US11619761B2 - Dynamic representation of exploration and/or production entity relationships - Google Patents
Dynamic representation of exploration and/or production entity relationships Download PDFInfo
- Publication number
- US11619761B2 US11619761B2 US16/646,173 US201816646173A US11619761B2 US 11619761 B2 US11619761 B2 US 11619761B2 US 201816646173 A US201816646173 A US 201816646173A US 11619761 B2 US11619761 B2 US 11619761B2
- Authority
- US
- United States
- Prior art keywords
- entity
- data
- attributes
- entity data
- node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 29
- 238000013507 mapping Methods 0.000 claims abstract description 92
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000003129 oil well Substances 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 5
- 230000002123 temporal effect Effects 0.000 claims description 2
- 238000003860 storage Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000002596 correlated effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000002085 persistent effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000012517 data analytics Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/901—Indexing; Data structures therefor; Storage structures
- G06F16/9024—Graphs; Linked lists
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/36—Recording data
Definitions
- a method implemented by one or more processors includes receiving entity data from one or more devices.
- the entity data can be associated with one or more systems for exploring and/or producing natural resources.
- the method can also include comparing the entity data based on one or more mapping rules for determining a similarity between attributes of the entity data.
- the method can include generating a graphing structure for organizing the entity data. The graphing structure can be generated in response to the similarity between attributes satisfying at least one mapping rule of the one or more mapping rules.
- the graphing structure can include (i) at least one node that identifies a device that is connected to the one or more systems for exploring and/or producing natural resources and (ii) at least one node edge that identifies a property of the device identified by the at least one node.
- the at least one mapping rule can be associated with a Levenshtein distance threshold.
- the graphing structure can include multiple nodes connected by the at least one node edge, and the device can be an oil rig or an oil well.
- the method can include determining a completeness of the entity data according to the one or more mapping rules.
- the one or more mapping rules can include a device mapping rule that identifies a set of attributes to be mapped or defined to satisfy the device mapping rule.
- the method can also include, when the entity data identifies the device and lacks an attribute identified in the set of attributes, assigning a completeness score to the entity data.
- the method can include, when the entity data identifies the device and includes all attributes identified in the set of attributes, designating the entity data as a complete entity.
- the graphing structure can include a first node that identifies the device, a second node that identifies a product of the device, and multiple node edges that are each connected between the first node and the second node in different directions.
- the device can be an oil rig
- the product can be a reservoir
- the at least one node edge of the multiple node edges indicates that the oil rig functioned to produce the reservoir.
- a system is set forth as including one or more processors, and memory configured to store instructions that, when executed by one or more processors, cause the one or more processors to perform operations that include storing first entity data and second entity data.
- the first entity data and the second entity data can be associated with one or more exploration and/or production systems.
- the first entity data can be designated as a complete entity and the second entity data can be designated as an incomplete entity.
- the operations can also include identifying, by an entity mapping engine, an attribute of the second entity data that is unavailable and providing support for designating the second entity data as incomplete, at least based on one or more rules accessible to the entity mapping engine.
- the operations can include generating data that correlates the attribute of the second entity data to a separate attribute of the first entity data, wherein the separate attribute satisfies the one or more rules.
- the operations can further include designating the second entity data as complete, at least based on the attribute of the second entity satisfying the one or more rules.
- the data that correlates the attribute of the second entity data to a separate attribute can include a node edge associated with a graphical database.
- the node edge can be associated with property data that describes a temporal relationship between the first entity data and the second entity data.
- the one or more exploration and/or production systems can include an oil rig and an oil well, and the first data entity and the second data entity can include identifiers for the oil rig and the oil well.
- the operation of designating the second entity data as complete can include modifying a completeness score for the second entity data.
- the attribute and the separate attribute can be stored on different devices that are accessible to the entity mapping engine.
- a non-transitory computer readable medium is set forth as storing instructions that, when executed by one or more processors, cause the one or more processors to perform operations that include generating first entity data and second entity data from information collected during an operation of an exploration and/or production system.
- the operations can also include determining a first entity type for the first entity data and a second entity type for the second entity data.
- the operations can further include identifying, based on the first entity type and the second entity type, one or more rules accessible to an entity mapping engine for classifying the first entity data and the second entity each as complete entities.
- the operations can include comparing each of the first entity data and the second entity data to the one or more identified rules, and generating data that indicates whether the first entity data and the second entity data correspond to complete entities.
- the one or more identified rules can include a name matching rule for determining a similarity between entity names. Comparing each of the first entity data and the second entity data to the one or more identified rules can include identifying attributes available from the first entity data and the second entity data. At least one rule of the one or more rules can identify a number of attributes to be available for the first entity type for indicating whether the first entity data corresponds to a complete entity.
- the first entity data can be stored by a graphing database that includes nodes and node edges that identify different portions of the exploration and/or production system. A node of the first entity data can identify a reservoir, a rig, or a well of the exploration and/or production system.
- Some implementations may also include a system including one or more processors and memory configured to store instructions that, when executed by one or more processors, cause the one or more processors to perform any of the aforementioned operations, as well as a non-transitory computer readable medium configured to store instructions that, when executed by one or more processors, cause the one or more processors to perform any of the aforementioned operations.
- FIG. 1 illustrates a system for providing complete data entities for understanding exploration and production data from a variety of sources.
- FIG. 2 illustrates an entity generated by an entity mapping engine.
- FIG. 3 illustrates an interface for linking entity data available to an entity mapping engine.
- FIG. 4 illustrates a method for generating a graphing structure from exploration and/or production data.
- FIG. 5 illustrates a method for determining whether entity data of a graphical database is complete, according to some embodiments.
- FIG. 6 illustrates a method for classifying entity data as a complete entity data according to one or more mapping rules that are based on one or more different entity types.
- FIG. 7 illustrates a computer system that can operate according to any of the implementations discussed herein.
- FIG. 8 illustrates a network that can include the computer system of FIG. 7 and/or operate according to any of the embodiments discussed herein.
- the described embodiments relate to systems, methods, and apparatus for processing exploration and/or production data to generate digital entities that are interrelated and made available to a variety of clients.
- Providing data analytics to customers can be a relatively simple task when the end product is leveraging common processing techniques.
- a service company in order to deliver unique and valuable data to customers, a service company must be willing to adapt their processing techniques to employ the latest technology.
- the data being processed by the service company can be compiled into standardized digital entities.
- the digitization of data can refer to the conversion of certain information, including images, signals, and sounds, into discrete or binary form.
- Digitalization can refer to the use of digitized information to induce a technological change within a particular industry, such as telecommunications, medical, manufacturing, among many others.
- digitalization has been the basis for enterprises that are linked to data from a number of different sources, namely measurement, extraction, and storage systems.
- the data from one or more sources can be compiled into one or more standardized digital entities.
- the relationships between the digital entities can be embodied in a data graph or a graph database.
- a graph database can use graph structures with nodes, edges, and/or other properties to represent and store data. Stored data can be directly linked by the graph structures enabling the data to be more readily accessed and processed by a variety of clients.
- FIG. 1 illustrates a system 100 for providing complete entities 124 for understanding exploration and/or production data from a variety of sources.
- the system 100 can include a remote device 102 , such as a server device 104 , capable of accessing other remote devices for collecting data over a network 112 .
- the server device 104 can include an entity mapping engine 106 for compiling a graph database using graphing structures 108 and mapping rules 110 .
- the entity mapping engine 106 can retrieve entity attributes from multiple different sources in order to compile complete entities 124 .
- data related to exploration and production assets can be associated with multiple different entities (e.g., ENTITY_ 1 120 , ENTITY_N 122 ) from various sources (e.g., remote device 114 , remote device 116 ).
- entity mapping engine 106 can retrieve attribute data from each of the sources in order to build a complete entity 124 according to the mapping rules 110 .
- the mapping rules 110 can require certain attributes for the complete entity 124 , such as spud date (i.e., when initially drilled), elevation, reference elevation, drillers total depth, and/or any other data that can be associated with an oil well.
- the mapping rules 110 can be set by one or more users of the system 100 and/or learned through one or more machine learning algorithms capable of identifying trends in data provided from various sources.
- a notification can be provided from the server device 104 , and/or any other device associated with the entity.
- a graphing structure 108 such as a new node, edge, and/or property can be associated with the entity for fulfilling the attribute requirement for the entity.
- Nodes of the graph database, and generated by the entity mapping engine 106 can represent physical structures, businesses, people, accounts, devices, and/or any other object that can be represented as a mapped source of data.
- a node can represent an oil well, production volume of an oil well, one or more data logs associated with one or more wells, an oil field, an oil rig or platform, and/or any other object or information that can be associated with a natural resource.
- Edges of the graph database generated by the entity mapping engine 106 can connect the nodes of the graph database. The edges can be indicative of properties of the relationship between nodes.
- an edge can indicate a direction of a connection between nodes, a type of connection between nodes, and number of connections between nodes.
- the type of connection between nodes can, for example, describe an origin of a connection, a status of the connection, an authorship of the connection, and/or any other property that can be attributed to a connection between nodes.
- Properties of the nodes generated by the entity mapping engine 106 can identify the data that is represented by the nodes. For example, with respect to exploration and production, the properties can identify spud date, operators, coordinates, elevation, and/or any other information that can be associated with exploration and production of natural resources. Furthei wore, in some implementations, the properties can also be correlated or otherwise associated with edges that are connecting the nodes.
- a property of a node edge or connection between nodes can include an identifier, a time, a location, and/or any other property that can be associated with a connection between nodes.
- queries for collecting data associated with edges can be more readily responded to.
- Such queries can include identifiers that can identify one or more edges between nodes, ranges that can identify a threshold of values in which certain edges can be included, and/or properties that can filter edges according to the properties that they can include or otherwise describe.
- a mapping rule 110 can define a complete entity 124 for an oil well as including an attribute mapping to well coordinates and well pressure.
- An entity such as ENTITY_ 1 120 , can include mapped attribute data (e.g., spud date), but not the well coordinates or well pressure.
- mapped attribute data e.g., spud date
- Such a lack of data in certain entities can be referred to as blank attribute data, which can be mapped in order to convert the entity into a complete entity 124 .
- a data manager which can be a manual operator or automated software process (e.g., the entity mapping engine 106 ), can acknowledge the blank attribute data and identify another entity (e.g., ENTITY_N 122 ) for mapping the blank attribute data.
- the ENTITY_N 122 can be, for example, a data log that was generated based on data collected at the oil well corresponding to the ENTITY_ 1 120 .
- the graphing structure 108 generated by the entity mapping engine 106 for linking the ENTITY_ 1 120 to ENTITY_N 122 can be an edge with a properties such as, for example, OPERATING_AT and LOCATED_AT.
- edges properties can indicate that the oil well is “operating at” a particular well pressure and located at particular well coordinates.
- the ENTITY_ 1 120 can be considered a complete entity 124 and available to queries submitted through the network 112 .
- the complete entities 124 can be stored at one or more storage devices.
- the complete entities 124 can include attributes or properties that are mapped to other entities or nodes that are stored on different devices.
- the entity mapping engine 106 can assign completeness scores to entities as they are compiled and completed according to the mapping rules 110 .
- a completeness score can depend on a type of node that is being mapped and completed by the entity mapping engine 106 . If an oil well entity requires ten properties or attributes to be complete according to the mapping rules 110 and the oil well entity currently has five mapped properties and five blank properties, the entity mapping engine 106 can be assigned a completeness score of 50%. As entities are updated by the entity mapping engine 106 , the completeness score can be adjusted to reflect how complete an entity is. In this way, the system 100 can offer entities that are reliable with respect to the amount of data that can be offered by them. In this way, new technology that needs to leverage its operations on the existence quality data can be more readily adapted to the standardized complete entities 124 .
- a user when a user accesses or otherwise receives data associated with a complete entity 124 and that complete entity 124 is subsequently updated, the user can be notified of the update.
- the user accesses data associated with a complete entity 124 and the accessed data is indicated as incorrect by another source or authority of data, the user can be notified that they had accessed incorrect data.
- a user can initialize the execution or re-execution of a mapping rule 110 on a complete entity 124 or incomplete entity in order to verify that an entity is correlated with the most recent or highest quality data.
- Such re-executions can be performed by the entity mapping engine 106 at predetermined intervals and, if inconsistencies or changes in data are exhibited, the server device 104 can provide notifications to users that have accessed the entities associated with the inconsistencies and/or the changes. Such changes can occur in properties of the nodes, edges, and/or any other properties of the entities.
- users of the system 100 can operate applications and/or other software for creating, updating, editing, and/or removing entities from the system 100 , including complete entities 124 .
- a user can access the server device 104 directly or through a remote device in order to edit mapping rules 110 for the entities.
- mapping rules 110 For a user edits the entities and/or the mapping rules 110 , different versions of an entity can be created. However, in some implementations, latest version of an entity can be designated as the subject of queries submitted to the system 100 , at least based on the assumption that the most recent changes are the most accurate. Should a user prefer a different version be the subject of the queries, permissions for the user can be assigned in order for the user to make changes to this preference.
- Entities of the system 100 can be split or otherwise rearranged in order to create or replace entities. For instance, nodes of an entity can be correlated to a separate entity. Furthermore, the separate entity can include blank attribute data which can be mapped from existing entities and/or other sources of data for completing the separate entity according to the mapping rules 110 .
- FIG. 2 illustrates an entity 200 generated by an entity mapping engine according to a graphing structure.
- the entity mapping engine can generate nodes, edges, and/or other properties from various sources for creating the entity 200 , which can be stored in a graphical database.
- the entity 200 can include, for example, multiple different nodes 202 that can be correlated through edges 204 , which can define relationships of data identified by the nodes 202 .
- node 202 having ID: 100 can be associated with a rig (e.g., RIG A), which has a particular type (e.g., land).
- a separate node 212 can be associated with a well (e.g., WELL 2), which was drilled by “RIG A.”
- This relationship between node 202 and node 212 can be generated by an entity mapping engine using data from a remote device 206 , which can store rig data.
- the relationship can be embodied in an edge 204 that interconnects node 202 and node 212 .
- the relationship can be embodied as an entry in a graphical database with text such as, for example, “DRILLED” and/or “DRILLED BY,” to provide a descriptor for the relationship.
- the edge 204 can be directional, therefore the entry associated with the edge 204 can be defined according to where the edge 204 is pointing and where the edge 204 originated from.
- Data correlated to the various nodes, such as node 210 can be based on information provided by a remote device 208 .
- the node 210 can provide drill depth data, which can be collected by one or more sensors that are directly or indirectly in communication with the remote device 208 .
- the remote device 208 can be accessed by the entity mapping engine for generating the node 210 , which details the apparatus and depth for a particular well (e.g., WELL 1).
- the entity mapping engine can use the information from remote device 208 to generate other nodes, which can provide the spud date of the WELL 1, and details related to the reservoir provided as a result of the completion of WELL 1.
- the entity can be considered completed or “well-known,” when the data provided in the entity satisfies one or more mapping rules of the entity mapping engine.
- a mapping rule can specify that an entity will be considered complete when the entity includes data related a rig type, wells generated by the rig, reservoirs generated from the wells, and a type of resource (e.g., oil) provided from the reservoir.
- a single source of data may not provide all information needed to render an entity complete, the entity mapping engine can regularly query other sources of data in order to compile enough information to render more entities complete.
- complete entities are compiled, such completed entities can be made available to consumers seeking to integrate data from the complete entities into their products.
- Such products can include application programming interfaces (APIs) for controlling and managing exploration and production systems.
- APIs application programming interfaces
- mapping rules for generating complete entities and/or a package of complete entities can be manually controlled by a user.
- the user can define rules for delivery of the entities to particular APIs, in order that service providers can fluidly receive data from a variety of exploration and/or production related sources.
- rules i.e., work flow rules
- Such rules that govern the distribution of data to completed entities and to APIs can be embodied as configuration files (e.g., JSON configuration files) for execution by a device that is accessible to the entity mapping engine.
- the rules can be compiled through an interactive interface in which a user can map relationships between entities for generated entity packages.
- FIG. 3 illustrates an interface 300 for linking entity data available to an entity mapping engine.
- the entity mapping engine can be an application, software, and/or other script that executes on one or more processors of one or more computing devices.
- the interface 300 can be an entity mapping interface 302 for connecting sources of data in order to create complete entities that can be made available to end users and APIs.
- sources of data can be manually connected through the interface 300 by a user.
- connections 314 can be manually created by a user as a user selects various sources, entities, and/or attributes for connecting.
- the connections 314 can be generated by an entity mapping engine (e.g., entity mapping engine 106 ) that operates according to mapping rules (e.g., mapping rules 110 ), which provides standards for creating the connections 314 between entities.
- entity mapping engine e.g., entity mapping engine 106
- mapping rules e.g., mapping rules 110
- a mapping rule can include an exact match requirement that necessitates names of entities be identical before they can be connected and/or their attributes can be shared.
- An example of such an exact naming scheme is provided in FIG. 3 , which includes a variety of sources associated with a common entity name (e.g., ENTITY_NAME).
- the sources can include an attribute catalog 304 , an entity catalog 306 , a complete entity catalog 308 , and/or catalog mappings (i.e., catalog mapping 310 through catalog mapping N 312 ). Once the sources are mapped or otherwise connected, attribute data available at each of the sources can also be mapped by the entity mapping engine in order that complete entities can be generated based on the attribute data.
- connections 314 between sources and/or entities can be provided according to a spatial radial match rule.
- entities associated with objects located within a physical radius can be connected.
- exploration and production apparatuses within a particular radius can be associated with entities such as data catalogs, complete entities, and/or any other sources of data.
- the entity mapping engine can filter the entities according to any physical coordinates that are mapped to or otherwise stored in associated with the entities. Thereafter, any entities that are associated with coordinates located within a predefined radius can be connected in order that their attributes can be shared. By sharing attributes, the entities can be completed and made available to users seeking to provide services or data based on the complete entities.
- connections 314 between sources and/or entities can be provided according to one or more fuzzy matching processes.
- a fuzzy matching process can be, for example, a process that employs a Levenshtein distance analysis for determining similarities between entities and/or their particular attributes (e.g., ENTITY_NAME, SOURCE NAME, etc.).
- the Levenshtein distance between two entity names can be a minimum number of character edits that is required to render at least one entity name the same as another entity name.
- An example of two different entity names can include “WELL 001” and “WELL 1”.
- a Levenshtein distance between “WELL 001” and “WELL 1” can be valued at “2,” because only 2 characters (e.g., “00”) need to be inserted into “WELL 1” in order to make the entity name equivalent to “WELL 001.”
- Mapping rules that use Levenshtein distance or other fuzzy matching processes can employ thresholds that define a minimum distance between entity names before they can be matched or otherwise mapped. For example, a Levenshtein distance threshold “N,” where “N” is any positive whole number, can be assigned to mapping rule in order that no entities are connected or mapped together unless their names correspond to a Levenshtein distance of at least “N.”
- FIG. 4 illustrates a method 400 for generating a graphing structure from exploration and/or production data.
- the method 400 can be performed by one or more computing devices, and/or any other apparatus capable of transmitting natural resource related data.
- the method 400 can include a block 402 of receiving entity data from one or more devices, the entity data associated with one or more systems for exploring and/or producing natural resources.
- the method 400 can further include a block 404 of comparing the entity data based on one or more mapping rules for determining a similarity between attributes of the entity data.
- the method 400 can include a block 406 of generating a graphing structure for organizing the entity data.
- the graphing structure can be generated in response to the similarity between attributes satisfying at least one mapping rule of the one or more mapping rules. Additionally, the graphing structure can include (i) at least one node that identifies a device that is connected to the one or more systems for exploring and/or producing natural resources and (ii) at least one node edge that identifies a property of the device identified by the at least one node.
- FIG. 5 illustrates a method 500 for determining whether entity data of a graphical database is complete, according to some embodiments.
- the method 500 can be performed by one or more computing devices, and/or any other apparatus capable of transmitting natural resource related data.
- the method 500 can include a block 502 of storing first entity data and second entity data. Each of the first entity data and the second entity data can be associated with one or more exploration and/or production systems.
- the first entity data can be designated as a complete entity and the second entity data can be designated as an incomplete entity.
- the method 500 can further include a block 504 of identifying, by an entity mapping engine, an attribute of the second entity data that is (i) unavailable and (ii) providing support for designating the second entity data as incomplete.
- the designation of the second entity data as incomplete can be at least partially based on one or more rules accessible to the entity mapping engine.
- the method 500 can also include a block 506 of generating data that correlates the attribute of the second entity data to a separate attribute of the first entity data. The separate attribute can satisfy or otherwise fulfill the one or more rules. Additionally, the method 500 can include a block 508 of designating the second entity data as complete, at least based on the attribute of the second entity satisfying the one or more rules.
- FIG. 6 illustrates a method 600 for classifying entity data as a complete entity according to one or more mapping rules that are based on one or more different entity types.
- the method 600 can be performed by one or more computing devices, and/or any other apparatus capable of transmitting natural resource related data.
- the method 600 can include a block 602 of generating first entity data and second entity data from information collected during an operation of an exploration and/or production system.
- the method 600 can also include a block 604 of determining a first entity type for the first entity data and a second entity type for the second entity data.
- the first entity type can be an oil well and the second entity type can be a drill bit.
- the method 600 can further include a block 606 of identifying, based on the first entity type and the second entity type, one or more rules accessible to an entity mapping engine for classifying the first entity data and the second entity each as complete entities.
- the method 600 can also include a block 608 of comparing each of the first entity data and the second entity data to the one or more identified rules, and block 610 can, include generating data that indicates whether the first entity data and the second entity data correspond to complete entities.
- Embodiments may be implemented on a computing system. Any combination of mobile, desktop, server, router, switch, embedded device, or other types of hardware may be used.
- the computing system 700 may include one or more computer processors 702 , non-persistent storage 704 (e.g., volatile memory, such as random access memory (RAM), cache memory), persistent storage 706 (e.g., a hard disk, an optical drive such as a compact disk (CD) drive or digital versatile disk (DVD) drive, a flash memory, etc.), a communication interface 712 (e.g., Bluetooth interface, infrared interface, network interface, optical interface, etc.), and numerous other elements and functionalities.
- non-persistent storage 704 e.g., volatile memory, such as random access memory (RAM), cache memory
- persistent storage 706 e.g., a hard disk, an optical drive such as a compact disk (CD) drive or digital versatile disk (DVD) drive, a flash memory, etc.
- a communication interface 712 e
- the computer processor(s) 702 may be an integrated circuit for processing instructions.
- the computer processor(s) may be one or more cores or micro-cores of a processor.
- the computing system 700 may also include one or more input devices 710 , such as a touchscreen, keyboard, mouse, microphone, touchpad, electronic pen, or any other type of input device.
- the communication interface 712 may include an integrated circuit for connecting the computing system 700 to a network (not shown) (e.g., a local area network (LAN), a wide area network (WAN) such as the Internet, mobile network, or any other type of network) and/or to another device, such as another computing device.
- a network not shown
- LAN local area network
- WAN wide area network
- mobile network or any other type of network
- the computing system 700 may include one or more output devices 708 , such as a screen (e.g., a liquid crystal display (LCD), a plasma display, touchscreen, cathode ray tube (CRT) monitor, projector, or other display device), a printer, external storage, or any other output device.
- a screen e.g., a liquid crystal display (LCD), a plasma display, touchscreen, cathode ray tube (CRT) monitor, projector, or other display device
- One or more of the output devices may be the same or different from the input device(s).
- the input and output device(s) may be locally or remotely connected to the computer processor(s) 702 , non-persistent storage 704 , and persistent storage 706 .
- Software instructions in the faun of computer readable program code to perform embodiments may be stored, in whole or in part, temporarily or permanently, on a non-transitory computer readable medium such as a CD, DVD, storage device, a diskette, a tape, flash memory, physical memory, or any other computer readable storage medium.
- the software instructions may correspond to computer readable program code that, when executed by a processor(s), is configured to perform one or more embodiments.
- the computing system 700 in FIG. 7 may be connected to or be a part of a network, such as the network 806 described by system 800 of FIG. 8 .
- the network 806 may include multiple nodes (e.g., node X 802 , node Y 804 ).
- Each node may correspond to a computing system, such as the computing system shown in FIG. 7 , or a group of nodes combined may correspond to the computing system shown in FIG. 7 .
- embodiments may be implemented on a node of a distributed system that is connected to other nodes.
- embodiments may be implemented on a distributed computing system having multiple nodes, where each portion of the embodiment may be located on a different node within the distributed computing system. Further, one or more elements of the aforementioned computing system 700 may be located at a remote location and connected to the other elements over a network.
- the node may correspond to a blade in a server chassis that is connected to other nodes via a backplane.
- the node may correspond to a server in a data center.
- the node may correspond to a computer processor or micro-core of a computer processor with shared memory and/or resources.
- the nodes (e.g., node X 802 , node Y 804 ) in the network 806 may be configured to provide services for a client device 808 .
- the nodes may be part of a cloud computing system.
- the nodes may include functionality to receive requests from the client device 708 and transmit responses to the client device 808 .
- the client device 808 may be a computing system, such as the computing system shown in FIG. 7 . Further, the client device 808 may include and/or perform all or a portion of one or more embodiments.
- the computing system or group of computing systems described in FIGS. 7 and 8 may include functionality to perform a variety of operations disclosed herein.
- the computing system(s) may perform communication between processes on the same or different system.
- a variety of mechanisms, employing some form of active or passive communication, may facilitate the exchange of data between processes on the same device. Examples representative of these inter-process communications include, but are not limited to, the implementation of a file, a signal, a socket, a message queue, a pipeline, a semaphore, shared memory, message passing, and a memory-mapped file. Further details pertaining to a couple of these non-limiting examples are provided below.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/646,173 US11619761B2 (en) | 2017-09-12 | 2018-09-12 | Dynamic representation of exploration and/or production entity relationships |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762557537P | 2017-09-12 | 2017-09-12 | |
US16/646,173 US11619761B2 (en) | 2017-09-12 | 2018-09-12 | Dynamic representation of exploration and/or production entity relationships |
PCT/US2018/050734 WO2019055553A1 (en) | 2017-09-12 | 2018-09-12 | Dynamic representation of exploration and/or production entity relationships |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200278471A1 US20200278471A1 (en) | 2020-09-03 |
US11619761B2 true US11619761B2 (en) | 2023-04-04 |
Family
ID=65723060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/646,173 Active 2038-12-20 US11619761B2 (en) | 2017-09-12 | 2018-09-12 | Dynamic representation of exploration and/or production entity relationships |
Country Status (2)
Country | Link |
---|---|
US (1) | US11619761B2 (en) |
WO (1) | WO2019055553A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11644595B2 (en) * | 2019-07-16 | 2023-05-09 | Schlumberger Technology Corporation | Geologic formation operations framework |
US11206284B2 (en) | 2019-08-02 | 2021-12-21 | EMC IP Holding Company LLC | Automated threat analysis of a system design |
EP3809275B1 (en) * | 2019-10-16 | 2022-11-09 | Fetch.ai Limited | System and method to improve system reliability via consistent recordal of data entities |
US11442701B2 (en) * | 2020-02-25 | 2022-09-13 | EMC IP Holding Company LLC | Filtering security controls |
CN111815403B (en) * | 2020-06-19 | 2024-05-10 | 北京石油化工学院 | Commodity recommendation method and device and terminal equipment |
US12118006B2 (en) * | 2021-01-29 | 2024-10-15 | Microsoft Technology Licensing, Llc | Automated code generation for computer software |
CN113987279A (en) * | 2021-10-14 | 2022-01-28 | 深圳力维智联技术有限公司 | Modeling method, device and computer-readable storage medium of entity node |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006103398A1 (en) * | 2005-03-29 | 2006-10-05 | British Telecommunications Public Limited Company | Schema matching |
US20090020284A1 (en) * | 2007-07-20 | 2009-01-22 | Schlumberger Technology Corporation | Apparatus, method and system for stochastic workflow in oilfield operations |
US20100161602A1 (en) * | 2008-12-22 | 2010-06-24 | International Business Machines Corporation | Grouping similar values for a specific attribute type of an entity to determine relevance and best values |
US20110167089A1 (en) | 2006-10-16 | 2011-07-07 | Schlumberger Technology Corporation | Method and apparatus for oilfield data repository |
US20120215777A1 (en) * | 2011-02-22 | 2012-08-23 | Malik Hassan H | Association significance |
US20120239797A1 (en) * | 2011-03-14 | 2012-09-20 | International Business Machines Corporation | Reconciling network management data |
US8364614B2 (en) * | 2008-01-08 | 2013-01-29 | General Electric Company | Method for building predictive models with incomplete data |
US20150278241A1 (en) * | 2014-03-28 | 2015-10-01 | DataTamer, Inc. | Method and system for large scale data curation |
US9280581B1 (en) * | 2013-03-12 | 2016-03-08 | Troux Technologies, Inc. | Method and system for determination of data completeness for analytic data calculations |
US20170038132A1 (en) | 2015-08-06 | 2017-02-09 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Methods and systems for integration of industrial site efficiency losses to produce lng and/or lin |
US20170075984A1 (en) * | 2015-09-14 | 2017-03-16 | International Business Machines Corporation | Identifying entity mappings across data assets |
CN106919719A (en) * | 2017-03-16 | 2017-07-04 | 南京邮电大学 | A kind of information completion method towards big data |
-
2018
- 2018-09-12 US US16/646,173 patent/US11619761B2/en active Active
- 2018-09-12 WO PCT/US2018/050734 patent/WO2019055553A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006103398A1 (en) * | 2005-03-29 | 2006-10-05 | British Telecommunications Public Limited Company | Schema matching |
US20110167089A1 (en) | 2006-10-16 | 2011-07-07 | Schlumberger Technology Corporation | Method and apparatus for oilfield data repository |
US20090020284A1 (en) * | 2007-07-20 | 2009-01-22 | Schlumberger Technology Corporation | Apparatus, method and system for stochastic workflow in oilfield operations |
US8364614B2 (en) * | 2008-01-08 | 2013-01-29 | General Electric Company | Method for building predictive models with incomplete data |
US20100161602A1 (en) * | 2008-12-22 | 2010-06-24 | International Business Machines Corporation | Grouping similar values for a specific attribute type of an entity to determine relevance and best values |
US20120215777A1 (en) * | 2011-02-22 | 2012-08-23 | Malik Hassan H | Association significance |
US20120239797A1 (en) * | 2011-03-14 | 2012-09-20 | International Business Machines Corporation | Reconciling network management data |
US9280581B1 (en) * | 2013-03-12 | 2016-03-08 | Troux Technologies, Inc. | Method and system for determination of data completeness for analytic data calculations |
US20150278241A1 (en) * | 2014-03-28 | 2015-10-01 | DataTamer, Inc. | Method and system for large scale data curation |
US20170038132A1 (en) | 2015-08-06 | 2017-02-09 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Methods and systems for integration of industrial site efficiency losses to produce lng and/or lin |
US20170075984A1 (en) * | 2015-09-14 | 2017-03-16 | International Business Machines Corporation | Identifying entity mappings across data assets |
CN106919719A (en) * | 2017-03-16 | 2017-07-04 | 南京邮电大学 | A kind of information completion method towards big data |
Non-Patent Citations (2)
Title |
---|
International Preliminary Report on Patentability for the counterpart International patent application PCT/US2018/050734 dated Mar. 26, 2020. |
International Search Report and Written Opinion for the counterpart International patent application PCT/US2018/050734 dated Jan. 18, 2019. |
Also Published As
Publication number | Publication date |
---|---|
WO2019055553A1 (en) | 2019-03-21 |
US20200278471A1 (en) | 2020-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11619761B2 (en) | Dynamic representation of exploration and/or production entity relationships | |
US10733034B2 (en) | Trace messaging for distributed execution of data processing pipelines | |
US20210049137A1 (en) | Building and managing data-processign attributes for modeled data sources | |
US9582556B2 (en) | Automatic generation of an extract, transform, load (ETL) job | |
US20170011012A1 (en) | Automatic verification of graphic rendition of json data | |
US11275485B2 (en) | Data processing pipeline engine | |
US11256659B1 (en) | Systems and methods for aggregating and displaying data from multiple data sources | |
US20210150631A1 (en) | Machine learning approach to automatically disambiguate ambiguous electronic transaction labels | |
CN110383321B (en) | System and method for creating different relationships between various entities using a chart database | |
US9300522B2 (en) | Information technology asset management | |
US20240176469A1 (en) | Advanced data discovery and visualization for energy data sources | |
US11275767B2 (en) | Analyzing application behavior to determine relationships between data | |
US12124480B2 (en) | Simplified schema generation for data ingestion | |
US20210365453A1 (en) | Data investigation and visualization system | |
US11403313B2 (en) | Dynamic visualization of application and infrastructure components with layers | |
US9338062B2 (en) | Information displaying method and apparatus | |
AU2018214042A1 (en) | Information displaying method and apparatus | |
US12254432B2 (en) | System and method for leveraging a completeness graph | |
US11474870B2 (en) | Transfer of embedded software data into PLM instance | |
US20220188344A1 (en) | Determining an ontology for graphs | |
US20250190893A1 (en) | Intelligent rule configuration in a collaboration system | |
WO2020069336A1 (en) | Secure data exchange | |
US10152556B1 (en) | Semantic modeling platform | |
US12235852B2 (en) | Metadata-based query rewriting | |
US20240121271A1 (en) | Network security policy management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIXON, TODD CHRISTOPHER;IONESCU, ANDREI;MORENO, JULIAN JOSE;SIGNING DATES FROM 20181023 TO 20181126;REEL/FRAME:052090/0807 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |