US1579462A - Method of and apparatus for separating light materials from gases - Google Patents

Method of and apparatus for separating light materials from gases Download PDF

Info

Publication number
US1579462A
US1579462A US8491A US849125A US1579462A US 1579462 A US1579462 A US 1579462A US 8491 A US8491 A US 8491A US 849125 A US849125 A US 849125A US 1579462 A US1579462 A US 1579462A
Authority
US
United States
Prior art keywords
gas stream
gases
gas
action
separating light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US8491A
Inventor
Harry A Wintermute
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Corp
Original Assignee
Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Corp filed Critical Research Corp
Priority to US8491A priority Critical patent/US1579462A/en
Application granted granted Critical
Publication of US1579462A publication Critical patent/US1579462A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/80Cleaning the electrodes by gas or solid particle blasting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/38Tubular collector electrode

Definitions

  • This invention relates to the separation of suspended material from gases and more in particular to electric separation of light ufiy material such as oarbon black.
  • the lower end of the electrodes 10 and 11 terminates in a lower header 12 and adjacent the header 12 is a compartment 13 for housing the insulator 14 on which is supported a rod 15 or the like for kee ing the dischar e electrode 11 centered, .t e usual ball 16 olding the wire electrode 11 taut.
  • the gas stream carrying the material in suspenslon enters through the inlet 17.
  • a settling chamber 18 which is in communication with the interior of the collecting electrode 10 through a perforated portion 19 thereof.
  • the collectin electrode 10 terminates above the settling c amber.
  • the particles are out of the sphere of the kinetic action of the gas stream and can settle and may then be removed.
  • the principle of operation is not related to what is sometimes called electric wind. In fact, I found that the operation may be carried out with relatively low voltages and that the discharge electrode may advantageously be charged positively rather than negatively as is the general practice for obtaining the highest potential gradient.
  • the operation depends essentially upon the application of an electric field suflicient to precipitate the fine particles upon the collecting electrode, and upon the rate of gas flow. These forces must be so controlled that the agglomerated material is dislodged and caused to move with a to and fro motion between the collecting and discharge electrodes and in a resultant direction substantially parallel with the gas flow to an opening through which it is removed.
  • the support afforded by the collecting electrode surface up to the opening is no longer prescnt so that the resultant movement of the agglomerated masses due to the kinetic action of the gas stream and the electric action is disturbed and the said masses drop out of the gas stream in the only direction in which theycan drop, i. e. through the opening into the space where there is neither electric action nor akinetic action of gas.
  • pended material from gases which consists in passing a gas stream carrying the material in suspension through a passage, and subjecting the gas stream to an electric field causing a deposit of the material on the walls of the passage, the gas being passed through the passage at such velocity that under the action of the gas stream masses of the deposit are detached in agglomerated -form and carried onwardly by the stream.
  • Method according to claim 1 including the step of collecting the agglomerated masses after detaclu'nent from the walls of the passage.
  • the method of separating light sus pended material from gases which consists in passing a gas stream carrying the material in suspension through an electric precipitator defining a passageway for said gas stream, under such conditions of velocity asto cause the particles deposited and ag;
  • the method of separating light suspended material from gases which consists in passing a gas stream carrying the mate rial in suspension through an electric pre cipitator defining a passageway, subjecting the gas stream to such electric action as to cause collection and agglomeration of the suspended material on the walls of the passage, controlling the rate of flow of the gas stream so as to cause the gases to dislodge the collected and agglomerated material and carry the same substantially parallel to the gas stream, and allowing the dislodged material to move out of the gas stream under the action of the electricfield.
  • the method of separating light suspended material from gases which consists in passing a gas stream carrying the material in suspension through an electric precipitator defining a passageway, subjecting the gas stream to such electric action as to cause collection and agglomeration of the suspended material on the walls of the passage, controlling the rate of flow of the gas stream so as to cause the gases to dislodge the collected and agglomerated material, and maintain continuously substantially clean electrodes.
  • Apparatus for separating light suspended material from gas comprising a ver tical tubular collecting electrode having an uninterrupted collecting surface from the bottom to near the top and a perforated portion near the top, defining relatively large openings and a discharge electrode extending through the collecting electrode.
  • Apparatus for separating light suspended material from gas comprising a vertical gas passage imperforate fromthe bottom-to near the to v and constituted at least in part by collecting electrode means, the 5 passage having near its top an openi and a screen in said opening, and a disc arge electrode extending through the gas passage.

Description

April 6 1926. 1,579,462
H. A. WINTERMUTE METHOD OF AND AIfPARATUS FOR SEPARATING LIGHT MATERIALS FROM GASES Filed Feb. 11,- 1925 Patented Apr. 6, 1926.
' UNITED STATES PATENT. OFFICE.
man: A. manners, or nnw Yonr,
N. Y., ASSIGNOR TO RESEARCH CORPORA- nor," on NEW Yonx, N. Y. A conronnrron' on NEW YORK.
IITHOD OF AND APPAB ATUS FOR SEPARATING LIGHT MATERIALS FRbM GASES.
Application filed February 7 To all whom it may concern:
Be it known that I, HARRY A. WINTER- m, a citizen of the United States, residing at New York, in the county of New 6 York and State of New York, have invented certain new and useful Improvements in Methods of and Apparatus for Separating Lilght Materials from Gases, of which the f owing is a specification.
This invention relates to the separation of suspended material from gases and more in particular to electric separation of light ufiy material such as oarbon black.
For a full understanding of the invention reference is made to the accompanying drawing which is a more or less diagrammatic representation of what I' consider a preferred embodiment of the invention.
In the. drawing 10 represents a tubular collecting electrode and 11 a wire discharge electrode commonly used in the art of electric precipitation. It is understood that this form of precipitator' is merely representative of electric recipit-ators in general and has no particu ar or special si 'ficance.
Any other precipitator in which t e collecting electrode surfaces define gas passages may find application.
The lower end of the electrodes 10 and 11 terminates in a lower header 12 and adjacent the header 12 is a compartment 13 for housing the insulator 14 on which is supported a rod 15 or the like for kee ing the dischar e electrode 11 centered, .t e usual ball 16 olding the wire electrode 11 taut.
The gas stream carrying the material in suspenslon enters through the inlet 17.
Above the header 12 is disposed a settling chamber 18 which is in communication with the interior of the collecting electrode 10 through a perforated portion 19 thereof. The collectin electrode 10 terminates above the settling c amber.
. The gas stream entering through 1nlet 45 17 passes up through the tubular collecting electrode 10 and the suspended particles under the action of the discharge electrode are precipitated a ainst the collecting surface.v
I have foun that when the velocity of. the
11, 1925. Serial No. 8,491.
1s dislodged from the electrode surface in the form of large agglomerated masses and carried along the walls of the collecting electrode and may then be separated from the gas stream.
I have also discovered that these agglomerated masses moving with the gas ump back and forth between thedischarge electrode and the collecting electrode much the same as a pith ball jumps back and forth between two oppositely charged plates. When they reach an open space in the collecting electrode, they jump back and forth until the momentum carries them out of the field of influence. They then drop due to gravity action and may be collected.
I have also found it unnecessary to use any of the other methods commonly employed in electrical precipitation, such as rapping, scraping or brushing, for dislodging the material precipitated on the electrodes. This self-cleaning feature is very desirable and advantageous in all precipitation work and especially so in the precipitation of lamp black.
This discovery I may practically utilizein several ways. In actual ractice I have used a rod wound spira ly with the convolutions about 1" a art to form the perforated section 19. Sther constructions may be found suitable for the purpose. While a plain opening is satisfactory to a certain extent, I have ound that provisions for maintaining an electric field through the opening are much more effective and are a practical desideratum. The electric field may be-pr0- duced by an ,metallic frame or screenwork connected w1th the collecting electrode and providing openings large enough for 'the ag lomerated masses to freely pass through.
ilthough there is considerable latitude in regard to the velocity of the as stream in its relation to the potential ifi'erence and gap between the electrodes and the length of the electrodes and the condition of the sea, I have found in practical tests with tu ular collecting electrodes of about 12" diameter" and 18 feet long, that a' gas velocity of 7-9 ft. sec. gives very good results. The dislodgement of agglomerated particles and their motion became apparent about four minutes after starting operations and continued unint'erruptedly so long as the gas flow was maintained. a
When the agglomerated particles reach the perforated section, the to and fro motion under the action of the electric field eventually carries them into the perforations beyond a critical point where the action of the field cannot pull them back and they drop there while the gas itself passes out of the terminal end of the passage defined by the tube or other collecting electrodes.
In the settling chamber the particles are out of the sphere of the kinetic action of the gas stream and can settle and may then be removed.
The principle of operation is not related to what is sometimes called electric wind. In fact, I found that the operation may be carried out with relatively low voltages and that the discharge electrode may advantageously be charged positively rather than negatively as is the general practice for obtaining the highest potential gradient.
The operation depends essentially upon the application of an electric field suflicient to precipitate the fine particles upon the collecting electrode, and upon the rate of gas flow. These forces must be so controlled that the agglomerated material is dislodged and caused to move with a to and fro motion between the collecting and discharge electrodes and in a resultant direction substantially parallel with the gas flow to an opening through which it is removed.
As soon as the opening is reached, the support afforded by the collecting electrode surface up to the opening is no longer prescnt so that the resultant movement of the agglomerated masses due to the kinetic action of the gas stream and the electric action is disturbed and the said masses drop out of the gas stream in the only direction in which theycan drop, i. e. through the opening into the space where there is neither electric action nor akinetic action of gas.
While the movement of the detached agglomerated masses out of the gas stream may be promoted by a slight negative pressure in the settling chamber relative to that in the passage way defined, I have found that such negative pressure is not necessary for successful operation.
While the mode of operation applies especially to the separation of carbon black or the like, it necessarily applies to all light flufly materials having the physical characteristics of electrically precipitated carbon black.
I claim: 1
1. The method of separating light sus-.
pended material from gases, which consists in passing a gas stream carrying the material in suspension through a passage, and subjecting the gas stream to an electric field causing a deposit of the material on the walls of the passage, the gas being passed through the passage at such velocity that under the action of the gas stream masses of the deposit are detached in agglomerated -form and carried onwardly by the stream.
2. Method according to claim 1 including the step of collecting the agglomerated masses after detaclu'nent from the walls of the passage.
The method of separating light sus pended material from gases, which consists in passing a gas stream carrying the material in suspension through an electric precipitator defining a passageway for said gas stream, under such conditions of velocity asto cause the particles deposited and ag;
glomerated under the electric action to be dislodged from the collecting surface and to move parallel to the gas stream and then allowing the dislodged particles to move out of the gas stream under the action of an electric field.
4. The method of separating light suspended material from gases, which consists in passing a gas stream carrying the mate rial in suspension through an electric pre cipitator defining a passageway, subjecting the gas stream to such electric action as to cause collection and agglomeration of the suspended material on the walls of the passage, controlling the rate of flow of the gas stream so as to cause the gases to dislodge the collected and agglomerated material and carry the same substantially parallel to the gas stream, and allowing the dislodged material to move out of the gas stream under the action of the electricfield.
5. The method of separating light suspended material from gases, which consists in passing a gas stream carrying the material in suspension through an electric precipitator defining a passageway, subjecting the gas stream to such electric action as to cause collection and agglomeration of the suspended material on the walls of the passage, controlling the rate of flow of the gas stream so as to cause the gases to dislodge the collected and agglomerated material, and maintain continuously substantially clean electrodes.
6. Apparatus for separating light suspended material from gas, comprising a ver tical tubular collecting electrode having an uninterrupted collecting surface from the bottom to near the top and a perforated portion near the top, defining relatively large openings and a discharge electrode extending through the collecting electrode.
. Apparatus for separating light suspended material from gas, comprising a vertical gas passage imperforate fromthe bottom-to near the to v and constituted at least in part by collecting electrode means, the 5 passage having near its top an openi and a screen in said opening, and a disc arge electrode extending through the gas passage.
8. Apparatus according to claim 7, including a settling chamber surrounding the said gas passage and in communication there- 10 with through said screen:
In test' ony whereof, I aflix my signature.
HARRY A. WINTERMUTE.
US8491A 1925-02-11 1925-02-11 Method of and apparatus for separating light materials from gases Expired - Lifetime US1579462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US8491A US1579462A (en) 1925-02-11 1925-02-11 Method of and apparatus for separating light materials from gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8491A US1579462A (en) 1925-02-11 1925-02-11 Method of and apparatus for separating light materials from gases

Publications (1)

Publication Number Publication Date
US1579462A true US1579462A (en) 1926-04-06

Family

ID=21731901

Family Applications (1)

Application Number Title Priority Date Filing Date
US8491A Expired - Lifetime US1579462A (en) 1925-02-11 1925-02-11 Method of and apparatus for separating light materials from gases

Country Status (1)

Country Link
US (1) US1579462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492790A (en) * 1964-07-15 1970-02-03 Aeropur Ag Sa Gas cleaning apparatus and more particularly to an improved electrical precipitator
US3526081A (en) * 1965-07-09 1970-09-01 Wilhelm Kusters Gas purification
US3668835A (en) * 1969-02-13 1972-06-13 Vicard Pierre G Electrostatic dust separator
US6761752B2 (en) * 2002-01-17 2004-07-13 Rupprecht & Patashnick Company, Inc. Gas particle partitioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492790A (en) * 1964-07-15 1970-02-03 Aeropur Ag Sa Gas cleaning apparatus and more particularly to an improved electrical precipitator
US3526081A (en) * 1965-07-09 1970-09-01 Wilhelm Kusters Gas purification
US3668835A (en) * 1969-02-13 1972-06-13 Vicard Pierre G Electrostatic dust separator
US6761752B2 (en) * 2002-01-17 2004-07-13 Rupprecht & Patashnick Company, Inc. Gas particle partitioner

Similar Documents

Publication Publication Date Title
Jaworek et al. Hybrid electrostatic filtration systems for fly ash particles emission control. A review
US3577705A (en) Filter system
US2275001A (en) Apparatus for electrical precipitation
US1250088A (en) Process and apparatus for separation of suspended particles from gases.
US3733784A (en) Electro-bag dust collector
US3495379A (en) Discharge electrode configuration
US4308036A (en) Filter apparatus and method for collecting fly ash and fine dust
US4481017A (en) Electrical precipitation apparatus and method
US2573967A (en) Electrical precipitation method
US6878192B2 (en) Electrostatic sieving precipitator
US1888606A (en) Method of and apparatus for cleaning gases
US1853393A (en) Art of separation of suspended material from gases
US2142128A (en) Electrical precipitation method and apparatus
US3705478A (en) Electrostatic precipitator and gas sampling system
US1579462A (en) Method of and apparatus for separating light materials from gases
US4657567A (en) Dust separation apparatus
US2698669A (en) Electrical precipitator
US2556982A (en) Electrostatic precipitator
US2700429A (en) Electrical precipitator
US2199390A (en) Electrical precipitation
CA1136067A (en) Method and apparatus for removing finely divided solids from gas
US2271597A (en) Apparatus for electrical precipitation
US3544441A (en) Electrostatic filtering for cleaning dielectric fluids
US2708488A (en) Arrangement in emitting electrodes
US3853511A (en) Electrical precipitating apparatus