US11235666B2 - Vehicle for travelling along a linear route guideway - Google Patents
Vehicle for travelling along a linear route guideway Download PDFInfo
- Publication number
- US11235666B2 US11235666B2 US16/331,723 US201716331723A US11235666B2 US 11235666 B2 US11235666 B2 US 11235666B2 US 201716331723 A US201716331723 A US 201716331723A US 11235666 B2 US11235666 B2 US 11235666B2
- Authority
- US
- United States
- Prior art keywords
- traction
- vehicle
- engine
- traction engine
- guideway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/10—Combination of electric propulsion and magnetic suspension or levitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/006—Electric propulsion adapted for monorail vehicles, suspension vehicles or rack railways
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/03—Electric propulsion by linear motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/04—Magnetic suspension or levitation for vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/04—Magnetic suspension or levitation for vehicles
- B60L13/06—Means to sense or control vehicle position or attitude with respect to railway
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/112—Roll movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/08—Sliding or levitation systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/10—Tunnel systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/12—Induction machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/14—Synchronous machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/22—Yaw angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/18—Roll
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C29/00—Bearings for parts moving only linearly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C29/00—Bearings for parts moving only linearly
- F16C29/02—Sliding-contact bearings
- F16C29/025—Hydrostatic or aerostatic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0472—Active magnetic bearings for linear movement
Definitions
- the application relates generally to transportation vehicles and, more particularly, to vehicles circulating within cylindrical tubes, pipes, or tunnels.
- the traction forces might be highly sensitive to the separation distance between the traction engine and a traction surface.
- Various engines that either provide forward thrust or braking, or transverse levitation or weighting (e.g. repulsion or attraction) might experience such a problem.
- unevenness of the traction surface might damage the traction engine if the separation distance suddenly decreases below a given threshold while the uneven traction surface is traversed by the vehicle.
- excessive vibration of the vehicle due to unsteady traction forces might impair passenger discomfort.
- a transportation vehicle vessel, mobile object, or other mobile device coupled to one or more traction engines.
- the vehicle travels with respect to a traction surface.
- the traction engine(s) exert a force with respect to the traction surface, thereby accelerating the vehicle, braking the vehicle, levitating the vehicle, and/or otherwise exerting a force on the vehicle.
- Each traction engine may be implemented as a contact-free magnetic and/or electromagnetic device such as a linear induction motor or linear synchronous motor, electrodynamic suspension, electromagnetic suspension, or permanent magnet suspension, or an air bearing, or a contact device such as one or more wheels or contact motor drives, or more generally a device which creates or transforms force with respect to a corresponding traction surface.
- the predictive suspension system collects time-evolving information about a traction surface, stores and/or processes the data, and uses the data to provide extra-causal (advance foreknowledge) control of traction engine(s), and/or control of suspension actuator(s) that adjust the position of traction devices such as wheels, or traction engine(s), with respect to the vehicle.
- the coupled suspension system consists of at least one traction engine, sensors to sense one or more dynamic and/or kinematic quantities of the traction engine(s) (e.g. traction force and/or proximity between traction engine and traction surface), and one or more suspension actuator(s), where both the traction engine(s) and suspension actuator(s) are controlled in a coupled manner based on sensor readings.
- the coupled suspension system may be employed in traditional wheel-based vehicles, such as trains or automobiles.
- the traction torquing vehicle system allows a vehicle that is travelling along a traction surface to torque and/or manoeuvre in one or more of the following axes: roll, pitch, and yaw.
- a vehicle for travelling along a linear route guideway comprising a body configured to accommodate cargo, equipment or passenger(s); traction engines on the body of the vehicle configured to orient the body within relative to the linear route guideway; and a controller for actuating at least one of the traction engines as a function of a desired orientation of the vehicle relative to the linear route guideway.
- the traction engines include, for instance, vertical levitation and lateral levitation traction engines on the body of the vehicle configured to position the body within relative to the linear route guideway; at least one torquing traction engine on the body and operable to adjust a roll of the body relative to the tube, whereby the controller actuates the at least one torquing traction engine as a function of a desired roll of the vehicle relative to the linear route guideway.
- the linear route guideway is, for instance, of the type having a guideway defining a first traction surface, and lateral traction surfaces, and wherein the vertical levitation traction engines are configured to provide levitation through vertical attraction with the first traction surface, and the lateral levitation traction engines are configured to provide electrodynamic lateral forces through lateral attraction with the lateral traction surfaces.
- the at least one torquing traction engine is, for instance, configured to provide electrodynamic torque through attraction with at least one of the lateral traction surfaces.
- At least a pair of the vertical levitation traction engines are, for instance, diametrically opposed on the body.
- the vehicle further comprises a pair of the vertical levitation traction engines on a bottom of the body, and a pair of the vertical levitation traction engines on a top of the body.
- a pair of the lateral levitation traction engines are, for instance, diametrically opposed on the body.
- the vehicle further comprises a pair of the lateral levitation traction engines on a right side of the body, and a pair of the vertical levitation traction engines on a left side of the body.
- the controller actuates, for instance, traction engines as a function of a desired pitch of the vehicle relative to the linear route guideway.
- the controller actuates the traction engines, for instance, as a function of a desired yaw of the vehicle in the tube.
- At least one of the vertical levitation traction engine(s), the lateral levitation traction engine(s) and the at least one torquing traction engine are, for instance, operatively mounted to the body by actuated bracing members, the controller, for instance, actuates the bracing members to adjust a distance between the at least one of the vertical levitation traction engine(s), the lateral levitation traction engine(s) and the at least one torquing traction engine and a surface of the tube.
- the vehicle further comprises sensors detecting a distance between the traction engines and a traction surface in the tube, the controller actuating the bracing members to adjust the distance.
- the controller records traction surface information from the sensors, for instance, as a function of the axial position along the tube.
- the controller receives traction surface information, for instance, as a function of the axial position along the tube, the controller actuating the bracing members to adjust the distance by determining the axial position along the tube.
- the controller controls both an actuator and a corresponding traction engine, simultaneously, for instance, for regulating a force delivered from the corresponding traction engine, and a separation distance between the traction engine and the surface of the tube.
- the vehicle comprises at least two of the torquing traction engines located at two diametrically opposed locations on the body.
- the traction engines are, for instance, linear induction motors and/or linear synchronous motors.
- a tube-based transportation system comprising: a tube having a guideway defining a first traction surface, and lateral traction surface; and at least one vehicle as described above.
