US11195586B2 - Memory device and operating method of the memory device - Google Patents
Memory device and operating method of the memory device Download PDFInfo
- Publication number
- US11195586B2 US11195586B2 US16/881,852 US202016881852A US11195586B2 US 11195586 B2 US11195586 B2 US 11195586B2 US 202016881852 A US202016881852 A US 202016881852A US 11195586 B2 US11195586 B2 US 11195586B2
- Authority
- US
- United States
- Prior art keywords
- level
- sensing
- read
- memory cells
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5628—Programming or writing circuits; Data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5621—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
- G11C11/5642—Sensing or reading circuits; Data output circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0483—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/10—Programming or data input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/24—Bit-line control circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/30—Power supply circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/32—Timing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/3454—Arrangements for verifying correct programming or for detecting overprogrammed cells
- G11C16/3459—Circuits or methods to verify correct programming of nonvolatile memory cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
- G11C16/3468—Prevention of overerasure or overprogramming, e.g. by verifying whilst erasing or writing
- G11C16/3481—Circuits or methods to verify correct programming of nonvolatile memory cells whilst programming is in progress, e.g. by detecting onset or cessation of current flow in cells and using the detector output to terminate programming
Definitions
- Various embodiments of the present disclosure generally relate to an electronic device, and more particularly, to a memory device and a method operating the memory device.
- the portable electronic devices as described above may generally use memory systems employing memory devices, that is, data storage devices.
- a data storage device may be used as a main memory device or an auxiliary memory device of a portable electronic device.
- a data storage device employing a memory device does not include a mechanical driver, and thus may have excellent stability and durability with an extremely high information access speed and low power consumption.
- Examples of a memory system having the above-stated characteristics are a data storage device including a Universal Serial Bus (USB) memory device, a memory card having various interfaces, and a Solid-State Drive (SSD).
- USB Universal Serial Bus
- SSD Solid-State Drive
- Memory devices are generally classified into volatile memory devices and nonvolatile memory devices.
- a nonvolatile memory device may have comparatively low write and read speeds, but may retain stored data in the absence of supplied power. Therefore, a nonvolatile memory device may be used when there is a need for storing data which should be retained regardless of a supply of power.
- Examples of nonvolatile memory devices include Read Only Memory (ROM), Mask ROM (MROM), Programmable ROM (PROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, Phase change Random Access Memory (PRAM), Magnetic RAM (MRAM), Resistive RAM (RRAM), and Ferroelectric RAM (FRAM). Flash memory may be classified into NOR-type memory and NAND-type memory.
- a memory device may include a memory cell array including memory cells that are programmed into a plurality of program states, a peripheral circuit configured to perform a read operation on the memory cell array, and control logic configured to control the peripheral circuit to perform the read operation and to control the peripheral circuits to perform a masking process on first memory cells having a threshold voltage level higher than a first read level and second memory cells having a threshold voltage level lower than a second read level among the memory cells during the read operation.
- a memory device may include a page including a plurality of memory cells coupled in common to a word line, a peripheral circuit configured to perform a read operation on the page, and control logic configured to control the peripheral circuit to perform the read operation, wherein, during the read operation, the control logic controls the peripheral circuits to perform a first sensing operation in which first memory cells having a threshold voltage level higher than or equal to a first read level that is higher than a main read level, among the plurality of memory cells, are sensed, a second sensing operation in which second memory cells having a threshold voltage level lower than or equal to a second read level that is lower than the main read level, among the plurality of memory cells, are sensed, and a third sensing operation in which the plurality of memory cells are sensed in a state where a masking process is performed on the first memory cells and the second memory cells.
- a method of operating a memory device may include performing a first sensing operation in which first memory cells having a threshold voltage level higher than or equal to a first read level that is higher than a main read level, among a plurality of memory cells, are sensed, performing a second sensing operation in which second memory cells having a threshold voltage level lower than or equal to a second read level that is lower than the main read level, among the plurality of memory cells, are sensed, performing a masking process on the first memory cells and the second memory cells, and performing a third sensing operation in which whether a threshold voltage level of the plurality of memory cells is higher or lower than the main read level is sensed.
- FIG. 1 is a block diagram illustrating a memory system according to an embodiment
- FIG. 2 is a diagram illustrating a memory device shown in FIG. 1 ;
- FIG. 3 is a diagram illustrating a memory block shown in FIG. 2 ;
- FIG. 4 is a diagram illustrating an embodiment of a three-dimensionally structured memory block
- FIG. 5 is a diagram illustrating a page buffer shown in FIG. 2 ;
- FIG. 6 is a diagram illustrating a threshold voltage distribution of memory cells
- FIG. 7 is a flowchart illustrating a method of operating a memory device according to an embodiment
- FIGS. 8, 9 and 10 are distribution charts of a threshold voltage illustrating a method of operating a memory device according to an embodiment
- FIG. 11 is a waveform diagram of signals illustrating an operation of a page buffer according to an embodiment
- FIG. 12 is a waveform diagram of signals illustrating an operation of a page buffer according to another embodiment
- FIG. 13 is a waveform diagram of signals illustrating an operation of a page buffer according to another embodiment
- FIG. 14 is a diagram illustrating another embodiment of a memory system
- FIG. 15 is a diagram illustrating another embodiment of a memory system
- FIG. 16 is a diagram illustrating another embodiment of a memory system.
- FIG. 17 is a diagram illustrating another embodiment of a memory system.
- Various embodiments are directed to a memory device capable of improving the reliability of a read operation, and a method of operating the memory device.
- FIG. 1 is a diagram illustrating a memory system 1000 according to an embodiment.
- the memory system 1000 may include a memory device 1100 storing data and a memory controller 1200 controlling the memory device 1100 in response to control of a host 2000 .
- the host 2000 may communicate with the memory system 1000 using an interface protocol such as Peripheral Component Interconnect-Express (PCI-E), Advanced Technology Attachment (ATA), Serial ATA (SATA), Parallel ATA (PATA), or serial attached SCSI (SAS).
- PCI-E Peripheral Component Interconnect-Express
- ATA Advanced Technology Attachment
- SATA Serial ATA
- PATA Parallel ATA
- SAS serial attached SCSI
- the interface protocols provided for the purpose of communication between the host 2000 and the memory system 1000 are not limited to the above examples and may be one of interface protocols such as a Universal Serial Bus (USB), a Multi-Media Card (MMC), an Enhanced Small Disk Interface (ESDI), or Integrated Drive Electronics (IDE).
- USB Universal Serial Bus
- MMC Multi-Media Card
- ESDI Enhanced Small Disk Interface
- IDE Integrated Drive Electronics
- the memory controller 1200 may control the general operations of the memory system 1000 and control data exchange between the host 2000 and the memory device 1100 .
- the memory controller 1200 may control the memory device 1100 to program or read data in response to a request from the host 2000 .
- the memory controller 1200 may transmit a command CMD, an address ADD, and data DATA to be programmed corresponding to the program operation to the memory device 1100 .
- the memory controller 1200 may receive and temporarily store the data DATA read from the memory device 1100 and may transmit the temporarily stored data DATA to the host 2000 .
- the memory device 1100 may perform a program operation, a read operation, or an erase operation under the control of the memory controller 1200 .
- the memory device 1100 may include Double Data Rate Synchronous Dynamic Random Access Memory (DDR SDRAM), Low Power Double Data Rate4 (LPDDR4) SDRAM, Graphics Double Data Rate (GDDR) SDRAM, Low Power DDR (LPDDR), Rambus Dynamic Random Access Memory (RDRAM), or flash memory.
- DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- LPDDR4 Low Power Double Data Rate4 SDRAM
- GDDR Graphics Double Data Rate SDRAM
- LPDDR Low Power DDR
- RDRAM Rambus Dynamic Random Access Memory
- FIG. 2 is a diagram illustrating the memory device 1100 shown in FIG. 1 .
- the memory device 1100 may include a memory cell array 100 storing data.
- the memory device 1100 may include a peripheral circuit 200 configured to perform a program operation to store data in the memory cell array 100 , a read operation to output the stored data, and an erase operation to erase the stored data.
- the memory device 1100 may include control logic 300 which controls the peripheral circuit 200 in response to control of the memory controller 1200 shown in FIG. 1 .
- the control logic 300 may be implemented as hardware, software, or a combination of hardware and software.
- the control logic 300 may be a control logic circuit operating in accordance with an algorithm and/or a processor executing control logic code.
- the memory cell array 100 may include a plurality of memory blocks (MB 1 to MBk) 110 , where k is a positive integer.
- Local lines LL and bit lines BL 1 to BLm may be coupled to each of the memory blocks (MB 1 to MBk) 110 , where m is a positive integer.
- the local lines LL may include a first select line, a second select line, and a plurality of word lines arranged between the first and second select lines.
- the local lines LL may include dummy lines arranged between the first select line and the word lines and between the second select line and the word lines.
- the first select line may be a source select line and the second select line may be a drain select line.
- the local lines LL may include word lines, drain and source select lines, and source lines SL.
- the local lines LL may further include dummy lines.
- the local lines LL may further include pipe lines.
- the local lines LL may be coupled to the memory blocks (MB 1 to MBk) 110 , respectively, and the bit lines BL 1 to BLm may be commonly coupled to the memory blocks (MB 1 to MBk) 110 .
- the memory blocks (MB 1 to MBk) 110 may have a two-dimensional or three-dimensional structure.
- memory cells may be arranged in parallel with a substrate.
- memory cells may be stacked in a vertical direction to the substrate.
- the peripheral circuit 200 may be configured to perform program, read, and erase operations on the selected memory block 110 in response to control of the control logic 300 .
- the peripheral circuit 200 may include a voltage generating circuit 210 , a row decoder 220 , a page buffer group 230 , a column decoder 240 , an input/output circuit 250 , a pass/fail check circuit 260 , and a source line driver 270 .
- the voltage generating circuit 210 may generate various operating voltages Vop applied to perform program, read and erase operations in response to an operation signal OP_CMD. In addition, the voltage generating circuit 210 may selectively discharge the local lines LL in response to the operation signal OP_CMD. For example, the voltage generating circuit 210 may generate a read voltage, a program voltage, a pass voltage, and the like in response to control of the control logic 300 .
- the row decoder 220 may transmit the operating voltages Vop to the local lines LL coupled to the selected memory block 110 in response to row decoder control signals AD_signals. For example, the row decoder 220 may apply a read voltage generated by the voltage generating circuit 210 to a selected word line, among the local lines LL, and may apply a pass voltage generated by the voltage generating circuit 210 to unselected word lines in response to the row decoder control signals AD_signals during a read operation.
- the row decoder 220 may apply a program voltage generated by the voltage generating circuit 210 to a selected word line, among the local lines LL, and may apply a pass voltage generated by the voltage generating circuit 210 to unselected word lines in response to the row decoder control signals AD_signals during a program operation.
- the page buffer group 230 may include a plurality of page buffers PB 1 to PBm coupled to the bit lines BL 1 to BLm, respectively.
- the page buffers PB 1 to PBm may operate in response to page buffer control signals PBSIGNALS.
- the page buffers PB 1 to PBm may temporarily store data to be programmed and adjusting a potential level of the bit lines BL 1 to BLm based on the temporarily stored data to be programmed during a program operation.
- a voltage or a current of the bit lines BL 1 to BLm may be sensed to read data during a read or verify operation.
- the column decoder 240 may transmit data between the input/output circuit 250 and the page buffer group 230 in response to a column address CADD. For example, the column decoder 240 may exchange data with the page buffers PB 1 to PBm through data lines DL, or exchange data with the input/output circuit 250 through column lines CL.
- the input/output circuit 250 may transmit the command CMD and the address ADD received from the memory controller 1200 shown in FIG. 1 to the control logic 300 , or may exchange the data DATA with the column decoder 240 .
- the pass/fail check circuit 260 may generate a reference current in response to an allowable bit VRY_BIT ⁇ #> and output a pass signal PASS or a fail signal FAIL by comparing a sensing voltage VPB received from the page buffer group 230 with a reference voltage generated by the reference current during a read operation or a program verify operation.
- the sensing voltage VPB may be a voltage controlled based on the number of memory cells that are determined as passed during a program verify operation.
- the source line driver 270 may be coupled to the memory cells included in the memory cell array 100 through the source line SL and may control a voltage applied to the source line SL.
- the source line driver 270 may receive a source line control signal CTRL_SL from the control logic 300 and control a source line voltage applied to the source line SL based on the source line control signal CTRL_SL.
- the control logic 300 may control the peripheral circuit 200 by outputting the operation signal OP_CMD, the row decoder control signals AD_signals, the page buffer control signals PBSIGNALS, and the allowable bit VRY_BIT ⁇ #> in response to the command CMD and the address ADD.
- the control logic 300 may control the peripheral circuit 200 to perform a first sensing operation on a first read level higher than a main read level, a second sensing operation on a second read level lower than the main read level, and a main sensing operation on the main read level during a read operation.
- the control logic 300 may control the page buffer group 230 to apply a ground voltage to bit lines of memory cells having a threshold voltage level higher than the first read level and memory cells having a threshold voltage level lower than the second read level based on results of the first sensing operation and the second sensing operation, during the main sensing operation.
- sensing error caused by a noise phenomenon between bit lines may be reduced by performing a masking process on the memory cells having a threshold voltage level higher than the first read level and the memory cells having a threshold voltage level lower than the second read level during the read operation on the memory cells having a threshold voltage distribution between the first read level and the second read level.
- a probability that the ground voltage is applied to bit lines adjacent to the bit lines coupled to the memory cells having the threshold voltage distribution between the first read level and the second read level may be high. Therefore, the noise phenomenon of the bit lines coupled to the memory cells having the threshold voltage distribution between the first read level and the second read level may be prevented or lessened.
- FIG. 3 is a diagram illustrating the memory block 110 shown in FIG. 2 .
- the memory block 110 may be configured such that a plurality of word lines arranged in parallel with each other may be coupled between a first select line and a second select line.
- the first select line may be a source select line SSL and the second select line may be a drain select line DSL.
- the memory block 110 may include a plurality of strings ST coupled between the bit lines BL 1 to BLm and the source line SL.
- the bit lines BL 1 to BLm may be coupled to the strings ST, respectively, and the source line SL may be commonly coupled to the strings ST. Because the strings ST may have the same configuration, the string ST coupled to the first bit line BL 1 is described as an example.
- the string ST may include a source select transistor SST, a plurality of memory cells F 1 to F 16 , and a drain select transistor DST coupled in series between the source line SL and the first bit line BL 1 .
- the single string ST may include at least one source select transistor SST and at least one drain select transistor DST, and may include more memory cells than the memory cells F 1 to F 16 shown in FIG. 3 .
- a source of the source select transistor SST may be coupled to the source line SL, and a drain of the drain select transistor DST may be coupled to the first bit line BL 1 .
- the memory cells F 1 to F 16 may be coupled in series between the source select transistor SST and the drain select transistor DST. Gates of the source select transistors SST included in different strings ST may be coupled to the source select line SSL, gates of the drain select transistors DST may be coupled to the drain select line DSL, and gates of the memory cells F 1 to F 16 may be coupled to a plurality of word lines WL 1 to WL 16 , respectively.
- a group of memory cells coupled to the same word line, among memory cells included in the different strings ST, may be referred to as a page PPG. Therefore, the memory block 110 may include as many pages PPG as the number of word lines WL 1 to WL 16 .
- FIG. 4 is a diagram illustrating an embodiment of the three-dimensionally structured memory block 110 .
- the memory cell array 100 may include the plurality of memory blocks (MB 1 to MBk) 110 .
- the memory block 110 may include a plurality of strings ST 11 to ST 1 m and ST 21 to ST 2 m .
- each of the plurality of strings ST 11 to ST 1 m and ST 21 to ST 2 m may have an shape or a ‘U’ shape.
- m strings may be arranged in a row direction (X direction).
- FIG. 4 illustrates two strings arranged in a column direction (V direction). However, three or more strings may be arranged in the column direction (Y direction).
- Each of the plurality of strings ST 11 to ST 1 m and ST 21 to ST 2 m may include at least one source select transistor SST, first to nth memory cells MC 1 to MCn, and at least one drain select transistor DST.
- the source select transistor SST of each string may be coupled between the source line SL and the memory cells MC 1 to MCn. Source select transistors of strings arranged in the same row may be coupled to the same source select line. Source select transistors of the strings ST 11 to ST 1 m arranged in the first row may be coupled to a first source select line SSL 1 . Source select transistors of the strings ST 21 to ST 2 m arranged in the second row may be coupled to a second source select line SSL 2 . According to another embodiment, source select transistors of the strings ST 11 to ST 1 m and ST 21 to ST 2 m may be coupled in common to a single source select line.
- the first to nth memory cells MC 1 to MCn of each string may be coupled in series between the source select transistor SST and the drain select transistor DST. Gates of the first to nth memory cells MC 1 to MCn may be coupled to the first to nth word lines WL 1 to WLn, respectively.
- At least one of the first to nth memory cells MC 1 to MCn may serve as a dummy memory cell.
- a voltage or current of the corresponding string may be stably controlled. Accordingly, the reliability of data stored in the memory block 110 may be improved.
- the drain select transistor DST of each string may be coupled between the bit line and the memory cells MC 1 to MCn.
- the drain select transistors DST of the strings arranged in the row direction may be coupled to a drain select line extending in the row direction.
- the drain select transistors DST of the strings ST 11 to ST 1 m in the first row may be coupled to a first drain select line DSL 1 .
- the drain select transistors DST of the strings ST 21 to ST 2 m in the second row may be coupled to a second drain select line DSL 2 .
- FIG. 5 is a diagram illustrating the page buffer shown in FIG. 2 .
- the plurality of page buffers PB 1 to PBm may be configured in similar manners, one of the page buffers (PB 1 ) is described as an example.
- the page buffer PB 1 may include a bit line coupling circuit 231 , a bit line set-up circuit 232 , a page buffer sensing circuit 233 , a sensing node coupling circuit 234 , a current control circuit 235 , a sensing node precharge circuit 236 , a main latch 237 , a first discharge circuit 238 , a sub-latch 239 , and a second discharge circuit 241 .
- the bit line coupling circuit 231 may be coupled between the bit line BL 1 and a bit line coupling node BLCM and may include an NMOS transistor N 1 operating in response to a bit line select signal PB_SELBL.
- the NMOS transistor N 1 may be turned on or off in response to the bit line select signal PB_SELBL.
- the bit line set-up circuit 232 may be coupled between a power voltage VEXT terminal, ground power Vss, and the bit line coupling node BLCM, and may include an NMOS transistor N 2 operating in response to a bit line discharge signal BLDIS, and a PMOS transistor P 1 operating in response to a bit line precharge signal BLPRE_N.
- the NMOS transistor N 2 may be turned on or off in response to the bit line discharge signal BLDIS and may apply the ground power Vss to the bit line coupling node BLCM.
- the PMOS transistor P 1 may apply the power voltage VEXT to the bit line coupling node BLCM in response to the bit line precharge signal BLPRE_N.
- the page buffer sensing circuit 233 may be coupled between the bit line coupling node BLCM and a current sensing node CSO and may include an NMOS transistor N 3 operating in response to a page buffer sensing signal PB_SENSE.
- the NMOS transistor N 3 may be turned on or off in response to the page buffer sensing signal PB_SENSE.
- the sensing node coupling circuit 234 may be coupled between the current sensing node CSO and a sensing node SO and may include an NMOS transistor N 4 operating in response to a node coupling signal TRANSO.
- the NMOS transistor N 4 may be turned on or off in response to the node coupling signal TRANSO.
- the current control circuit 235 may include a clamp circuit 235 A and a sensing discharge circuit 235 B.
- the clamp circuit 235 A may include an NMOS transistor N 5 and PMOS transistors P 2 and P 3 .
- the PMOS transistor P 2 may be coupled between a core voltage VCORE terminal and a sense amplifier node SAN and may be turned on or off in response to a potential of a second sub-node QS of the sub-latch 239 .
- the PMOS transistor P 3 may be coupled between the sense amplifier node SAN and the current sensing node CSO and may be turned on or off in response to an internal sensing node precharge signal SA_PRECH_N.
- the NMOS transistor N 5 may be coupled between the sense amplifier node SAN and the current sensing node CSO and may apply a sensing current to sense the bit line BEA to the current sensing node CSO in response to a current sensing signal SA_CSOC.
- the sensing discharge circuit 235 B may be coupled between the current sensing node CSO and a node QN of the first discharge circuit 238 and may include an NMOS transistor N 8 operating in response to an internal sensing node discharge signal SA_DISCH.
- the NMOS transistor N 8 may be turned on or off in response to the internal sensing node discharge signal SA_DISCH.
- the sensing node precharge circuit 236 may be coupled between the core voltage VCORE terminal and the sensing node SO and may include a PMOS transistor P 5 operating in response to a precharge signal PRECHSO_N.
- the PMOS transistor P 5 may supply the core voltage VCORE to the sensing node SO in response to the precharge signal PRECHSO_N.
- the main latch 237 may include an NMOS transistor N 7 , an NMOS transistor N 9 , a latch LATM, and a main latch reset/setup circuit RSEM.
- the main latch 237 may temporarily store data sensed during a read operation.
- the latch LATM may include inverters IV 1 and IV 2 .
- the inverters IV 1 and IV 2 may be coupled in anti-parallel with each other between first and second main nodes QM_N and QM of the latch LATM.
- An input terminal of the inverter IV 1 may be coupled to the second main node QM and an output terminal of the inverter IV 1 may be coupled to the first main node QM_N.
- An input terminal of the inverter IV 2 may be coupled to the first main node QM_N and an output terminal of the inverter IV 2 may be coupled to the second main node QM.
- the NMOS transistor N 9 and the NMOS transistor N 7 may be coupled in series between the sensing node SO and the ground power Vss and may apply or block the ground power Vss to the sensing node SO in response to a main data transmission signal TRANM and a potential of the first main node QM_N.
- the NMOS transistor N 9 may be turned on or off in response to the main data transmission signal TRANM, and the NMOS transistor N 7 may be turned on or off in response to a potential of the first main node QM_N.
- the main latch reset/setup circuit RSEM may be coupled to the first and second main nodes QM_N and QM of the latch LATM and may reset or set up the latch LATM.
- the main latch reset/setup circuit RSEM may include NMOS transistors N 10 and N 11 .
- the NMOS transistor N 10 may couple the second main node QM of the latch LATM to the common node COM in response to a main reset signal MRST.
- the NMOS transistor N 11 may couple the first main node QM_N of the latch LATM to the common node COM in response to a main setup signal MSET.
- the main latch reset/setup circuit RSEM may couple the common node COM to the second main node QM in response to the main reset signal MRST to initialize the latch LATM such that the second main node QM reaches a low level during an initialization operation of the latch LATM and may control the first main node QM_N to reach a low level or a high level according to a potential of the common node COM which is determined according to a sensed data value in response to the main setup signal MSET during a sensing operation of the latch LATM.
- the first discharge circuit 238 may include NMOS transistors N 12 and N 13 coupled in series between the sensing node SO and the ground power Vss.
- the NMOS transistor N 12 may be turned on or off in response to a transmission signal TRANS and the NMOS transistor N 13 may be turned on or off in response to a potential of a second sub-node QS of the sub-latch 239 .
- the sub-latch 239 may include a latch LATS and a sub-latch reset/setup circuit RSES.
- the latch LATS may include inverters IV 3 and IV 4 .
- the inverters IV 3 and IV 4 may be coupled in anti-parallel with each other between a first sub-node QS_N and the second sub-node QS of the latch LATS.
- an input terminal of the inverter IV 3 may be coupled to the second sub-node QS and an output terminal of the inverter IV 3 may be coupled to the first sub-node QS_N.
- An input terminal of the inverter IV 4 may be coupled to the first sub-node QS_N and an output terminal of the inverter IV 4 may be coupled to the second sub-node QS.
- the sub-latch reset/setup circuit RSES may be coupled to the first sub-node QS_N and the second sub-node QS and may reset or set up the latch LATS.
- the sub-latch reset/setup circuit RSES may include NMOS transistors N 14 , N 15 and N 16 .
- the NMOS transistor N 14 may couple the second sub-node QS of the latch LATS to the common node COM in response to a sub-reset signal SRST.
- the NMOS transistor N 15 may couple the first sub-node QS_N of the latch LATS to the common node COM in response to a sub-setup signal SSET.
- the ground power Vss may be coupled to the common node COM.
- the NMOS transistor N 16 may be coupled between the first sub-node QS_N and a terminal of the ground power Vss and may be turned on in response to a reset signal PBRST.
- the second discharge circuit 241 may include a NMOS transistor N 17 that is coupled between the common node COM and a terminal of the ground power Vss and is turned on or off in response to a potential of the sensing node SO.
- FIG. 6 is a diagram illustrating a threshold voltage distribution of memory cells.
- a plurality of memory cells included in the single page PPG of FIG. 3 may have a threshold voltage distribution corresponding to a plurality of program states when a program operation is performed.
- the plurality of memory cells when the plurality of memory cells are programmed by a Triple Level Cell (TLC) method, the plurality of memory cells may have a threshold voltage distribution corresponding to an erase state PO and first to seventh program states P 1 to P 7 .
- the memory cells programmed by the TLC method may sense a corresponding program state by using a plurality of read voltages R 1 to R 7 during a read operation.
- a threshold voltage of a target memory cell is greater than the third read voltage R 3 according to a result of a read operation using the third read voltage R 3
- the threshold voltage Vt of the target memory cell is smaller than the fourth read voltage R 4 according to a result of a read operation using the fourth read voltage R 4
- data corresponding to the third program state may be read.
- FIG. 7 is a flowchart illustrating a method of operating a memory device according to an embodiment.
- FIGS. 8 to 10 are distribution charts of a threshold voltage illustrating a method of operating a memory device according to an embodiment.
- a method of performing a read operation of a memory device according to an embodiment is described below with reference to FIGS. 2 and 7 to 10 .
- a read operation using the fourth read voltage R 4 among the read operations using the read voltage is described as an example.
- the fourth read voltage R 4 may be, for example, a main read level.
- the control logic 300 of the memory device may control the peripheral circuit 200 to perform a sensing operation pertaining to a first read level R 4 _ 1 higher than a level of the fourth read voltage R 4 to sense memory cells corresponding to a region A as shown in FIG. 8 (S 710 ).
- a sensing result may be stored in the page buffers PB 1 to PBm of the page buffer group 230 .
- the memory cells having a threshold voltage that have a level that is higher than or equal to the first read level R 4 _ 1 higher than the level of the fourth read voltage R 4 i.e., a main read level
- the region A may correspond to the memory cells having a threshold voltage that have a level that is higher than or equal to the first read level R 4 _ 1 higher than the level of the fourth read voltage R 4 .
- the control logic 300 of the memory device may control the peripheral circuit 200 to perform a sensing operation pertaining to a second read level R 4 _ 2 lower than the level of the fourth read voltage R 4 to sense memory cells corresponding to a region B as shown in FIG. 9 (S 720 ).
- a sensing result may be stored in the page buffers PB 1 to PBm of the page buffer group 230 .
- the memory cells having a threshold voltage that have a level that is lower than or equal to the second read level R 4 _ 2 lower than the level of the fourth read voltage R 4 i.e., the main read level
- the region B may correspond to the memory cells having a threshold voltage that have a level that is lower than or equal to the second read level R 4 _ 2 lower than the level of the fourth read voltage R 4 .
- step S 720 is performed after step S 710 is performed.
- step S 710 may be performed after step S 720 is performed.
- a masking process may be performed on the memory cells corresponding to the region A and the region B, which are sensed according to the sensing results of step S 710 and step S 720 , respectively (S 730 ).
- the masking process may control bit lines coupled to the memory cells corresponding to the region A and the region B to have a ground level during a sensing operation pertaining to the main read level subsequent to the masking process.
- the page buffers PB 1 to PBm of the page buffer group 230 may control the bit lines, which are coupled to the memory cells corresponding to the region A and the region B, to have the ground level during the sensing operation pertaining to the main read level according to the sensing results of step S 710 and step S 720 .
- a sensing operation pertaining to the main read level may be performed to perform a read operation of memory cells corresponding to a region C (S 740 ).
- memory cells having a threshold voltage greater than or equal to the fourth read voltage R 4 i.e., the main read level
- memory cells having a threshold voltage smaller than or equal to the fourth read voltage R 4 may be sensed and a sensing result may be stored in the page buffer group 230 .
- a sensing operation may be performed pertaining to the main read level with respect to the memory cells corresponding to the region C, other than the memory cells corresponding to the region A and having the threshold voltage level which is higher than or equal to the first read level R 4 _ 1 and the memory cells corresponding to the region B and having the threshold voltage level which is lower than or equal to the second read level R 4 _ 2 .
- the page buffer group 230 may temporarily store read data based on the result of the sensing operation pertaining to the first read voltage level and the result of the sensing operation pertaining to the main read level and may output the temporarily stored read data.
- bit lines coupled to the memory cells corresponding to the region A and the region B have a ground level by the page buffer group 230 during the sensing operation pertaining to the main read level
- a probability that bit lines adjacent to bit lines coupled to the memory cells corresponding to the region C, during the sensing operation pertaining to the memory cells corresponding to the region C, have a ground level may be high. Accordingly, noise caused by a bit line coupling phenomenon may be prevented or lessened during the sensing operation pertaining to the main read level.
- FIG. 11 is a waveform diagram of signals illustrating an operation of a page buffer according to an embodiment.
- FIGS. 5 and 8 to 11 An operation of a page buffer according to an embodiment is described below with reference to FIGS. 5 and 8 to 11 .
- a page buffer PB 1 is described as an example.
- a read operation using the fourth read voltage R 4 among the read operations using a plurality of read voltages is described as an example.
- the page buffer PB 1 may perform an initialization operation during a period t 1 .
- the PMOS transistor P 5 may be turned on in response to the precharge signal PRECHSO_N to apply the core voltage VCORE to the sensing node SO.
- the NMOS transistor N 17 of the second discharge circuit 241 may be turned on to apply the ground power Vss to the common node COM.
- the main reset signal MRST having a high level may be applied to the main latch reset/setup circuit RSEM to initialize the second main node QM of the latch LATM to a low level.
- the sub-reset signal SRST having a high level may be applied to the sub-latch reset/setup circuit RSES to initialize the second sub-node QS of the latch LATS to a low level.
- the first read level voltage R 4 _ 1 may be applied to the word line WL corresponding to a selected page during a period t 2 .
- the first read level voltage R 4 _ 1 may correspond to the first read level R 4 _ 1 shown in FIG. 8 .
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on in response to a potential of the second sub-node QS, and the PMOS transistor P 3 of the clamp circuit 235 A may be turned on in response to the internal sensing node precharge signal SA_PRECH_N to apply the core voltage VCORE to the current sensing node CSO.
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied.
- the bit line BL 1 may be precharged to a predetermined level.
- predetermined as used herein with respect to a parameter, such as a predetermined level, means that a value for the parameter is determined prior to the parameter being used in a process or algorithm. For some embodiments, the value for the parameter is determined before the process or algorithm begins. In other embodiments, the value for the parameter is determined during the process or algorithm but before the parameter is used in the process or algorithm.
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during a period t 3 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- the NMOS transistor N 4 may maintain a turn-on state during a sensing time Sensing time of the period t 3 and may then be turned off in response to the node coupling signal TRANSO. Accordingly, a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the main setup signal MSET having a high level may be applied to the main latch reset/setup circuit RSEM, such that the first main node QM_N of the latch LATM maintains a high level or is set up to have a low level.
- the first main node QM_N may maintain a high level
- the threshold voltage of the memory cell coupled to the bit line BL 1 is smaller than the first read level voltage R 4 _ 1
- the first main node QM_N may be set up to have a low level.
- the second read level voltage R 4 _ 2 may be applied to the word line WL corresponding to the selected page during a period t 4 .
- the second read level voltage R 4 _ 2 may correspond to the second read level R 4 _ 2 shown in FIG. 9 .
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on in response to a potential of the second sub-node QS, and the PMOS transistor P 3 of the clamp circuit 235 A may be turned on in response to the internal sensing node precharge signal SA_PRECH_N to apply the core voltage VCORE to the current sensing node CSO.
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied. Accordingly, the bit line BL 1 may be precharged to a predetermined level.
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during a period t 5 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- the NMOS transistor N 4 may maintain a turn-on state during the sensing time Sensing time of the period t 5 and may then be turned off in response to the node coupling signal TRANSO. Accordingly, a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to the cell current of the bit line BL 1 .
- the reset signal PBRST having a high level may be applied to the sub-latch reset/setup circuit RSES to set the first sub-node QS_N of the latch LATS to a low level. Subsequently, the sub-reset signal SRST having a high level may be applied to the sub-latch reset/setup circuit RSES, such that the second sub-node QS of the latch LATS maintains a high level or is set up to have a low level.
- the second sub-node QS when a threshold voltage of a memory cell coupled to the bit line BL 1 is greater than the second read level voltage R 4 _ 2 , the second sub-node QS may be set up to have a low level, and when the threshold voltage of the memory cell coupled to the bit line BL 1 is smaller than the second read level voltage R 4 _ 2 , the second sub-node QS may maintain a high level.
- Sensing data stored in the latch LATM may be transmitted to the latch LATS during a period t 6 . Accordingly, data based on the sensing data that is sensed during the period t 5 and the sensing data that is sensed during the period t 3 may be newly stored in the latch LATS. For example, the PMOS transistor P 5 may be turned on in response to the precharge signal PRECHSO_N to apply the power voltage VEXT to the sensing node SO. Accordingly, the sensing node OS may be precharged to a predetermined level.
- a potential level of the sensing node SO may be maintained at the precharged level or may be discharged to a low level according to a potential level of the first main node QM_N.
- the sub-setup signal SSET having a high level may be applied to the sub-latch reset/setup circuit RSES, such that the second sub-node QS of the latch LATS maintains a previous level or is set up to have a high level.
- sensing data stored in the latch LATM may be transmitted to the latch LATS and the second sub-node QS of the latch LATS may be set to have a high level.
- sensing data stored in the latch LATS may be maintained and the second sub-node QS may maintain a high level.
- the second sub-node QS may be set to have a low level.
- the main read level voltage R 4 may be applied to the word line WL corresponding to the selected page during a period t 7 .
- the main read level voltage R 4 may correspond to the main read level shown in FIG. 8 .
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on or off in response to a potential of the second sub-node QS. For example, when a level of a threshold voltage of a memory cell is higher than the first read level R 4 _ 1 or lower than the second read level R 4 _ 2 during a previous sensing operation, because a potential of the second sub-node QS is a high level, the PMOS transistor P 2 may be turned off. Accordingly, a precharge operation of the bit line BL 1 is not performed, therefore, a potential of the bit line BL 1 may become a ground level GND.
- the PMOS transistor P 2 may be turned on. Accordingly, the bit line BL 1 may be precharged to a predetermined level.
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 8 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- the NMOS transistor N 4 may maintain a turn-on state during the sensing time Sensing time of the period t 8 and may then be turned off in response to the node coupling signal TRANSO.
- a potential of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the main setup signal MSET having a high level may be applied to the main latch reset/setup circuit RSEM, such that the first main node QM_N of the latch LATM maintains a high level or is set up to have a low level.
- the first main node QM_N when a level of a threshold voltage of a memory cell coupled to the bit line BL 1 is higher than the main read level R 4 , the first main node QM_N may be set up to have a low level, and when the level of the threshold voltage of the memory cell coupled to the bit line BL 1 is lower than the main read level R 4 , the first main node QM_N may maintain a high level.
- a sensing operation performed by applying the main read voltage R 4 may be performed after a masking process is performed on bit lines of memory cells corresponding to the region A and the region B according to sensing results of a sensing operation performed by applying the first read level voltage R 4 _ 1 greater than the main read voltage R 4 to a word line and a sensing operation performed by applying the second read level voltage R 4 _ 2 smaller than the main read voltage R 4 to the word line.
- FIG. 12 is a waveform of signals illustrating an operation of a page buffer according to another embodiment.
- FIGS. 5, 8 to 10, and 12 An operation of a page buffer according to another embodiment is described below with reference to FIGS. 5, 8 to 10, and 12 .
- a page buffer PB 1 is described as an example.
- a read operation using the fourth read voltage R 4 among the read operations using a plurality of read voltages is described as an example.
- the page buffer PB 1 may perform an initialization operation during the period t 1 .
- the PMOS transistor P 5 may be turned on in response to the precharge signal PRECHSO_N to apply the power voltage VEXT to the sensing node SO.
- the NMOS transistor N 17 of the second discharge circuit 241 may be turned on to apply the ground power Vss to the common node COM.
- the main reset signal MRST having a high level may be applied to the main latch reset/setup circuit RSEM to initialize the second main node QM of the latch LATM to a low level.
- the sub-reset signal SRST having a high level may be applied to the sub-latch reset/setup circuit RSES to initialize the second sub-node QS of the latch LATS to a low level.
- the main read voltage R 4 corresponding to a main read level may be applied to the word line WL corresponding to the selected page during the period t 2 .
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on in response to a potential of the second sub-node QS, and the PMOS transistor P 3 of the clamp circuit 235 A may be turned on in response to the internal sensing node precharge signal SA_PRECH_N to apply the core voltage VCORE to the current sensing node CSO.
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied.
- the page buffer sensing signal PB_SENSE may be a first voltage V 1 . Accordingly, the bit line BL 1 may be precharged to a potential of a first bit line voltage VBL_R 4 _ 1 .
- the first bit line voltage VBL_R 4 _ 1 may correspond to the first read level R 4 _ 1 shown in FIG. 8 .
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 3 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 . The cell current of the bit line BL 1 may be affected by a precharge level of the bit line BL 1 . For example, when a precharge level of a bit line is high in a state where the same read voltage is applied to a word line, a cell current may be increased and have an effect of increasing a read level.
- a sensing result with respect to the first read level R 4 _ 1 may be obtained.
- the NMOS transistor N 4 may maintain a turn-on state during the sensing time Sensing time of the period t 3 and may then be turned off in response to the node coupling signal TRANSO. Accordingly, a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the main setup signal MSET having a high level may be applied to the main latch reset/setup circuit RSEM, such that the first main node QM_N of the latch LATM maintains a high level or is set up to have a low level.
- the first main node QM_N may maintain a high level
- the threshold voltage of the memory cell coupled to the bit line BL 1 is smaller than the first read level voltage R 4 _ 1
- the first main node QM_N may be set up to have a low level.
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on in response to a potential of the second sub-node QS, and the PMOS transistor P 3 of the clamp circuit 235 A may be turned on in response to the internal sensing node precharge signal SA_PRECH_N to apply the core voltage VCORE to the current sensing node CSO during the period t 4 .
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied.
- the page buffer sensing signal PB_SENSE may be a second voltage V 2 .
- the second voltage V 2 may be lower than the first voltage V 1 .
- the bit line BL 1 may be precharged to a potential of a second bit line voltage VBL_R 4 _ 2 .
- the second bit line voltage VBL_R 4 _ 2 may correspond to the second read level R 4 _ 2 shown in FIG. 9 .
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 5 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 . The cell current of the bit line BL 1 may be affected by a precharge level of the bit line BL 1 . In other words, when a sensing operation is performed by adjusting the precharge level of the bit line BL 1 to a potential of the second bit line voltage VBL_R 4 _ 2 in a state where the fourth read voltage R 4 is applied to the word line, a sensing result with respect to the second read level R 4 _ 2 may be obtained.
- the NMOS transistor N 4 may maintain a turn-on state during the sensing time Sensing time of the period t 5 and may then be turned off in response to the node coupling signal TRANSO. Accordingly, a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the reset signal PBRST having a high level may be applied to the sub-latch reset/setup circuit RSES to set the first sub-node QS_N of the latch LATS to a low level.
- the sub-reset signal SRST having a high level may be applied to the sub-latch reset/setup circuit RSES, such that the second sub-node QS of the latch LATS maintains a high level or is set up to have a low level.
- the second sub-node QS may be set up to have a low level, and when the threshold voltage of the memory cell coupled to the bit line BL 1 is smaller than the second read level voltage R 4 _ 2 , the second sub-node QS may maintain a high level.
- Sensing data stored in the latch LATM may be transmitted to the latch LATS during the period t 6 . Accordingly, data based on the sensing data that is sensed during the period t 5 and the sensing data that is sensed during the period t 3 may be newly stored in the latch LATS. For example, the PMOS transistor P 5 may be turned on in response to the precharge signal PRECHSO_N to apply the power voltage VEXT to the sensing node SO. Accordingly, the sensing node SO may be precharged to a predetermined level.
- a potential level of the sensing node SO may be maintained at a precharge level or may be discharged to a low level according to a potential level of the first main node QM_N.
- the sub-setup signal SSET having a high level may be applied to the sub-latch reset/setup circuit RSES, such that the second sub-node QS of the latch LATS maintains a previous level or is set up to have a high level.
- sensing data stored in the latch LATM may be transmitted to the latch LATS and the second sub-node QS of the latch LATS may become a high level.
- the threshold voltage of the memory cell is smaller than the second read level sensing data stored in the latch LATS may be maintained and the second sub-node QS may maintain a high level.
- the second sub-node QS may become a low level.
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on or off in response to a potential of the second sub-node QS during the period t 7 .
- a level of a threshold voltage of a memory cell is higher than the first read level R 4 _ 1 or lower than the second read level R 4 _ 2 during a previous sensing operation, because a potential of the second sub-node QS has a high level, the PMOS transistor P 2 may be turned off. Accordingly, a precharge operation of the bit line BL 1 is not performed, therefore, a potential of the bit line BL 1 may become the ground level GND.
- the PMOS transistor P 2 may be turned on.
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied.
- the page buffer sensing signal PB_SENSE may be a third voltage V 3 . Accordingly, the bit line BL 1 may be precharged to a potential of the main bit line voltage VBL_R 4 .
- the main bit line voltage VBL_R 4 may correspond to the main read level R 4 shown in FIG. 8 .
- the third voltage V 3 may be smaller than the first voltage V 1 and greater than the second voltage V 2 .
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 8 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- the NMOS transistor N 4 may maintain a turn-on state during the sensing time Sensing time of the period t 8 and may then be turned off in response to the node coupling signal TRANSO.
- a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the main setup signal MSET having a high level may be applied to the main latch reset/setup circuit RSEM, such that the first main node QM_N of the latch LATM maintains a high level or is set up to have a low level.
- the first main node QM_N when a level of a threshold voltage of a memory cell coupled to the bit line BL 1 is higher than the main read level R 4 , the first main node QM_N may become a low level, and when the level of the threshold voltage of the memory cell coupled to the bit line BL 1 is lower than the main read level R 4 , the first main node QM_N may maintain a high level.
- a sensing operation corresponding to the main read level R 4 may be performed after a masking process is performed on bit lines of memory cells corresponding to the region A and the region B according to sensing results of a sensing operation corresponding to the first read level R 4 _ 1 and a sensing operation corresponding to the second read level R 4 _ 2 by changing a precharge level of the bit line BL 1 in a state where the main read voltage R 4 corresponding to the main read level is applied to a word line.
- FIG. 13 is a waveform diagram of signals illustrating an operation of a page buffer according to another embodiment.
- FIGS. 5, 8 to 10, and 13 An operation of a page buffer according to another embodiment is described below with reference to FIGS. 5, 8 to 10, and 13 .
- a page buffer PB 1 is described as an example.
- a read operation using the fourth read voltage R 4 among the read operations using a plurality of read voltages is described as an example.
- the page buffer PB 1 may perform an initialization operation during the period t 1 .
- the PMOS transistor P 5 may be turned on in response to the precharge signal PRECHSO_N to apply the power voltage VEXT to the sensing node SO.
- the NMOS transistor N 17 of the second discharge circuit 241 may be turned on to apply the ground power Vss to the common node COM.
- the main reset signal MRST having a high level may be applied to the main latch reset/setup circuit RSEM to initialize the second main node QM of the latch LATM to a low level.
- the sub-reset signal SRST having a high level may be applied to the sub-latch reset/setup circuit RSES to initialize the second sub-node QS of the latch LATS to a low level.
- the main read voltage R 4 corresponding to the main read level may be applied to the word line WL corresponding to the selected page during the period t 2 .
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on in response to a potential of the second sub-node QS and the PMOS transistor P 3 of the clamp circuit 235 A may be turned on in response to the internal sensing node precharge signal SA_PRECH_N to apply the core voltage VCORE to the current sensing node CSO.
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied.
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 3 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- a sensing operation on the first read level R 4 _ 1 may be performed during a first sensing time Sensing time 1 by controlling a turn-on period of the node coupling signal TRANSO.
- a reference current Itrip of a page buffer may be changed, and thus a sensing operation on the first read level R 4 _ 1 may be performed.
- a sensing time when a sensing time is increased in a state where the same read voltage is applied to a word line and a bit line is precharged to the same potential level, an effect of increasing a read level may be obtained.
- a sensing operation is performed for the first sensing time Sensing time 1 in a state where the fourth read voltage R 4 is applied to a word line and the bit line BL 1 is precharged to a predetermined level, a sensing result with respect to the first read level R 4 _ 1 may be obtained.
- the NMOS transistor N 4 may maintain a turn-on state during the first sensing time Sensing time 1 of the period t 3 and may then be turned off in response to the node coupling signal TRANSO.
- a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the main setup signal MSET having a high level may be applied to the main latch reset/setup circuit RSEM, such that the first main node QM_N of the latch LATM maintains a high level or is set up to have a low level.
- the first main node QM_N may maintain a high level, and when the threshold voltage of the memory cell coupled to the bit line BL 1 is smaller than the first read level voltage R 4 _ 1 , the first main node QM_N may be set up to have a low level.
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on in response to a potential of the second sub-node QS, and the PMOS transistor P 3 of the clamp circuit 235 A may be turned on in response to the internal sensing node precharge signal SA_PRECH_N to apply the core voltage VCORE to the current sensing node CSO during the period t 4 .
- the NMOS transistor N 4 may be turned on in response to the node coupling signal TRANSO to precharge the sensing node SO. Only the sensing node SO may be precharged without performing a precharge operation on the bit line BL 1 during the period t 4 .
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 5 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- a sensing operation on the second read level R 4 _ 2 may be performed during a second sensing time Sensing time 2 by controlling a turn-on period of the node coupling signal TRANSO.
- the second sensing time Sensing time 2 is adjusted to be relatively short, the reference current Itrip of a page buffer may be changed, and thus a sensing operation on the second read level R 4 _ 2 may be performed.
- the second sensing time Sensing time 2 may be shorter than the first sensing time Sensing time 1 .
- the NMOS transistor N 4 may maintain a turn-on state during the second sensing time Sensing time 2 of the period t 5 and may then be turned off in response to the node coupling signal TRANSO. Accordingly, a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- the reset signal PBRST having a high level may be applied to the sub-latch reset/setup circuit RSES to set the first sub-node QS_N of the latch LATS to a low level.
- the sub-reset signal SRST having a high level may be applied to the sub-latch reset/setup circuit RSES, such that the second sub-node QS of the latch LATS maintains a high level or is set up to have a low level.
- the second sub-node QS may be set up to have a low level, and when the threshold voltage of the memory cell coupled to the bit line BL 1 is smaller than the second read level voltage R 4 _ 2 , the second sub-node QS may maintain a high level.
- Sensing data stored in the latch LATM may be transmitted to the latch LATS during the period t 6 . Accordingly, data based on the sensing data that is sensed during the period t 5 and the sensing data that is sensed during the period t 3 may be newly stored in the latch LATS. For example, the PMOS transistor P 5 may be turned on in response to the precharge signal PRECHSO_N to apply the power voltage VEXT to the sensing node SO. Accordingly, the sensing node SO may be precharged to a predetermined level.
- a potential level of the sensing node SO may be maintained at a precharge level or may be discharged to a low level according to a potential level of the first main node QM_N.
- the sub-setup signal SSET having a high level may be applied to the sub-latch reset/setup circuit RSES, such that the second sub-node QS of the latch LATS maintains a previous level or is set up to have a high level.
- sensing data stored in the latch LATM may be transmitted to the latch LATS and the second sub-node QS of the latch LATS may become a high level.
- sensing data stored in the latch LATS may be maintained and the second sub-node QS may maintain a high level.
- the second sub-node QS may become a low level.
- the PMOS transistor P 2 of the clamp circuit 235 A may be turned on or off in response to a potential of the second sub-node QS during the period t 7 .
- a level of a threshold voltage of a memory cell is higher than the first read level R 4 _ 1 or lower than the second read level R 4 _ 2 during a previous sensing operation, because a potential of the second sub-node QS has a high level, the PMOS transistor P 2 may be turned off. Accordingly, a precharge operation of the bit line BL 1 is not performed, therefore, a potential of the bit line BL 1 may become the ground level GND.
- the PMOS transistor P 2 may be turned on.
- the NMOS transistor N 1 of the bit line coupling circuit 231 may be turned on in response to the bit line select signal PB_SELBL and the NMOS transistor N 3 of the page buffer sensing circuit 233 may be turned on in response to the page buffer sensing signal PB_SENSE to electrically couple the bit line BL 1 to the current sensing node CSO to which the core voltage VCORE is applied. Accordingly, the bit line BL 1 may be precharged to a predetermined level.
- the PMOS transistor P 3 may be turned off in response to the internal sensing node precharge signal SA_PRECH_N during the period t 8 . Accordingly, a cell current of the bit line BL 1 may vary according to a threshold voltage of a memory cell coupled to the bit line BL 1 .
- the NMOS transistor N 4 may maintain a turn-on state during a third sensing time Sensing time 3 of the period t 8 and may then be turned off in response to the node coupling signal TRANSO.
- a potential level of the sensing node SO may be maintained at a high level or may be discharged to a low level according to a cell current of the bit line BL 1 .
- a sensing operation on the main read level R 4 may be performed during the third sensing time Sensing time 3 by adjusting a turn-on period of the node coupling signal TRANSO.
- the third sensing time Sensing time 3 may be shorter than the first sensing time Sensing time 1 and longer than the second sensing time Sensing time 2 .
- the third sensing time Sensing time 3 is adjusted to be shorter than the first sensing time Sensing time 1 and longer than the second sensing time Sensing time 2 , the reference current Itrip of a page buffer may be changed, and thus a sensing operation on the main read level R 4 may be performed.
- the main setup signal MSET having a high level may be applied to the main latch reset/setup circuit RSEM, such that the first main node QM_N of the latch LATM maintains a high level or is set up to have a low level.
- the first main node QM_N may become a low level, and when the level of the threshold voltage of the memory cell coupled to the bit line BL 1 is lower than the main read level R 4 , the first main node QM_N may maintain a high level.
- a sensing operation corresponding to the main read level R 4 may be performed after a masking process is performed on bit lines of memory cells corresponding to the region A and the region B according to sensing results of a sensing operation corresponding to the first read level R 4 _ 1 and a sensing operation corresponding to the second read level R 4 _ 2 by adjusting a length of a sensing time in a state where the main read voltage R 4 corresponding to the main read level is applied to a word line.
- FIG. 14 is a diagram illustrating another embodiment of a memory system.
- a memory system 30000 may be embodied into a cellular phone, a smartphone, a tablet PC, a personal digital assistant (PDA) or a wireless communication device.
- the memory system 30000 may include a memory device 1100 and a memory controller 1200 controlling the operations of the memory device 1100 .
- the memory controller 1200 may control a data access operation of the memory device 1100 , for example, a program operation, an erase operation, or a read operation in response to control of a processor 3100 .
- the memory controller 1200 may control data programmed into the memory device 1100 to be output through a display 3200 in response to control of the memory controller 1200 .
- a radio transceiver 3300 may exchange a radio signal through an antenna ANT.
- the radio transceiver 3300 may change the radio signal received through the antenna ANT into a signal which can be processed by the processor 3100 . Therefore, the processor 3100 may process the signal output from the radio transceiver 3300 and transfer the processed signal to the memory controller 1200 or the display 3200 .
- the memory controller 1200 may program the signal processed by the processor 3100 into the memory device 1100 .
- the radio transceiver 3300 may change a signal output from the processor 3100 to a radio signal and output the radio signal to an external device through the antenna ANT.
- a control signal for controlling the operations of the processor 3100 or data to be processed by the processor 3100 may be input by an input device 3400 , and the input device 3400 may include a pointing device, such as a touch pad and a computer mouse, a keypad, or a keyboard.
- the processor 3100 may control operations of the display 3200 so that the data output from the controller 1200 , the data output from the radio transceiver 3300 , or the data output from the input device 3400 may be displayed on the display 3200 .
- the memory controller 1200 controlling the operations of the memory device 1100 may form part of the processor 3100 , or be formed as a separate chip from the processor 3100 . Further, the memory device 1100 may be formed through the examples of the memory controller 1100 shown in FIG. 2 .
- FIG. 15 is a diagram illustrating another embodiment of a memory system.
- a memory system 40000 may be embodied into a personal computer (PC), a tablet PC, a net-book, an e-reader, a personal digital assistant (PDA), a portable multimedia player (PMP), an MP3 player, or an MP4 player.
- PC personal computer
- PDA personal digital assistant
- PMP portable multimedia player
- MP3 player MP3 player
- MP4 player MP4 player
- the memory system 40000 may include the memory device 1100 and the memory controller 1200 controlling a data processing operation of the memory device 1100 .
- a processor 4100 may output data stored in the memory device 1100 through a display 4300 according to data input through an input device 4200 .
- Examples of the input device 4200 may include a pointing device, such as a touch pad or a computer mouse, a keypad, or a keyboard.
- the processor 4100 may control the general operations of the memory system 40000 and control the operations of the memory controller 1200 .
- the memory controller 1200 controlling the operations of the memory device 1100 may form part of the processor 4100 , or be formed as a separate chip from the processor 4100 . Further, the memory device 1100 may be formed through the examples of the memory controller 1100 shown in FIG. 2 .
- FIG. 16 is a diagram illustrating another embodiment of a memory system.
- a memory system 50000 may be embodied into an image processing device, for example, a digital camera, a cellular phone with a digital camera attached thereto, a smartphone with a digital camera attached thereto, or a tablet PC with a digital camera attached thereto.
- an image processing device for example, a digital camera, a cellular phone with a digital camera attached thereto, a smartphone with a digital camera attached thereto, or a tablet PC with a digital camera attached thereto.
- the memory system 50000 may include the memory device 1100 and the memory controller 1200 controlling a data processing operation of the memory device 1100 , for example, a program operation, an erase operation, or a read operation.
- An image sensor 5200 of the memory system 50000 may convert an optical image into digital signals, and the digital signals may be transferred to a processor 5100 or the memory controller 1200 .
- the digital signals may be output through a display 5300 or stored in the memory device 1100 through the controller 1200 .
- the data stored in the memory device 1100 may be output through the display 5300 according to control of the processor 5100 or the memory controller 1200 .
- the memory controller 1200 controlling the operations of the memory device 1100 may form part of the processor 5100 , or be formed as a separate chip from the processor 5100 . Further, the memory device 1100 may be formed through the examples of the memory controller 1100 shown in FIG. 2 .
- FIG. 17 is a diagram illustrating another embodiment of a memory system.
- a memory system 70000 may be embodied into a memory card or a smart card.
- the memory system 70000 may include the memory device 1100 , the memory controller 1200 , and a card interface 7100 .
- the memory controller 1200 may control data exchange between the memory device 1100 and the card interface 7100 .
- the card interface 7100 may be, but is not limited to, a secure digital (SD) card interface or a multi-media card (MMC) interface.
- the memory controller 1200 may be formed through the example of the memory controller 1200 shown in FIG. 2 .
- the card interface 7100 may interface data exchange between a host 60000 and the memory controller 1200 according to a protocol of the host 60000 .
- the card interface 7100 may support a Universal Serial Bus (USB) protocol and an InterChip (IC)-USB protocol.
- USB Universal Serial Bus
- IC InterChip
- the card interface may refer to hardware capable of supporting a protocol which is used by the host 60000 , software installed in the hardware, or a signal transmission method.
- the host interface 6200 may perform data communication with the memory device 1100 through the card interface 7100 and the memory controller 1200 in response to control of a microprocessor 6100 .
- the memory device 1100 may be formed through the examples of the memory controller 1100 shown in FIG. 2 .
- the reliability of a read operation of a memory device may be improved by suppressing noise caused by an adjacent bit line during the read operation.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Read Only Memory (AREA)
Abstract
Description
Claims (21)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020190128692A KR102797247B1 (en) | 2019-10-16 | 2019-10-16 | Memory device and operating method thereof |
| KR10-2019-0128692 | 2019-10-16 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20210118513A1 US20210118513A1 (en) | 2021-04-22 |
| US11195586B2 true US11195586B2 (en) | 2021-12-07 |
Family
ID=75403182
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/881,852 Active US11195586B2 (en) | 2019-10-16 | 2020-05-22 | Memory device and operating method of the memory device |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US11195586B2 (en) |
| KR (1) | KR102797247B1 (en) |
| CN (1) | CN112669892B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102849546B1 (en) * | 2020-02-19 | 2025-08-22 | 에스케이하이닉스 주식회사 | Memory device and operating method thereof |
| KR20210155432A (en) * | 2020-06-15 | 2021-12-23 | 삼성전자주식회사 | Nonvolatile Memory Device and Operating Method thereof |
| US11568945B2 (en) * | 2021-06-09 | 2023-01-31 | Sandisk Technologies Llc | Fast sensing scheme with amplified sensing and clock modulation |
| KR20240072685A (en) | 2022-11-17 | 2024-05-24 | 에스케이하이닉스 주식회사 | Semiconductor device performing data read operation and controller controlling the same |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100302850A1 (en) * | 2009-05-26 | 2010-12-02 | Samsung Electronics Co., Ltd. | Storage device and method for reading the same |
| US20140063950A1 (en) | 2012-08-29 | 2014-03-06 | SK Hynix Inc. | Semiconductor device and method of operating the same |
| US20140269085A1 (en) | 2013-03-13 | 2014-09-18 | Sandisk Technologies Inc. | Determining read voltages for reading memory |
| US9412471B2 (en) * | 2013-03-15 | 2016-08-09 | Samsung Electronics Co., Ltd. | Method of reading data from a nonvolatile memory device, nonvolatile memory device, and method of operating a memory system |
| US20170345503A1 (en) * | 2014-09-30 | 2017-11-30 | Carnegie Mellon University | Reducing errors caused by inter-cell interference in a memory device |
| US20180261292A1 (en) | 2017-03-07 | 2018-09-13 | Intel Corporation | Method and apparatus for shielded read to reduce parasitic capacitive coupling |
| KR20190036285A (en) | 2017-09-27 | 2019-04-04 | 삼성전자주식회사 | Non volatile memory device and operating method of the same |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7251160B2 (en) * | 2005-03-16 | 2007-07-31 | Sandisk Corporation | Non-volatile memory and method with power-saving read and program-verify operations |
| US7447094B2 (en) * | 2005-12-29 | 2008-11-04 | Sandisk Corporation | Method for power-saving multi-pass sensing in non-volatile memory |
| KR100885914B1 (en) * | 2007-02-13 | 2009-02-26 | 삼성전자주식회사 | Nonvolatile memory device with improved read operation and its driving method |
| WO2008154229A1 (en) * | 2007-06-07 | 2008-12-18 | Sandisk Corporation | Non-volatile memory and method for improved sensing having bit-line lockout control |
| US7551477B2 (en) * | 2007-09-26 | 2009-06-23 | Sandisk Corporation | Multiple bit line voltages based on distance |
| US8369156B2 (en) * | 2010-07-13 | 2013-02-05 | Sandisk Technologies Inc. | Fast random access to non-volatile storage |
| JP2014006940A (en) * | 2012-06-21 | 2014-01-16 | Toshiba Corp | Semiconductor memory device |
| KR20140136691A (en) * | 2013-05-21 | 2014-12-01 | 에스케이하이닉스 주식회사 | Semiconductor memory device and operation method thereof |
| KR20160072712A (en) * | 2014-12-15 | 2016-06-23 | 에스케이하이닉스 주식회사 | Semiconductor memory device and operating method thereof |
| KR102697452B1 (en) * | 2016-11-22 | 2024-08-21 | 삼성전자주식회사 | Nonvolatile memory device |
| US10460814B2 (en) * | 2017-12-12 | 2019-10-29 | Western Digital Technologies, Inc. | Non-volatile memory and method for power efficient read or verify using lockout control |
-
2019
- 2019-10-16 KR KR1020190128692A patent/KR102797247B1/en active Active
-
2020
- 2020-05-22 US US16/881,852 patent/US11195586B2/en active Active
- 2020-08-27 CN CN202010878017.2A patent/CN112669892B/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100302850A1 (en) * | 2009-05-26 | 2010-12-02 | Samsung Electronics Co., Ltd. | Storage device and method for reading the same |
| US20140063950A1 (en) | 2012-08-29 | 2014-03-06 | SK Hynix Inc. | Semiconductor device and method of operating the same |
| KR20140028571A (en) | 2012-08-29 | 2014-03-10 | 에스케이하이닉스 주식회사 | Semiconductor device and method of operating the same |
| US20140269085A1 (en) | 2013-03-13 | 2014-09-18 | Sandisk Technologies Inc. | Determining read voltages for reading memory |
| US9530515B2 (en) * | 2013-03-13 | 2016-12-27 | Sandisk Technologies Llc | Determining read voltages for reading memory |
| US9412471B2 (en) * | 2013-03-15 | 2016-08-09 | Samsung Electronics Co., Ltd. | Method of reading data from a nonvolatile memory device, nonvolatile memory device, and method of operating a memory system |
| US20170345503A1 (en) * | 2014-09-30 | 2017-11-30 | Carnegie Mellon University | Reducing errors caused by inter-cell interference in a memory device |
| US20180261292A1 (en) | 2017-03-07 | 2018-09-13 | Intel Corporation | Method and apparatus for shielded read to reduce parasitic capacitive coupling |
| KR20190036285A (en) | 2017-09-27 | 2019-04-04 | 삼성전자주식회사 | Non volatile memory device and operating method of the same |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102797247B1 (en) | 2025-04-21 |
| CN112669892A (en) | 2021-04-16 |
| KR20210045214A (en) | 2021-04-26 |
| CN112669892B (en) | 2024-01-26 |
| US20210118513A1 (en) | 2021-04-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10957412B2 (en) | Memory device and operating method of the memory device | |
| US10861570B2 (en) | Memory device and an operating method of a memory device | |
| US10418111B2 (en) | Memory system and operating method thereof | |
| US11195586B2 (en) | Memory device and operating method of the memory device | |
| US10950306B2 (en) | Memory device having improved program and erase operations and operating method of the memory device | |
| KR20210092060A (en) | Memory device and operating method thereof | |
| CN112309469A (en) | Memory device and operation method thereof | |
| KR20220165109A (en) | Memory device performing incremental step pulse program operation and operation method thereof | |
| US10726887B2 (en) | Memory device and operating method of the memory device | |
| US11462272B2 (en) | Memory device and operating method thereof | |
| US11636906B2 (en) | Memory device and method of applying operating voltage | |
| US11735271B2 (en) | Memory device and method of operating the memory device | |
| US11715524B2 (en) | Memory device and operating method thereof | |
| US20250149095A1 (en) | Memory device and method of operating the same | |
| US20240005998A1 (en) | Memory device and operating method thereof | |
| US12176041B2 (en) | Memory device and method of operating the memory device | |
| US11880582B2 (en) | Memory device having improved program and erase operations and operating method of the memory device | |
| US20250201315A1 (en) | Memory device and operating method of the memory device | |
| US11508439B2 (en) | Memory device having a control logic to control program operations and method of operating the same | |
| US11694740B2 (en) | Memory device, memory system including memory device, and method of operating memory device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SK HYNIX INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JONG WOO;AN, CHI WOOK;LEE, UN SANG;AND OTHERS;SIGNING DATES FROM 20200506 TO 20200507;REEL/FRAME:052736/0370 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |