US11529212B2 - X-ray ID tag hydrogen getter - Google Patents

X-ray ID tag hydrogen getter Download PDF

Info

Publication number
US11529212B2
US11529212B2 US16/655,351 US201916655351A US11529212B2 US 11529212 B2 US11529212 B2 US 11529212B2 US 201916655351 A US201916655351 A US 201916655351A US 11529212 B2 US11529212 B2 US 11529212B2
Authority
US
United States
Prior art keywords
assembly
tag
core
adhesive tape
inside surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/655,351
Other versions
US20200121417A1 (en
Inventor
Joseph Prescott
Jean M. Bobgan
David P. Stieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiac Pacemakers Inc
Original Assignee
Cardiac Pacemakers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Pacemakers Inc filed Critical Cardiac Pacemakers Inc
Priority to US16/655,351 priority Critical patent/US11529212B2/en
Assigned to CARDIAC PACEMAKERS, INC. reassignment CARDIAC PACEMAKERS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STIEPER, DAVID P., BOBGAN, JEAN M., PRESCOTT, JOE
Publication of US20200121417A1 publication Critical patent/US20200121417A1/en
Application granted granted Critical
Publication of US11529212B2 publication Critical patent/US11529212B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0808Indication means for indicating correct assembly of components, e.g. of the surgical apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37512Pacemakers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3758Packaging of the components within the casing

Definitions

  • Embodiments of the present disclosure relate to medical devices and systems for sensing physiological parameters and delivering therapy. More specifically, embodiments of the disclosure relate to x-ray identification (ID) tags and hydrogen getters in implantable medical devices (IMDs).
  • ID x-ray identification
  • IMDs implantable medical devices
  • IMDs may be configured to sense physiological parameters and/or provide therapy and may include one or more electrodes for performing aspects of these functions.
  • the IMDs are built to be as space-efficient as possible to minimize the size of the IMD for patient comfort and inherent complications that arise from larger implantable devices.
  • the IMDs may include an x-ray ID tag to meet identification requirements and, in some, a hydrogen getter to absorb or acquire hydrogen generated inside the IMD. Construction of an IMD often involves challenges regarding the inclusion of an x-ray ID tag and a hydrogen getter in the IMD while meeting IMD size constraints.
  • Embodiments of the disclosure include a tag/getter assembly that includes an x-ray ID tag and a hydrogen getter joined together into one assembly to optimize space and assist in manufacturing.
  • Some embodiments of the disclosure include an IMD that includes at tag/getter assembly that includes an x-ray ID tag and a hydrogen getter joined together into one assembly to optimize space and assist in manufacturing of the IMD.
  • a medical device comprises: a hybrid circuitry assembly, a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly, and a tag/getter assembly configured to be situated adjacent the inside surface of the core assembly housing.
  • the tag/getter assembly comprising an identification tag and a hydrogen getter.
  • Example 2 the medical device of Example 1, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
  • Example 3 the medical device of Example 1, wherein the tag/getter assembly includes an adhesive tape that is adhesively attached to the inside surface of the core assembly housing and wherein the identification tag is situated between the adhesive tape and the inside surface of the core assembly housing.
  • Example 4 the medical device of any of Examples 1-3, wherein the hydrogen getter is situated on double-sided adhesive tape that is situated on single-sided adhesive tape that is adhesively attached to the inside surface of the core assembly housing, and wherein the identification tag is situated between the single-sided adhesive tape and the inside surface of the core assembly housing.
  • the medical device of Example 4 wherein the tag/getter assembly, prior to being attached to the inside surface of the core assembly housing, includes a liner attached to the adhesive tape.
  • the medical device of any of Examples 1-5 further comprising a core circuitry support structure configured to support at least a portion of the hybrid circuitry assembly, wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, and an outer surface of the frame is shaped to correspond to the inside surface of the core assembly housing.
  • Example 7 the medical device of any of Examples 1-6, wherein the identification tag comprises an alignment feature configured to facilitate alignment of the identification tag during manufacturing.
  • Example 8 the medical device of Example 7, wherein the alignment feature comprises a notch defined in one corner of the identification tag.
  • Example 9 the medical device of any of Examples 1-8, wherein the inside surface of the core assembly housing includes alignment marks configured to facilitate alignment of the tag/getter assembly with reference to the core assembly housing.
  • a tag/getter assembly configured to be disposed adjacent a core assembly housing of an implantable medical device, the tag/getter assembly comprising an identification tag, adhesive tape situated over the identification tag, an adhesive situated on the adhesive tape, and a hydrogen getter attached to the adhesive tape by the adhesive.
  • Example 11 the tag/getter assembly of Example 10, comprising a liner attached to the adhesive tape such that the identification tag is situated between the liner and the adhesive tape.
  • the tag/getter assembly of either of Examples 10 or 11, comprising an alignment feature configured to facilitate alignment of the tag/getter assembly with respect to the core assembly housing during manufacturing.
  • Example 13 the tag/getter assembly of Example 12, wherein the alignment feature comprises a notch in one corner of the tag/getter assembly.
  • Example 14 the tag/getter assembly of any of Examples 10-13, wherein the adhesive tape is single sided adhesive tape.
  • Example 15 the tag/getter assembly of any of Examples 10-14, wherein the adhesive is double sided adhesive tape.
  • a medical device comprising: a hybrid circuitry assembly, a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly, and a tag/getter assembly configured to be situated adjacent the inside surface of the core assembly housing.
  • the tag/getter assembly comprising an identification tag and a hydrogen getter.
  • Example 17 the medical device of Example 16, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
  • the medical device of Example 16 wherein the tag/getter assembly includes an adhesive tape that is attached to the inside surface of the core assembly housing and an identification tag that is situated between the adhesive tape and the inside surface of the core assembly housing.
  • Example 19 the medical device of Example 16, wherein the hydrogen getter is situated on double-sided adhesive tape that is situated on single-sided adhesive tape that is adhesively attached to the inside surface of the core assembly housing, and wherein the identification tag is situated between the single-sided adhesive tape and the inside surface of the core assembly housing.
  • Example 20 the medical device of Example 19, wherein the tag/getter assembly includes a liner attached to the adhesive tape prior to attaching the adhesive tape to the inside surface of the core assembly housing.
  • the medical device of Example 16 further comprising a core circuitry support structure configured to support at least a portion of the hybrid circuitry assembly, wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, an outer surface of the frame shaped to correspond to the inside surface of the core assembly housing.
  • the medical device of Example 16 wherein the identification tag comprises an alignment feature configured to facilitate alignment of the identification tag during manufacturing.
  • Example 23 the medical device of Example 22, wherein the alignment feature comprises a notch defined in one corner of the identification tag.
  • the medical device of Example 16 wherein the inside surface of the core assembly housing includes alignment marks and the tag/getter assembly includes an adhesive tape that is aligned on the inside surface of the core assembly housing with the alignment marks.
  • a medical device comprising a core circuitry assembly including a hybrid circuitry assembly and a core circuitry support structure configured to support the hybrid circuitry assembly.
  • the medical device further comprising a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly and the core circuitry support structure, and a tag/getter assembly configured to be situated between the core circuitry support structure and the inside surface of the core assembly housing.
  • Example 26 the medical device of Example 25, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
  • Example 27 the medical device of Example 25, wherein the inside surface of the core assembly housing includes alignment marks and the tag/getter assembly includes an adhesive tape that is aligned on the inside surface of the core assembly housing with the alignment marks.
  • the medical device of Example 27 comprising an identification tag that is situated between the adhesive tape and the inside surface of the core assembly housing, the adhesive tape providing electrical isolation between the identification tag and the hybrid circuitry assembly.
  • the tag/getter assembly includes a hydrogen getter situated on adhesive that is situated on adhesive tape attached to the inside surface of the core assembly housing and an identification tag situated between the adhesive tape and the inside surface of the core assembly housing.
  • the medical device of Example 25 wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, and an outer surface of the frame is shaped to correspond to the inside surface of the core assembly housing.
  • Example 31 the medical device of Example 25, wherein the identification tag comprises a material configured to be detected in an x-ray image.
  • an identification tag and hydrogen getter assembly comprising an identification tag, adhesive tape situated over the identification tag, an adhesive situated on the adhesive tape, and a hydrogen getter attached to the adhesive tape by the adhesive.
  • Example 33 the identification tag and hydrogen getter assembly of Example 32, comprising a liner attached to the adhesive tape such that the identification tag is situated between the liner and the adhesive tape.
  • Example 34 the identification tag and hydrogen getter assembly of Example 32, wherein the adhesive tape has adhesive on one side and the identification tag is attached by the adhesive to the one side of the adhesive tape.
  • Example 35 the identification tag and hydrogen getter assembly of Example 32, wherein the identification tag is keyed so direction can be determined during manufacturing.
  • FIG. 1 is a schematic illustration depicting a patient monitoring system, in accordance with embodiments of the disclosure.
  • FIG. 2 A is a perspective view of an implantable medical device (IMD), in accordance with embodiments of the disclosure.
  • FIGS. 2 B and 2 C are partially-exploded perspective views of the IMD depicted in FIG. 2 A , in accordance with embodiments of the disclosure.
  • FIG. 2 D is a side view of the IMD depicted in FIGS. 2 A- 2 C , with the core assembly housing removed, in accordance with embodiments of the disclosure.
  • FIG. 2 E is a side view of the IMD depicted in FIGS. 2 A- 2 D , with the core assembly housing shown as transparent, in accordance with embodiments of the disclosure.
  • FIG. 3 A is a perspective view of a core circuitry support structure, in accordance with embodiments of the disclosure.
  • FIG. 3 B is another perspective view of the core circuitry support structure depicted in FIG. 3 A , in accordance with embodiments of the disclosure.
  • FIG. 4 A is a close-up top view of the IMD depicted in FIGS. 2 A- 2 E , with the core assembly housing removed, in accordance with embodiments of the disclosure.
  • FIG. 4 B is a close-up perspective view of the IMD depicted in FIGS. 2 A- 2 E , with the core assembly housing removed, in accordance with embodiments of the disclosure.
  • FIG. 4 C is a side view of the IMD depicted in FIGS. 2 A- 2 E , with the core assembly housing removed, in accordance with embodiments of the disclosure.
  • FIG. 4 D is a side view of the IMD depicted in FIGS. 2 A- 2 E , with the core assembly housing removed and the core circuitry support structure shown as transparent, in accordance with embodiments of the disclosure.
  • FIG. 5 A is a perspective view of a tag/getter assembly adjacent the inside surface of the side wall of the second portion of the core assembly housing, in accordance with embodiments of the disclosure.
  • FIG. 5 B is a top view of the tag/getter assembly adjacent the inside surface of the side wall of the second portion of the core assembly housing of FIG. 5 A , in accordance with embodiments of the disclosure.
  • FIG. 6 A is a perspective view of the tag/getter assembly, in accordance with embodiments of the disclosure.
  • FIG. 6 B is a top view of the tag/getter assembly of FIG. 6 A , in accordance with embodiments of the disclosure.
  • FIG. 6 C is an exploded view of the tag/getter assembly of FIGS. 6 A and 6 B , in accordance with embodiments of the disclosure.
  • FIG. 6 D is a cross-sectional view of the tag/getter assembly of FIGS. 6 A- 6 C , in accordance with embodiments of the disclosure.
  • FIG. 7 is a flowchart depicting an illustrative method of assembling an IMD, in accordance with embodiments of the disclosure.
  • FIG. 1 is a schematic illustration of a system 100 including an IMD 102 implanted within a patient's body 104 and configured to communicate with a receiving device 106 .
  • the IMD 102 includes a tag/getter assembly that includes an x-ray ID tag and a hydrogen getter as described herein.
  • the IMD 102 includes a tag/getter assembly that includes an x-ray ID tag and a hydrogen getter joined together into one assembly to optimize space and assist in manufacturing.
  • the IMD 102 may be implanted subcutaneously within an implantation location or pocket in the patient's chest or abdomen and may be configured to monitor (e.g., sense and/or record) physiological parameters associated with the patient's heart 108 .
  • the IMD 102 may be an implantable cardiac monitor (ICM) (e.g., an implantable diagnostic monitor (IDM), an implantable loop recorder (ILR), etc.) configured to record physiological parameters such as, for example, one or more cardiac activation signals, heart sounds, blood pressure measurements, oxygen saturations, and/or the like.
  • ICM implantable cardiac monitor
  • IMD implantable diagnostic monitor
  • ILR implantable loop recorder
  • the IMD 102 may be configured to monitor physiological parameters that may include one or more signals indicative of a patient's physical activity level and/or metabolic level, such as an acceleration signal.
  • the IMD 102 may be configured to monitor physiological parameters associated with one or more other organs, systems, and/or the like.
  • the IMD 102 may be configured to sense and/or record at regular intervals, continuously, and/or in response to a detected event.
  • a detected event may be detected by one or more sensors of the IMD 102 , another IMD (not shown), an external device (e.g., the receiving device 106 ), and/or the like.
  • the IMD 102 may be configured to detect a variety of physiological signals that may be used in connection with various diagnostic, therapeutic, and/or monitoring implementations.
  • the IMD 102 may include sensors or circuitry for detecting respiratory system signals, cardiac system signals, and/or signals related to patient activity.
  • the IMD 102 may be configured to sense intrathoracic impedance, from which various respiratory parameters may be derived, including, for example, respiratory tidal volume and minute ventilation.
  • Sensors and associated circuitry may be incorporated in connection with the IMD 102 for detecting one or more body movement or body posture and/or position related signals.
  • accelerometers and/or GPS devices may be employed to detect patient activity, patient location, body orientation, and/or torso position.
  • the IMD 102 may include any type of IMD, any number of different components of an implantable system, and/or the like having a housing and being configured to be implanted in a patient's body 104 .
  • the IMD 102 may include a control device, a monitoring device, a pacemaker, an implantable cardioverter defibrillator (ICD), a cardiac resynchronization therapy (CRT) device and/or the like, and may be an implantable medical device known in the art or later developed, for providing therapy and/or diagnostic data about the patient's body and/or the IMD 102 .
  • the IMD 102 may include both defibrillation and pacing/CRT capabilities (e.g., a CRT-D device).
  • the IMD 102 may include a housing 110 having two electrodes 112 and 114 coupled thereto.
  • the IMD 102 may include any number of electrodes (and/or other types of sensors such as, e.g., thermometers, barometers, pressure sensors, optical sensors, motion sensors, and/or the like) in any number of various types of configurations, and the housing 110 may include any number of different shapes, sizes, and/or features.
  • the IMD 102 may be configured to sense physiological parameters and record the physiological parameters.
  • the IMD 102 may be configured to activate (e.g., periodically, continuously, upon detection of an event, and/or the like), record a specified amount of data (e.g., physiological parameters) in a memory, and communicate that recorded data to a receiving device 106 .
  • the IMD 102 may activate, record cardiac signals for a certain period of time, deactivate, and activate to communicate the recorded signals to the receiving device 106 .
  • the receiving device 106 may be, for example, a programmer, controller, patient monitoring system, and/or the like. Although illustrated in FIG. 1 as an external device, the receiving device 106 may include an implantable device configured to communicate with the IMD 102 that may, for example, be a control device, another monitoring device, a pacemaker, an implantable defibrillator, a cardiac resynchronization therapy (CRT) device, and/or the like, and may be an implantable medical device known in the art or later developed, for providing therapy and/or diagnostic data about the patient and/or the IMD 102 .
  • an implantable device configured to communicate with the IMD 102 that may, for example, be a control device, another monitoring device, a pacemaker, an implantable defibrillator, a cardiac resynchronization therapy (CRT) device, and/or the like, and may be an implantable medical device known in the art or later developed, for providing therapy and/or diagnostic data about the patient and/or the IMD 102 .
  • CRT
  • the IMD 102 may be a pacemaker, an implantable cardioverter defibrillator (ICD) device, or a cardiac resynchronization therapy (CRT) device.
  • the IMD 102 may include both defibrillation and pacing/CRT capabilities (e.g., a CRT-D device).
  • the system 100 may be used to implement coordinated patient measuring and/or monitoring, diagnosis, and/or therapy in accordance with embodiments of the disclosure.
  • the system 100 may include, for example, one or more patient-internal medical devices, such as an IMD 102 , and one or more patient-external medical devices, such as receiving device 106 .
  • the receiving device 106 may be configured to perform monitoring, and/or diagnosis and/or therapy functions external to the patient (i.e., not invasively implanted within the patient's body).
  • the receiving device 106 may be positioned on the patient, near the patient, or in any location external to the patient.
  • the IMD 102 and the receiving device 106 may communicate through a wireless link.
  • the IMD 102 and the receiving device 106 may be coupled through a short-range radio link, such as Bluetooth, IEEE 802.11, and/or a proprietary wireless protocol.
  • the communications link may facilitate uni-directional and/or bi-directional communication between the IMD 102 and the receiving device 106 .
  • Data and/or control signals may be transmitted between the IMD 102 and the receiving device 106 to coordinate the functions of the IMD 102 and/or the receiving device 106 .
  • patient data may be downloaded from one or more of the IMD 102 and the receiving device 106 periodically or on command. The physician and/or the patient may communicate with the IMD 102 and the receiving device 106 , for example, to acquire patient data or to initiate, terminate, or modify recording and/or therapy.
  • the illustrative system 100 shown in FIG. 1 is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the subject matter disclosed throughout this disclosure. Neither should the illustrative system 100 be interpreted as having any dependency or requirement related to any single component or combination of components illustrated in FIG. 1 .
  • the illustrative system 100 may include additional components.
  • any one or more of the components depicted in FIG. 1 can be, in embodiments, integrated with various ones of the other components depicted therein (and/or components not illustrated). Any number of other components or combinations of components can be integrated with the illustrative system 100 depicted in FIG. 1 , all of which are considered to be within the ambit of this disclosure.
  • FIG. 2 A is a perspective view of an implantable medical device (IMD) 200 , in accordance with embodiments of the disclosure.
  • the IMD 200 may be, or may be similar to, the IMD 102 depicted in FIG. 1 .
  • the IMD 200 may include a header 202 arranged at or near a first end 220 of a core assembly 204 .
  • a battery assembly 206 (which may include one or more batteries) is arranged near a second end 224 of the core assembly 204 .
  • the header 202 includes a housing 202 A that encloses an interior region 202 B.
  • the header 202 may house various circuitry components within its interior.
  • the housing 202 A may contact a patient's bodily tissue when the IMD 200 is subcutaneously implanted in an implantation location or pocket in the patient's chest or abdomen.
  • the interior region 202 B of the header 202 may house circuit components (e.g., an electrode 208 and an antenna 210 ) positioned and supported by a scaffold assembly 212 .
  • the IMD 200 may include, in addition to the electrode 208 , an electrode 214 disposed at an end of the battery assembly 206 .
  • the electrode 214 may be integrated with the battery assembly 206 , a housing of the battery assembly 206 , and/or the like.
  • the electrode 208 may be positioned to be flush with an interior surface of the housing 202 A of the header 202 . In other instances, the electrode 208 may be positioned by the scaffold assembly 212 to form a portion of an exterior surface of the housing 202 A of the header 202 .
  • the core assembly 204 includes a core circuitry assembly 216 enclosed within a core assembly housing 218 .
  • the core assembly housing 218 is coupled, at the first end 220 , to a first feed-through assembly 222 , and coupled, at the second end 224 , to a second feed-through assembly 226 .
  • the feed-through assembly 222 may be configured to provide a throughput for connections configured to connect the circuitry components of the header 202 (e.g., the electrode 208 and the antenna 210 ) to the core circuitry assembly 216 .
  • the feed-through assembly 226 may be configured to provide a throughput for connections configured to connect one or more batteries (e.g., which are a part of the battery assembly 206 ) and/or the electrode 214 to the core circuitry assembly 216 .
  • the core assembly housing 204 includes a first portion 228 configured to be coupled to a second portion 230 along a weld seam 232 .
  • the first portion 228 and second portion 230 may be coupled together by laser welding, seam welding, and/or the like.
  • a separate weld ring does not need to be used, as a feature of at least one of the first and second portions 228 and 230 acts as a weld ring, protecting the core circuitry assembly 216 from the welding energy (e.g., heat, laser, etc.).
  • the first portion 228 may include one or more weld joint features configured to be positioned adjacent to one or more corresponding weld joint features on the second portion 230 in preparation for welding.
  • the first portion 228 and the second portion 230 may include a continuous, curved wall (such as, for example, in an implementation of a pacemaker or other implantable pulse generator), a curved wall and a straight wall, a number of curved walls, a number of straight walls, and/or any number of different combinations of these.
  • Each wall of the first portion 228 that is configured to be coupled to a corresponding wall of the second portion 230 may include at least one weld joint feature configured to be positioned adjacent to at least one corresponding feature on the second portion 230 , and, in embodiments, vice-versa.
  • Each weld joint feature includes a thinned leading edge (the edge that is configured to be coupled to the corresponding edge of the other portion of the housing) of a wall. That is, the edge of the wall is thinner than other sections of the wall. In this manner, an edge of one of the two portions can pass over the corresponding edge of the other portion when the two portions are positioned around the core circuitry assembly in preparation for welding. In this manner, the volume enclosed within the housing may be maximized, and the lower edge (i.e., the edge closer to the core circuitry assembly) acts as a weld ring, protecting the core circuitry assembly from the applied energy (e.g., heat, laser, etc.) during a welding procedure.
  • the weld joint feature may include a coined edge of a wall, a flange, and/or the like.
  • the first portion 228 of the core assembly housing 218 includes a side wall 234 , a lower wall 236 , and an upper wall 238 .
  • the lower wall 236 and the upper wall 238 each extend, perpendicularly (or at least approximately perpendicularly) in a direction away from an inside surface 234 A of the side wall 234 .
  • the lower wall 236 is coupled to the side wall 234 by a curved corner portion 240
  • the upper wall 238 is coupled to the side wall 234 by a curved corner portion 242 .
  • the curved corner portions 240 and 242 may be integrated with the lower and upper walls 236 and 238 , respectively, the side wall 234 , and/or the like. That is, for example, the first portion 228 may be a single piece of metal, formed in a press or a mold. In embodiments, the curved corner portions 240 and 242 may be separate components. The curved corner portions 240 and 242 each may be designed to have any desirable radius of curvature. For example, the curved corner portions 240 and 242 each may be configured to have a radius of curvature that provides a desired amount of volume enclosed within the core assembly housing 218 .
  • the lower wall 236 includes a flange 244 that is recessed with respect to an inside surface 246 of the lower wall 236 , and that extends from a first end 248 of the first portion 228 to a second end 250 thereof.
  • the flange 244 may be a thinned portion of the lower wall 236 .
  • the flange 244 may be welded to the lower wall 236 .
  • the upper wall 238 includes a flange 252 that is recessed with respect to an inside surface 254 of the upper wall 238 , and that extends from the first end 248 of the first portion 228 to the second end 250 thereof.
  • the flange 252 may be a thinned portion of the upper wall 238 .
  • the flange 252 may be welded to the upper wall 238 .
  • the second portion 230 of the core assembly housing 218 includes a side wall 256 , a lower wall 258 , and an upper wall 260 .
  • the lower wall 258 and the upper wall 260 each extend, perpendicularly (or at least approximately perpendicularly) in a direction away from an inside surface 256 A of the side wall 256 .
  • the lower wall 258 is coupled to the side wall 256 by a curved corner portion 262
  • the upper wall 260 is coupled to the side wall 256 by a curved corner portion 264 .
  • the curved corner portions 262 and 264 may be integrated with the lower and upper walls 258 and 260 , respectively, the side wall 256 , and/or the like. That is, for example, the second portion 230 may be a single piece of metal, formed in a press or a mold. In embodiments, the curved corner portions 262 and 264 may be separate components. The curved corner portions 262 and 264 each may be designed to have any desirable radius of curvature such as, for example, a radius of curvature that is identical or similar to the radius of curvature of each of the curved corner portions 240 and 242 . For example, the curved corner portions 262 and 264 each may be configured to have a radius of curvature that provides a desired amount of volume enclosed within the core assembly housing 218 .
  • the lower wall 258 includes a flange 266 that is recessed with respect to an outside surface 268 of the lower wall 258 , and that extends from a first end 270 of the second portion 230 to a second end 272 thereof.
  • the flange 266 may be a thinned portion of the lower wall 258 .
  • the flange 266 may be welded to the lower wall 258 .
  • the upper wall 260 includes a flange 274 that is recessed with respect to an outside surface 276 of the upper wall 260 , and that extends from the first end 270 of the second portion 230 to the second end 272 thereof.
  • the flange 274 may be a thinned portion of the upper wall 260 .
  • the flange 274 may be welded to the upper wall 260 .
  • the core assembly housing 218 may also include notches 278 defined in the first and second ends 248 and 250 , respectively, of the first portion 228 , and extending from the inside surface 234 A to the outside surface 234 B of the side wall 234 .
  • the core assembly housing 218 may also include notches 280 defined in the first and second ends 270 and 272 , respectively, of the second portion 230 , and extending from the inside surface 256 A to the outside surface 256 B of the side wall 256 .
  • the core circuitry assembly 216 includes a core circuitry support structure 282 disposed within the core assembly housing 218 .
  • a hybrid circuit assembly 284 which includes the core circuitry such as, for example, a printed circuit board (PCB) and other circuitry components, is coupled, on a first side (not shown in FIGS. 2 B- 2 E ) of the hybrid circuit assembly 284 to the core circuitry support structure 282 .
  • a cover 286 is disposed over a second side 288 of the hybrid circuit assembly 284 .
  • the cover 286 may be configured according to any number of different shapes, including, for example, a shape that corresponds to the shape of the inside surfaces 234 A, 246 , and 254 of the first portion 234 of the core assembly housing 218 .
  • the cover 286 may include notches 380 corresponding to, and allowing room for, retaining clips 366 disposed on the core circuitry support structure 282 .
  • the cover 286 may include any number of other features configured to correspond to any number of other features of the core circuitry support structure 282 , the core assembly housing 218 , and/or other component of the IMD 200 .
  • the core circuitry assembly 216 may be configured to enhance the available space within the core assembly.
  • the core circuitry support structure 282 may include an outside surface 290 A and the cover 286 may include an outside surface 290 B.
  • the outside surfaces 290 A and 290 B may be configured to align in at least approximately a same plane (or set of planes or curved surfaces) as a first interface surface 292 defined on the first feed-through assembly 222 and a second interface surface 294 defined on the second feed-through assembly 226 .
  • the first and second interface surfaces 292 and 294 may extend around a perimeter of each of the first and second feed-through assemblies 222 and 226 , respectively, and may extend at least approximately orthogonally away from third and fourth interface surfaces 296 and 298 , respectively, which also may extend around a perimeter of each of the first and second feed-through assemblies 222 and 226 , respectively.
  • first and second portions 228 and 230 of the core assembly housing 218 are brought together such that the inside surface 246 of the lower wall 236 of the first portion 228 , the inside surface 234 A of the side wall 234 of the first portion 228 , and the inside surface 254 of the upper wall 238 of the first portion 228 interface with (e.g., are disposed in contact with) corresponding sections of the first and second interface surfaces 292 and 294 ; and a first edge surface 300 and a second edge surface 302 of the first portion 228 interface with the first and second interface surfaces 296 and 298 , respectively.
  • an inside surface 304 of the lower wall 258 of the second portion 230 , the inside surface 256 A of the side wall 256 of the second portion 230 , and an inside surface 306 of the upper wall 260 of the second portion 230 interface with (e.g., are disposed in contact with) corresponding sections of the first and second interface surfaces 292 and 294 ; and a first edge surface 308 and a second edge surface 310 of the second portion 230 interface with the first and second interface surfaces 296 and 298 , respectively.
  • the inside surface of the core assembly housing 218 may interface with the outside surface 290 A of the core circuitry support structure 282 .
  • the inside surface of the core assembly housing 218 may interface with the outside surface 290 B of the cover 286 .
  • the inside surfaces of the core assembly housing 218 may not actually contact the outside surfaces 290 A and 290 B of the core circuitry support structure 282 and cover 286 , respectively, but may be configured to reduce a gap between the surfaces.
  • the outside surfaces 290 A and 290 B of the core circuitry support structure 282 and cover 286 may be designed to have shapes that correspond to the shapes of the inside surfaces of the core assembly housing 218 .
  • a tag/getter assembly 400 is attached to the inside surface 256 A of the side wall 256 of the second portion 230 .
  • the tag/getter assembly 400 is situated between the inside surface 256 A of the side wall 256 and the outside surface 290 A of the core circuitry support structure 282 .
  • the tag/getter assembly 400 is attached to the inside surface 234 A of the side wall 234 of the first portion 228 .
  • the tag/getter assembly 400 is situated between the inside surface 234 A of the side wall 234 and the outside surface 290 B of the cover 286 .
  • the tag/getter assembly 400 includes an x-ray ID tag and a hydrogen getter joined together.
  • the core circuitry support structure 282 and/or the cover 286 may be configured such that an air gap is formed adjacent to the weld seam 232 .
  • the air gap may be provided by designing the core circuitry support structure 282 and/or the cover 286 to have a certain perimeter.
  • the air gap may be provided be designing a channel or thinned portion into the core circuitry support structure 282 and/or the cover 286 .
  • the air gap may be less than 0.1 inches wide (as measured between an outside surface of the core circuitry support structure 282 or the cover 286 and an inside surface of the core assembly housing 218 . In embodiments, the air gap may be approximately 0.010 inches wide, or any other desired width.
  • the air gap may facilitate preventing overheating of the core circuitry support structure 282 and/or the cover 286 during welding of the core circuitry assembly 218 together by reducing contact with the core assembly housing 218 and by providing an insulation of air between the core circuitry support structure 282 and/or the cover 286 and the core assembly housing 218 .
  • aspects of the core circuitry support structure 282 may be designed to facilitate providing gaps of any desired width between the outside surface 290 A thereof and any number of different inside surfaces of the core assembly housing 218 .
  • the illustrative IMD 200 shown in FIGS. 2 A- 2 E is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the subject matter disclosed throughout this disclosure. Neither should the illustrative IMD 200 be interpreted as having any dependency or requirement related to any single component, feature, or combination of components or features illustrated in FIGS. 2 A- 2 E .
  • the illustrative IMD 200 may include different and/or additional components and/or features. Any number of other components, features, or combinations of components or features can be integrated with the illustrative IMD 200 depicted in FIGS. 2 A- 2 E , all of which are considered to be within the ambit of this disclosure. Additionally, any one or more of the components and/or features depicted in FIGS. 2 A- 2 E can be, in embodiments, integrated with various ones of the other components and/or features depicted therein (and/or components and/or features not illustrated).
  • FIGS. 3 A and 3 B depict various views of the core circuitry support structure 282 , in accordance with embodiments of the disclosure.
  • FIGS. 4 A- 4 D depict various views of the core circuit assembly 216 , and may be referred to below to further clarify the description.
  • the core circuitry support structure 282 includes a first end 312 configured to be disposed adjacent the first feed-through assembly 222 , and a second end 314 configured to be disposed adjacent the second feed-through assembly 226 .
  • the core circuitry support structure 282 includes a frame 316 having a first end wall 318 disposed at or near the first end 312 of the core circuitry support structure 282 , a second end wall 320 disposed at or near the second end 314 of the core circuitry support structure 282 , and two parallel, opposed side walls 322 and 324 extending between the first and second end walls 318 and 320 .
  • a panel 326 oriented at least approximately perpendicular to the walls 318 , 320 , 322 , and 324 , extends between the first and second end walls 318 and 320 , and is coupled to the side walls 322 and 324 via curved corner walls 328 and 330 , respectively.
  • the curved corner walls 328 and 330 each may be designed to have any desirable radius of curvature such as, for example, a radius of curvature that is identical or similar to (or otherwise designed to complement/correspond to) the radius of curvature of each of the curved corner portions 262 and 264 , respectively, of the second portion 230 of the core housing assembly 218 .
  • the hybrid circuit assembly 284 may include a PCB 334 , a first set 336 of additional circuitry components disposed on a first surface 338 of the PCB 334 , and a second set 340 of additional circuitry components disposed on a second, opposite, surface 342 of the PCB 334 .
  • the first and second surface 338 and 342 may be at least approximately parallel.
  • the cavity 332 may include one or more raised floor sections 344 that correspond to another set 346 of circuitry components having a lower profile with respect to the first surface 338 of the PCB 334 .
  • the cavity may have a flat floor defined by the panel 326 .
  • a raised block 348 having a window notch 350 defined therein may be disposed in the cavity 332 near the second end 314 of the core circuitry support structure 282 , corresponding to a portion of the first surface 338 of the PCB 334 having no additional circuitry components (or additional circuitry components having a lower profile with respect to the first surface 338 ).
  • the window notch 350 may be aligned with a window 352 defined in the panel 326 .
  • the window 352 may be configured to expose a communication component 354 of the hybrid circuit assembly 284 .
  • the communication component 354 may include an antenna, an inductive coil (e.g., for receiving wireless energy to recharge one or more batteries), and/or the like.
  • the core circuitry support structure 282 includes a number of alignment features 356 configured to engage, abut, and/or otherwise interface with, corresponding alignment notches 358 defined in the PCB 334 .
  • Each alignment feature 356 may include a cap 360 disposed at an end of a post 362 that extends away from a shelf 364 .
  • the shelf 364 extends along the periphery of core circuitry support structure 282 and is defined in the end walls 318 and 320 and the side walls 322 and 234 .
  • the PCB 334 is configured to be received into the cavity 332 such that a peripheral edge of the first side 338 of the PCB 334 engages the shelf 364 .
  • the alignment features 356 are configured to be received in the corresponding alignment notches 358 , thereby facilitating efficient and accurate alignment of the hybrid circuit assembly 284 within the core circuitry support structure 282 in a manufacturing setting.
  • the hybrid circuit assembly 284 may be configured to fit together with the core circuitry support structure 282 in one orientation, to facilitate ease of manufacture.
  • the core circuitry support structure 282 may include three alignment features 356 .
  • the core circuitry support structure 282 may include one or two alignment features 356 .
  • the core circuitry support structure 282 may include more than three alignment features.
  • at least one of the alignment features 356 may be of a different size and/or shape than at least one other alignment feature 356 .
  • the cap 360 may, in embodiments, include a lip configured to engage a peripheral edge of the second surface 342 of the PCB 334 to facilitate holding the PCB 334 in place. In other embodiments, the cap 360 may be configured to function as a stop.
  • the top of the cap 360 may, in embodiments, be at least approximately flush with the second surface 342 of the PCB 334 .
  • the core circuitry support structure 282 also may include one or more retaining clips 366 configured to engage a peripheral edge of the second surface 342 of the PCB 334 to facilitate holding the PCB 334 in place.
  • the core circuitry support structure 282 includes a first spacer 368 extending from the first end wall 318 and configured to maintain a space between the first end wall 318 and the first feed-through assembly 222 ; and a second spacer 370 extending from the second end wall 320 and configured to maintain a space between the second end wall 320 and the second feed-through assembly 226 .
  • Notches 372 defined in the second end wall 320 may provide room for feed-through circuitry and/or other components such as, for example, battery terminals 373 .
  • a recess 374 may be defined in the panel 326 and configured to receive the tag/getter assembly 400 .
  • side wall As used herein, the terms “side wall,” “lower wall,” “upper wall,” “upward,” and “downward” are used to refer to the specific features to which they refer, but are characterized in the context of the illustrations for clarity and to describe relative orientations of features with respect to other features, and are not intended to imply any particular orientation of the IMD 200 , or absolute (or preferred) orientations of features thereof. That is, for example, even if the IMD 200 were to be rotated around a longitudinal axis such that the outer surface 234 B of the side wall 234 was parallel to a horizontal plane, the side wall 234 would still be referred to, for the purposes of this disclosure, as a “side wall.”
  • core circuitry support structures may be designed according to any number of other configurations.
  • FIG. 5 A is a perspective view of a tag/getter assembly 400 adjacent the inside surface 256 A of the side wall 256 of the second portion 230 of the core assembly housing 218 , in accordance with embodiments of the disclosure.
  • FIG. 5 B is a top view of the tag/getter assembly 400 adjacent the inside surface 256 A of the side wall 256 of the second portion 230 of the core assembly housing 218 of FIG. 5 A , in accordance with embodiments of the disclosure.
  • the tag/getter assembly 400 includes an x-ray ID tag 402 and a hydrogen getter 404 .
  • the tag/getter assembly 400 is adhesively attached to the inside surface 256 A of the core assembly housing 218 .
  • the tag/getter assembly 400 is adjacent or attached to the inside surface 234 A of the side wall 234 of the first portion 228 .
  • the second portion 230 of the core assembly housing 218 includes the side wall 256 , the lower wall 258 , and the upper wall 260 .
  • the lower wall 258 is coupled to the side wall 256 by a curved corner portion 262
  • the upper wall 260 is coupled to the side wall 256 by a curved corner portion 264 .
  • the lower wall 258 includes a flange 266 that is recessed with respect to an outside surface 268 of the lower wall 258 , and that extends from a first end 270 of the second portion 230 to a second end 272 thereof.
  • the upper wall 260 includes a flange 274 that is recessed with respect to an outside surface 276 of the upper wall 260 , and that extends from the first end 270 of the second portion 230 to the second end 272 thereof.
  • the inside surface 256 A of the side wall 256 includes alignment marks 406 and the tag/getter assembly 400 includes an adhesive tape 408 that is aligned on the inside surface 256 A of the core assembly housing 218 with the alignment marks 406 .
  • the alignment marks 406 are black or gray corner marks set into or onto the inside surface 256 A of the core assembly housing 218 .
  • the alignment marks 406 are indentations built into the inside surface 256 A of the core assembly housing 218 .
  • the alignment marks 406 are raised or indented embossed marks set into the inside surface 256 A of the core assembly housing 218 .
  • the alignment marks 406 are carved, molded, or stamped into the inside surface 256 A of the core assembly housing 218 .
  • the tag/getter assembly 400 includes the x-ray ID tag 402 , the hydrogen getter 404 , and the adhesive tape 408 aligned to the alignment marks 406 on the inside surface 256 A of the core assembly housing 218 .
  • the adhesive tape 408 is situated over the x-ray ID tag 402 and attached to the inside surface 256 A of the core assembly housing 218 .
  • the x-ray ID tag 402 is situated between the adhesive tape 408 and the inside surface 256 A of the core assembly housing 218 .
  • the adhesive tape 408 is a single sided adhesive tape having its adhesive side attached to the inside surface 256 A of the core assembly housing 218 over the x-ray ID tag 402 .
  • the x-ray ID tag 402 is attached to the adhesive side of the adhesive tape 408 .
  • the adhesive tape 408 provides electrical isolation between the x-ray ID tag 402 and the hybrid circuitry or circuit assembly 284 .
  • the adhesive tape 408 is transparent. In other embodiments, the adhesive tape 408 is translucent or opaque.
  • the tag/getter assembly 400 further includes an adhesive 410 situated on the adhesive tape 408 , and the hydrogen getter 404 attached to the adhesive tape 408 by the adhesive 410 .
  • the adhesive 410 is double sided adhesive tape attached on one side to the adhesive tape 408 and on the other side to the hydrogen getter 404 .
  • the adhesive 410 and the hydrogen getter 404 are the same size and shape.
  • FIGS. 6 A- 6 D are diagrams illustrating the tag/getter assembly 400 , in accordance with embodiments of the disclosure.
  • FIG. 6 A is a perspective view of the tag/getter assembly 400 , in accordance with embodiments of the disclosure.
  • FIG. 6 B is a top view of the tag/getter assembly 400 of FIG. 6 A , in accordance with embodiments of the disclosure.
  • FIG. 6 C is an exploded view of the tag/getter assembly 400 of FIGS. 6 A and 6 B , in accordance with embodiments of the disclosure.
  • FIG. 6 D is a cross-sectional view of the tag/getter assembly 400 of FIGS. 6 A- 6 C , in accordance with embodiments of the disclosure.
  • the tag/getter assembly 400 includes the x-ray ID tag 402 , the hydrogen getter 404 , the adhesive tape 408 (which, in embodiments as illustrated, for example, is transparent such that the x-ray ID tag 402 shows through the adhesive tape 408 in FIGS. 5 A, 5 B, and 6 A- 6 D ), and the adhesive 410 .
  • the tag/getter assembly 400 includes a liner 412 , which is a manufacturing aid that is peeled off of the adhesive tape 408 prior to attaching the adhesive tape 408 to the inside surface 256 A of the core assembly housing 218 .
  • the hydrogen getter 404 includes material configured to absorb or acquire hydrogen in the core assembly housing 218 .
  • the hydrogen getter 404 can be sized to absorb or acquire all of the hydrogen that is expected to be generated or created inside the core assembly housing 218 .
  • the hydrogen getter 404 includes silicone impregnated with material that absorbs or acquires hydrogen. In some embodiments, the hydrogen getter 404 is about 0.008 inches thick.
  • the adhesive 410 attaches the hydrogen getter 404 to the adhesive tape 408 .
  • the adhesive 410 is a double-sided adhesive tape sized to be the same size and shape as the hydrogen getter 404 .
  • the adhesive 410 is situated on the adhesive tape 408 and attaches the hydrogen getter 404 to the adhesive tape 408 .
  • the adhesive 410 is about 0.002 inches thick.
  • the adhesive tape 408 is adhesively attached to the inside surface 256 A of the core assembly housing 218 , where the x-ray ID tag 402 is situated between the adhesive tape 408 and the inside surface 256 A of the core assembly housing 218 .
  • the adhesive tape 408 is a single-sided adhesive tape having the adhesive side of the adhesive tape 408 attached to the x-ray ID tag 402 and over the x-ray ID tag 402 to the inside surface 256 A of the core assembly housing 218 .
  • the adhesive tape 408 provides electrical isolation for the x-ray ID tag 402 .
  • the adhesive tape 408 includes a polyamide that provides electrical isolation for the x-ray ID tag 402 .
  • the adhesive tape 408 is about 0.003 inches thick.
  • the x-ray ID tag 402 includes a material configured to be detected or detectable in an x-ray image.
  • the x-ray ID tag 402 includes at least one of tungsten, lead, and platinum, where the thickness of the x-ray ID tag 402 is at least partly based on the composition of the x-ray ID tag 402 .
  • the x-ray ID tag 402 is about 0.003 inches thick.
  • the x-ray ID tag 402 includes tungsten and is about 0.003 inches thick.
  • the x-ray ID tag 402 is keyed to include an alignment feature 414 configured to facilitate alignment of the x-ray ID tag 402 and the tag/getter assembly 400 during manufacturing.
  • the direction of the x-ray ID tag 402 and the tag/getter assembly 400 can be determined based on the alignment feature 414 during manufacturing.
  • the x-ray ID tag 402 is keyed such that direction of the x-ray ID tag 402 can be determined at a glance or through automation.
  • the alignment feature 414 includes a notch defined in one corner of the x-ray ID tag 402 .
  • the liner 412 is removed from the adhesive side of the adhesive tape 408 and from being adjacent the x-ray ID tag 402 during manufacturing.
  • the adhesive tape 408 is aligned with the alignment marks 406 on the inside surface 256 A of the core assembly housing 218 and attached to the inside surface 256 A of the core assembly housing 218 .
  • This attaches the tag/getter assembly 400 including the x-ray ID tag 402 , the hydrogen getter 404 , the adhesive tape 408 , and the adhesive 410 to the inside surface 256 A of the core assembly housing 218 .
  • the liner 412 is a carrier that aids in handling the remainder of the tag/getter assembly 400 including the x-ray ID tag 402 , the hydrogen getter 404 , the adhesive tape 408 , and the adhesive 410 . In embodiments, the liner 412 is about 0.003 inches thick.
  • the tag/getter assembly 400 includes the x-ray ID tag 402 and the hydrogen getter 404 joined together into one compact and thin assembly to optimize space and assist in manufacturing. During manufacturing, the tag/getter assembly 400 is placed adjacent or attached to the inside surface 256 A of the core assembly housing 218 , where the tag/getter assembly 400 is sized to be thin enough to rest between the inside surface 256 A of the side wall 256 and the outside surface 290 A of the core circuitry support structure 282 . Also, the tag/getter assembly 400 provides ease of manufacturability and assembly with multiple layers being attached to the core assembly housing 218 in one step.
  • the tag/getter assembly 400 including the x-ray ID tag 402 and the hydrogen getter 404 serves a dual purpose making the IMD 200 identifiable during x-ray imaging and taking up excess hydrogen in the IMD 200 to increase longevity of the IMD 200 , where the excess hydrogen, if not removed, may otherwise cause leakage currents and/or other problems reducing the longevity of the IMD 200 .
  • FIG. 7 is a flow diagram depicting an illustrative method 700 of manufacturing an IMD in accordance with embodiments of the disclosure.
  • the IMD may be, for example, the IMD 102 depicted in FIG. 1 , the IMD 200 depicted in FIGS. 2 A- 2 E , and/or the like.
  • Embodiments of the method 700 include providing a hybrid circuit assembly (block 702 ), which may include obtaining and/or assembling one or more portions of a hybrid circuitry assembly such as, for example, by assembling an integrated circuit, coupling circuitry to a printed circuit board (PCB), and/or the like.
  • the method 700 also includes forming a core circuitry support structure (block 704 ) and coupling the hybrid circuitry assembly to the core circuitry support structure to form a core circuitry assembly (block 706 ).
  • the core circuitry support structure may be formed using any number of different process such as, for example, stereo lithography, injection molding, additive manufacturing (e.g., 3 D printing), and/or the like. Forming the core circuitry assembly may also include coupling a cover to the core circuitry support structure.
  • the method 700 also may include providing a header (block 708 ), which may include obtaining and/or assembling one or more portions of a header such as, for example, by arranging circuit components (e.g., an electrode and an antenna) on a scaffold assembly and enclosing the scaffold assembly within a header assembly housing.
  • the method 700 may also include providing a battery assembly (block 710 ) and providing feed-through assemblies (block 712 ), which may include obtaining and/or assembling a battery assembly and/or a first and second feed-through assembly.
  • embodiments of the method 700 also include coupling the feed-through assemblies to the core circuitry assembly (block 714 ), coupling the header to a first feed-through assembly (block 716 ), and coupling the battery assembly to a second feed-through assembly (block 718 ).
  • the method 700 includes forming first and second portions of a core assembly housing (block 720 ).
  • the core assembly housing portions may be molded, cut, and/or the like, and may be identical or similar to the core assembly housing portions 228 and 230 depicted in FIGS. 2 A- 2 C .
  • the method 700 includes attaching a tag/getter assembly, such as tag/getter assembly 400 including the x-ray ID tag 402 , the hydrogen getter 404 , the adhesive tape 408 , and the adhesive 410 to an inside surface of the core assembly housing (block 722 ).
  • a tag/getter assembly such as tag/getter assembly 400 including the x-ray ID tag 402 , the hydrogen getter 404 , the adhesive tape 408 , and the adhesive 410 to an inside surface of the core assembly housing (block 722 ).
  • the liner 412 is removed from being adjacent the x-ray ID tag 402 and from the adhesive side of adhesive tape 408 .
  • the adhesive tape 408 is aligned with alignment marks 406 on the inside surface 256 A of the core assembly housing 218 and attached to the inside surface 256 A of the core assembly housing 218 , which attaches the tag/getter assembly 400 including the x-ray ID tag 402 , the hydrogen getter 404 , the adhesive tape 408 , and the adhesive 410 to the inside surface 256 A of the core assembly housing 218 .
  • embodiments of the method 700 also include positioning the core assembly housing portions around the core circuitry assembly (block 724 ) and welding the core assembly housing portions together (block 726 ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement Of Radiation (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A medical device including a hybrid circuitry assembly, a core assembly housing having an inside surface, and a tag/getter assembly. The core assembly housing to enclose the hybrid circuitry assembly, and the tag/getter assembly to be situated adjacent the inside surface of the core assembly housing. The tag/getter assembly including an identification tag and a hydrogen getter.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to Provisional Application No. 62/747,554, filed Oct. 18, 2018, which is herein incorporated by reference in its entirety.
TECHNICAL FIELD
Embodiments of the present disclosure relate to medical devices and systems for sensing physiological parameters and delivering therapy. More specifically, embodiments of the disclosure relate to x-ray identification (ID) tags and hydrogen getters in implantable medical devices (IMDs).
BACKGROUND
IMDs may be configured to sense physiological parameters and/or provide therapy and may include one or more electrodes for performing aspects of these functions. Usually, the IMDs are built to be as space-efficient as possible to minimize the size of the IMD for patient comfort and inherent complications that arise from larger implantable devices.
The IMDs may include an x-ray ID tag to meet identification requirements and, in some, a hydrogen getter to absorb or acquire hydrogen generated inside the IMD. Construction of an IMD often involves challenges regarding the inclusion of an x-ray ID tag and a hydrogen getter in the IMD while meeting IMD size constraints.
SUMMARY
Embodiments of the disclosure include a tag/getter assembly that includes an x-ray ID tag and a hydrogen getter joined together into one assembly to optimize space and assist in manufacturing. Some embodiments of the disclosure include an IMD that includes at tag/getter assembly that includes an x-ray ID tag and a hydrogen getter joined together into one assembly to optimize space and assist in manufacturing of the IMD.
In an Example 1, a medical device comprises: a hybrid circuitry assembly, a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly, and a tag/getter assembly configured to be situated adjacent the inside surface of the core assembly housing. The tag/getter assembly comprising an identification tag and a hydrogen getter.
In an Example 2, the medical device of Example 1, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
In an Example 3, the medical device of Example 1, wherein the tag/getter assembly includes an adhesive tape that is adhesively attached to the inside surface of the core assembly housing and wherein the identification tag is situated between the adhesive tape and the inside surface of the core assembly housing.
In an Example 4, the medical device of any of Examples 1-3, wherein the hydrogen getter is situated on double-sided adhesive tape that is situated on single-sided adhesive tape that is adhesively attached to the inside surface of the core assembly housing, and wherein the identification tag is situated between the single-sided adhesive tape and the inside surface of the core assembly housing.
In an Example 5, the medical device of Example 4, wherein the tag/getter assembly, prior to being attached to the inside surface of the core assembly housing, includes a liner attached to the adhesive tape.
In an Example 6, the medical device of any of Examples 1-5, further comprising a core circuitry support structure configured to support at least a portion of the hybrid circuitry assembly, wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, and an outer surface of the frame is shaped to correspond to the inside surface of the core assembly housing.
In an Example 7, the medical device of any of Examples 1-6, wherein the identification tag comprises an alignment feature configured to facilitate alignment of the identification tag during manufacturing.
In an Example 8, the medical device of Example 7, wherein the alignment feature comprises a notch defined in one corner of the identification tag.
In an Example 9, the medical device of any of Examples 1-8, wherein the inside surface of the core assembly housing includes alignment marks configured to facilitate alignment of the tag/getter assembly with reference to the core assembly housing.
In an Example 10, a tag/getter assembly configured to be disposed adjacent a core assembly housing of an implantable medical device, the tag/getter assembly comprising an identification tag, adhesive tape situated over the identification tag, an adhesive situated on the adhesive tape, and a hydrogen getter attached to the adhesive tape by the adhesive.
In an Example 11, the tag/getter assembly of Example 10, comprising a liner attached to the adhesive tape such that the identification tag is situated between the liner and the adhesive tape.
In an Example 12, the tag/getter assembly of either of Examples 10 or 11, comprising an alignment feature configured to facilitate alignment of the tag/getter assembly with respect to the core assembly housing during manufacturing.
In an Example 13, the tag/getter assembly of Example 12, wherein the alignment feature comprises a notch in one corner of the tag/getter assembly.
In an Example 14, the tag/getter assembly of any of Examples 10-13, wherein the adhesive tape is single sided adhesive tape.
In an Example 15, the tag/getter assembly of any of Examples 10-14, wherein the adhesive is double sided adhesive tape.
In an Example 16, a medical device comprising: a hybrid circuitry assembly, a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly, and a tag/getter assembly configured to be situated adjacent the inside surface of the core assembly housing. The tag/getter assembly comprising an identification tag and a hydrogen getter.
In an Example 17, the medical device of Example 16, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
In an Example 18, the medical device of Example 16, wherein the tag/getter assembly includes an adhesive tape that is attached to the inside surface of the core assembly housing and an identification tag that is situated between the adhesive tape and the inside surface of the core assembly housing.
In an Example 19, the medical device of Example 16, wherein the hydrogen getter is situated on double-sided adhesive tape that is situated on single-sided adhesive tape that is adhesively attached to the inside surface of the core assembly housing, and wherein the identification tag is situated between the single-sided adhesive tape and the inside surface of the core assembly housing.
In an Example 20, the medical device of Example 19, wherein the tag/getter assembly includes a liner attached to the adhesive tape prior to attaching the adhesive tape to the inside surface of the core assembly housing.
In an Example 21, the medical device of Example 16, further comprising a core circuitry support structure configured to support at least a portion of the hybrid circuitry assembly, wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, an outer surface of the frame shaped to correspond to the inside surface of the core assembly housing.
In an Example 22, the medical device of Example 16, wherein the identification tag comprises an alignment feature configured to facilitate alignment of the identification tag during manufacturing.
In an Example 23, the medical device of Example 22, wherein the alignment feature comprises a notch defined in one corner of the identification tag.
In an Example 24, the medical device of Example 16, wherein the inside surface of the core assembly housing includes alignment marks and the tag/getter assembly includes an adhesive tape that is aligned on the inside surface of the core assembly housing with the alignment marks.
In an Example 25, a medical device comprising a core circuitry assembly including a hybrid circuitry assembly and a core circuitry support structure configured to support the hybrid circuitry assembly. The medical device further comprising a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly and the core circuitry support structure, and a tag/getter assembly configured to be situated between the core circuitry support structure and the inside surface of the core assembly housing.
In an Example 26, the medical device of Example 25, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
In an Example 27, the medical device of Example 25, wherein the inside surface of the core assembly housing includes alignment marks and the tag/getter assembly includes an adhesive tape that is aligned on the inside surface of the core assembly housing with the alignment marks.
In an Example 28, the medical device of Example 27, comprising an identification tag that is situated between the adhesive tape and the inside surface of the core assembly housing, the adhesive tape providing electrical isolation between the identification tag and the hybrid circuitry assembly.
In an Example 29, the medical device of Example 25, wherein the tag/getter assembly includes a hydrogen getter situated on adhesive that is situated on adhesive tape attached to the inside surface of the core assembly housing and an identification tag situated between the adhesive tape and the inside surface of the core assembly housing.
In an Example 30, the medical device of Example 25, wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, and an outer surface of the frame is shaped to correspond to the inside surface of the core assembly housing.
In an Example 31, the medical device of Example 25, wherein the identification tag comprises a material configured to be detected in an x-ray image.
In an Example 32, an identification tag and hydrogen getter assembly comprising an identification tag, adhesive tape situated over the identification tag, an adhesive situated on the adhesive tape, and a hydrogen getter attached to the adhesive tape by the adhesive.
In an Example 33, the identification tag and hydrogen getter assembly of Example 32, comprising a liner attached to the adhesive tape such that the identification tag is situated between the liner and the adhesive tape.
In an Example 34, the identification tag and hydrogen getter assembly of Example 32, wherein the adhesive tape has adhesive on one side and the identification tag is attached by the adhesive to the one side of the adhesive tape.
In an Example 35, the identification tag and hydrogen getter assembly of Example 32, wherein the identification tag is keyed so direction can be determined during manufacturing.
While multiple embodiments are disclosed, still other embodiments of the present disclosure will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the subject matter disclosed herein. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration depicting a patient monitoring system, in accordance with embodiments of the disclosure.
FIG. 2A is a perspective view of an implantable medical device (IMD), in accordance with embodiments of the disclosure.
FIGS. 2B and 2C are partially-exploded perspective views of the IMD depicted in FIG. 2A, in accordance with embodiments of the disclosure.
FIG. 2D is a side view of the IMD depicted in FIGS. 2A-2C, with the core assembly housing removed, in accordance with embodiments of the disclosure.
FIG. 2E is a side view of the IMD depicted in FIGS. 2A-2D, with the core assembly housing shown as transparent, in accordance with embodiments of the disclosure.
FIG. 3A is a perspective view of a core circuitry support structure, in accordance with embodiments of the disclosure.
FIG. 3B is another perspective view of the core circuitry support structure depicted in FIG. 3A, in accordance with embodiments of the disclosure.
FIG. 4A is a close-up top view of the IMD depicted in FIGS. 2A-2E, with the core assembly housing removed, in accordance with embodiments of the disclosure.
FIG. 4B is a close-up perspective view of the IMD depicted in FIGS. 2A-2E, with the core assembly housing removed, in accordance with embodiments of the disclosure.
FIG. 4C is a side view of the IMD depicted in FIGS. 2A-2E, with the core assembly housing removed, in accordance with embodiments of the disclosure.
FIG. 4D is a side view of the IMD depicted in FIGS. 2A-2E, with the core assembly housing removed and the core circuitry support structure shown as transparent, in accordance with embodiments of the disclosure.
FIG. 5A is a perspective view of a tag/getter assembly adjacent the inside surface of the side wall of the second portion of the core assembly housing, in accordance with embodiments of the disclosure.
FIG. 5B is a top view of the tag/getter assembly adjacent the inside surface of the side wall of the second portion of the core assembly housing of FIG. 5A, in accordance with embodiments of the disclosure.
FIG. 6A is a perspective view of the tag/getter assembly, in accordance with embodiments of the disclosure.
FIG. 6B is a top view of the tag/getter assembly of FIG. 6A, in accordance with embodiments of the disclosure.
FIG. 6C is an exploded view of the tag/getter assembly of FIGS. 6A and 6B, in accordance with embodiments of the disclosure.
FIG. 6D is a cross-sectional view of the tag/getter assembly of FIGS. 6A-6C, in accordance with embodiments of the disclosure.
FIG. 7 is a flowchart depicting an illustrative method of assembling an IMD, in accordance with embodiments of the disclosure.
While the disclosed subject matter is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the disclosed subject matter to the particular embodiments described. On the contrary, the disclosed subject matter is intended to cover all modifications, equivalents, and alternatives falling within the scope of the disclosed subject matter as defined by the appended claims.
DETAILED DESCRIPTION
FIG. 1 is a schematic illustration of a system 100 including an IMD 102 implanted within a patient's body 104 and configured to communicate with a receiving device 106. The IMD 102 includes a tag/getter assembly that includes an x-ray ID tag and a hydrogen getter as described herein. The IMD 102 includes a tag/getter assembly that includes an x-ray ID tag and a hydrogen getter joined together into one assembly to optimize space and assist in manufacturing.
In embodiments, the IMD 102 may be implanted subcutaneously within an implantation location or pocket in the patient's chest or abdomen and may be configured to monitor (e.g., sense and/or record) physiological parameters associated with the patient's heart 108. In embodiments, the IMD 102 may be an implantable cardiac monitor (ICM) (e.g., an implantable diagnostic monitor (IDM), an implantable loop recorder (ILR), etc.) configured to record physiological parameters such as, for example, one or more cardiac activation signals, heart sounds, blood pressure measurements, oxygen saturations, and/or the like. In embodiments, the IMD 102 may be configured to monitor physiological parameters that may include one or more signals indicative of a patient's physical activity level and/or metabolic level, such as an acceleration signal. In embodiments, the IMD 102 may be configured to monitor physiological parameters associated with one or more other organs, systems, and/or the like. The IMD 102 may be configured to sense and/or record at regular intervals, continuously, and/or in response to a detected event. In embodiments, such a detected event may be detected by one or more sensors of the IMD 102, another IMD (not shown), an external device (e.g., the receiving device 106), and/or the like. In addition, the IMD 102 may be configured to detect a variety of physiological signals that may be used in connection with various diagnostic, therapeutic, and/or monitoring implementations.
For example, the IMD 102 may include sensors or circuitry for detecting respiratory system signals, cardiac system signals, and/or signals related to patient activity. In embodiments, the IMD 102 may be configured to sense intrathoracic impedance, from which various respiratory parameters may be derived, including, for example, respiratory tidal volume and minute ventilation. Sensors and associated circuitry may be incorporated in connection with the IMD 102 for detecting one or more body movement or body posture and/or position related signals. For example, accelerometers and/or GPS devices may be employed to detect patient activity, patient location, body orientation, and/or torso position.
For purposes of illustration, and not of limitation, various embodiments of devices that may be used to record physiological parameters in accordance with the present disclosure are described herein in the context of IMDs that may be implanted under the skin in the chest region of a patient. In embodiments, however, the IMD 102 may include any type of IMD, any number of different components of an implantable system, and/or the like having a housing and being configured to be implanted in a patient's body 104. For example, the IMD 102 may include a control device, a monitoring device, a pacemaker, an implantable cardioverter defibrillator (ICD), a cardiac resynchronization therapy (CRT) device and/or the like, and may be an implantable medical device known in the art or later developed, for providing therapy and/or diagnostic data about the patient's body and/or the IMD 102. In various embodiments, the IMD 102 may include both defibrillation and pacing/CRT capabilities (e.g., a CRT-D device).
As shown, the IMD 102 may include a housing 110 having two electrodes 112 and 114 coupled thereto. According to embodiments, the IMD 102 may include any number of electrodes (and/or other types of sensors such as, e.g., thermometers, barometers, pressure sensors, optical sensors, motion sensors, and/or the like) in any number of various types of configurations, and the housing 110 may include any number of different shapes, sizes, and/or features. In embodiments, the IMD 102 may be configured to sense physiological parameters and record the physiological parameters. For example, the IMD 102 may be configured to activate (e.g., periodically, continuously, upon detection of an event, and/or the like), record a specified amount of data (e.g., physiological parameters) in a memory, and communicate that recorded data to a receiving device 106. In the case of an IDM, for example, the IMD 102 may activate, record cardiac signals for a certain period of time, deactivate, and activate to communicate the recorded signals to the receiving device 106.
In various embodiments, the receiving device 106 may be, for example, a programmer, controller, patient monitoring system, and/or the like. Although illustrated in FIG. 1 as an external device, the receiving device 106 may include an implantable device configured to communicate with the IMD 102 that may, for example, be a control device, another monitoring device, a pacemaker, an implantable defibrillator, a cardiac resynchronization therapy (CRT) device, and/or the like, and may be an implantable medical device known in the art or later developed, for providing therapy and/or diagnostic data about the patient and/or the IMD 102. In various embodiments, the IMD 102 may be a pacemaker, an implantable cardioverter defibrillator (ICD) device, or a cardiac resynchronization therapy (CRT) device. In various embodiments, the IMD 102 may include both defibrillation and pacing/CRT capabilities (e.g., a CRT-D device).
The system 100 may be used to implement coordinated patient measuring and/or monitoring, diagnosis, and/or therapy in accordance with embodiments of the disclosure. The system 100 may include, for example, one or more patient-internal medical devices, such as an IMD 102, and one or more patient-external medical devices, such as receiving device 106. In embodiments, the receiving device 106 may be configured to perform monitoring, and/or diagnosis and/or therapy functions external to the patient (i.e., not invasively implanted within the patient's body). The receiving device 106 may be positioned on the patient, near the patient, or in any location external to the patient.
In embodiments, the IMD 102 and the receiving device 106 may communicate through a wireless link. For example, the IMD 102 and the receiving device 106 may be coupled through a short-range radio link, such as Bluetooth, IEEE 802.11, and/or a proprietary wireless protocol. The communications link may facilitate uni-directional and/or bi-directional communication between the IMD 102 and the receiving device 106. Data and/or control signals may be transmitted between the IMD 102 and the receiving device 106 to coordinate the functions of the IMD 102 and/or the receiving device 106. In embodiments, patient data may be downloaded from one or more of the IMD 102 and the receiving device 106 periodically or on command. The physician and/or the patient may communicate with the IMD 102 and the receiving device 106, for example, to acquire patient data or to initiate, terminate, or modify recording and/or therapy.
The illustrative system 100 shown in FIG. 1 is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the subject matter disclosed throughout this disclosure. Neither should the illustrative system 100 be interpreted as having any dependency or requirement related to any single component or combination of components illustrated in FIG. 1 . For example, in embodiments, the illustrative system 100 may include additional components. Additionally, any one or more of the components depicted in FIG. 1 can be, in embodiments, integrated with various ones of the other components depicted therein (and/or components not illustrated). Any number of other components or combinations of components can be integrated with the illustrative system 100 depicted in FIG. 1 , all of which are considered to be within the ambit of this disclosure.
FIG. 2A is a perspective view of an implantable medical device (IMD) 200, in accordance with embodiments of the disclosure. The IMD 200 may be, or may be similar to, the IMD 102 depicted in FIG. 1 . As shown, the IMD 200 may include a header 202 arranged at or near a first end 220 of a core assembly 204. A battery assembly 206 (which may include one or more batteries) is arranged near a second end 224 of the core assembly 204. The header 202 includes a housing 202A that encloses an interior region 202B. The header 202 may house various circuitry components within its interior. The housing 202A may contact a patient's bodily tissue when the IMD 200 is subcutaneously implanted in an implantation location or pocket in the patient's chest or abdomen. The interior region 202B of the header 202 may house circuit components (e.g., an electrode 208 and an antenna 210) positioned and supported by a scaffold assembly 212. As shown, the IMD 200 may include, in addition to the electrode 208, an electrode 214 disposed at an end of the battery assembly 206. In embodiments, the electrode 214 may be integrated with the battery assembly 206, a housing of the battery assembly 206, and/or the like. In order to enable sensing of physiological parameters within the patient, the electrode 208 may be positioned to be flush with an interior surface of the housing 202A of the header 202. In other instances, the electrode 208 may be positioned by the scaffold assembly 212 to form a portion of an exterior surface of the housing 202A of the header 202.
As shown in FIG. 2B, the core assembly 204 includes a core circuitry assembly 216 enclosed within a core assembly housing 218. The core assembly housing 218 is coupled, at the first end 220, to a first feed-through assembly 222, and coupled, at the second end 224, to a second feed-through assembly 226. The feed-through assembly 222 may be configured to provide a throughput for connections configured to connect the circuitry components of the header 202 (e.g., the electrode 208 and the antenna 210) to the core circuitry assembly 216. Similarly, the feed-through assembly 226 may be configured to provide a throughput for connections configured to connect one or more batteries (e.g., which are a part of the battery assembly 206) and/or the electrode 214 to the core circuitry assembly 216.
As illustrated in FIG. 2A, the core assembly housing 204 includes a first portion 228 configured to be coupled to a second portion 230 along a weld seam 232. The first portion 228 and second portion 230 may be coupled together by laser welding, seam welding, and/or the like. In embodiments, a separate weld ring does not need to be used, as a feature of at least one of the first and second portions 228 and 230 acts as a weld ring, protecting the core circuitry assembly 216 from the welding energy (e.g., heat, laser, etc.).
For example, the first portion 228 may include one or more weld joint features configured to be positioned adjacent to one or more corresponding weld joint features on the second portion 230 in preparation for welding. In embodiments, for example, the first portion 228 and the second portion 230 may include a continuous, curved wall (such as, for example, in an implementation of a pacemaker or other implantable pulse generator), a curved wall and a straight wall, a number of curved walls, a number of straight walls, and/or any number of different combinations of these. Each wall of the first portion 228 that is configured to be coupled to a corresponding wall of the second portion 230 may include at least one weld joint feature configured to be positioned adjacent to at least one corresponding feature on the second portion 230, and, in embodiments, vice-versa.
Each weld joint feature includes a thinned leading edge (the edge that is configured to be coupled to the corresponding edge of the other portion of the housing) of a wall. That is, the edge of the wall is thinner than other sections of the wall. In this manner, an edge of one of the two portions can pass over the corresponding edge of the other portion when the two portions are positioned around the core circuitry assembly in preparation for welding. In this manner, the volume enclosed within the housing may be maximized, and the lower edge (i.e., the edge closer to the core circuitry assembly) acts as a weld ring, protecting the core circuitry assembly from the applied energy (e.g., heat, laser, etc.) during a welding procedure. In embodiments, the weld joint feature may include a coined edge of a wall, a flange, and/or the like.
As shown, for example, in FIGS. 2B and 2C, the first portion 228 of the core assembly housing 218 includes a side wall 234, a lower wall 236, and an upper wall 238. The lower wall 236 and the upper wall 238 each extend, perpendicularly (or at least approximately perpendicularly) in a direction away from an inside surface 234A of the side wall 234. As shown, the lower wall 236 is coupled to the side wall 234 by a curved corner portion 240, and the upper wall 238 is coupled to the side wall 234 by a curved corner portion 242. In embodiments, the curved corner portions 240 and 242 may be integrated with the lower and upper walls 236 and 238, respectively, the side wall 234, and/or the like. That is, for example, the first portion 228 may be a single piece of metal, formed in a press or a mold. In embodiments, the curved corner portions 240 and 242 may be separate components. The curved corner portions 240 and 242 each may be designed to have any desirable radius of curvature. For example, the curved corner portions 240 and 242 each may be configured to have a radius of curvature that provides a desired amount of volume enclosed within the core assembly housing 218.
As illustrated, for example, in FIGS. 2B and 2C, the lower wall 236 includes a flange 244 that is recessed with respect to an inside surface 246 of the lower wall 236, and that extends from a first end 248 of the first portion 228 to a second end 250 thereof. The flange 244 may be a thinned portion of the lower wall 236. In embodiments, the flange 244 may be welded to the lower wall 236. Similarly, the upper wall 238 includes a flange 252 that is recessed with respect to an inside surface 254 of the upper wall 238, and that extends from the first end 248 of the first portion 228 to the second end 250 thereof. The flange 252 may be a thinned portion of the upper wall 238. In embodiments, the flange 252 may be welded to the upper wall 238.
As is also shown, for example, in FIGS. 2B and 2C, the second portion 230 of the core assembly housing 218 includes a side wall 256, a lower wall 258, and an upper wall 260. The lower wall 258 and the upper wall 260 each extend, perpendicularly (or at least approximately perpendicularly) in a direction away from an inside surface 256A of the side wall 256. As shown, the lower wall 258 is coupled to the side wall 256 by a curved corner portion 262, and the upper wall 260 is coupled to the side wall 256 by a curved corner portion 264. In embodiments, the curved corner portions 262 and 264 may be integrated with the lower and upper walls 258 and 260, respectively, the side wall 256, and/or the like. That is, for example, the second portion 230 may be a single piece of metal, formed in a press or a mold. In embodiments, the curved corner portions 262 and 264 may be separate components. The curved corner portions 262 and 264 each may be designed to have any desirable radius of curvature such as, for example, a radius of curvature that is identical or similar to the radius of curvature of each of the curved corner portions 240 and 242. For example, the curved corner portions 262 and 264 each may be configured to have a radius of curvature that provides a desired amount of volume enclosed within the core assembly housing 218.
As illustrated, for example, in FIGS. 2B and 2C, the lower wall 258 includes a flange 266 that is recessed with respect to an outside surface 268 of the lower wall 258, and that extends from a first end 270 of the second portion 230 to a second end 272 thereof. The flange 266 may be a thinned portion of the lower wall 258. In embodiments, the flange 266 may be welded to the lower wall 258. Similarly, the upper wall 260 includes a flange 274 that is recessed with respect to an outside surface 276 of the upper wall 260, and that extends from the first end 270 of the second portion 230 to the second end 272 thereof. The flange 274 may be a thinned portion of the upper wall 260. In embodiments, the flange 274 may be welded to the upper wall 260.
The core assembly housing 218 may also include notches 278 defined in the first and second ends 248 and 250, respectively, of the first portion 228, and extending from the inside surface 234A to the outside surface 234B of the side wall 234. Similarly, the core assembly housing 218 may also include notches 280 defined in the first and second ends 270 and 272, respectively, of the second portion 230, and extending from the inside surface 256A to the outside surface 256B of the side wall 256. When the first portion 228 is brought together with the second portion 230, the flange 244 is positioned adjacent to the flange 266, and the flange 252 is positioned adjacent to the flange 274. The portions 228 and 230 are welded together along the flanges 244, 266 and 252, 274 to enclose the core circuitry assembly 216.
As shown in FIGS. 2B-2E, the core circuitry assembly 216 includes a core circuitry support structure 282 disposed within the core assembly housing 218. A hybrid circuit assembly 284, which includes the core circuitry such as, for example, a printed circuit board (PCB) and other circuitry components, is coupled, on a first side (not shown in FIGS. 2B-2E) of the hybrid circuit assembly 284 to the core circuitry support structure 282. A cover 286 is disposed over a second side 288 of the hybrid circuit assembly 284. The cover 286 may be configured according to any number of different shapes, including, for example, a shape that corresponds to the shape of the inside surfaces 234A, 246, and 254 of the first portion 234 of the core assembly housing 218. In embodiments in which the core circuitry support structure 282 includes retaining clips 366, the cover 286 may include notches 380 corresponding to, and allowing room for, retaining clips 366 disposed on the core circuitry support structure 282. In embodiments, the cover 286 may include any number of other features configured to correspond to any number of other features of the core circuitry support structure 282, the core assembly housing 218, and/or other component of the IMD 200.
The core circuitry assembly 216 may be configured to enhance the available space within the core assembly. In embodiments, as shown, the core circuitry support structure 282 may include an outside surface 290A and the cover 286 may include an outside surface 290B. The outside surfaces 290A and 290B may be configured to align in at least approximately a same plane (or set of planes or curved surfaces) as a first interface surface 292 defined on the first feed-through assembly 222 and a second interface surface 294 defined on the second feed-through assembly 226. The first and second interface surfaces 292 and 294 may extend around a perimeter of each of the first and second feed-through assemblies 222 and 226, respectively, and may extend at least approximately orthogonally away from third and fourth interface surfaces 296 and 298, respectively, which also may extend around a perimeter of each of the first and second feed-through assemblies 222 and 226, respectively.
During assembly, the first and second portions 228 and 230 of the core assembly housing 218 are brought together such that the inside surface 246 of the lower wall 236 of the first portion 228, the inside surface 234A of the side wall 234 of the first portion 228, and the inside surface 254 of the upper wall 238 of the first portion 228 interface with (e.g., are disposed in contact with) corresponding sections of the first and second interface surfaces 292 and 294; and a first edge surface 300 and a second edge surface 302 of the first portion 228 interface with the first and second interface surfaces 296 and 298, respectively. Similarly, during assembly, an inside surface 304 of the lower wall 258 of the second portion 230, the inside surface 256A of the side wall 256 of the second portion 230, and an inside surface 306 of the upper wall 260 of the second portion 230 interface with (e.g., are disposed in contact with) corresponding sections of the first and second interface surfaces 292 and 294; and a first edge surface 308 and a second edge surface 310 of the second portion 230 interface with the first and second interface surfaces 296 and 298, respectively.
In this manner, when the core assembly housing 218 is welded together, in embodiments, the inside surface of the core assembly housing 218 may interface with the outside surface 290A of the core circuitry support structure 282. Also, in some embodiments, the inside surface of the core assembly housing 218 may interface with the outside surface 290B of the cover 286. In embodiments, the inside surfaces of the core assembly housing 218 may not actually contact the outside surfaces 290A and 290B of the core circuitry support structure 282 and cover 286, respectively, but may be configured to reduce a gap between the surfaces. According to embodiments, the outside surfaces 290A and 290B of the core circuitry support structure 282 and cover 286, respectively, may be designed to have shapes that correspond to the shapes of the inside surfaces of the core assembly housing 218.
As illustrated, for example, in FIGS. 2C and 2E, in some embodiments, a tag/getter assembly 400, according to embodiments of the disclosure, is attached to the inside surface 256A of the side wall 256 of the second portion 230. Where, the tag/getter assembly 400 is situated between the inside surface 256A of the side wall 256 and the outside surface 290A of the core circuitry support structure 282. In some embodiments, the tag/getter assembly 400 is attached to the inside surface 234A of the side wall 234 of the first portion 228. Where, the tag/getter assembly 400 is situated between the inside surface 234A of the side wall 234 and the outside surface 290B of the cover 286. As described in embodiments of the disclosure. the tag/getter assembly 400 includes an x-ray ID tag and a hydrogen getter joined together.
In embodiments, the core circuitry support structure 282 and/or the cover 286 may be configured such that an air gap is formed adjacent to the weld seam 232. The air gap may be provided by designing the core circuitry support structure 282 and/or the cover 286 to have a certain perimeter. In embodiments, the air gap may be provided be designing a channel or thinned portion into the core circuitry support structure 282 and/or the cover 286. The air gap may be less than 0.1 inches wide (as measured between an outside surface of the core circuitry support structure 282 or the cover 286 and an inside surface of the core assembly housing 218. In embodiments, the air gap may be approximately 0.010 inches wide, or any other desired width. In this manner, the air gap may facilitate preventing overheating of the core circuitry support structure 282 and/or the cover 286 during welding of the core circuitry assembly 218 together by reducing contact with the core assembly housing 218 and by providing an insulation of air between the core circuitry support structure 282 and/or the cover 286 and the core assembly housing 218. According to embodiments, aspects of the core circuitry support structure 282 may be designed to facilitate providing gaps of any desired width between the outside surface 290A thereof and any number of different inside surfaces of the core assembly housing 218.
The illustrative IMD 200 shown in FIGS. 2A-2E is not intended to suggest any limitation as to the scope of use or functionality of embodiments of the subject matter disclosed throughout this disclosure. Neither should the illustrative IMD 200 be interpreted as having any dependency or requirement related to any single component, feature, or combination of components or features illustrated in FIGS. 2A-2E. For example, in embodiments, the illustrative IMD 200 may include different and/or additional components and/or features. Any number of other components, features, or combinations of components or features can be integrated with the illustrative IMD 200 depicted in FIGS. 2A-2E, all of which are considered to be within the ambit of this disclosure. Additionally, any one or more of the components and/or features depicted in FIGS. 2A-2E can be, in embodiments, integrated with various ones of the other components and/or features depicted therein (and/or components and/or features not illustrated).
FIGS. 3A and 3B depict various views of the core circuitry support structure 282, in accordance with embodiments of the disclosure. FIGS. 4A-4D depict various views of the core circuit assembly 216, and may be referred to below to further clarify the description. As shown, the core circuitry support structure 282 includes a first end 312 configured to be disposed adjacent the first feed-through assembly 222, and a second end 314 configured to be disposed adjacent the second feed-through assembly 226. The core circuitry support structure 282 includes a frame 316 having a first end wall 318 disposed at or near the first end 312 of the core circuitry support structure 282, a second end wall 320 disposed at or near the second end 314 of the core circuitry support structure 282, and two parallel, opposed side walls 322 and 324 extending between the first and second end walls 318 and 320. A panel 326, oriented at least approximately perpendicular to the walls 318, 320, 322, and 324, extends between the first and second end walls 318 and 320, and is coupled to the side walls 322 and 324 via curved corner walls 328 and 330, respectively. In embodiments, the curved corner walls 328 and 330 each may be designed to have any desirable radius of curvature such as, for example, a radius of curvature that is identical or similar to (or otherwise designed to complement/correspond to) the radius of curvature of each of the curved corner portions 262 and 264, respectively, of the second portion 230 of the core housing assembly 218.
The end walls 318 and 320, side walls 322 and 324, corner walls 328 and 330, and panel 326, define a cavity 332 configured to receive at least a portion of the hybrid circuit assembly 284. As shown, for example, in FIGS. 4A-4D, the hybrid circuit assembly 284 may include a PCB 334, a first set 336 of additional circuitry components disposed on a first surface 338 of the PCB 334, and a second set 340 of additional circuitry components disposed on a second, opposite, surface 342 of the PCB 334. The first and second surface 338 and 342 may be at least approximately parallel. As shown, the cavity 332 may include one or more raised floor sections 344 that correspond to another set 346 of circuitry components having a lower profile with respect to the first surface 338 of the PCB 334. In embodiments, the cavity may have a flat floor defined by the panel 326. A raised block 348 having a window notch 350 defined therein may be disposed in the cavity 332 near the second end 314 of the core circuitry support structure 282, corresponding to a portion of the first surface 338 of the PCB 334 having no additional circuitry components (or additional circuitry components having a lower profile with respect to the first surface 338). The window notch 350 may be aligned with a window 352 defined in the panel 326. The window 352 may be configured to expose a communication component 354 of the hybrid circuit assembly 284. The communication component 354 may include an antenna, an inductive coil (e.g., for receiving wireless energy to recharge one or more batteries), and/or the like.
As is further shown in FIGS. 3A and 3B, the core circuitry support structure 282 includes a number of alignment features 356 configured to engage, abut, and/or otherwise interface with, corresponding alignment notches 358 defined in the PCB 334. Each alignment feature 356 may include a cap 360 disposed at an end of a post 362 that extends away from a shelf 364. The shelf 364 extends along the periphery of core circuitry support structure 282 and is defined in the end walls 318 and 320 and the side walls 322 and 234. The PCB 334 is configured to be received into the cavity 332 such that a peripheral edge of the first side 338 of the PCB 334 engages the shelf 364. The alignment features 356 are configured to be received in the corresponding alignment notches 358, thereby facilitating efficient and accurate alignment of the hybrid circuit assembly 284 within the core circuitry support structure 282 in a manufacturing setting. In this manner, for example, the hybrid circuit assembly 284 may be configured to fit together with the core circuitry support structure 282 in one orientation, to facilitate ease of manufacture.
As shown, for example, in FIGS. 3A and 3B, the core circuitry support structure 282 may include three alignment features 356. In other embodiments, the core circuitry support structure 282 may include one or two alignment features 356. In embodiments, the core circuitry support structure 282 may include more than three alignment features. According to embodiments, at least one of the alignment features 356 may be of a different size and/or shape than at least one other alignment feature 356. The cap 360 may, in embodiments, include a lip configured to engage a peripheral edge of the second surface 342 of the PCB 334 to facilitate holding the PCB 334 in place. In other embodiments, the cap 360 may be configured to function as a stop. The top of the cap 360 may, in embodiments, be at least approximately flush with the second surface 342 of the PCB 334. The core circuitry support structure 282 also may include one or more retaining clips 366 configured to engage a peripheral edge of the second surface 342 of the PCB 334 to facilitate holding the PCB 334 in place.
As shown, the core circuitry support structure 282 includes a first spacer 368 extending from the first end wall 318 and configured to maintain a space between the first end wall 318 and the first feed-through assembly 222; and a second spacer 370 extending from the second end wall 320 and configured to maintain a space between the second end wall 320 and the second feed-through assembly 226. Notches 372 defined in the second end wall 320 may provide room for feed-through circuitry and/or other components such as, for example, battery terminals 373. As shown in FIG. 3A, a recess 374 may be defined in the panel 326 and configured to receive the tag/getter assembly 400.
As used herein, the terms “side wall,” “lower wall,” “upper wall,” “upward,” and “downward” are used to refer to the specific features to which they refer, but are characterized in the context of the illustrations for clarity and to describe relative orientations of features with respect to other features, and are not intended to imply any particular orientation of the IMD 200, or absolute (or preferred) orientations of features thereof. That is, for example, even if the IMD 200 were to be rotated around a longitudinal axis such that the outer surface 234B of the side wall 234 was parallel to a horizontal plane, the side wall 234 would still be referred to, for the purposes of this disclosure, as a “side wall.” In other embodiments, core circuitry support structures may be designed according to any number of other configurations.
FIG. 5A is a perspective view of a tag/getter assembly 400 adjacent the inside surface 256A of the side wall 256 of the second portion 230 of the core assembly housing 218, in accordance with embodiments of the disclosure. FIG. 5B is a top view of the tag/getter assembly 400 adjacent the inside surface 256A of the side wall 256 of the second portion 230 of the core assembly housing 218 of FIG. 5A, in accordance with embodiments of the disclosure. The tag/getter assembly 400 includes an x-ray ID tag 402 and a hydrogen getter 404. In embodiments, the tag/getter assembly 400 is adhesively attached to the inside surface 256A of the core assembly housing 218. In embodiments, the tag/getter assembly 400 is adjacent or attached to the inside surface 234A of the side wall 234 of the first portion 228.
For context, as previously described, for example, the second portion 230 of the core assembly housing 218 includes the side wall 256, the lower wall 258, and the upper wall 260. The lower wall 258 is coupled to the side wall 256 by a curved corner portion 262, and the upper wall 260 is coupled to the side wall 256 by a curved corner portion 264. The lower wall 258 includes a flange 266 that is recessed with respect to an outside surface 268 of the lower wall 258, and that extends from a first end 270 of the second portion 230 to a second end 272 thereof. The upper wall 260 includes a flange 274 that is recessed with respect to an outside surface 276 of the upper wall 260, and that extends from the first end 270 of the second portion 230 to the second end 272 thereof.
The inside surface 256A of the side wall 256 includes alignment marks 406 and the tag/getter assembly 400 includes an adhesive tape 408 that is aligned on the inside surface 256A of the core assembly housing 218 with the alignment marks 406. In some embodiments, the alignment marks 406 are black or gray corner marks set into or onto the inside surface 256A of the core assembly housing 218. In some embodiments, the alignment marks 406 are indentations built into the inside surface 256A of the core assembly housing 218. In some embodiments, the alignment marks 406 are raised or indented embossed marks set into the inside surface 256A of the core assembly housing 218. In some embodiments, the alignment marks 406 are carved, molded, or stamped into the inside surface 256A of the core assembly housing 218.
In embodiments, as illustrated, the tag/getter assembly 400 includes the x-ray ID tag 402, the hydrogen getter 404, and the adhesive tape 408 aligned to the alignment marks 406 on the inside surface 256A of the core assembly housing 218. The adhesive tape 408 is situated over the x-ray ID tag 402 and attached to the inside surface 256A of the core assembly housing 218. The x-ray ID tag 402 is situated between the adhesive tape 408 and the inside surface 256A of the core assembly housing 218. In embodiments, the adhesive tape 408 is a single sided adhesive tape having its adhesive side attached to the inside surface 256A of the core assembly housing 218 over the x-ray ID tag 402. In embodiments, the x-ray ID tag 402 is attached to the adhesive side of the adhesive tape 408. In some embodiments, the adhesive tape 408 provides electrical isolation between the x-ray ID tag 402 and the hybrid circuitry or circuit assembly 284. In some embodiments, as illustrated, for example, the adhesive tape 408 is transparent. In other embodiments, the adhesive tape 408 is translucent or opaque.
The tag/getter assembly 400 further includes an adhesive 410 situated on the adhesive tape 408, and the hydrogen getter 404 attached to the adhesive tape 408 by the adhesive 410. In embodiments, the adhesive 410 is double sided adhesive tape attached on one side to the adhesive tape 408 and on the other side to the hydrogen getter 404. In embodiments, the adhesive 410 and the hydrogen getter 404 are the same size and shape.
FIGS. 6A-6D are diagrams illustrating the tag/getter assembly 400, in accordance with embodiments of the disclosure. FIG. 6A is a perspective view of the tag/getter assembly 400, in accordance with embodiments of the disclosure. FIG. 6B is a top view of the tag/getter assembly 400 of FIG. 6A, in accordance with embodiments of the disclosure. FIG. 6C is an exploded view of the tag/getter assembly 400 of FIGS. 6A and 6B, in accordance with embodiments of the disclosure. FIG. 6D is a cross-sectional view of the tag/getter assembly 400 of FIGS. 6A-6C, in accordance with embodiments of the disclosure.
In embodiments, as illustrated, the tag/getter assembly 400 includes the x-ray ID tag 402, the hydrogen getter 404, the adhesive tape 408 (which, in embodiments as illustrated, for example, is transparent such that the x-ray ID tag 402 shows through the adhesive tape 408 in FIGS. 5A, 5B, and 6A-6D), and the adhesive 410. Also, in embodiments, as illustrated, the tag/getter assembly 400 includes a liner 412, which is a manufacturing aid that is peeled off of the adhesive tape 408 prior to attaching the adhesive tape 408 to the inside surface 256A of the core assembly housing 218.
In embodiments, for example, the hydrogen getter 404 includes material configured to absorb or acquire hydrogen in the core assembly housing 218. The hydrogen getter 404 can be sized to absorb or acquire all of the hydrogen that is expected to be generated or created inside the core assembly housing 218. In embodiments, the hydrogen getter 404 includes silicone impregnated with material that absorbs or acquires hydrogen. In some embodiments, the hydrogen getter 404 is about 0.008 inches thick.
The adhesive 410 attaches the hydrogen getter 404 to the adhesive tape 408. In embodiments, the adhesive 410 is a double-sided adhesive tape sized to be the same size and shape as the hydrogen getter 404. The adhesive 410 is situated on the adhesive tape 408 and attaches the hydrogen getter 404 to the adhesive tape 408. In embodiments, the adhesive 410 is about 0.002 inches thick.
During manufacturing, the adhesive tape 408 is adhesively attached to the inside surface 256A of the core assembly housing 218, where the x-ray ID tag 402 is situated between the adhesive tape 408 and the inside surface 256A of the core assembly housing 218. In embodiments, the adhesive tape 408 is a single-sided adhesive tape having the adhesive side of the adhesive tape 408 attached to the x-ray ID tag 402 and over the x-ray ID tag 402 to the inside surface 256A of the core assembly housing 218. In embodiments, the adhesive tape 408 provides electrical isolation for the x-ray ID tag 402. In embodiments, the adhesive tape 408 includes a polyamide that provides electrical isolation for the x-ray ID tag 402. In embodiments, the adhesive tape 408 is about 0.003 inches thick.
The x-ray ID tag 402 includes a material configured to be detected or detectable in an x-ray image. In embodiments, the x-ray ID tag 402 includes at least one of tungsten, lead, and platinum, where the thickness of the x-ray ID tag 402 is at least partly based on the composition of the x-ray ID tag 402. In embodiments, the x-ray ID tag 402 is about 0.003 inches thick. In embodiments, the x-ray ID tag 402 includes tungsten and is about 0.003 inches thick.
In embodiments, the x-ray ID tag 402 is keyed to include an alignment feature 414 configured to facilitate alignment of the x-ray ID tag 402 and the tag/getter assembly 400 during manufacturing. The direction of the x-ray ID tag 402 and the tag/getter assembly 400 can be determined based on the alignment feature 414 during manufacturing. In embodiments, the x-ray ID tag 402 is keyed such that direction of the x-ray ID tag 402 can be determined at a glance or through automation. In embodiments, the alignment feature 414 includes a notch defined in one corner of the x-ray ID tag 402.
In embodiments, the liner 412 is removed from the adhesive side of the adhesive tape 408 and from being adjacent the x-ray ID tag 402 during manufacturing. The adhesive tape 408 is aligned with the alignment marks 406 on the inside surface 256A of the core assembly housing 218 and attached to the inside surface 256A of the core assembly housing 218. This, in embodiments, attaches the tag/getter assembly 400 including the x-ray ID tag 402, the hydrogen getter 404, the adhesive tape 408, and the adhesive 410 to the inside surface 256A of the core assembly housing 218. In embodiments, the liner 412 is a carrier that aids in handling the remainder of the tag/getter assembly 400 including the x-ray ID tag 402, the hydrogen getter 404, the adhesive tape 408, and the adhesive 410. In embodiments, the liner 412 is about 0.003 inches thick.
The tag/getter assembly 400 includes the x-ray ID tag 402 and the hydrogen getter 404 joined together into one compact and thin assembly to optimize space and assist in manufacturing. During manufacturing, the tag/getter assembly 400 is placed adjacent or attached to the inside surface 256A of the core assembly housing 218, where the tag/getter assembly 400 is sized to be thin enough to rest between the inside surface 256A of the side wall 256 and the outside surface 290A of the core circuitry support structure 282. Also, the tag/getter assembly 400 provides ease of manufacturability and assembly with multiple layers being attached to the core assembly housing 218 in one step.
The tag/getter assembly 400 including the x-ray ID tag 402 and the hydrogen getter 404 serves a dual purpose making the IMD 200 identifiable during x-ray imaging and taking up excess hydrogen in the IMD 200 to increase longevity of the IMD 200, where the excess hydrogen, if not removed, may otherwise cause leakage currents and/or other problems reducing the longevity of the IMD 200.
FIG. 7 is a flow diagram depicting an illustrative method 700 of manufacturing an IMD in accordance with embodiments of the disclosure. The IMD may be, for example, the IMD 102 depicted in FIG. 1 , the IMD 200 depicted in FIGS. 2A-2E, and/or the like.
Embodiments of the method 700 include providing a hybrid circuit assembly (block 702), which may include obtaining and/or assembling one or more portions of a hybrid circuitry assembly such as, for example, by assembling an integrated circuit, coupling circuitry to a printed circuit board (PCB), and/or the like. The method 700 also includes forming a core circuitry support structure (block 704) and coupling the hybrid circuitry assembly to the core circuitry support structure to form a core circuitry assembly (block 706). The core circuitry support structure may be formed using any number of different process such as, for example, stereo lithography, injection molding, additive manufacturing (e.g., 3D printing), and/or the like. Forming the core circuitry assembly may also include coupling a cover to the core circuitry support structure.
The method 700 also may include providing a header (block 708), which may include obtaining and/or assembling one or more portions of a header such as, for example, by arranging circuit components (e.g., an electrode and an antenna) on a scaffold assembly and enclosing the scaffold assembly within a header assembly housing. The method 700 may also include providing a battery assembly (block 710) and providing feed-through assemblies (block 712), which may include obtaining and/or assembling a battery assembly and/or a first and second feed-through assembly.
As depicted in FIG. 7 , embodiments of the method 700 also include coupling the feed-through assemblies to the core circuitry assembly (block 714), coupling the header to a first feed-through assembly (block 716), and coupling the battery assembly to a second feed-through assembly (block 718). In embodiments, the method 700 includes forming first and second portions of a core assembly housing (block 720). In embodiments, the core assembly housing portions may be molded, cut, and/or the like, and may be identical or similar to the core assembly housing portions 228 and 230 depicted in FIGS. 2A-2C.
The method 700 includes attaching a tag/getter assembly, such as tag/getter assembly 400 including the x-ray ID tag 402, the hydrogen getter 404, the adhesive tape 408, and the adhesive 410 to an inside surface of the core assembly housing (block 722). In embodiments, for example, the liner 412 is removed from being adjacent the x-ray ID tag 402 and from the adhesive side of adhesive tape 408. The adhesive tape 408 is aligned with alignment marks 406 on the inside surface 256A of the core assembly housing 218 and attached to the inside surface 256A of the core assembly housing 218, which attaches the tag/getter assembly 400 including the x-ray ID tag 402, the hydrogen getter 404, the adhesive tape 408, and the adhesive 410 to the inside surface 256A of the core assembly housing 218.
As shown in FIG. 7 , embodiments of the method 700 also include positioning the core assembly housing portions around the core circuitry assembly (block 724) and welding the core assembly housing portions together (block 726).
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the disclosed subject matter. For example, while the embodiments described above refer to particular features, the scope of this disclosure also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the disclosed subject matter is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims (16)

We claim:
1. A medical device comprising:
a hybrid circuitry assembly;
a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly;
a tag/getter assembly configured to be situated adjacent the inside surface of the core assembly housing, the tag/getter assembly comprising an identification tag and a hydrogen getter, the identification tag comprising a material capable of detection in an x-ray image; and
wherein the hydrogen getter is situated on double-sided adhesive tape that is situated on single-sided adhesive tape, which is adhesively attached to the inside surface of the core assembly housing, wherein the identification tag is situated between the single-sided adhesive tape and the inside surface of the core assembly housing.
2. The medical device of claim 1, wherein the tag/getter assembly includes a liner attached to the single-sided adhesive tape prior to attaching the single-sided adhesive tape to the inside surface of the core assembly housing.
3. The medical device of claim 1, further comprising:
a core circuitry support structure configured to support at least a portion of the hybrid circuitry assembly,
wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, an outer surface of the frame shaped to correspond to the inside surface of the core assembly housing.
4. The medical device of claim 1, wherein the identification tag comprises an alignment feature configured to facilitate alignment of the identification tag during manufacturing.
5. The medical device of claim 4, wherein the alignment feature comprises a notch defined in one corner of the identification tag.
6. The medical device of claim 1, wherein the inside surface of the core assembly housing includes alignment marks and the tag/getter assembly includes an adhesive tape that is aligned on the inside surface of the core assembly housing with the alignment marks.
7. A medical device comprising:
a core circuitry assembly comprising:
a hybrid circuitry assembly; and
a core circuitry support structure configured to support the hybrid circuitry assembly;
a core assembly housing having an inside surface and configured to enclose the hybrid circuitry assembly and the core circuitry support structure;
a tag/getter assembly configured to be situated between the core circuitry support structure and the inside surface of the core assembly housing, the tag/getter assembly including an identification tag comprising a material capable of detection in an x-ray image; and
wherein the identification tag is formed of one of tungsten, lead, and platinum, and wherein the identification tag comprises an alignment feature keyed into the identification tag for facilitating alignment of the identification tag to the tag/getter assembly.
8. The medical device of claim 7, wherein the tag/getter assembly is adhesively attached to the inside surface of the core assembly housing.
9. The medical device of claim 7, wherein the inside surface of the core assembly housing includes alignment marks and the tag/getter assembly includes an adhesive tape that is aligned on the inside surface of the core assembly housing with the alignment marks.
10. The medical device of claim 9, comprising an identification tag that is situated between the adhesive tape and the inside surface of the core assembly housing, the adhesive tape providing electrical isolation between the identification tag and the hybrid circuitry assembly.
11. The medical device of claim 7, wherein the tag/getter assembly includes a hydrogen getter situated on adhesive that is situated on adhesive tape attached to the inside surface of the core assembly housing, wherein the identification tag is situated between the adhesive tape and the inside surface of the core assembly housing.
12. The medical device of claim 7, wherein the core circuitry support structure includes a frame defining a cavity configured to receive at least a portion of the hybrid circuitry assembly, and an outer surface of the frame is shaped to correspond, to the inside surface of the core assembly housing.
13. An identification tag and hydrogen getter assembly comprising:
an identification tag formed of one of tungsten, lead, and platinum such that the identification tag is detectable in an x-ray image;
adhesive tape situated over the identification tag;
an adhesive situated on the adhesive tape; and
a hydrogen getter attached to the adhesive tape by the adhesive, wherein the identification tag comprises an allotment feature keyed into the identification tag for facilitating alignment of the identification tag to the hydrogen getter.
14. The identification tag and hydrogen getter assembly of claim 13, comprising a liner attached to the adhesive tape such that the identification tag is situated between the liner and the adhesive tape.
15. The identification tag and hydrogen getter assembly of claim 13, wherein the adhesive tape has adhesive on one side and the identification tag is attached by the adhesive to the one side of the adhesive tape.
16. The identification tag and hydrogen getter assembly of claim 13, wherein the identification tag is keyed so direction can be determined during manufacturing.
US16/655,351 2018-10-18 2019-10-17 X-ray ID tag hydrogen getter Active 2041-03-25 US11529212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/655,351 US11529212B2 (en) 2018-10-18 2019-10-17 X-ray ID tag hydrogen getter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862747554P 2018-10-18 2018-10-18
US16/655,351 US11529212B2 (en) 2018-10-18 2019-10-17 X-ray ID tag hydrogen getter

Publications (2)

Publication Number Publication Date
US20200121417A1 US20200121417A1 (en) 2020-04-23
US11529212B2 true US11529212B2 (en) 2022-12-20

Family

ID=68470636

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/655,351 Active 2041-03-25 US11529212B2 (en) 2018-10-18 2019-10-17 X-ray ID tag hydrogen getter

Country Status (5)

Country Link
US (1) US11529212B2 (en)
EP (1) EP3866914B1 (en)
JP (1) JP2022512725A (en)
CN (1) CN113260411B (en)
WO (1) WO2020081757A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4353305A1 (en) 2022-10-13 2024-04-17 BIOTRONIK SE & Co. KG Implantable medical device supporting an identification tag and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication
JP2006142013A (en) * 2004-11-12 2006-06-08 Given Imaging Ltd Device and method for examining body lumen
JP2006263468A (en) 2005-03-21 2006-10-05 Greatbatch Sierra Inc Rfid detection and identification system for implantable medical device
US20120065503A1 (en) 2010-09-15 2012-03-15 Medtronic, Inc. Radiopaque markers for implantable medical devices
JP2015026706A (en) * 2013-07-26 2015-02-05 パナソニック株式会社 Getter fixing structure and sensor device having the same
US20150116053A1 (en) * 2006-11-09 2015-04-30 Greatbatch Ltd. Header embedded filter for implantable medical device
US20150196867A1 (en) 2014-01-10 2015-07-16 Medtronic, Inc. Frames for implantable medical devices and methods
US20150321013A1 (en) 2014-05-07 2015-11-12 Cardiac Pacemakers, Inc. Implantable medical device with a hydrogen getter
US20160228716A1 (en) 2015-02-09 2016-08-11 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque id tag
US20170252555A1 (en) * 2016-03-07 2017-09-07 Second Sight Medical Products, Inc. Flexible Circuit Peripheral Nerve Stimulator with Low Profile Hybrid Assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568677A (en) * 1991-09-12 1993-03-23 Aderans Co Ltd Index piece for x-ray photographing
JP2005143661A (en) * 2003-11-12 2005-06-09 Toshiba Corp Bed for image diagnostic device
CN109069843B (en) * 2016-04-18 2022-12-13 心脏起搏器股份公司 Implantable medical device with core circuitry support structure

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication
JP2006142013A (en) * 2004-11-12 2006-06-08 Given Imaging Ltd Device and method for examining body lumen
JP2006263468A (en) 2005-03-21 2006-10-05 Greatbatch Sierra Inc Rfid detection and identification system for implantable medical device
US20150116053A1 (en) * 2006-11-09 2015-04-30 Greatbatch Ltd. Header embedded filter for implantable medical device
US20120065503A1 (en) 2010-09-15 2012-03-15 Medtronic, Inc. Radiopaque markers for implantable medical devices
US8903473B2 (en) 2010-09-15 2014-12-02 Medtronic, Inc. Radiopaque markers for implantable medical devices
JP2015026706A (en) * 2013-07-26 2015-02-05 パナソニック株式会社 Getter fixing structure and sensor device having the same
US20150196867A1 (en) 2014-01-10 2015-07-16 Medtronic, Inc. Frames for implantable medical devices and methods
US20150321013A1 (en) 2014-05-07 2015-11-12 Cardiac Pacemakers, Inc. Implantable medical device with a hydrogen getter
JP2017519543A (en) 2014-05-07 2017-07-20 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with hydrogen getter
US20160228716A1 (en) 2015-02-09 2016-08-11 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque id tag
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US20170252555A1 (en) * 2016-03-07 2017-09-07 Second Sight Medical Products, Inc. Flexible Circuit Peripheral Nerve Stimulator with Low Profile Hybrid Assembly

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US19/56641, dated Apr. 29, 2021, 8 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US19/56641, dated Jan. 15, 2020, 10 pages.
Japanese Office Action for Japanese patent application No. 2021-521086, dated May 31, 2022.

Also Published As

Publication number Publication date
CN113260411B (en) 2024-10-01
EP3866914B1 (en) 2023-08-23
JP2022512725A (en) 2022-02-07
US20200121417A1 (en) 2020-04-23
WO2020081757A1 (en) 2020-04-23
EP3866914A1 (en) 2021-08-25
CN113260411A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
US11706890B2 (en) IMD having a core circuitry support structure
US10327344B2 (en) Medical device housing with weld joint features
US11678847B2 (en) Power noise reduction for an integrated battery
US20190060655A1 (en) Header core fixation design for an imd
US11529212B2 (en) X-ray ID tag hydrogen getter
US20210251488A1 (en) Hermetically sealed implantable medical device and method of formation
EP4103270B1 (en) Implantable medical device having a biocompatible circuit board with embedded electrodes
US20220111218A1 (en) Imd enclosure formed using dielectric materials incorporating feedthru(s)

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: CARDIAC PACEMAKERS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STIEPER, DAVID P.;PRESCOTT, JOE;BOBGAN, JEAN M.;SIGNING DATES FROM 20191030 TO 20191031;REEL/FRAME:052062/0170

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE