US11422416B2 - Array substrate and display panel - Google Patents
Array substrate and display panel Download PDFInfo
- Publication number
- US11422416B2 US11422416B2 US17/044,019 US201817044019A US11422416B2 US 11422416 B2 US11422416 B2 US 11422416B2 US 201817044019 A US201817044019 A US 201817044019A US 11422416 B2 US11422416 B2 US 11422416B2
- Authority
- US
- United States
- Prior art keywords
- branch
- frame
- array substrate
- groove
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 64
- 239000003990 capacitor Substances 0.000 claims description 40
- 239000004973 liquid crystal related substance Substances 0.000 claims description 24
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 230000005684 electric field Effects 0.000 description 21
- 239000010408 film Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136204—Arrangements to prevent high voltage or static electricity failures
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136218—Shield electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136213—Storage capacitors associated with the pixel electrode
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- H01L27/1255—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/481—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs integrated with passive devices, e.g. auxiliary capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/123—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/441—Interconnections, e.g. scanning lines
Definitions
- This application relates to the field of display technologies, and in particular, to an array substrate and a display panel.
- the display panel generally includes an array substrate and a color film substrate disposed opposite to each other. Liquid crystal molecules are filled between the array substrate and the color film substrate.
- a pixel electrode located inside the sub-pixel and a first common electrode located at an edge of the sub-pixel are provided in the array substrate.
- a second common electrode having the same potential as the first common electrode is provided on the color film substrate.
- the pixel electrode is arranged to supply power to the sub-pixel for light emitting.
- the first common electrode includes a shielding electrode plate, and there is no voltage difference between the shielding electrode plate and the second common electrode, so that the liquid crystal molecules between them are all standing to cover the light source, thereby causing the edge of the sub-pixel to be displayed in a dark state.
- the electric field on the pixel electrode may be easily affected by the electric field on the first common electrode (shielding electrode plate), and dark lines may be formed at the edge of the sub-pixel, thereby affecting the transmittance of the panel.
- an array substrate and display panel capable of improving on the dark lines phenomenon at the edge of each sub-pixel.
- An array substrate includes:
- a pixel electrode including a frame and a branch connected to the frame, the frame surrounding the branch;
- a first common electrode insulated from the pixel electrode including a side plate disposed opposite to the frame, the side plate including a shielding electrode plate, wherein the shielding electrode plate surrounds an orthographic projection of the frame, and a groove is provided on a side of the side plate facing the branch.
- the groove is opposite to an orthographic projection of the branch.
- one groove is opposite to the orthographic projection of one branch.
- one groove is opposite to orthographic projections of a plurality of branches.
- a plurality of the grooves is opposite to the orthographic projection of one branch.
- the side plate further includes a capacitor electrode plate, the capacitor electrode plate and the shielding electrode plate being connected to each other, and the capacitor electrode plate forming a storage capacitor with the frame.
- the groove is formed on the capacitor electrode plate.
- the groove is disposed through the capacitor electrode plate and the shielding electrode plate.
- one groove is disposed opposite to an orthographic projection of one branch.
- an area of a notch of the groove is larger than an area of a surface of the branch facing a side of the groove.
- a cross-sectional shape of a cross section of the groove in a direction perpendicular to a thickness of the side plate is a polygon.
- the polygon is a quadrangle.
- the quadrangle is a rectangle, a square, a parallelogram, a diamond or a trapezoid.
- the polygon is a triangle, a pentagon or a hexagon.
- the pixel electrode further includes a trunk connected at both sides to the branch, and the trunk divides an internal region of the pixel electrode into a plurality of domains; the length directions of the branches in adjacent domains are different, and the grooves are disposed on the side plates corresponding to the domains.
- the trunk includes a first trunk and a second trunk; the first trunk intersects the second trunk and divides the inner region of the pixel electrode into four domains of equal size.
- the array substrate further includes a central plate, and the first trunk forms a storage capacitor with the central plate.
- the central plate connects opposite sides of the side plate.
- An array substrate includes:
- a pixel electrode including a frame, a trunk and a branch; the frame connects and surrounds the trunk and the branch; the trunk includes a first trunk and a second trunk, the first trunk intersecting the second trunk and dividing the inner region of the pixel electrode into four domains of equal size; the branch is distributed in each of the domains and connects the trunk and the frame, and the length directions of the branches in adjacent domains are different; and
- a first common electrode insulated from the pixel electrode including a side plate disposed opposite to the frame; the side plate includes a shielding electrode plate and a capacitor electrode plate; the shielding electrode plate surrounds an orthographic projection of the frame, the capacitor electrode plate forms a storage capacitor with the frame, and a groove opposite to orthographic projection of the branch is provided on a side of the side plate facing the branch.
- a display panel includes liquid crystal molecules, a color film substrate and an array substrate, wherein the array substrate is disposed opposite to the color film substrate, and the liquid crystal molecules are located between the color film substrate and the array substrate,
- the array substrate including:
- a pixel electrode including a frame and a branch connected the frame, the frame surrounding the branch;
- a first common electrode insulated from the pixel electrode including a side plate disposed opposite to the frame, the side plate including a shielding electrode plate, wherein the shielding electrode plate surrounds an orthographic projection of the frame, and a groove is provided on a side of the side plate facing the branch;
- the color film substrate includes a second common electrode, and the second common electrode and the first common electrode have an equal potential.
- the side plate of the first common electrode includes a shielding electrode plate, and a groove is provided on a side of the side plate facing the branch.
- the distance between the shielding electrode plate corresponding to the groove and a side of the frame connected to the branch is increased. Therefore, the influence of the electric field of the shielding electrode plate to the electric field of the branch through which the liquid crystal molecules transmit light is weaken, thereby improving on the dark line phenomenon at the edge of the sub-pixel.
- FIG. 1 is a schematic view of a display panel in one embodiment
- FIG. 2 is a schematic view of an array substrate in one embodiment
- FIG. 3 is a schematic view of an array substrate in another embodiment.
- the array substrate and the display panel provided in the present application may be applied to a liquid crystal display device such as liquid crystal television etc.
- a display panel in one embodiment, as shown in FIG. 1 , is provided.
- the display panel includes an array substrate 100 , a color film substrate 200 , and liquid crystal molecules 300 .
- the array substrate 100 is disposed opposite to the color film substrate 200 .
- the liquid crystal molecules 300 are located between the array substrate 100 and the color film substrate 200 .
- the array substrate 100 includes a first common electrode 110 , a pixel electrode 120 , an insulating layer 130 , and the like.
- the first common electrode 110 and the pixel electrode 120 are insulated from each other by the insulating layer 130 therebetween.
- the color film substrate 200 includes a second common electrode 210 .
- the second common electrode 210 and the first common electrode 110 have an equal potential.
- the display panel includes a plurality of pixel units. There is a plurality of sub-pixels in each pixel unit, for example, a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
- the color film substrate 200 may have a color resist layer, and the color resistance layer may include different color resistances. The color of each sub-pixel can be achieved by color resistance of different colors.
- Each of the pixel electrodes 120 is disposed opposite to a portion of the second common electrode 210 .
- Each sub-pixel corresponds to one pixel electrode 120 .
- a plurality of sub-pixels may share one second common electrode 210 .
- the sub-pixel may include a pixel electrode 120 , a second common electrode 210 opposite to the pixel electrode 120 , and liquid crystal molecules 300 therebetween.
- the liquid crystal molecules 300 in each of the sub-pixels may be deflected in a case where a voltage difference is formed between the pixel electrode 120 and the second common electrode 210 , thereby making each sub-pixel to be displayed transparently.
- a thin film transistor may also be included in the array substrate 100 .
- the pixel electrode 120 is electrically connected to the drain electrode of the thin film transistor, so as to charge the sub-pixel.
- the second common electrode 210 is electrically connected to the first common electrode 110 with an equal potential, so that the second common electrode 210 can be powered by the first common electrode 110 .
- the pixel electrode 120 includes a frame 121 and a branch 122 .
- the frame 12 surrounds the circumference of the branch 122 .
- the branch 122 and the frame 121 are connected.
- the first common electrode 110 includes a side plate 111 disposed opposite to the frame 121 .
- the side plate 111 includes a shielding electrode plate 111 a .
- the shielding electrode plate 111 a surrounds the orthographic projection of the frame 121 .
- the side plate 111 may be disposed opposite to a portion of the frame 121 (refer to FIG. 2 and FIG. 3 ), or may be disposed opposite to the whole frame 121 (not shown), and is not limited in this application.
- the shielding electrode plate 111 a is located between each sub-pixel and is opposite to the second common electrode 210 between the sub-pixels.
- the first common electrode 110 and the second common electrode 210 have an equal potential, and the shielding electrode plate 111 a is a part of the first common electrode 110 . Therefore, the shielding electrode plate 111 a and the second common electrode 210 between each of the sub-pixels have an equal potential, that is, there is no voltage difference between the shielding electrode plate 111 a and the second common electrode 210 .
- the liquid crystal molecules 300 between the shielding electrode plate 111 a and the second common electrode 210 between each of the sub-pixels stand along the equipotential lines, thereby obscuring the light source. In this way, the sub-pixels are displayed in a dark state. However, due to the interaction between the electric fields, the electric field on the shielding electrode plate 111 a also affects the electric field on the pixel electrode 120 in the vicinity thereof.
- the electric field generated by the voltage on the branch 122 guides the liquid crystal molecules 300 between the branch 122 and its surrounding region and the second common electrode 210 to be deflected and transmit light.
- the field strength between the branch 122 and the second common electrode 210 is E 1
- the field strength between the surrounding region of the branch 122 and the second common electrode 210 is E 2 . Since there is no voltage in the surrounding region, E 2 is weaker than E 1 . Therefore, when the electric field generated by the voltage of the branch 122 near the shielding electrode plate 111 a is weakened by the electric field generated by the voltage on the shielding electrode plate 111 a , the field strength E 2 between the surrounding region around here and the second common electrode 210 becomes weaker. As a result, the corresponding liquid crystal molecules 300 are easily deflected out of order, and the light cannot be normally transmitted, so that dark lines are likely to be formed as the edge of the sub-pixel, which affects the transmittance of the panel.
- the side plate 111 of the first common electrode 110 is disposed opposite to the frame 121 of the pixel electrode 120 .
- the frame 121 of the pixel electrode 120 surrounds the branch 122 .
- a groove 111 b is provided on a side of the side plate 111 facing the branch 122 .
- the distance between the shielding electrode plate 111 corresponding to the groove 111 b and an inner side of the frame 121 (a side connected to the branches 122 ) is pulled away. Therefore, the influence on to the electric field on the branch 122 through which the liquid crystal molecules transmit light due to the electric field on the shielding electrode plate 111 is weaken, thereby improving on the dark line phenomenon at the edge of the sub-pixel.
- the groove 111 b on the first common electrode 110 is opposite to the orthographic projection of the branch 122 on the pixel electrode.
- one groove 111 b may be opposite to one orthographic projection of the branch 122
- one groove 111 b may be opposite to a plurality of orthographic projections of the branches 122
- a plurality of grooves 111 b may be opposite to one orthographic projection of the branch 122 .
- the dark line phenomenon at the edge of the sub-pixel is mainly due to the electric field on the branch 122 being affected by the electric field on the shielding electrode plate 111 a . Therefore, by arranging the groove 111 b opposite to the orthographic projection of the branch 122 , the distance between the branch 122 and the shielding electrode plate 111 a can be directly pulled away. In this way, it may be better to resist the influence on the electric field on the shielding electrode plate 111 a , and the dark lines can be more effectively suppressed.
- the groove 111 b may not be disposed opposite to the orthographic projection of the branch 122 or may be disposed opposite to a part of the orthographic projection of the branches 122 , which is not limited in this application.
- the side plate 111 further includes a capacitor electrode plate 111 c .
- the capacitor electrode plate 111 c and the shielding electrode plate 111 a are connected to each other.
- the capacitor electrode plate 111 c forms a storage capacitor with the frame 121 .
- the storage capacitor can keep the voltage on the pixel electrode 120 continuous during the process of displaying. In this way, there is a continuous voltage supply on the pixel electrode 120 , so as to effectively avoid display abnormality.
- the groove 111 b is formed on the capacitor electrode plate 111 c . That is, the groove is provided on the capacitor electrode plate 111 c , and the whole groove 111 b is surrounded by the capacitor electrode plate 111 c , thereby ensuring that the capacity on the storage capacitor is sufficiently large so as to keep the voltage on the pixel electrode 120 continuous.
- the groove 111 b may be disposed through the capacitor electrode plate 111 c and the shielding electrode plate 111 a , etc., and the groove 111 b is not limited to being formed only on the capacitor electrode plate 111 c.
- one groove 111 b is disposed opposite to one orthographic projection of the branch 122 .
- the portion between the grooves 111 b may also be used to form a storage capacitor, thereby increasing the capacity of the capacitor.
- an area of a notch of the groove 112 b is set to be larger than an area of a surface of the branch facing a side of the groove 111 b .
- the groove 111 b protects the branch 122 sufficiently from the influence from the electric field on the shielding electrode plate 111 a.
- a cross-sectional shape of a cross section of the groove 111 b in a direction perpendicular to a thickness of the side plate 111 is a quadrilateral, so as to facilitate the patterning process of the groove 111 b .
- the quadrilateral may be a rectangle, a square, a parallelogram, a diamond, a trapezoid, or the like.
- the above quadrilateral may also be replaced by any other polygons, such as a triangle, a pentagon, a hexagon, or the like.
- the above quadrilateral may be replaced by a non-polygon (such as a circular arc).
- the pixel electrode 120 further includes a trunk 123 .
- the trunk 123 is connected to the branch 122 at both sides.
- the trunk 123 divides the pixel electrode 120 into a plurality of domains such that there is a plurality of domains within one sub-pixel.
- the length directions of the branches 122 in adjacent domains are different. Therefore, when a voltage is applied, the tilt directions of the liquid crystal molecules 300 in various domains are different. Therefore, the liquid crystal molecules 300 in one sub-pixel have various tilt directions. In this way, it is more advantageous to display a wide viewing angle of the display panel.
- the groove 111 b is provided on the side plate 111 corresponding to the domain. In this way, the distance between the inner side of the frame 121 corresponding to the domain and the shielding electrode plate 111 a may be pulled away, thereby effectively improving on the dark line phenomenon in the domain of the sub-pixel.
- the dark line phenomenon can be effectively improved in each domain, thereby further suppressing the edge dark lines effectively in the whole sub-pixel.
- the array substrate 100 includes the first common electrode 110 and the pixel electrode 120 .
- the pixel electrode 120 includes a frame 121 , a trunk 123 , and a branch 122 .
- the frame 121 connected and surrounds the trunk 123 and the branch 122 .
- the trunk 123 includes a first trunk 1231 and a second trunk 1232 .
- the first trunk 1231 intersects the second trunk 1232 and divides the inner region of the pixel electrode 120 into four domains in equal sizes.
- the branches 122 are distributed in each of the domains and connect the trunk 123 and the frame 121 .
- the length directions of the branches 122 in adjacent domains are different.
- the angle between the extending direction of the branches 122 of the four domains and a trunk 123 may be ⁇ 45° and ⁇ 135°, respectively.
- the tilt directions of the liquid crystal molecules 300 in the four domains are different.
- the first common electrode 110 includes a side plate 111 disposed opposite to the frame 121 .
- the side plate 111 includes a shielding electrode plate 111 and a capacitor electrode plate 112 that are connected to each other.
- the shielding electrode plate 111 surrounds the orthographic projection of the frame 121 .
- the shielding electrode plate 111 is opposite to the second common electrode 210 between each of the sub-pixels, so that the liquid crystal molecules 300 between the shielding electrode plate 111 and the second common electrode 210 are shielded from light to display a dark state.
- the capacitor electrode plate 112 and the frame 121 form a storage capacitor. The storage capacitor keeps the voltage on the pixel electrode 120 continuous during the process of displaying.
- the first common electrode 110 may further be provided with a central plate 112 , and the central plate 112 may be connected to opposite sides of the side plate 111 , thereby facilitating connecting with the side plate 111 in an equal potential.
- the central board 112 can be disposed opposite to a trunk 123 (e.g., the first trunk 1231 ) to form a storage capacitor.
- the groove 111 b opposite to orthographic projection of the branch 122 is provided on a side of the side plate 111 facing the branch 122 .
- the distance between the branch 122 and the shielding electrode plate 111 a is pulled away by the groove 111 b , thereby effectively reducing the influence on the electric field on the branch 122 due to the electric field on the shielding electrode plate 111 a . Therefore, the dark lines at the edge of the sub-pixel are effectively suppressed.
- the side plate of the first common electrode includes a shielding electrode plate, and a groove is provided on a side of the side plate facing the branch.
- the distance between the shielding electrode plate corresponding to the groove and a side of the frame connected the branch is increased. Therefore, the influence on the electric field on the branch through which the liquid crystal molecules transmit light due to the electric field on the shielding electrode plate is weaken, thereby improving the dark line phenomenon at the edge of the sub-pixel.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
- Power Engineering (AREA)
- Geometry (AREA)
Abstract
Description
Claims (19)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811269419.1A CN109188796B (en) | 2018-10-29 | 2018-10-29 | Array substrate and display panel |
| CN201811269419.1 | 2018-10-29 | ||
| PCT/CN2018/115179 WO2020087567A1 (en) | 2018-10-29 | 2018-11-13 | Array substrate and display panel |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20210124224A1 US20210124224A1 (en) | 2021-04-29 |
| US11422416B2 true US11422416B2 (en) | 2022-08-23 |
Family
ID=64944251
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/044,019 Active US11422416B2 (en) | 2018-10-29 | 2018-11-13 | Array substrate and display panel |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US11422416B2 (en) |
| CN (1) | CN109188796B (en) |
| WO (1) | WO2020087567A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109859705A (en) * | 2019-01-30 | 2019-06-07 | 惠科股份有限公司 | Driving method, display panel and driving module |
| CN113900305B (en) * | 2021-10-11 | 2023-10-20 | 厦门天马微电子有限公司 | Display panel and display device |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020033922A1 (en) * | 2000-07-28 | 2002-03-21 | Nec Corporation | Liquid crystal display apparatus |
| US8045104B2 (en) * | 2005-08-31 | 2011-10-25 | Lg Display Co., Ltd. | In-plane switching mode liquid crystal display and method for manufacturing the same, comprising first and second black matrix lines |
| US20120154703A1 (en) * | 2009-08-24 | 2012-06-21 | Masahiro Yoshida | Liquid crystal display device |
| US20120249941A1 (en) * | 2011-03-31 | 2012-10-04 | Toshiba Mobile Display Co., Ltd. | Liquid crystal display device |
| CN103901663A (en) | 2014-03-28 | 2014-07-02 | 南京中电熊猫液晶显示科技有限公司 | Color film substrate for liquid crystal displays |
| CN104199224A (en) | 2014-09-18 | 2014-12-10 | 深圳市华星光电技术有限公司 | Liquid crystal display panel |
| US20160062200A1 (en) | 2014-09-03 | 2016-03-03 | Samsung Display Co., Ltd. | Thin film transistor array substrate, method for manufacturing the same, and liquid crystal display including the same |
| US20160252793A1 (en) * | 2014-07-09 | 2016-09-01 | Boe Technology Group Co., Ltd. | Array substrate, its manufacturing method, display panel and display device |
| CN106094368A (en) | 2016-08-26 | 2016-11-09 | 深圳市华星光电技术有限公司 | Pixel electrode |
| CN107367873A (en) | 2017-09-15 | 2017-11-21 | 深圳市华星光电半导体显示技术有限公司 | A kind of liquid crystal display panel and its pixel cell |
| CN208848020U (en) | 2018-10-29 | 2019-05-10 | 惠科股份有限公司 | Array substrate and display panel |
-
2018
- 2018-10-29 CN CN201811269419.1A patent/CN109188796B/en active Active
- 2018-11-13 US US17/044,019 patent/US11422416B2/en active Active
- 2018-11-13 WO PCT/CN2018/115179 patent/WO2020087567A1/en not_active Ceased
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020033922A1 (en) * | 2000-07-28 | 2002-03-21 | Nec Corporation | Liquid crystal display apparatus |
| US8045104B2 (en) * | 2005-08-31 | 2011-10-25 | Lg Display Co., Ltd. | In-plane switching mode liquid crystal display and method for manufacturing the same, comprising first and second black matrix lines |
| US20120154703A1 (en) * | 2009-08-24 | 2012-06-21 | Masahiro Yoshida | Liquid crystal display device |
| US20120249941A1 (en) * | 2011-03-31 | 2012-10-04 | Toshiba Mobile Display Co., Ltd. | Liquid crystal display device |
| CN103901663A (en) | 2014-03-28 | 2014-07-02 | 南京中电熊猫液晶显示科技有限公司 | Color film substrate for liquid crystal displays |
| US20160252793A1 (en) * | 2014-07-09 | 2016-09-01 | Boe Technology Group Co., Ltd. | Array substrate, its manufacturing method, display panel and display device |
| US20160062200A1 (en) | 2014-09-03 | 2016-03-03 | Samsung Display Co., Ltd. | Thin film transistor array substrate, method for manufacturing the same, and liquid crystal display including the same |
| CN104199224A (en) | 2014-09-18 | 2014-12-10 | 深圳市华星光电技术有限公司 | Liquid crystal display panel |
| CN106094368A (en) | 2016-08-26 | 2016-11-09 | 深圳市华星光电技术有限公司 | Pixel electrode |
| CN107367873A (en) | 2017-09-15 | 2017-11-21 | 深圳市华星光电半导体显示技术有限公司 | A kind of liquid crystal display panel and its pixel cell |
| CN208848020U (en) | 2018-10-29 | 2019-05-10 | 惠科股份有限公司 | Array substrate and display panel |
Non-Patent Citations (2)
| Title |
|---|
| Chinese Office Action dated Jun. 17, 2019, issued in corresponding CN Application No. 201811269419.1, filed Oct. 29, 2018, 8 pages. |
| English Translation of the International Search Report dated Aug. 2, 2019, issued in corresponding International Application No. PCT/CN2018/115179, filed Nov. 13, 2018, 2 pages. |
Also Published As
| Publication number | Publication date |
|---|---|
| CN109188796B (en) | 2020-01-07 |
| CN109188796A (en) | 2019-01-11 |
| US20210124224A1 (en) | 2021-04-29 |
| WO2020087567A1 (en) | 2020-05-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10088720B2 (en) | TFT array substrate and display device with tilt angle between strip-like pixel electrodes and direction of initial alignment of liquid crystals | |
| US10108055B2 (en) | Curved liquid crystal display | |
| US20140267962A1 (en) | Liquid crystal display | |
| US9766525B2 (en) | Active-matrix substrate and display device | |
| US9846327B2 (en) | Liquid crystal display with reduced color mixing | |
| US9772522B2 (en) | Curved display device | |
| US20120105784A1 (en) | Pixel structure and display panel | |
| JP2014531051A (en) | Array substrate for display device, color filter substrate, and manufacturing method thereof | |
| US10295871B2 (en) | Liquid crystal display panel and liquid crystal display device | |
| US9568782B2 (en) | Display panel and display device | |
| US9195100B2 (en) | Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped | |
| US20160054625A1 (en) | Liquid crystal display panel | |
| US10620487B2 (en) | Pixel structure, array substrate, display device and method for manufacturing the same | |
| JPWO2012002073A1 (en) | Display panel and display device | |
| JP2010243875A (en) | Liquid crystal display device | |
| WO2016078208A1 (en) | Array substrate, display device | |
| US11422416B2 (en) | Array substrate and display panel | |
| KR102000648B1 (en) | Array substrate, display device and manufacturing method of the array substrate | |
| KR20170061734A (en) | Liquid crystal display device | |
| US11366365B2 (en) | Array substrate and display panel | |
| US10139684B2 (en) | Liquid crystal display and electronic apparatus having electrodes with openings therein | |
| WO2019085194A1 (en) | Isplay panel and display device having same | |
| CN208848020U (en) | Array substrate and display panel | |
| WO2020087660A1 (en) | Array substrate and display panel | |
| KR101225588B1 (en) | Array substrate and display panel having the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| AS | Assignment |
Owner name: HKC CORPORATION LIMITED, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIU, ZHONGNIAN;REEL/FRAME:057596/0924 Effective date: 20200918 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |