aromatic copolyesters and cellulose ester/polymer blends |
US6342304B1 (en) | 1990-11-30 | 2002-01-29 | Eastman Chemical Company | Aliphatic aromatic copolyesters |
US6313202B1 (en) | 1993-05-28 | 2001-11-06 | Eastman Chemical Company | Cellulose ester blends |
US5594068A (en) * | 1993-05-28 | 1997-01-14 | Eastman Chemical Company | Cellulose ester blends |
US5545681A (en) * | 1993-12-20 | 1996-08-13 | The Procter & Gamble Company | pH-Modified polymer compositions with enhanced biodegradability |
US6309509B1 (en) | 1996-10-11 | 2001-10-30 | Eastman Chemical Company | Composition and paper comprising cellulose ester, alkylpolyglycosides, and cellulose |
US6268028B1 (en) | 1996-10-11 | 2001-07-31 | Eastman Chemical Company | Composition and paper comprising cellulose ester, alkylpolyglycosides, and cellulose |
US6228895B1 (en) | 1996-10-11 | 2001-05-08 | Eastman Chemical Company | Method for plasticizing a composition comprised of cellulose fiber and a cellulose ester |
US6193841B1 (en) | 1998-11-30 | 2001-02-27 | Eastman Chemical Company | Shaped, plastic articles comprising a cellulose fiber, a cellulose ester, and a non-ionic surfactant |
US20030199087A1 (en) * | 1999-02-10 | 2003-10-23 | Eastman Chemical Company | Methods of separating a corn fiber lipid fraction from corn fiber |
US6388069B1 (en) | 1999-02-10 | 2002-05-14 | Eastman Chemical Company | Corn fiber for the production of advanced chemicals and materials:arabinoxylan and arabinoxylan derivatives made therefrom |
US6586212B1 (en) | 1999-02-10 | 2003-07-01 | Eastman Chemical Company | Corn fiber for the production of advanced chemicals and materials: derivatizable cellulose and cellulose derivatives made therefrom |
US6589760B1 (en) | 1999-02-10 | 2003-07-08 | Eastman Chemical Company | Methods of separating a corn fiber lipid fraction from corn fiber |
US20030188340A1 (en) * | 1999-02-10 | 2003-10-02 | Eastman Chemical Company | Methods of separating a corn fiber lipid fraction from corn fiber |
US20030171458A1 (en) * | 2002-01-16 | 2003-09-11 | Buchanan Charles M. | Novel carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same |
US20050228084A1 (en) * | 2002-01-16 | 2005-10-13 | Buchanan Charles M | Novel carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same |
US6977275B2 (en) | 2002-01-16 | 2005-12-20 | Eastman Chemical Company | Carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same |
US7276546B2 (en) | 2002-01-16 | 2007-10-02 | Eastman Chemical Company | Carbohydrate esters and polyol esters as plasticizers for polymers, compositions and articles including such plasticizers and methods of using the same |
EP2279725A2 (en) | 2003-02-05 | 2011-02-02 | Corium International | Hydrogel compositions for tooth whitening |
EP2601939A2 (en) | 2003-09-12 | 2013-06-12 | Corium International, Inc. | Hydrogel compositions with an erodible backing member |
US20060267243A1 (en) * | 2005-05-26 | 2006-11-30 | Debra Tindall | Method for compounding polymer pellets with functional additives |
US9273195B2 (en) | 2010-06-29 | 2016-03-01 | Eastman Chemical Company | Tires comprising cellulose ester/elastomer compositions |
US9068063B2 (en) | 2010-06-29 | 2015-06-30 | Eastman Chemical Company | Cellulose ester/elastomer compositions |
US9200147B2 (en) | 2010-06-29 | 2015-12-01 | Eastman Chemical Company | Processes for making cellulose ester compositions |
WO2012177483A1 (en) | 2011-06-23 | 2012-12-27 | Eastman Chemical Company | Cellulose esters having mixed-phase titanium dioxide particles for improved degradation |
WO2012177482A1 (en) | 2011-06-23 | 2012-12-27 | Eastman Chemical Company | Filters having improved degradation and methods of making them |
US9624311B2 (en) | 2011-10-25 | 2017-04-18 | VTIP Intellectual Properties, Inc. | Regioselectively substituted cellulose esters and efficient methods of preparing them |
US9708474B2 (en) | 2011-12-07 | 2017-07-18 | Eastman Chemical Company | Cellulose esters in pneumatic tires |
US9708475B2 (en) | 2011-12-07 | 2017-07-18 | Eastman Chemical Company | Cellulose esters in highly-filled elastomeric systems |
US9708472B2 (en) | 2011-12-07 | 2017-07-18 | Eastman Chemical Company | Cellulose esters in highly-filled elastomeric systems |
US9708473B2 (en) | 2011-12-07 | 2017-07-18 | Eastman Chemical Company | Cellulose esters in pneumatic tires |
WO2014099468A1 (en) | 2012-12-20 | 2014-06-26 | Eastman Chemical Company | Surface attachment of particles to cellulose ester fibers |
US11191853B2 (en) | 2014-08-15 | 2021-12-07 | The Johns Hopkins University | Post-surgical imaging marker |
US11684700B2 (en) | 2014-08-15 | 2023-06-27 | The Johns Hopkins University | Composite material for tissue restoration |
US10463768B2 (en) | 2014-08-15 | 2019-11-05 | The Johns Hopkins University | Composite material for tissue restoration |
US11707553B2 (en) | 2014-08-15 | 2023-07-25 | The Johns Hopkins University | Composite material for tissue restoration |
US10364345B2 (en) | 2014-12-08 | 2019-07-30 | Solutia Inc. | Monolithic interlayers of cellulose ester polyvinyl acetal polymer blends |
US10293578B2 (en) | 2014-12-08 | 2019-05-21 | Solutia Inc. | Polyvinyl acetal and cellulose ester multilayer interlayers |
US10589492B2 (en) | 2014-12-08 | 2020-03-17 | Solutia Inc. | Polyvinyl acetal and cellulose ester multilayer interlayers |
US10293577B2 (en) | 2014-12-08 | 2019-05-21 | Solutia Inc. | Polyvinyl acetal and cellulose ester multilayer interlayers |
US10632723B2 (en) | 2014-12-08 | 2020-04-28 | Solutia Inc. | Polyvinyl acetal and cellulose ester multilayer interlayers |
WO2017031171A1 (en) | 2015-08-17 | 2017-02-23 | The Johns Hopkins University | In situ forming composite material for tissue restoration |
EP4091639A1 (en) | 2015-08-17 | 2022-11-23 | The Johns Hopkins University | In situ forming composite material for tissue restoration |
US10966936B2 (en) | 2015-12-30 | 2021-04-06 | Corium, Inc. | Systems comprising a composite backing and methods for long term transdermal administration |
WO2017117554A1 (en) | 2015-12-30 | 2017-07-06 | Corium International, Inc. | Systems and methods for long term transdermal administration |
US11679086B2 (en) | 2015-12-30 | 2023-06-20 | Corium, Llc | Systems comprising a composite backing and methods for long term transdermal administration |
US11648214B2 (en) | 2015-12-30 | 2023-05-16 | Corium, Llc | Systems and methods for long term transdermal administration |
US10077343B2 (en) | 2016-01-21 | 2018-09-18 | Eastman Chemical Company | Process to produce elastomeric compositions comprising cellulose ester additives |
US10077342B2 (en) | 2016-01-21 | 2018-09-18 | Eastman Chemical Company | Elastomeric compositions comprising cellulose ester additives |
US10293585B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293579B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293583B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293582B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293580B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10293584B2 (en) | 2016-03-11 | 2019-05-21 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10300682B2 (en) | 2016-03-11 | 2019-05-28 | Solutia Inc. | Cellulose ester multilayer interplayers |
WO2017156364A2 (en) | 2016-03-11 | 2017-09-14 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10532542B2 (en) | 2016-03-11 | 2020-01-14 | Solutia Inc. | Cellulose ester multilayer interlayers |
US10195826B2 (en) | 2016-03-11 | 2019-02-05 | Solutia Inc. | Cellulose ester multilayer interlayers |
WO2018089599A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Polymer-based resin compositions derived from cellulose and articles made using these compositions |
US11905394B2 (en) | 2016-11-11 | 2024-02-20 | Eastman Chemical Company | Cellulose ester and impact modifier compositions and articles made using these compositions |
WO2018089573A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Cellulose ester and impact modifier compositions and articles made using these compositions |
US11230635B2 (en) | 2016-11-11 | 2022-01-25 | Eastman Chemical Company | Cellulose ester and impact modifier compositions and articles made using these compositions |
WO2018089575A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Cellulose ester and ethylene vinyl acetate compositions and articles made using these compositions |
US11655309B2 (en) | 2016-11-11 | 2023-05-23 | Eastman Chemical Company | Polymer-based resin compositions derived from cellulose and articles made using these compositions |
WO2018089610A1 (en) | 2016-11-11 | 2018-05-17 | Eastman Chemical Company | Polymer-based resin compositions derived from cellulose and articles made using these compositions |
US11034820B2 (en) | 2016-11-11 | 2021-06-15 | Eastman Chemical Company | Cellulose ester and ethylene vinyl acetate compositions and articles made using these compositions |
US10919984B2 (en) | 2016-11-11 | 2021-02-16 | Eastman Chemical Company | Polymer-based resin compositions derived from cellulose and articles made using these compositions |
WO2018160584A1 (en) | 2017-02-28 | 2018-09-07 | Eastman Chemical Company | Cellulose acetate fibers in nonwoven fabrics |
WO2018160588A1 (en) | 2017-02-28 | 2018-09-07 | Eastman Chemical Company | Cellulose acetate fibers in nonwoven fabrics |
WO2018160587A1 (en) | 2017-02-28 | 2018-09-07 | Eastman Chemical Company | Cellulose acetate fibers in nonwoven fabrics |
WO2018191065A1 (en) | 2017-04-13 | 2018-10-18 | Eastman Chemical Company | Process for producing cellulose ester/acrylic composite latex particles |
WO2019055267A1 (en) | 2017-09-12 | 2019-03-21 | Solutia Inc. | Laminated glass and interlayers comprising cellulose esters |
US11351758B2 (en) | 2017-09-12 | 2022-06-07 | Solutia Inc. | Laminated glass and interlayers comprising cellulose esters |
WO2019160906A1 (en) | 2018-02-13 | 2019-08-22 | Eastman Chemical Company | Cellulose ester and polymeric aliphatic polyester compositions and articles |
US11873390B2 (en) | 2018-02-13 | 2024-01-16 | Eastman Chemical Company | Cellulose ester and polymeric aliphatic polyester compositions and articles |
US11555100B2 (en) | 2018-02-13 | 2023-01-17 | Eastman Chemical Company | Cellulose ester and polymeric aliphatic polyester compositions and articles |
WO2019160908A1 (en) | 2018-02-13 | 2019-08-22 | Eastman Chemical Company | Cellulose ester and polymeric aliphatic polyester compositions and articles |
WO2019217767A1 (en) | 2018-05-09 | 2019-11-14 | The Johns Hopkins University | Nanofiber-hydrogel composites for enhanced soft tissue replacement and regeneration |
US12036339B2 (en) | 2018-05-09 | 2024-07-16 | The Johns Hopkins University | Nanofiber-hydrogel composites for enhanced soft tissue replacement and regeneration |
WO2019217765A1 (en) | 2018-05-09 | 2019-11-14 | The Johns Hopkins University | Nanofiber-hydrogel composites for cell and tissue delivery |
US11771807B2 (en) | 2018-05-09 | 2023-10-03 | The Johns Hopkins University | Nanofiber-hydrogel composites for cell and tissue delivery |
WO2019238892A1 (en) | 2018-06-15 | 2019-12-19 | Taminco Bvba | Treatment of poultry or pigs for reducing the feed conversion ratio or increasing their bodyweight gain |
WO2020018614A2 (en) | 2018-07-19 | 2020-01-23 | Eastman Chemical Company | Cellulose ester and elastomer compositions |
US12077656B2 (en) | 2018-07-19 | 2024-09-03 | Eastman Chemical Company | Cellulose ester and elastomer compositions |
US11512433B2 (en) | 2018-08-23 | 2022-11-29 | Eastman Chemical Company | Composition of matter feed to a head box |
US11530516B2 (en) | 2018-08-23 | 2022-12-20 | Eastman Chemical Company | Composition of matter in a pre-refiner blend zone |
US11390991B2 (en) | 2018-08-23 | 2022-07-19 | Eastman Chemical Company | Addition of cellulose esters to a paper mill without substantial modifications |
US11396726B2 (en) | 2018-08-23 | 2022-07-26 | Eastman Chemical Company | Air filtration articles |
US11401660B2 (en) | 2018-08-23 | 2022-08-02 | Eastman Chemical Company | Broke composition of matter |
US11401659B2 (en) | 2018-08-23 | 2022-08-02 | Eastman Chemical Company | Process to produce a paper article comprising cellulose fibers and a staple fiber |
US11408128B2 (en) | 2018-08-23 | 2022-08-09 | Eastman Chemical Company | Sheet with high sizing acceptance |
US11414791B2 (en) | 2018-08-23 | 2022-08-16 | Eastman Chemical Company | Recycled deinked sheet articles |
US11414818B2 (en) | 2018-08-23 | 2022-08-16 | Eastman Chemical Company | Dewatering in paper making process |
US11421385B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Soft wipe comprising cellulose acetate |
US11420784B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Food packaging articles |
US11421387B2 (en) | 2018-08-23 | 2022-08-23 | Eastman Chemical Company | Tissue product comprising cellulose acetate |
US11441267B2 (en) | 2018-08-23 | 2022-09-13 | Eastman Chemical Company | Refining to a desirable freeness |
US11466408B2 (en) | 2018-08-23 | 2022-10-11 | Eastman Chemical Company | Highly absorbent articles |
US11332885B2 (en) | 2018-08-23 | 2022-05-17 | Eastman Chemical Company | Water removal between wire and wet press of a paper mill process |
US11479919B2 (en) | 2018-08-23 | 2022-10-25 | Eastman Chemical Company | Molded articles from a fiber slurry |
US11492755B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Waste recycle composition |
US11492757B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Composition of matter in a post-refiner blend zone |
US11492756B2 (en) | 2018-08-23 | 2022-11-08 | Eastman Chemical Company | Paper press process with high hydrolic pressure |
US11299854B2 (en) | 2018-08-23 | 2022-04-12 | Eastman Chemical Company | Paper product articles |
US11313081B2 (en) | 2018-08-23 | 2022-04-26 | Eastman Chemical Company | Beverage filtration article |
US11519132B2 (en) | 2018-08-23 | 2022-12-06 | Eastman Chemical Company | Composition of matter in stock preparation zone of wet laid process |
US11525215B2 (en) | 2018-08-23 | 2022-12-13 | Eastman Chemical Company | Cellulose and cellulose ester film |
US11390996B2 (en) | 2018-08-23 | 2022-07-19 | Eastman Chemical Company | Elongated tubular articles from wet-laid webs |
US11286619B2 (en) | 2018-08-23 | 2022-03-29 | Eastman Chemical Company | Bale of virgin cellulose and cellulose ester |
US11639579B2 (en) | 2018-08-23 | 2023-05-02 | Eastman Chemical Company | Recycle pulp comprising cellulose acetate |
US11230811B2 (en) | 2018-08-23 | 2022-01-25 | Eastman Chemical Company | Recycle bale comprising cellulose ester |
US11332888B2 (en) | 2018-08-23 | 2022-05-17 | Eastman Chemical Company | Paper composition cellulose and cellulose ester for improved texturing |
US11339537B2 (en) | 2018-08-23 | 2022-05-24 | Eastman Chemical Company | Paper bag |
US11306433B2 (en) | 2018-08-23 | 2022-04-19 | Eastman Chemical Company | Composition of matter effluent from refiner of a wet laid process |
US11939546B2 (en) | 2019-02-04 | 2024-03-26 | Eastman Chemical Company | Gasification of plastics and solid fossil fuels to produce organic compounds |
US11802251B2 (en) | 2019-02-04 | 2023-10-31 | Eastman Chemical Company | Feed location for gasification of plastics and solid fossil fuels |
US11939547B2 (en) | 2019-02-04 | 2024-03-26 | Eastman Chemical Company | Gasification of plastics and solid fossil fuels |
US11118313B2 (en) | 2019-03-21 | 2021-09-14 | Eastman Chemical Company | Ultrasonic welding of wet laid nonwoven compositions |
US11668050B2 (en) | 2019-03-21 | 2023-06-06 | Eastman Chemical Company | Ultrasonic welding of wet laid nonwoven compositions |
US11365357B2 (en) | 2019-05-24 | 2022-06-21 | Eastman Chemical Company | Cracking C8+ fraction of pyoil |
US12031091B2 (en) | 2019-05-24 | 2024-07-09 | Eastman Chemical Company | Recycle content cracked effluent |
US11946000B2 (en) | 2019-05-24 | 2024-04-02 | Eastman Chemical Company | Blend small amounts of pyoil into a liquid stream processed into a gas cracker |
US11945998B2 (en) | 2019-10-31 | 2024-04-02 | Eastman Chemical Company | Processes and systems for making recycle content hydrocarbons |
US11787754B2 (en) | 2019-10-31 | 2023-10-17 | Eastman Chemical Company | Processes and systems for making recycle content hydrocarbons |
US11319262B2 (en) | 2019-10-31 | 2022-05-03 | Eastman Chemical Company | Processes and systems for making recycle content hydrocarbons |
US11939534B2 (en) | 2019-11-07 | 2024-03-26 | Eastman Chemical Company | Recycle content alpha olefins and fatty alcohols |
US12104121B2 (en) | 2019-11-07 | 2024-10-01 | Eastman Chemical Company | Recycle content mixed esters and solvents |
WO2021138389A1 (en) | 2020-01-03 | 2021-07-08 | Eastman Chemical Company | Molded articles for use with terpene containing oils |
WO2021183631A1 (en) | 2020-03-11 | 2021-09-16 | Eastman Chemical Company | Low hydroxyl content cellulose ester and polymeric aliphatic polyester compositions and articles |
WO2022216473A1 (en) | 2021-04-08 | 2022-10-13 | Eastman Chemical Company | Ophthalmic articles made from cellulose ester compositions having high toughness and dimensional stability |
WO2023242076A1 (en) | 2022-06-13 | 2023-12-21 | Lego A/S | Cellulose ester polymer composition having low coefficient of friction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1698049A (en) | Process of making cellulosic esters containing halogen-substituted fatty-acid groups | |
US1880808A (en) | Process of making cellulose esters of carboxylic acids | |
US2129052A (en) | Hydrolyzed cellulose acetate | |
US2093462A (en) | Cellulose esters containing dicarboxylic acid groups and process of making the same | |
US2093464A (en) | Cellulose esters containing succinyl groups and process of making same | |
US2140639A (en) | Method of preparing cellulose acetate | |
US2992214A (en) | Method of preparing cellulose esters | |
US2810728A (en) | Beta-sulphonyl ketones | |
US2794799A (en) | Process of preparing mixed esters of cellulose containing dicarboxylic acid groups | |
US2036423A (en) | Sulphonic acid esters of cellulose derivatives and the preparation thereof | |
US1994038A (en) | Hydroxyalkylcellulose ester | |
US2008986A (en) | Preparation of cellulose derivatives containing phosphorus | |
US2023485A (en) | Preparation of esters derived from dicarboxylic acids and polyhydroxy compounds | |
US1800860A (en) | Process of making organic esters of cellulose containing acyl groups having more than two carbon atoms | |
US1687060A (en) | Cellulose esters containing halogenated acyl groups and processes of making same | |
US1969468A (en) | Preparation of halogenated fatty acid esters of cellulose | |
US2113301A (en) | Preparation of cellulose esters having a high content of propionyl or butyryl | |
US1880420A (en) | Acetone soluble formyl esters of cellulose and process of making the same | |
US1990483A (en) | Chemical compound and process of making same | |
US2098336A (en) | Manufacture of cellulose derivatives and products obtained therefrom | |
US2245208A (en) | Process of preparing mixed esters of cellulose containing dicarboxylic acid groups | |
US1704283A (en) | Soluble halogen substituted cellulosic organic acid esters | |
US2265528A (en) | Cellulose esters | |
US2254652A (en) | Method of preparing higher fatty acid esters of cellulose | |
US2053527A (en) | Hydrolysis of cellulose esters containing higher fatty acid groups |