US1415733A - Process of making and using metal scavenging alloy - Google Patents
Process of making and using metal scavenging alloy Download PDFInfo
- Publication number
- US1415733A US1415733A US355667A US35566720A US1415733A US 1415733 A US1415733 A US 1415733A US 355667 A US355667 A US 355667A US 35566720 A US35566720 A US 35566720A US 1415733 A US1415733 A US 1415733A
- Authority
- US
- United States
- Prior art keywords
- alloy
- uranium
- aluminium
- metal
- making
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title description 22
- 239000000956 alloy Substances 0.000 title description 22
- 229910052751 metal Inorganic materials 0.000 title description 16
- 239000002184 metal Substances 0.000 title description 16
- 238000000034 method Methods 0.000 title description 8
- 230000002000 scavenging effect Effects 0.000 title description 7
- 229910052770 Uranium Inorganic materials 0.000 description 12
- 239000004411 aluminium Substances 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 229910001085 Ferrouranium Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 229910000711 U alloy Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 235000001018 Hibiscus sabdariffa Nutrition 0.000 description 1
- 240000004153 Hibiscus sabdariffa Species 0.000 description 1
- 241001676573 Minium Species 0.000 description 1
- CKYKNSRRNDUJPY-UHFFFAOYSA-N alumane;uranium Chemical compound [AlH3].[U] CKYKNSRRNDUJPY-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
Definitions
- This invention relates to a process of obtaining a scavenging alloy, and tocan alloy, which is useful as a refining agent in metalfounding.
- a scavenging alloy, and tocan alloy which is useful as a refining agent in metalfounding.
- Such an alloy added to the molten metal aids in the rejection of the impurities present in the latter, and in the elimination of the occluded gases and vapors, and causes a movement of the metal in the mold-s whereby a more uniform casting is obtained.
- the alloy itself consists of aluminium, uranium and magnesium, the relative proportions of the ingredient, and the amount of the alloy used, varying with the chemical and physical characteristics of metal to be cast.
- a ferro-uranium alloy containing 25% to 45% of uranium, is melted in a crucible to a bright red temperature considerably above its melting point, and to it is added pure aluminium, the proportion being of about eleven pounds of uranium to one hundred pounds of aluminium.
- a violent reaction takes place, and after the completion of this reaction, the fluid contents are cast in bars. A residue will be left in the ladle which is rejected.
- the bars crystallize on cooling, the crystals being large and bright, and consisting of an uranium-aluminium alloy.
- the uranium may be introduced into the crucible in some other form than that of ferro-uranium.
- the oxides, UO or "U 0 may be used.
- a molten bath is then prepared by melting aluminium in a crucible or furnace, and to this bath is added magnesium, and the uranium aluminium alloy above described. In doing this I use 44000 parts of aluminium, 3170 parts of magnesium, and parts of uranium aluminium alloy. "The resultant I Specification of Letters Patent.
- the steel is made and melted in the usual manner, and to the molten metal, preferably while being teemed in the ladle, the alloy is added in the proportion of from one to two parts of alloy, to 4000 parts of steel. For instance, with 25-30 carbon steel, about of a pound of the alloy will be used per ton of steel.
- the addition of the alloy to the molten steel. causes a rapid vertical circulating motion of the molten metal in the ladle, and in the mold when poured therein. This motion assists in bringing to the surface the slags, gases and vapors in the molten metal, and thus produces a sounder and more homogeneous casting.
- the proportions of uranium and aluminium used in preparing the alloy may be varied from those given above.
- the proportions of the uranium and magnesium contents used in preparing the scavenging alloy may be changed to meet conditions of the metal to be treated.
- the magnesium may be increased to about 15% of the bath, and the uranium contents may be increased by reducing the amount of aluminium in the bath.
- Tbs process of preparing a met-a vcnging composition consisting of prc- 'ing an alloy of uranium and aluminium i permitting the same to sniiiii'fy and, iing' solidified aiicy to a moiten bath of minium and n'mgnet-sium.
- metal founding which consists of adding to molten metal prior to curing the same in the mold, a scavenging alloy containing magnesium, aluminium and 11 smaii percents e of uranium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
uTEo-s'rA'rE-s PATENT OFFICE.
HERMANN G. C. THOFEHRN, DECEASED, LATE OF ROSELLE. NEW JERSEY. BY DONALD H. MOLEAN, ADMINISTRATOR, OF ELIZABETH, NEW JERSEY, ASSIGNOR TO LIGHT METALS OOMPANY, OF ELIZABETH,
JERSEY.
NEW JERSEY, CORPORATION OF NEW PROCESS MAKING AND USING METAL SOAVENGING ALLOY.
No Drawing.
To all whom it may concern:
Be it known that HERMANN G. O. THo- FEHRN, deceased, a citizen. of the United States, residing at Roselle, in'the county of Union and State of New Jersey, did during his life invent certain new and useful Improvements in Processes of Making and Using Metal scavenging Alloy, of which the following is a specification.
This invention relates to a process of obtaining a scavenging alloy, and tocan alloy, which is useful as a refining agent in metalfounding. Such an alloy added to the molten metal aids in the rejection of the impurities present in the latter, and in the elimination of the occluded gases and vapors, and causes a movement of the metal in the mold-s whereby a more uniform casting is obtained.
The alloy itself consists of aluminium, uranium and magnesium, the relative proportions of the ingredient, and the amount of the alloy used, varying with the chemical and physical characteristics of metal to be cast.
The following specific example is given to illustrate the application of thisinvention to the casting of open hearth basic steel.
A ferro-uranium alloy, containing 25% to 45% of uranium, is melted in a crucible to a bright red temperature considerably above its melting point, and to it is added pure aluminium, the proportion being of about eleven pounds of uranium to one hundred pounds of aluminium. A violent reaction takes place, and after the completion of this reaction, the fluid contents are cast in bars. A residue will be left in the ladle which is rejected. The bars crystallize on cooling, the crystals being large and bright, and consisting of an uranium-aluminium alloy.
Obviously, the uranium may be introduced into the crucible in some other form than that of ferro-uranium. For instance, the oxides, UO or "U 0 may be used.
A molten bath is then prepared by melting aluminium in a crucible or furnace, and to this bath is added magnesium, and the uranium aluminium alloy above described. In doing this I use 44000 parts of aluminium, 3170 parts of magnesium, and parts of uranium aluminium alloy. "The resultant I Specification of Letters Patent.
Application filed February 2, 1920.
Patented May 9, 1922.
Serial No. 355,667.
molten alloy is then cast. An analysis shows the following composition,-
Mg 6.70 Cu .25 Fe .35 Si .30 Al (by difference) 93.40 U trace This forms a scavenging alloy.
In using this alloy the steel is made and melted in the usual manner, and to the molten metal, preferably while being teemed in the ladle, the alloy is added in the proportion of from one to two parts of alloy, to 4000 parts of steel. For instance, with 25-30 carbon steel, about of a pound of the alloy will be used per ton of steel. The addition of the alloy to the molten steel. causes a rapid vertical circulating motion of the molten metal in the ladle, and in the mold when poured therein. This motion assists in bringing to the surface the slags, gases and vapors in the molten metal, and thus produces a sounder and more homogeneous casting.
It is believed that the presence of uranium in the alloy permits the segregation in the slag of aluminium oxides which would otherwise remain in the steel. The slag rejected by the metal in cooling in the presence of the alloy is light grey in color. and separates from the metal. The metal itself shows no traces of alumina.
The proportions of uranium and aluminium used in preparing the alloy may be varied from those given above.
Likewise, the proportions of the uranium and magnesium contents used in preparing the scavenging alloy may be changed to meet conditions of the metal to be treated. For instance, the magnesium may be increased to about 15% of the bath, and the uranium contents may be increased by reducing the amount of aluminium in the bath.
Having thus described the invention what is claimed is 1.- The herein described process of obtaining a uranium aluminium alloy, consisting in melting together ferro-uranium and aluminium, separating the molten material and allowing the molten material to cool.
2. Tbs process of preparing a met-a vcnging composition, consisting of prc- 'ing an alloy of uranium and aluminium i permitting the same to sniiiii'fy and, iing' solidified aiicy to a moiten bath of minium and n'mgnet-sium.
L The hcrcinlwfore described process ()5 pairing 3 metal scavenging (amn msition, isisting of preparing: an alloy of uranium i aluminium (w iitaining approximately '4; uraniimi and adding it in the proportion of 150 parts of the alloy to a molten bath containing 47,000 parts of aluminium and magnesium.
process, of metal founding, which consists of adding to molten metal prior to curing the same in the mold, a scavenging alloy containing magnesium, aluminium and 11 smaii percents e of uranium.
UNALD H. MGLEAN,
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US355667A US1415733A (en) | 1920-02-02 | 1920-02-02 | Process of making and using metal scavenging alloy |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US355667A US1415733A (en) | 1920-02-02 | 1920-02-02 | Process of making and using metal scavenging alloy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1415733A true US1415733A (en) | 1922-05-09 |
Family
ID=23398323
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US355667A Expired - Lifetime US1415733A (en) | 1920-02-02 | 1920-02-02 | Process of making and using metal scavenging alloy |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US1415733A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2967812A (en) * | 1958-01-31 | 1961-01-10 | William C Thurber | Neutronic reactor fuel composition |
| US3119159A (en) * | 1961-09-27 | 1964-01-28 | Gustad P Contractor | Method of removing aluminum oxides from aluminum-killed steels and steels produced by such method |
| US4816088A (en) * | 1986-12-02 | 1989-03-28 | Cegedur Societe De Transformation De L'aliminium Pechiney | Method of raising the recrystallization temperature of aluminium and of its alloys |
-
1920
- 1920-02-02 US US355667A patent/US1415733A/en not_active Expired - Lifetime
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2967812A (en) * | 1958-01-31 | 1961-01-10 | William C Thurber | Neutronic reactor fuel composition |
| US3119159A (en) * | 1961-09-27 | 1964-01-28 | Gustad P Contractor | Method of removing aluminum oxides from aluminum-killed steels and steels produced by such method |
| US4816088A (en) * | 1986-12-02 | 1989-03-28 | Cegedur Societe De Transformation De L'aliminium Pechiney | Method of raising the recrystallization temperature of aluminium and of its alloys |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU1813113C (en) | Cast iron modifier | |
| RS61617B1 (en) | Gray cast iron inoculant | |
| US4053304A (en) | Flux for refinement of pro-eutectic silicon crystal grains in high-silicon aluminum alloys | |
| US3850624A (en) | Method of making superalloys | |
| US3598576A (en) | Method of making nodular iron | |
| US1415733A (en) | Process of making and using metal scavenging alloy | |
| US4451430A (en) | Method of producing copper alloy by melting technique | |
| US2253502A (en) | Malleable iron | |
| US3212881A (en) | Purification of alloys | |
| US4162159A (en) | Cast iron modifier and method of application thereof | |
| US3459540A (en) | Production of clean fine grain steels | |
| RU2016112C1 (en) | Method for modification of aluminium alloys | |
| US3421887A (en) | Process for producing a magnesium-containing spherical graphite cast iron having little dross present | |
| US3355281A (en) | Method for modifying the physical properties of aluminum casting alloys | |
| US3762915A (en) | Method for casting gray cast iron composition | |
| US2693414A (en) | Methods of casting titanium stabilized steel | |
| US3068094A (en) | Alloy of iron, aluminum, and chromium | |
| US2932567A (en) | Cast iron and process for making same | |
| US1965604A (en) | Process for improving aluminum alloy | |
| US501233A (en) | Alloy | |
| US2150095A (en) | Method of treating nickel-copper alloys and products resulting therefrom | |
| US4375371A (en) | Method for induction melting | |
| SU922169A1 (en) | Modifier for hypoeutectic aluminium and silicon alloys | |
| US2065534A (en) | Process for improving aluminum alloy | |
| SU908884A1 (en) | Process for refining aluminium alloys |