- a controller system for a vehicle for travelling along a linear route guideway comprising: sensors for determining a position and an orientation of the vehicle relative to the linear route guideway; levitation control module for operating vertical levitation and lateral levitation traction engines on the body of the vehicle to control the position of the relative to the linear route guideway; and an orientation control module for operating at least one torquing traction engine on the vehicle to adjust the orientation of a body of the vehicle relative to the linear route guideway, as a function of at least a desired roll of the vehicle relative to the linear route guideway.
- the linear route guideway is, for instance, of the type having a guideway defining a first traction surface, and lateral traction surfaces, and wherein the levitation control module operates the vertical levitation traction engines to provide magnetic levitation through vertical attraction with the first traction surface, and the lateral levitation traction engines to provide electrodynamic lateral forces through lateral attraction with the lateral traction surfaces.
- the orientation control module actuates the at least one torquing traction engine to provide electrodynamic torque through attraction with, for instance, at least one of the lateral traction surfaces.
- the orientation control module actuates the vertical levitation traction engines, for instance, as a function of a desired pitch of the vehicle in the tube.
- the orientation control module actuates the lateral levitation traction engines, for instance, as a function of a desired yaw of the vehicle in the tube.
- a distance adjustment module actuates bracing members supporting at least one of the vertical levitation traction engine(s), the lateral levitation traction engine(s) and the at least one torquing traction engine, for instance, to adjust a distance between the at least one of the vertical levitation traction engine(s), the lateral levitation traction engine(s) and the at least one torquing traction engine and a surface of the linear route guideway.
- the sensors detect, for instance, a distance between the traction engines and a traction surface in the linear route guideway, the distance adjustment module actuating the bracing members to adjust the distance.
- the controller system records traction surface information from the sensors, for instance, as a function of the axial position along the linear route guideway.
- the controller receives traction surface profile information, for instance, as a function of the axial position along the linear route guideway, the distance adjustment module actuating the bracing members as a function of the axial position of the vehicle along the linear route guideway and the traction surface profile information.
- the controller receives route topography data, for instance, as a function of the axial position along the linear route guideway, the orientation control module operating at least one of the traction engines to adjust the orientation of the body of the vehicle based on the axial position of the vehicle along the linear route guide way and the route topography data.
- a controller system for a vehicle for travelling along a linear route guideway comprising: sensors for determining a position and an orientation of the vehicle in the linear route guideway; levitation control module for operating traction engines on the body of the vehicle to control the position of the body relative to the linear route guideway; and an orientation control module for operating the traction engines on the vehicle to adjust the orientation of a body of the vehicle relative to the linear route guideway, as a function of at least a desired orientation of the vehicle in the linear route guideway.
- the traction engine(s) are configured, for instance, to provide torque to the vehicle and/or body, and operable to adjust the roll angle of the body relative to the linear route guideway, whereby the controller actuates the at least one torquing traction engine as a function of a desired roll of the vehicle relative to the linear route guideway.
- the at least one torquing traction engine is configured, for instance, to provide torque through magnetic field interaction with at least one traction surface on the guideway, using magnetic attraction, repulsion, and/or magneto dynamic forces.
- At least a pair of the torquing traction engines are, for instance, diametrically opposed in their forces due to their mounted orientations and positions on the vehicle.
- the linear route guideway includes, for instance, at least one traction surface along its length, and wherein the vertical levitation traction engine(s) are configured, for instance, to provide magnetic levitation through magnetic repulsion with the at least one traction surface.
- the linear route guideway includes, for instance, at least one traction surface along its length, and wherein vertical levitation traction engine(s) are configured, for instance, to provide levitation through magnetic attraction with the at least one traction surface.
- a linear route guideway consisting of at least one traction surface along its length for magnetic force interaction with at least one traction engine on a vehicle, wherein said traction surface(s) is/are curved in a concave shape around a centre axis aligned with the direction of intended vehicle motion, to allow for changes in roll angle of the vehicle while maintaining proximity between said traction engine(s) and corresponding said traction surface(s).
- a linear route guideway consisting of at least one traction surface along its length for contact with at least one contact-based traction engine and/or wheel on a vehicle, wherein said traction surface(s) is/are curved in a concave shape around a centre axis aligned with the direction of intended vehicle motion, to allow for changes in roll angle of the vehicle while maintaining contact between said traction engine(s) and/or wheel, and corresponding said traction surface(s).
- the linear route guideway consists of, for instance, a cylindrical tube structure, and where at least one said traction surface(s) are mounted to the inside of said tube structure.
- the linear route guideway consists of, for instance, a cylindrical tube structure, wherein said cylindrical tube structure forms part or all of at least one traction surface(s).
- FIG. 1 is a block diagram illustrating the predictive suspension system
- FIG. 2 is a side elevation view of a coupled suspension system in accordance with a particular embodiment
- FIG. 3 is a side elevation view of a coupled suspension system in accordance with another particular embodiment
- FIG. 4 a is a graph illustrating variations of a vertical position of a vehicle body, a traction engine, and of a traction surface and a levitation force between the vehicle and the traction surface in function of a position along the traction surface;
- FIG. 4 b is a graph illustrating variations of the vertical position of the vehicle body, the traction engine, and of the traction surface and the levitation force between the vehicle and the traction surface in function of the position along the traction surface;
- FIG. 5 is a schematic tridimensional view of a torquing vehicle contained within a cylindrical guideway.
- the energy consumption of a vehicle using magnetic forces or air bearings to force the vehicle with respect to a traction surface decreases with the reduction of a distance between the traction surface and the traction engines. This phenomenon occurs because the magnetic forces typically decreases with the square of the distance. Similarly, for air bearings, the force decreases highly nonlinearly with the distance. Therefore, a smaller separation distance between a traction surface and a traction engine might be beneficial. Stated otherwise, the smaller the distance between the traction surface and the traction engine, the less power or air flow is required to maintain the distance. However, the smaller the traction surface is, the more the vehicle might be subjected to damage caused by the unevenness of the traction surface.
- a suspension system may be used to dampen the unevenness of the traction surface while keeping the distance as small as possible.
- traditional active suspensions have a limited reaction time. This might be problematic if the vehicle is operated at a high velocity.
- avoiding bumps or other obstacles on the driving surface can only begin once those bumps or obstacles are detected by a sensor.
- a predictive suspension system (PSS) 10 to be implemented in a vehicle fleet is illustrated.
- the PSS 10 collects time-evolving information about a traction surface (not shown), stores and/or processes the data, and, during subsequent trips of the vehicle on the traction surface, uses the data to provide extra-causal (advance foreknowledge) control of traction engine(s), and/or control of suspension actuator(s) that adjust the position of traction devices such as wheels, or traction engine(s), with respect to the vehicle.
- the vehicle fleet includes two in-service vehicles 12 (more than two may be used) and one inspection vehicle 14 (more than one may be used).
- Each of the in-service vehicles 12 is equipped with at least one traction module 12 a .
- the traction module 12 a includes a controller 16 (with levitation control module, orientation control module, distance adjustment module), sensor(s) 18 , a local database 20 , and traction devices and actuator(s) 22 .
- the controller 16 which, by having advance foreknowledge of an obstacle, can trigger the retraction of the traction device(s) 22 in advance, leaving sufficient time and space to move each traction device 22 , traction module 12 a , or vehicle 12 out of the way of a dangerous obstacle in advance of its arrival.
- safety is increased by briefly sacrificing proximity between the traction device and the traction surface, for an increased margin of safety between the traction device and an obstacle or other uneven portion of the traction surface, both on its forward and leeward sides.
- the controller 16 Even if the traction surface is uneven within safe limits, vehicle vibration might be reduced since the controller 16 has advance foreknowledge of the surface's profile shape.
- the controllers 16 track their objective function more accurately if they know the environmental variables in advance, i.e. basing their calculations on past, present and future sensor readings, rather than only past and present sensor readings.
- the in-service vehicles 12 pass by a location on the traction surface, and data is gradually measures by the sensor(s) 18 and built up in respective local databases 20 of the traction module 12 a of the in-service vehicles 12 .
- the PSS 10 further comprises a central route management system 24 that includes a master database 26 .
- the data collected and stored in the local databases 20 of the in-service vehicles 12 is periodically transmitted to the master database 26 .
- This data is consolidated from the most up-to-date measurements from all of the in-service vehicles 12 , appropriately storing spatial data according to the position coordinates on the traction surface that each vehicle traversed, for each trip.
- the inspection vehicle 14 may comprise sensors 18 , a local database 20 , engines 22 , and/or a drive controller 28 , and combinations thereof.
- the inspection vehicle 14 initially and/or periodically takes measurements of the traction surface.
- the inspection vehicle 14 takes measurements during maintenance periods or during low-traffic periods.
- the in-service vehicles 12 take measurements further to receiving the traction surface profile they receive from the master database 26 .
- the drive controller 28 is specialized for an inspection vehicle which does not have traction engine suspension actuators to save cost, and must be controlled at lower speed to avoid collisions between the contact engine and traction surface; however, an alternate embodiment of the inspection vehicle includes identical or similar systems to the in-service vehicles.
- the central route management system 24 comprises a coordinated system wide vehicle management module (CSWVMM) 30 . If two or more data points are measured for the same location, the CSWVMM module 30 uses arbitration methods to reconcile any differences in the data, such as outlier rejection and/or statistical norms. In a particular embodiment, spatial smoothing operations are performed if two or more data points are in close proximity. The smoothing operations may be, for example, spatial low-pass filtering and/or spatial regression. Any suitable smoothing operations may be used.
- the central route management system 24 further comprises an extrapolation module 32 that performs nonlinear spatiotemporal extrapolation from measured coordinates to obtain unmeasured coordinates, and/or, marking those yet-unmeasured coordinates such that the in-service vehicles 12 proceed at a smaller speed with caution until those coordinates are measured.
- the consolidated data is periodically transmitted or copied from the master database 26 to the local databases 20 on each of the vehicles 12 and 14 .
- the PSS 10 stores time-history records of the traction surface profile, in the master database 26 of the central route management system 24 and/or in each of the vehicles 12 and 14 , along with an extrapolation function performed by the extrapolation module 32 to analyze changes in the traction surface such as warping, drifting, settling, cracking, etc., and predict past, present and/or future surface profiles, based on the time-based historical information.
- This might provide the vehicles 12 and 14 with information about a prediction of the current surface profile at a time when they will pass the traction surface, even if a time interval is present between the last measurement and the time the vehicles will pass on the traction surface, and even if the surface profile may have continued to change in the interim.
- the prediction is performed by the rejection of outliers, by multilevel windowing of the time sequence according to how relatively recent each database entry was measured, and by polynomial regression.
- the CSWVMM 30 commands other aspects of the vehicle motion, such as velocity, acceleration, etc.
- the controller 16 communicates with the sensor(s) 18 , with the local database 20 and with the engines and actuators 22 via suitable lines 34 or wirelessly.
- the local databases 20 of each of the traction modules 12 a and of the inspection vehicle 14 communicates with the master database 26 and with the extrapolation module 32 of the central route management system 24 .
- the controllers 16 of each of the traction modules 12 a communicates with the CSWVMM 30 .
- the traction modules 12 a and the inspection vehicle 14 communicate with each other via suitable lines 36 or wirelessly.
- each of the controllers 16 and 28 of the traction modules 12 a and of the inspection vehicle 14 are in communication with each other to exchange information about the tractions surface.
- Each of the local databases 20 of the traction modules 12 a and of the inspection vehicle 14 communicates with each other to exchange information about the tractions surface.
- a coupled suspension system 100 comprises a traction engine 102 mounted on a supporting plate 104 for integral movements therewith, and a suspension actuator 106 pivotally connected to the supporting plate 104 at one extremity and to a structural element 108 of a vehicle 108 ′ via a load bearing joint 110 at another extremity.
- the load bearing joint 110 is configured to transmit longitudinal, lateral, and normal forces from the traction engine 102 to the vehicle structural element 108 .
- the actuator 106 is a hydraulic piston actuator and the traction engine 102 is a linear induction motor that provides normal force (e.g. levitation) along direction Y and/or longitudinal force (e.g.
- the actuator 106 may be, for example, an electrical actuator, a pneumatic actuator, geared motors, servo mechanisms, piezoelectric transducers, or any suitable actuators.
- the actuator 106 may be used as a component of a passive suspension system and may be used as a force sensor.
- the traction engine 106 is further connected to the vehicle structural element 108 via two or more longitudinal bracing members 112 pivotally connected to the supporting plate 104 at one extremity and to the vehicle structural element 108 at another extremity via load bearing joints 114 to transmit longitudinal, lateral, and normal forces from the traction engine 102 to the vehicle structural element 108 .
- the coupled suspension system 100 further comprises sensors 116 that includes a forward proximity sensor 116 a located at a forward end of the traction engine 102 and an aft proximity sensor 116 b located at an aft end of the traction engine 102 .
- the sensors 116 sense proximity along a direction perpendicular to the traction surface S and denoted by arrows 118 on FIG. 2 .
- the sensors 116 sense a variation V in a separation distance D between the traction engine 102 and the traction surface S. Stated otherwise, the sensors 116 are configured to sense the variation V in the traction surface S over the course of its length. It is understood that one or more than two sensors might be used without departing from the scope of the present disclosure.
- the coupled suspension system 100 further includes a controller 120 to which the traction engine 102 and the sensors 116 are operatively connected via suitable connecting lines 122 a and 122 b .
- the actuator 106 is fluidly connected to a compressor and hydraulic valve(s) (not shown) located on-board the vehicle 108 ′ via hydraulic conduits 122 c .
- the controller 120 is operatively connected to the actuator 106 to control its movements. It is understood that the hydraulic conduits 122 c may be replaced by electrical lines or pneumatic conduits depending on the type of actuator used in the system 100 .
- the controllers 120 is configured to make the actuator 106 extend or retract based on readings by the sensors 116 .
- the coupled suspension system 100 includes a pilot mechanism 130 , also referred to as an anti-snag ramp plow, located adjacent to a leading edge of the traction engine 102 .
- the pilot mechanism 130 is used as a hardware backup mechanism that might preclude an obstacle from colliding against the coupled suspension system 100 if the system does not prevent a collision for any reason.
- the pilot mechanism 130 has a trapezoidal shape when seen in a X-Y plane.
- the pilot mechanism 130 has a fore end 130 a and a rear end 130 b longitudinally spaced apart from the fore end 130 a relative to the traction surface longitudinal axis L.
- the fore end 130 a is oriented toward a direction of travel F of the vehicle 108 ′.
- the fore end 130 a has a height relative to the axis Y that is less than a height of the rear end 130 b such that the pilot mechanism 130 defines a sloped surface 130 c .
- the rear end height is such that the traction engine 102 is hidden, or protected by the pilot mechanism 130 .
- the pilot mechanism 130 via its sloped surface 130 c , forces the vehicle 108 ′ over or around the obstacle rather than impacting it which might potentially break the traction engine 102 .
- the pilot mechanism 130 incorporates a vertically inverted shape similar to a train's cowcatcher, to deflect obstacles away from the traction engine 102 .
- the coupled suspension system 100 includes one or more pilots mechanisms having a plurality of different angles to cater to the different positions and shapes of obstacles.
- the system 200 corresponds to the system 100 of FIG. 2 except that it comprises two suspension actuators 106 a and 106 b instead of one.
- the system 200 having multiple suspension actuators 106 permits control of the traction engine's angle relative to the traction surface S.
- the fore sensor 116 a measures a variation V in the traction surface S different than a variation measured by the aft sensor 116 b .
- the two actuators 116 a and 116 b control the tilting of the traction engine 102 relative to the traction surface S.
- the controller 120 of the coupled suspension system 200 employs spatial derivative(s) of a profile of the traction surface S to control the tilting angle with a single sensor.
- control modes are (A) simultaneous fast-slow spectral control, (B) simultaneous long-short throw distance control, (C) approach-extend maneuvers, (D) retreat-retract maneuvers, (E) impulse-release-catch-impulse maneuvers. These control modes might reduce vehicle vibration at high speeds, particularly on tracks or roadways that are prone to sagging or warping gradually after construction.
- mode (A) and mode (B) by dynamically controlling both the traction engine (fast response, short throw) and the coupled suspension system 100 (slow response, long throw), simultaneously, these two elements might each be used with coordinated control.
- the system spectrally splits its control signals using a spectral filter, directing high-frequency signals to the traction engine (to respond to small-sized deviations in the traction surface S), and low-frequency signals to the coupled suspension system 100 (to respond to large-sized deviations in the traction surface).
- Mode (C) is employed when the combined system has advance foreknowledge of a valley in the traction surface S, and might prepare by approaching the vehicle 108 ′ closer to the surface S in advance (by narrowing the traction engine gap, and/or by retracting the active suspension), then following the valley when it is traversed. This maneuver might prevent a loss of traction, in cases where either the coupled suspension system 100 would be too slow for a causal control response, or where the larger required change in gap distance or extension distance would be too great for the traction engine and/or the active suspension, respectively, if causal control were used only (i.e. if the system did not have advance foreknowledge of the upcoming valley).
- the combined system has advance foreknowledge of a hill or obstacle on the traction surface, and can prepare by retreating the vehicle away from the surface S in advance (by widening the traction engine gap, and/or by extending the active suspension), then following the hill or avoiding the obstacle when it is traversed.
- This maneuver might prevent a loss of traction or a collision, in cases where either the coupled suspension system would be too slow for a causal control response, or where the larger required change in gap distance or extension distance would be too great for the traction engine and/or the coupled suspension system 100 , respectively, if the predictive suspension system 10 were used only (i.e. if the system did not have advance foreknowledge of the upcoming hill or obstacle).
- the combined system has advance foreknowledge of valley(s), hill(s), and/or obstacle(s) on the traction surface S which require a temporary release of the traction engine.
- the combined system might prepare by increasing or decreasing power in the traction engine to deliver an impulse to the vehicle 108 ′ (preparing a change in its momentum in advance, such as a jump manoeuvre), then releasing traction, then optionally retracting the coupled suspension system 100 to avoid obstacles, then “catching” traction again (e.g. a landing manoeuvre) by regaining contact between the engine and surface, and finally delivering any additional impulse needed to stabilize the vehicle motion.
- a vehicle vertical position 400 , a traction engine vertical position 402 , and a traction surface vertical position 404 are plotted in function of a position P along the traction surface S when the coupled suspension system 100 depicted in FIG. 2 or 3 is used. Also plotted is a variation of a levitational force 406 between the traction engine 102 and the traction surface S in function of the position along the longitudinal axis L of the traction surface S when the coupled suspension system 100 is used.
- the vertical positions of the vehicle 400 , of the engine 402 , and of the surface 404 remain substantially constant until a first bump B 1 in the traction surface S is encountered. Because the first bump B 1 is relatively smooth, the traction engine 102 and the vehicle 108 ′ follows substantially closely the shape of the first bump B 1 and the system 100 remains in the uniform stabilizing mode.
- the traction surface S defines a first valley V 1 .
- the system 100 enters a separation-followed-by-recovery period P 2 .
- a distance D 1 between the traction surface S and the traction engine 102 increases resulting in a decrease in the magnetic attraction therebetween resulting in a loss of impulse LI between the engine 102 and surface S.
- the sensors 116 detect this increase in the distance D 1 and notifies the controller 120 .
- the system 100 enters in recovery in which the controller 120 increases power to the traction engine 102 to emit a recovery impulses RI for acceleration to increase the magnetic attraction between the engine 102 and the surface S which results in a reduction of the distance D 1 therebetween.
- the controller 116 Based on a reading from the sensors 116 , the controller 116 then sends a signal to the traction engine 102 to emit a deceleration impulse DI to avoid the engine 102 to contact the surface S and to approach a desired distance between the engine 102 and the surface S. At which point the system 100 goes back to the uniform stabilizing mode and starts a normal period P 3 .
- the traction surface S defines a second bump B 2 that is more pronounced than the first bump B 1 .
- the system 100 then encounters a closer-than-nominal engine-surface distance caused by a high slope of the second bump B 2 .
- the sensors 116 detects the variation in the distance D 1 and the system 102 enters in a retraction-followed-by-recovery period P 4 .
- the controller 120 sends a signal to the actuator 106 to retract and to decrease a distance D 2 between the traction engine 102 and the vehicle 108 ′ to preclude collision between the traction surface S and the traction engine 102 .
- the system 100 then enters in recovery because the sensors 116 detect a decrease in the distance D 1 between the traction engine 102 and the traction surface S.
- This increase of the magnetic force causes a surplus impulse SI that is the result of the decrease in the distance D 1 between the traction engine 102 and surface S and occurs without the controller 120 varying the power provided to the traction engine 102 .
- the surplus impulse SI causes the distance D 1 between the engine 102 and the surface S to increases, which is followed by a decrease in the magnetic force.
- the controller 120 sends more power to the traction engine 102 to create a recovery impulse RI for acceleration.
- the sensors 116 detect that the distance D 1 between the engine 102 and the surface S decreases and, based on this reading, the controller 120 sends a signal to the traction engine 102 to emit a deceleration impulse DI to reach, or approach, the desired distance between the surface S and said engine 102 .
- the retraction rate R 1 of the actuator 106 during the period P 3 corresponds to a maximum nominal retraction rate of the actuator 106 .
- the system 100 goes back to the uniform stabilizing mode for a given period P 5 until the traction surface S defines a second valley V 2 more pronounced than the first valley V 1 . Then, a rapid extension period P 6 begins.
- the controller 120 based on a reading from the sensors 116 , sends a signal to the actuator 106 to increase the distance D 2 between the vehicle 108 ′ and the traction surface S.
- the system 100 encounters a loss of impulse LI caused by the increase of the distance D 1 between the traction engine 102 and the traction surface S.
- the extension rate R 2 of the actuator 106 during the rapid extension period P 6 corresponds to a maximum nominal extension rate of the actuator 106 .
- the traction surface S defines a third bump B 3 immediately following the second valley V 2 .
- the combination of the second valley V 2 and the third bump B 3 causes the system 100 to enter in a maximum retraction acceleration period P 7 during which the controller 120 instructs the actuator 106 to retract as fast as possible such as to decrease the distance D 2 between the vehicle 108 ′ and the engine 102 . Since the distance D 1 between the surface and the engine decreases, a surplus impulse SI is experienced.
- the traction engine 102 impacts the traction surface S at point I on FIG. 4 a . This follows with the continuation of the surplus impulse SI that began during the period P 7 and, following the collision, the system enters an erratic period P 8 in which the engine 102 does not work properly and the system 100 needs maintenance.
- the vehicle vertical position 400 , the traction engine vertical position 402 , and the traction surface vertical position 404 are plotted in function of the position along the longitudinal axis L of the traction surface S when the coupled suspension system 100 depicted in FIG. 2 or 3 is used in combination with the predictive suspension system 10 depicted in FIG. 1 .
- the traction surface S of FIG. 4 b has the same profile than that of FIG. 4 a .
- the predictive suspension system 10 gather data about the traction surface S such that it can provide the coupled suspension system 100 with foreknowledge information about the surface S.
- the traction surface S defines the first bump B 1 , the first valley V 1 , the second bump B 2 , the second valley V 2 , and the third bump B 3 .
- a combined system knows the traction surface vertical position 404 in advance.
- the controller 120 causes the actuator 106 to retract at a first rate R 1 and extend at a second rate R 2 such that the distance D 2 between the vehicle 108 ′ and the engine 102 increases then decreases and such that the distance D 1 between the engine 102 and the surface S remains substantially constant thereby avoiding the loss of impulse, the recovery impulse for acceleration, and the deceleration impulses shown in FIG.
- the combined system enters an anticipatory sacrifice period P 2 ′ because it has advance knowledge of the presence of the second bump B 2 .
- the vehicle 108 ′ reaches the second bump B 2 and the controller 120 causes the actuator 106 to retract, at a first rate R 1 ′, earlier than when only the coupled suspension system 100 was used.
- the distance D 1 between the traction engine 102 and the traction surface S does not vary sufficiently to create a variation in the levitation force 406 .
- the first rate R 1 ′ corresponds to the maximum retraction rate of the actuator 106 .
- the combined system by knowing in advance the presence of the second valley V 2 , enters a rapid-move-to-target period P 4 ′ which starts by an early release period P 3 ′ during which the controller 120 causes the actuator 106 to extend at a second rate R 2 ′ such as to minimize the increase in the distance D 1 between the traction engine 102 and the traction surface S. Nevertheless, the distance D 1 increases which induces a loss of impulse LI.
- the second rate R 2 ′ corresponds to the maximum extension rate of the actuator 106 .
- the controller 120 knows that the third bump B 3 is approaching and limits the extension of the actuator 106 by ending the rapid-move-to-target period P 4 ′ and by entering the re-attachment period P 5 ′ of a recovery period P 6 ′ caused by the third bump B 3 .
- the third bump B 3 causes the distance D 1 between the engine 102 and the surface S to decrease.
- the controller 120 causes the actuator 106 to retract at a third rate R 3 ′ such that it might avoid collision with the surface S.
- the traction engine 102 emits recovery impulses RI to push the engine 102 away from the surface S to avoid the collision.
- the third rate R 3 ′ corresponds to the maximum retraction rate of the actuator 106 .
- the actuator 106 continues to retract at the third rate R 3 ′ and the engine 102 continues to emit recovery impulses RI followed by deceleration impulses DI so that the distance D 1 between the engine and surface reaches a desired value.
- a vehicle 501 travelling within a cylindrical guideway 502 such as, for example, a tube, tunnel or pipe is illustrated.
- the vehicle 501 comprises a plurality of traction engines 510 , 511 , 512 , and 513 as depicted in FIGS. 2-3 and as described herein above.
- the guideway 502 defines a first traction surface 502 ′ corresponding to an inner cylindrical surface of the guide way 502 , and a second traction surface 503 ′ defined by to two diametrically opposed elements 503 affixed adjacent to the inner cylindrical surface of the guide way 502 .
- Both the first and second traction surfaces 502 ′ and 503 ′ are curved so that it might allow equal proximity of the traction engines 510 , 511 , 512 , and 513 at various rotation angles of the vehicle 501 about an axis A 1 parallel to a direction of travel of the vehicle 501 denoted by arrow 504 .
- An alternative embodiment of the guideway includes a structure support other than a tube structure, to which the traction surface(s) are mounted.
- An alternative embodiment of the guideway includes other traction surfaces which are flat or otherwise not necessarily curved, but which still permit the vehicle to adjust its position or orientation angle with respect to the guideway.
- An alternative embodiment includes traction engines which are mounted at different positions and/or orientations to those shown in FIG. 5 , but which still permit the vehicle to adjust its position or orientation angle with respect to the guideway.
- traction engines are mounted in an “X” configuration rather than “+” configuration around the vehicle.
- engines are mounted asymmetrically around the vehicle circumference.
- the first and second traction surfaces 502 ′ and 503 ′ may be of different materials.
- the cylindrical guide way 502 and hence the first traction surface 502 ′, is made of steel, or any suitable magnetic material, whereas the elements 503 , and hence the second traction surface 503 ′, are made of aluminum or any suitable paramagnetic material.
- the traction engines 510 , 511 , 512 , and 513 includes vertical levitation 510 , 511 , lateral levitation 512 , and torquing 513 traction engines.
- the vertical and lateral levitation traction engines 510 , 511 and 512 are connected to the vehicle 501 via actuators 520 and bracing members 522 which are pivotally mounted on the vehicle 501 and on said engines to allow a distance between said engines and the vehicle to be varied.
- the traction engines 510 , 511 , 512 , and 513 are linear induction motors.
- the vertical levitation traction engines 510 and 511 are used to provide magnetic levitation through vertical attraction to the first traction surface 502 ′.
- the lateral levitation traction engines 512 are used to enable electrodynamic lateral forces through lateral attraction to the second traction surface 503 ′.
- the second traction surface 503 ′ is positioned at a sufficient distance away from the first traction surface 502 ′ such that attraction forces between the lateral levitation traction engines 512 and the first traction surface 502 ′ are reduced to a sufficiently low magnitude compared to the attraction force between the lateral levitation traction engines 512 and the second traction surface 503 ′.
- the vehicle 501 further includes a controller (not shown) to control the forces provided by the traction engines 510 , 511 , 512 , and 513 and to control movements of the actuators 520 coupled thereto.
- the torquing traction engine 513 is positioned off-centre from a centre-of-mass of the vehicle. Therefore, the torquing traction engine 513 may providing a torque on the vehicle 501 .
- two or more torquing traction engines 513 are used and positioned at a plurality of different locations on the vehicle 501 such that that the linear forces exerted by the vertical and lateral levitation traction engines 512 can be controlled to be cancelled out to create zero total linear force on the vehicle, thus exerting only a torque on the vehicle.
- torque is provided by angle changes in electrodynamic forces in one or more traction engine, rather the attraction/repulsion engine 513 .
- the torquing traction engine 513 is configured to exert a torque about a roll axis A 1 parallel to a direction of travel of the vehicle denoted by arrow 504 .
- the vehicle 501 is provided with two torquing traction engines 513 (only one shown) located at two diametrically opposed locations relative to a longitudinal axis L of the vehicle 501 .
- one of the two torquing traction engines 513 exert a force on a top portion of the vehicle 501 whereas the other of the two torquing traction engines 513 exerts a force on a bottom portion of the vehicle 501 .
- the two torquing traction engines 513 may be controlled with rotationally symmetric force control signals to cancel out linear forces on the vehicle 501 .
- the vehicle's controller can control the torquing traction engines 513 such that they add a rotationally asymmetric force component to the total forces generated by all of the traction engines to allow the torquing engines 513 to be used together to provide linear forces in addition to torques.
- a rolling motion of the vehicle 501 about its longitudinal axis L might change a relative position between the torquing traction engine 513 and the second traction surface 503 ′.
- the torquing traction engine 513 is connected to the vehicle 501 via actuators 524 and bracing members 526 which are pivotally mounted on the vehicle 501 and on said engines 513 and controller by the vehicle's controller.
- the actuators 522 are configured to move the torquing traction engine 513 with respect to the vehicle 501 such that said engine 513 remains in close proximity to the second traction surface 503 ′ despite the vehicle's rotation along a direction denoted by arrow 505 .
- “pitch” torque along a lateral axis A 2 perpendicular to the direction of travel of the vehicle 501 and denoted by arrow 506 is possible by using one or more traction engine(s) 510 and 511 that provide(s) a force in a vertical axis A 3 and that are located in rotationally symmetric positions about the vehicle's centre of mass.
- some of the vertical levitation traction engines 510 and 511 are used to provide this functionality.
- all four of the vertical levitation traction engines 510 and 511 are used to provide this functionality and to ensure that linear forces can be cancelled out by the controller in a situation where one of these four vertical levitation traction engines 510 and 511 fails. If the controller detects one failed traction engine, it shuts the engine that is located at a position symmetrically opposite to the position of the failed engine and doubles the requested force from the remaining two engines.
- “yaw” torque along the vertical axis A 3 perpendicular to the direction of travel of the vehicle 501 and denoted by arrow 507 is possible.
- one or more of the lateral levitation traction engines 512 are used.
- the linear forces might be cancelled out by the controller in a situation where one of said engines 512 fails. If the controller detects one failed traction engine, it shuts off one of the lateral levitation traction engines 512 that is located at a position symmetrically opposite to the position of the failed engine, and doubles the requested force from the remaining two engines.
- the traction engines used to create a torque about the axes A 1 , A 2 , or A 3 are positioned such that their force vectors lie in one plane which is coincident with the vehicle's centre of mass. In a particular embodiment, this ensures that the engines provide a torque in one specific axis of rotation without exerting interfering torque in any other axis of rotation. It is understood that the traction engines may be used to provide one or more movement along the “roll” A 1 , “pitch” A 2 , and “yaw” A 3 axes.
- torque is provided to the vehicle 501 using wheels which contact the traction surface and can rotate to steer, thus creating roll-, pitch-, and/or yaw-oriented torque or motion; linear induction motor (LIM) to exert force on the traction surface by electrodynamic effects; liquid ballast tanks which can exchange liquid between tanks to provide torque on the vehicle; motorized mechanical ballast weights inside the vehicle, which can accelerate or simply be positioned at an offset, in order to provide torque to the vehicle; an axle, motor, turbine, compressor, or flywheel, which can be accelerated or decelerated in its rotation, to provide torque to the vehicle.
- LIM linear induction motor
- liquid ballast tanks which can exchange liquid between tanks to provide torque on the vehicle
- motorized mechanical ballast weights inside the vehicle which can accelerate or simply be positioned at an offset, in order to provide torque to the vehicle
- an axle, motor, turbine, compressor, or flywheel which can be accelerated or decelerated in its rotation, to provide torque to the vehicle.
- the roll torque may be used to reduce the lateral forces on passengers or cargo inside the vehicle 501 , by rotating the vehicle to a desired canting angle during changes in the direction of travel (i.e. left-turn or right-turn curves when travelling through a cylinder, tube or pipe); control the vehicle roll-trim, to counterbalance any imbalances in left-right mass loads in the vehicle, to ensure the vehicle can remain upright.
- the pitch torque may be used to rotate the vehicle's pitch angle during changes in the direction of travel (i.e. upward or downward curves when travelling through a cylinder, tube or pipe); control the vehicle pitch-trim, to counterbalance any imbalances in forward-aft mass loads in the vehicle, to ensure the vehicle can remain upright; rotate the vehicle's pitch to take advantage of aerodynamic forces in the vertical direction.
- the yaw torque may be used to rotate the vehicle's yaw angle during changes in the direction of travel (i.e. left-turn or right-turn curves when travelling through a cylinder, tube or pipe); rotate the vehicle's yaw to take advantage of aerodynamic forces in the left or right direction.
- the vehicle 501 is equipped with the coupled suspension system 200 illustrated in FIGS. 2-3 .
- Said system 100 allows the vehicle 501 to move in at least two degrees of freedom: one to retract and extend the traction engines in the vehicle's radial axis toward and away from the vehicle longitudinal axis L, and one to tilt the traction engines about their own forward-reverse axis. Engine-tilting might be required when the vehicle 501 moves away from the centre axis in the cylindrical guideway 502 , such that the traction engines are no longer parallel to or aligned with the first traction surface 502 ′.
- the vehicle 501 is used in combination with the coupled suspension system 100 that does not comprise the engine-tilting capability, and uses instead either a traction engine with a radius of curvature smaller than that of the traction surface, such that traction force is maintained over various offset positions, due to proximity of different portions of the traction engine's surface area; an arrangement of multiple traction engine and coupled suspension systems, such that traction force is maintained over various offset positions; or sufficiently small vehicle deviation from the centre axis such that traction force is maintained over various offset positions.
- a traction engine with a radius of curvature smaller than that of the traction surface such that traction force is maintained over various offset positions, due to proximity of different portions of the traction engine's surface area
- an arrangement of multiple traction engine and coupled suspension systems such that traction force is maintained over various offset positions
- sufficiently small vehicle deviation from the centre axis such that traction force is maintained over various offset positions.
- a vehicle is used in combination with the predictive suspension mechanism as described herein above and as illustrated in FIG. 1 .
- a vehicle is used in combination with the predictive suspension mechanism as described herein above and as illustrated in FIG. 1 .
- Such a system consists of an active suspension linked to wheels or other traction device(s), reproduced in multiple units mounted to the vehicle and supporting the vehicle in a cylindrical tube.
- the active suspensions are controlled by a predictive system as described earlier.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
- Vehicle Body Suspensions (AREA)
- Platform Screen Doors And Railroad Systems (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/331,723 US11235666B2 (en) | 2016-09-08 | 2017-09-08 | Vehicle for travelling along a linear route guideway |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662385094P | 2016-09-08 | 2016-09-08 | |
| PCT/CA2017/051060 WO2018045470A1 (en) | 2016-09-08 | 2017-09-08 | Vehicle for travelling along a linear route guideway |
| US16/331,723 US11235666B2 (en) | 2016-09-08 | 2017-09-08 | Vehicle for travelling along a linear route guideway |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20190210471A1 US20190210471A1 (en) | 2019-07-11 |
| US11235666B2 true US11235666B2 (en) | 2022-02-01 |
Family
ID=61561251
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/331,723 Active 2038-06-09 US11235666B2 (en) | 2016-09-08 | 2017-09-08 | Vehicle for travelling along a linear route guideway |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US11235666B2 (en) |
| EP (1) | EP3509897A4 (en) |
| KR (1) | KR102514431B1 (en) |
| AU (2) | AU2017325182A1 (en) |
| CA (1) | CA3075129A1 (en) |
| WO (1) | WO2018045470A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220111875A1 (en) * | 2013-08-12 | 2022-04-14 | Gonzalo Duran Ariza | Assembly with tilting linear induction motor for use in a transportation system |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220111735A1 (en) * | 2016-09-08 | 2022-04-14 | Transpod Inc. | Vehicle for travelling along a linear route guideway |
| AU2017325182A1 (en) * | 2016-09-08 | 2019-05-02 | Transpod Inc. | Vehicle for travelling along a linear route guideway |
| US11312398B2 (en) * | 2019-01-30 | 2022-04-26 | The Boeing Company | Active control deflection neutralizer |
| US20210190252A1 (en) * | 2019-12-18 | 2021-06-24 | Gas Technology Institute | Two-wheeled pipe crawler |
| CN113525098B (en) * | 2020-04-20 | 2023-02-03 | 株洲中车时代电气股份有限公司 | Suspension control method and device for magnetic suspension vehicle |
| US11447157B2 (en) * | 2020-05-06 | 2022-09-20 | Safran Landing Systems | Passive lateral stability for a maglev type vehicle |
| US11780466B1 (en) * | 2021-03-29 | 2023-10-10 | Zoox, Inc. | Vehicle fleet remote ride comfort tuning management system |
| US11897506B1 (en) | 2021-03-29 | 2024-02-13 | Zoox, Inc. | Vehicle ride dynamics active comfort tuning system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5146853A (en) * | 1989-07-07 | 1992-09-15 | Suppes Galen J | Compact magnetic levitation transportation system |
| US5360470A (en) * | 1992-07-06 | 1994-11-01 | Fujitsu Limited | Magnetic levitating transporting apparatus with a movable magnetic unit |
| US5653175A (en) * | 1995-09-15 | 1997-08-05 | Milligan; George Truett | Vacuum highway vehicle |
| US6374746B1 (en) * | 1999-06-21 | 2002-04-23 | Orlo James Fiske | Magnetic levitation transportation system and method |
| US20160229416A1 (en) * | 2015-02-08 | 2016-08-11 | Hyperloop Technologies, Inc. | Transportation system |
| US20190210471A1 (en) * | 2016-09-08 | 2019-07-11 | Transpod Inc. | Vehicle for travelling along a linear route guideway |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5628252A (en) * | 1993-06-17 | 1997-05-13 | Power Superconductor Applications Co. | Method and apparatus for combined levitation and guidance along guideway curvature in electrodynamic magnetically levitated high speed vehicle |
| US5511488A (en) * | 1994-04-25 | 1996-04-30 | Powell; James R. | Electromagnetic induction ground vehicle levitation guideway |
| JP2010514991A (en) * | 2006-12-19 | 2010-05-06 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Control system and method for negative damping correction of magnetic levitation |
| KR101015170B1 (en) * | 2008-12-30 | 2011-02-17 | 한국철도기술연구원 | Tubular Maglev Train |
| WO2012101535A2 (en) * | 2011-01-24 | 2012-08-02 | Louw Andries Auret | A magnetic levitation or suspension vehicle |
| US9085304B2 (en) * | 2013-03-15 | 2015-07-21 | Daryl Oster | Evacuated tube transport system with improved cooling for superconductive elements |
-
2017
- 2017-09-08 AU AU2017325182A patent/AU2017325182A1/en not_active Abandoned
- 2017-09-08 EP EP17847858.2A patent/EP3509897A4/en active Pending
- 2017-09-08 WO PCT/CA2017/051060 patent/WO2018045470A1/en not_active Ceased
- 2017-09-08 KR KR1020197009968A patent/KR102514431B1/en active Active
- 2017-09-08 US US16/331,723 patent/US11235666B2/en active Active
- 2017-09-08 CA CA3075129A patent/CA3075129A1/en active Pending
-
2023
- 2023-10-10 AU AU2023248071A patent/AU2023248071A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5146853A (en) * | 1989-07-07 | 1992-09-15 | Suppes Galen J | Compact magnetic levitation transportation system |
| US5360470A (en) * | 1992-07-06 | 1994-11-01 | Fujitsu Limited | Magnetic levitating transporting apparatus with a movable magnetic unit |
| US5653175A (en) * | 1995-09-15 | 1997-08-05 | Milligan; George Truett | Vacuum highway vehicle |
| US6374746B1 (en) * | 1999-06-21 | 2002-04-23 | Orlo James Fiske | Magnetic levitation transportation system and method |
| US20160229416A1 (en) * | 2015-02-08 | 2016-08-11 | Hyperloop Technologies, Inc. | Transportation system |
| US20190210471A1 (en) * | 2016-09-08 | 2019-07-11 | Transpod Inc. | Vehicle for travelling along a linear route guideway |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20220111875A1 (en) * | 2013-08-12 | 2022-04-14 | Gonzalo Duran Ariza | Assembly with tilting linear induction motor for use in a transportation system |
| US12252160B2 (en) * | 2013-08-12 | 2025-03-18 | Gonzalo Duran Ariza | Assembly with tilting linear induction motor for use in a transportation system |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2017325182A1 (en) | 2019-05-02 |
| AU2023248071A1 (en) | 2023-11-02 |
| KR20190096930A (en) | 2019-08-20 |
| WO2018045470A1 (en) | 2018-03-15 |
| EP3509897A4 (en) | 2021-03-03 |
| EP3509897A1 (en) | 2019-07-17 |
| US20190210471A1 (en) | 2019-07-11 |
| CA3075129A1 (en) | 2018-03-15 |
| KR102514431B1 (en) | 2023-03-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11235666B2 (en) | Vehicle for travelling along a linear route guideway | |
| CN105480299B (en) | Automatically guided configurable trackless transport train and operation control method | |
| US20220111735A1 (en) | Vehicle for travelling along a linear route guideway | |
| JP4347221B2 (en) | Steering device for track non-contact vehicle and steering method thereof | |
| CN104176145A (en) | Asymmetric wheel leg type all-directional moving chassis | |
| US12227355B2 (en) | Controlling movements of a robot running on tracks | |
| US11926355B2 (en) | System and/or method for platooning | |
| US5170715A (en) | Aeromagnetic control of maglev vehicles with turntable mounted hinged control surface having two degrees of motion | |
| WO1997002167A1 (en) | Traffic/transportation system | |
| PT2358594E (en) | AIRCRAFT TOWER WITHOUT DRIVE BAR | |
| US11472500B2 (en) | Mobile platform with retractable drive wheels and steerable wheels | |
| US10427803B2 (en) | Anchoring vehicle for anchoring an airship at the tail whilst coupled to a mooring-mast at the bow | |
| US20210206402A1 (en) | Railway vehicle | |
| EP3465070B1 (en) | Altitude control along segmented track | |
| JP2009241722A (en) | Method for controlling vehicle body tilt angle of pendulum vehicle and system for controlling vehicle body tilt angle of pendulum vehicle | |
| EP0941203A1 (en) | A method of preventing overload of the nose wheel of an aeroplane during towing and an aeroplane tractor | |
| AU2022346233A1 (en) | A bogie and a vehicle with such bogie | |
| WO2007077726A1 (en) | Earthquake resisting/derailment preventing system using expander | |
| EP3945392B1 (en) | A wheeled mobile robot controller compensation system and method | |
| US20250282397A1 (en) | Computer-implemented method and control device for determining a real time steering angle | |
| US20090142171A1 (en) | Movable load capable of withstanding lateral forces | |
| Kawahara | Development of Sensing and Control Technology for Precise Docking of Advanced Rapid Transit system | |
| JPS6018163B2 (en) | A method and device for controlling the legs of a superconducting magnetic levitation vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: TRANSPOD INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JANZEN, RYAN;REEL/FRAME:050196/0692 Effective date: 20190307 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: LEDER INVESTMENTS LTD., CANADA Free format text: SECURITY INTEREST;ASSIGNOR:TRANSPOD INC.;REEL/FRAME:072030/0723 Effective date: 20250812 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |