US1386768A - Oil-cracking process and apparatus therefor - Google Patents

Oil-cracking process and apparatus therefor Download PDF

Info

Publication number
US1386768A
US1386768A US371508A US37150820A US1386768A US 1386768 A US1386768 A US 1386768A US 371508 A US371508 A US 371508A US 37150820 A US37150820 A US 37150820A US 1386768 A US1386768 A US 1386768A
Authority
US
United States
Prior art keywords
oil
chamber
boiling hydrocarbons
chambers
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US371508A
Inventor
David E Day
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US371508A priority Critical patent/US1386768A/en
Application granted granted Critical
Publication of US1386768A publication Critical patent/US1386768A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/10Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with stationary catalyst bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles

Definitions

  • T 0 all whomit may concern Be it known that I, DAVID E. DAY, a citizen of the United States, residing at Santa Maria, in the county of Santa Barbara and State of California, have invented certain new and useful Improvements in Oil-Cracking Processes and Apparatus Therefor, of which the following is a specification.
  • the object of my invention is to produce a process and apparatus for cracking oils as set forth in detail herein.
  • a further object of my invention consists in utilizing the carbon which is formed in my cracking process by burning the same in the chamber where it is formed, the heat evolved being transferred to the adjacent chamber in which oil is cracked.
  • Fig. 2 is a plan view of the same taken on the section line 2-2.
  • Fig. 3 is a cross section of the four-way valve hereinafter described.
  • V oils in processes to produce low boiling from high boiling hydrocarbons It is generally necessary to interrupt the cracking proc ess after a few days run to clean out the separated carbon produced in cracking,
  • the numeral 1 indicates a vertical cylinder preferably of steel although cast iron, cast steel, fire brick or other suitable material may-be used.
  • an outer cylinder 2 Surrounding this cylinder is an outer cylinder 2 of similar material and so spaced from the first cylinder that the volume between the cylindersis equal to the volume or space within the first cylinder.
  • pipes 3, 4, 5 and 6 Leading to the bottom of the inner cylinder 1 are pipes 3, 4, 5 and 6 each for the admission of gas and air or oil and steam, or a combination of oil, air or steam, as will be further described.
  • a pipe 7 of large capacity which serves for the withdrawal of oil vapors or combustion gases, as will be further described.
  • pipes 8, 9, 10 and 11 serve to admit oil and steam, or gas and air, etc., to the space between chambers 1 and 2.
  • pipes 12 containing valves 12 for the admission of oil ipes 13 containing valves 13' for the admission of steam which may be either saturated or superheated
  • pipes 14 containing valves 14 serving for the admission of gas and pipes 15 containing valve 15 serving for the admission of air.
  • supporting members over the pipe ends as indicated at 3'-10' in Fig. 1, may be employed to'hold or support the spreading material in the interior of chamber 1 and the space between chambers 1 and 2.
  • the supporting members may be cone shaped or other form suitable for the purpose.
  • Leading from the oil pipes 12 are branch oil pipes 16 containing valves 16' which serve to admit oil to the space between cylinders 1 and 2.
  • Leading from pipes 18 are pipes 17 containing valves 17 which pipes serve to admit oil to the "space within the inner cylinder 1 when desired.
  • a pipe 18 Leading from the upper portion of the cylinder 2 is a pipe 18 which also serves for the removal of either oil vapors or combustion gases depending upon the way in which the process is being carried out. Both pipes 7 and 18 connect with a four-way valve'19 which serves to lead off combustion gases to a stack by means of pipe 20 or to lead oil vapors to a condenser by means of pipe 21.
  • Fig. 3 of the drawings shows the cross section of thefour-way valve, which is old in the art and need, therefore, not be further described.
  • a manhole 22 which serves to gain access to cylinder 1 or to the space between the cylinders.
  • a manhole 23 serving to permit access to the interior of cylinder 1.
  • I employ hand holes 24 which serve to gain access at different points of the cylinder 2 to the space between the cylinders.
  • baffle plates 25 which serve as shelves to hold catalytic material thereon, as will be further described.
  • I preferably employ a non-conducting mate-.
  • This material designated by numeral 26 may be either magnesia, or other commercial non-conducting material.
  • a catalytic, absorbent or spreading material designated by 27, which may be either a metal, as cast iron or nickel, or may be refractory material, such as porous fire clay, fire brick, fullers earth, or other porous or solid material.
  • This material may be either in lump, granular or powder form as may suit the particular oil treated. I have used porous fire brick with satisfactory results and have found that the process gives a very desirable product and the process may be employed for a considerable length of time without change.
  • the oil so admitted is partly absorbed by the catalytic material as in the first part of the process, the heat now being transmitted from the inner chamber through the walls of cylinder 1 to the oil and catalytic material. Cracking takes place in the same way as is described in connection with the admission of oil to cylinder 1, the oil vapors'produced passing up through the catalytic material upon baflies 25 and are further cracked and purified. The oil vapors evolved at the top.
  • memes chamber pass by the pipe 7 through the valve 19 to the pipe 20 leading to the stack. This part of the process is continued until accumulation of carbon on the catalytic material on the baffles 25 takes place to such an extent that it becomes necessary to reverse the process again.
  • the process of cracking as described is essentially, therefore, a continuous rocess and utilizes the carbon separated out y the cracking of oil and avoids the necessity of shutting down the apparatus for cleaning purposes.
  • I may operate the process e ther with or without pressure, and may feed oil to the chambers either in a stream or in spray form and with or Without steam to suit the needs of the particular oil undergoing treatment.
  • an outlet pipe connecting the upper portion ber to the said condenser, and being also operable to conduct oil vapors from the internal chamber to the condenser and simultaneously -to conduct gases from the said external chamber to the said stack.
  • an internal chamber gaseous heating means communicating with the lower portion of said chamber, oil feeding means communicating with the middle portion of the said chamber, an exit pipe leading from the top of said chamber to a port of a four-way valve; a second chamber external to the said internal chamber; heating means communicating with the lower portion of said second chamber, oil feeding means communicating with the said middle portion of the said external chamber, an outlet pipe connecting the upper portion of the said external chamber with a second port of the said four-way valve; a pipe connecting a third port of said four-way valve and leading to a stack;
  • va ve and leading to a condenser the said valve being'operable to conduct gases from the internal chamber to the stack and simultaneously to conduct oil vapors from the external chamber to the said condenser, and being also operable to conduct oil vapors from the internal chamber to the condenser and simultaneously to conduct gases from the said external chamber to the said stack.
  • an internal chamber an external chamber concentric therewith, means for generating heat in the said chambers, means for feeding oil to the said chambers, means providing an oil spreading surface in said chambers, an eduction pipe leading from each of the said chambers for removal of an aeriform material, means for cutting off the said oil supplying means from the said chambers,
  • means for oil means for generating heat in the said chambers, means for feeding oil to the said chambers, an eduction pipe leading from each of the said chambers for removal of an aeriform'material, means for cut-ting off the said oil supplying means Lseegee from the said chambers, and means for regulating the generation of heat in each of the said chambers.
  • ternalchamber an external chamber concentric therewith, said chambers having oil distributing surfaces therein, means for generating heat in the said chambers, means for feeding oil to the said chambers, an eduction pipe leading from each of the said .chambers for removal of an aeriform macentric therewith, heating means for the said chambers, means providing an oilspreading surface in said chambers, oil
  • eduction pipes connecting with the internal and external chambers and with a fourway valve, a ipe connecting one port of said four-way va ve to a stack, a second pipe connecting a second ort of the said valve to a condenser, the sai four-way valve being operable to lead combustion gases from either the internal or the external chamber to the said stack and simultaneously to lead oil vapors from the external or internal chamber to the said condenser.

Description

D. E. DAY. 01L CRACKING PROCESS AND APPARATUS THEREFOR. APPLICATION FILED APR. 5, 1920.
1,386,768 P tentedAug. 9,19%
INVENTOR.
A TTORNEYS.
culty DAVID E. DAY, OF SANTA MARIA, CALIFORNIA.
OIL-CRACKING PROCESS AND APPARATUS THEREFOR.
Application filed April 5,
T 0 all whomit may concern Be it known that I, DAVID E. DAY, a citizen of the United States, residing at Santa Maria, in the county of Santa Barbara and State of California, have invented certain new and useful Improvements in Oil-Cracking Processes and Apparatus Therefor, of which the following is a specification.
The object of my invention is to produce a process and apparatus for cracking oils as set forth in detail herein.
A further object of my invention consists in utilizing the carbon which is formed in my cracking process by burning the same in the chamber where it is formed, the heat evolved being transferred to the adjacent chamber in which oil is cracked. By my process therefor, which is a continuous one, I not only rid the chambers of the objectional carbon formed but I. also utilize the heat of combustion of this material.
A further object of the invention, consists in the sequence of steps of operation, and the details of invention hereinafter set forth and claimed.
The apparatus employed in carrying out. my process is illustrated in the accompanying drawings, in which- Figure 1 is a vertical sectional view of the apparatus.
Fig. 2 is a plan view of the same taken on the section line 2-2.
Fig. 3 is a cross section of the four-way valve hereinafter described.
As is well known a great deal 'of difli has been experienced in handling carbon which is produced by the cracking, of
V oils in processes to produce low boiling from high boiling hydrocarbons. It is generally necessary to interrupt the cracking proc ess after a few days run to clean out the separated carbon produced in cracking,
- thereby losing time and also wasting fuel because of the necessity of allowing cooling to take place until a temperature is reached which will permit of cleaning the apparatus. In a horizontal oil still for instance, it is the general practice after making a run to draw the fires and drain off the oil content of the still, then to scrape off carbon from the sill bottom and walls by means of scraping tools. It is generally necessary for the operator to enter the still in carrying out this carbon removing process. In the multitubular form of still the inconvenience of having to enter the still is avoided but a great deal Specification of Letters Patent.
Patented Aug. 9., 1921.
1920. Serial No. 371,508.
of time is required in removing separated carbon from the tubes of the still and furthermore the fuel consumption in operating the still is very high on account of the necessity of shutting down at intervals to remove carbon.
By the process and apparatus which I have invented, I avoid the shutting down of the still for the removal of carbon and have, therefore, produced a continuous process and apparatus for obtaining low boiling hydrocarbons from high boiling ones.
In the following description of my apparatus, I employ similar numerals to designate similar parts in the various views.
Referring to Fig. 1 of the drawing, the numeral 1 indicates a vertical cylinder preferably of steel although cast iron, cast steel, fire brick or other suitable material may-be used. Surrounding this cylinder is an outer cylinder 2 of similar material and so spaced from the first cylinder that the volume between the cylindersis equal to the volume or space within the first cylinder. Leading to the bottom of the inner cylinder 1 are pipes 3, 4, 5 and 6 each for the admission of gas and air or oil and steam, or a combination of oil, air or steam, as will be further described. Leading from the upper end of the cylinder 1 is a pipe 7 of large capacity which serves for the withdrawal of oil vapors or combustion gases, as will be further described.
At the lower portion of the outer cylinder, pipes 8, 9, 10 and 11 serve to admit oil and steam, or gas and air, etc., to the space between chambers 1 and 2. Connecting each of the pipes 3, 4, 5, 6, 8, 9, 10 and 11 are pipes 12 containing valves 12 for the admission of oil, ipes 13 containing valves 13' for the admission of steam which may be either saturated or superheated, pipes 14 containing valves 14 serving for the admission of gas, and pipes 15 containing valve 15 serving for the admission of air. In order not to produce clogging of the pipes 3, 4, 5, 6, 8, 9, 10 and 11, supporting members over the pipe ends, as indicated at 3'-10' in Fig. 1, may be employed to'hold or support the spreading material in the interior of chamber 1 and the space between chambers 1 and 2. The supporting members may be cone shaped or other form suitable for the purpose. Leading from the oil pipes 12 are branch oil pipes 16 containing valves 16' which serve to admit oil to the space between cylinders 1 and 2. Leading from pipes 18 are pipes 17 containing valves 17 which pipes serve to admit oil to the "space within the inner cylinder 1 when desired.
Leading from the upper portion of the cylinder 2 is a pipe 18 whichalso serves for the removal of either oil vapors or combustion gases depending upon the way in which the process is being carried out. Both pipes 7 and 18 connect with a four-way valve'19 which serves to lead off combustion gases to a stack by means of pipe 20 or to lead oil vapors to a condenser by means of pipe 21.
Fig. 3 of the drawings shows the cross section of thefour-way valve, which is old in the art and need, therefore, not be further described.
()n the top of chamber 2 is a manhole 22 which serves to gain access to cylinder 1 or to the space between the cylinders. Similarly on the top of cylinder 1 is a manhole 23 serving to permit access to the interior of cylinder 1. In the walls of chamber 2', I employ hand holes 24 which serve to gain access at different points of the cylinder 2 to the space between the cylinders. Between the cylinders 1 and 2, I preferably employ baffle plates 25, which serve as shelves to hold catalytic material thereon, as will be further described. On the outside of the chamber 2,
I preferably employ a non-conducting mate-.
rial so as tolag the chambers and prevent loss of heat.
This material designated by numeral 26 may be either magnesia, or other commercial non-conducting material.
In carrying out the process of cracking, I employ a catalytic, absorbent or spreading material designated by 27, which may be either a metal, as cast iron or nickel, or may be refractory material, such as porous fire clay, fire brick, fullers earth, or other porous or solid material. This material may be either in lump, granular or powder form as may suit the particular oil treated. I have used porous fire brick with satisfactory results and have found that the process gives a very desirable product and the process may be employed for a considerable length of time without change.
The way in which the process is carried out will now be described. I first start the burners in the chamber between cylinders 1 and 2, by admitting gas and air from pipes 14 and 15 in suitable proportions. The combustion gases from this source heat the material upon the shelves or baflies and heat is conducted through the walls ofcylinder 1 into the inner chamber. The combustion gases are taken off at the top of chamber 2 by means of pipe 18 and pass through the four-way valve 19 to the pipe 20, leading to a stack. When a suitable temperature is reached, the oil is passed onto the catalytic material in chamber 1 either by means of I from. The vapors in passing up through the heated catalytic material may be further cracked. In this way, therefore, I obtain both a liquid phase and vapor phase cracking, which serves to produce a larger proportion of light hydrocarbons than is produced by the use of a single phase cracking process.
The oil vapors which are evolved after being filtered by the material in chamber 1 pass by the pipe 7 through a passage of the four-way valve 19 into the pipe 21 which leads to a condenser, not shown. This part of the process which has been described is continued until the accumulation of carbon upon the spreading or catalytic material becomes so great as to interfere with the operation of the apparatus by reducing the yield, or changing the nature of the product, thus indicating to the operator the time at which a reversal of the process should be made. At
this stage of the operation the admission of oil to the chamber 1 is stopped, burners heating the chamber between walls 1, 2 are cut off, and the four-way valve 19 is turned so as to connect the pipe 7 to the pipe 20, and the pipe 18 to the pipe 21. Burners at the bottom of the chamber 1 are then started by the admission of air and gas from pipes 14 and 15 in suitable proportions. The supply of air will be greatly in excess in order to burn out .the carbon and tarry matter separated upon the catalytic material and in its pores, thus utilizing such combustible material and furnishing heat to the process. Oil is now admitted into the chamber between cylinders 1 and 2 by means of either pipes 12 (through pipes 8, 9, 10 and 11) or pipes 16 leading to the middle portion of the space between chambers 1 and 2 as shown in the drawing. The oil so admitted is partly absorbed by the catalytic material as in the first part of the process, the heat now being transmitted from the inner chamber through the walls of cylinder 1 to the oil and catalytic material. Cracking takes place in the same way as is described in connection with the admission of oil to cylinder 1, the oil vapors'produced passing up through the catalytic material upon baflies 25 and are further cracked and purified. The oil vapors evolved at the top.
memes chamber pass by the pipe 7 through the valve 19 to the pipe 20 leading to the stack. This part of the process is continued until accumulation of carbon on the catalytic material on the baffles 25 takes place to such an extent that it becomes necessary to reverse the process again. The process of cracking as described is essentially, therefore, a continuous rocess and utilizes the carbon separated out y the cracking of oil and avoids the necessity of shutting down the apparatus for cleaning purposes.
I desire to have it understood that I may operate the process e ther with or without pressure, and may feed oil to the chambers either in a stream or in spray form and with or Without steam to suit the needs of the particular oil undergoing treatment.
What I claim is:
1. The process of producing low boiling hydrocarbons from high boiling hydrocarbons which comprises passing high boiling hydrocarbons into a zone containing spreading material, heating the said zone to a cracking temperature, whereby high boiling hydrocarbons are cracked and produce low boiling hydrocarbons together with carbon in the said zone, leading off v, pors of low boiling hydrocarbons and condensing the said vapors, terminating the passage of high boiling hydrocarbons to the said zone, burning away the said carbon produced in the said zone, passing high boiling hydrocarbons into a second zone containing spreading material in heat transferring relation to the first zone, whereby low boiling hydrocarbons are produced, and passing the said low boiling hydrocarbons to a condenser.
2. The process of producing low boiling hydrocarbons from high boiling hydrocarbons which consists in passing high boiling hydrocarbons into contact with a mass of catalytic material, passing combustion gases into a zone containing a second mass of catalytic material, the said zone being in heat transferring relation to the first mentioned mass of catalytic material, whereby the said high boiling hydrocarbons are cracked and produce thereby low boiling together with carbon, continuing the process until the accumulation of carbon interferes with the production of low boiling hydrocarbons, then reversing the process by passing combustion gases through the first mentioned mass of catalytic material and passing the said high boiling hydrocarbons into contact with the said second mass of catalytic material, drawing off the vapors produced and condensing the same.
3. The process .of producing low boiling hydrocarbons from high boiling hydrocarbons which consists in passing high boiling hydrocarbons into contact with a mass of catalytic material in one zone, passing combustion gases into a second zonecontaining I a second mass of catalytic material, the said second zone being in heat transferring relation to the first mentioned zone containing a mass of catalytic material, whereby the said high boiling hydrocarbons are cracked and produce thereby low-boiling hydrocarbons, together with carbon, continuing the process until the accumulation of carbon interferes with the production of low boiling hydrocarbons, then reversing the process by passing the combustion gases through the first mentioned mass of catalytic material in the first mentioned zone and passing the said high boilinghy'drocarbons into contact with the said second mass of catalytic material 1n the said second zone, drawing off the vapors of the low boiling hydrocarbons produced and condensing the same.
4. The process of producing low boiling hydrocarbons from high boiling hydrocarbons which consists in passing high boiling hydrocarbons into contact with a mass of catalytic material in one zone, passing combustion gases into a second zone containing a second mass of catalytic material, the said second zone being in heat transferring relation to the first mentioned zone containing a mass of catalytic material, whereby the said high boiling hydrocarbons are cracked and produce thereby low boiling hydrocarbons together with carbon, continuing the process until the accumulation of carbon interferes with the production of low boiling hydrocarbons, then reversing the process by passing combustion gases capable of burning out carbon, through the catalytic material in the first zone and passing the said high boiling hydrocarbons into contact with the catalytic material in the said second zone, drawing oif the vapors of the low boiling hydrocarbons produced and condensing the same.
5. The process of producing low boiling hydrocarbons from high boiling hydrocarbons which consists in passing high boiling hydrocarbons into contact with a mass of spreading material in one zone, passing a gaseous heating medium into a second zone containing a second mass of spreading material, the said second zone being in heat transferring relation to the first mentioned zone, whereby the said high boiling hydrocarbons are cracked and produce thereby low boiling hydrocarbons together with carbon, continuing the process until the accumulation of carbon interferes with the production of low boiling hydrocarbons, then rehydrocarbons produced and condensing the same.
6. The process of producing low boiling hydrocarbons from high boiling hydrocarbons which consists in passing high boiling hydrocarbons into the middle portion of a zone containing a mass of spreading material, passing a gaseous heating medium into a second zone containing a second mass of spreading material, the said second zone being in heat transferring relation to the first mentioned zone, whereby the said high boiling hydrocarbons are cracked and produce thereby low boiling hydrocarbons together with carbon, continuing the process until the accumulation of carbon interferes with the production of low boiling hydrocarbons, then reversing the process 'by passing a gaseous heating medium capable of burning out carbon through the first mentioned zone containing spreading material, and passing the saidhigh boiling hydrocarbons into the middle portion of the said second zone containing a second mass of spreading material,
' chamber, an external chamber concentric therewith, heating means for the said chambers, oil feeding means leading to the said chambers, eduction pipes connecting with the internal and external chambers and with a four-way valve, a pipe connecting one port of said four-way valve to a stack, a second pipe connecting a second port of the said valve to a condenser, the said four-way valve being operable to lead combustion gases from either the internal or the external chamber to the said stack and simultaneously to lead oil vapors from the external or internal chamber to the said condenser.
9. In an oil treating apparatus, an internal-chamber, gaseous heating means communicating with the lower portion of said chamber, oil feeding means communicating with the said chamber, an exit pipe leading from the top of said chamber toa port of a four-way valve; a second chamber external to the said internal chamber; heating means communicating with the lower portion of said second chamber, oil feeding means communicating with the said external chamber,
an outlet pipe connecting the upper portion ber to the said condenser, and being also operable to conduct oil vapors from the internal chamber to the condenser and simultaneously -to conduct gases from the said external chamber to the said stack.
10. In an oil treating apparatus, an internal chamber, gaseous heating means communicating with the lower portion of said chamber, oil feeding means communicating with the middle portion of the said chamber, an exit pipe leading from the top of said chamber to a port of a four-way valve; a second chamber external to the said internal chamber; heating means communicating with the lower portion of said second chamber, oil feeding means communicating with the said middle portion of the said external chamber, an outlet pipe connecting the upper portion of the said external chamber with a second port of the said four-way valve; a pipe connecting a third port of said four-way valve and leading to a stack;
a ipe connecting a fourth port of the said.
va ve and leading to a condenser;vthe said valve being'operable to conduct gases from the internal chamber to the stack and simultaneously to conduct oil vapors from the external chamber to the said condenser, and being also operable to conduct oil vapors from the internal chamber to the condenser and simultaneously to conduct gases from the said external chamber to the said stack.
11. In an oil treating apparatus, an internal chamber, an external chamber concentric therewith, means for generating heat in the said chambers, means for feeding oil to the said chambers, means providing an oil spreading surface in said chambers, an eduction pipe leading from each of the said chambers for removal of an aeriform material, means for cutting off the said oil supplying means from the said chambers,
means for oil, means for generating heat in the said chambers, means for feeding oil to the said chambers, an eduction pipe leading from each of the said chambers for removal of an aeriform'material, means for cut-ting off the said oil supplying means Lseegee from the said chambers, and means for regulating the generation of heat in each of the said chambers.
13. In an oil treating apparatus, an in-.
ternalchamber, an external chamber concentric therewith, said chambers having oil distributing surfaces therein, means for generating heat in the said chambers, means for feeding oil to the said chambers, an eduction pipe leading from each of the said .chambers for removal of an aeriform macentric therewith, heating means for the said chambers, means providing an oilspreading surface in said chambers, oil
feeding means leading to the said chambers,
eduction pipes connecting with the internal and external chambers and with a fourway valve, a ipe connecting one port of said four-way va ve to a stack, a second pipe connecting a second ort of the said valve to a condenser, the sai four-way valve being operable to lead combustion gases from either the internal or the external chamber to the said stack and simultaneously to lead oil vapors from the external or internal chamber to the said condenser.
In testimony whereof I aflix no signature.
DAVID DAY.
US371508A 1920-04-05 1920-04-05 Oil-cracking process and apparatus therefor Expired - Lifetime US1386768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US371508A US1386768A (en) 1920-04-05 1920-04-05 Oil-cracking process and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US371508A US1386768A (en) 1920-04-05 1920-04-05 Oil-cracking process and apparatus therefor

Publications (1)

Publication Number Publication Date
US1386768A true US1386768A (en) 1921-08-09

Family

ID=23464252

Family Applications (1)

Application Number Title Priority Date Filing Date
US371508A Expired - Lifetime US1386768A (en) 1920-04-05 1920-04-05 Oil-cracking process and apparatus therefor

Country Status (1)

Country Link
US (1) US1386768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425969A (en) * 1944-04-20 1947-08-19 Socony Vacuum Oil Co Inc Method and apparatus for conducting gaseous reactions in the presence of solid particles
US2626204A (en) * 1949-01-29 1953-01-20 Universal Oil Prod Co Apparatus for conducting catalytic endothermic and exothermic reactions
US2721831A (en) * 1951-06-29 1955-10-25 Exxon Research Engineering Co Stabilization of catalytically cracked gasoline

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425969A (en) * 1944-04-20 1947-08-19 Socony Vacuum Oil Co Inc Method and apparatus for conducting gaseous reactions in the presence of solid particles
US2626204A (en) * 1949-01-29 1953-01-20 Universal Oil Prod Co Apparatus for conducting catalytic endothermic and exothermic reactions
US2721831A (en) * 1951-06-29 1955-10-25 Exxon Research Engineering Co Stabilization of catalytically cracked gasoline

Similar Documents

Publication Publication Date Title
US2236555A (en) Manufacture of acetylene under modified pressure and temperature conditions
US1470359A (en) Process of removing carbon from metal pipes
US1386768A (en) Oil-cracking process and apparatus therefor
US1351859A (en) Process of cracking petroleum
US2577254A (en) Removing carbon and carbonaceous deposits from heat exchanger equipment
US2457837A (en) Multistage regeneration of a moving bed catalyst
US3094479A (en) Conversion process and apparatus
US1912629A (en) Treatment of heavy hydrocarbons
US1763609A (en) Process of treating hydrocarbon oils
US1944872A (en) Method of coking heavy petroleum residues or the like
US1944483A (en) Method of treating hydrocarbons
US1565409A (en) Oil-gas apparatus
US580020A (en) Process of producing gas
US463799A (en) wilson
US1172925A (en) Process of producing hydrogen or illuminating and heating gas.
USRE22957E (en) Residual hydrocarbon treatment
US1359284A (en) Combined kerosene-converter and gas-burner
US1598368A (en) Apparatus for cracking oil
US2700601A (en) Process for producing a natural gas substitute from gas oil
US1976717A (en) Treatment of hydrocarbon gases
US1957649A (en) Process and apparatus for the treatment of soda-treated tars and other residues of the petroleum industry with a view to the conversion thereof into light products
US1957648A (en) Process and apparatus for the treatment of heavy oils and the like for the conversion thereof into lighter products
US246998A (en) Process of and apparatus for manufacturing water-gas
US122625A (en) Improvement in gas apparatus
US1355312A (en) tulsa