US11180965B2 - Autonomous through-tubular downhole shuttle - Google Patents

Autonomous through-tubular downhole shuttle Download PDF

Info

Publication number
US11180965B2
US11180965B2 US16/440,739 US201916440739A US11180965B2 US 11180965 B2 US11180965 B2 US 11180965B2 US 201916440739 A US201916440739 A US 201916440739A US 11180965 B2 US11180965 B2 US 11180965B2
Authority
US
United States
Prior art keywords
wellbore
thruster
instrument sub
drill string
shuttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/440,739
Other versions
US20200392803A1 (en
Inventor
Jinhai ZHAO
Sheng Zhan
Jun Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp filed Critical China Petroleum and Chemical Corp
Priority to US16/440,739 priority Critical patent/US11180965B2/en
Assigned to CHINA PETROLEUM & CHEMICAL CORPORATION reassignment CHINA PETROLEUM & CHEMICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHAN, Sheng, ZHAO, JINHAI, HAN, JUN
Priority to CN202010532313.7A priority patent/CN112081548A/en
Publication of US20200392803A1 publication Critical patent/US20200392803A1/en
Application granted granted Critical
Publication of US11180965B2 publication Critical patent/US11180965B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/001Self-propelling systems or apparatus, e.g. for moving tools within the horizontal portion of a borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/12Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using drilling pipes with plural fluid passages, e.g. closed circulation systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/138Devices entrained in the flow of well-bore fluid for transmitting data, control or actuation signals
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0085Adaptations of electric power generating means for use in boreholes

Definitions

  • the present disclosure relates generally to downhole tools in drilling operations, and particularly to apparatus and methods for transporting tools between the earth surface and bottomhole.
  • Drilling operations in gas and oil exploration involve driving a drill bit into the ground to create a borehole (i.e., a wellbore) to extract oil and/or gas from a pay zone.
  • the drill bit is installed at the distal end of a drill string, which extends from a derrick on the surface into the borehole.
  • the drill string is formed by connected a series of drill pipes together.
  • a bottom hole assembly (BHA) is installed proximately above the drill bit in the drill string.
  • the BHA contains instruments that collect and/or transmit sensor data regarding the drilling tools, wellbore conditions, earth formation, etc. to the surface. Such information is used to determine drilling conditions including drift of the drill bit, inclination and azimuth, which in turn are used to calculate the trajectory of the borehole. Some of the data are transmitted real-time uphole to the surface using the telemetry technology. Real-time data are crucial in monitoring and controlling the drilling operation, especially in directional drilling.
  • Mud pulse telemetry uses modulated mud pulses to carry data uphole. It has a low data transmission rate, which may be insufficient to transmit data real-time to the surface. As such, only critical data are transmitted in real time while a large portion are stored locally in a memory stalled in the BHA.
  • wired drill pipe telemetry each drill pipe has a communication cable embedded inside. When a series of drill pipes are connected together, sections of communication cable form a continuous communication cable from the BHA to the surface along the drill string.
  • the advantage of the wired telemetry is that the data transmission through the cable is bidirectional and is also much faster than that of mud pulse telemetry.
  • connecting two sections of communication cable at the joint between two drill pipes requires sophisticated and expensive coupling devices. Deeper the borehole is, more numerous of such joints there are. Breakage of the communication cable at any of the joints would disable the telemetry, which requires expensive repairs.
  • Electromagnetic telemetry and acoustic telemetry are both limited by signal attenuation, especially in deep wells.
  • Wireline logging are widely employed to investigate the earth formation.
  • a sonde i.e., a logging tool
  • the sonde contains sensors that measure the properties such as resistivity, conductivity, formation pressure, sonic properties, as well as wellbore dimension.
  • the sonde cannot be lowered by gravity alone and requires to be pushed or otherwise carried down to the bottom hole.
  • the present disclosure provides apparatus for traveling between an earth surface and a wellbore in an earth formation via a drill string.
  • the apparatus contains an instrument sub, a thruster for generating a motive force and a power source that provides power to the instrument sub and the thruster.
  • the apparatus may be in a substantially tubular shape.
  • the instrument sub, the thruster, and the power source are connected to form a tubular body or are disposed in a tubular body.
  • the apparatus further contains a buoyance-generating device.
  • the instrument sub contains a plurality of instruments for measuring properties of the earth formation or in a wellbore. It also contains non-volatile memory, microcontroller, and interface that wirelessly communicates with instruments in the BHA in the wellbore.
  • the buoyance-generating device provides a variable buoyancy.
  • the buoyance-generating device has a ballast tank and a compressed air source. Fluid in the ballast tank is expelled from the ballast tank using the compressed air to increase buoyancy.
  • the apparatus may also have a plurality of free rolling wheels mounted about a surface of the tubular body. It can either be tethered using a wireline or autonomous.
  • the wireline supplies power to the apparatus and transmits data to and from the apparatus.
  • This disclosure further provides a method for transporting the apparatus between an earth surface and a wellbore via a drill string.
  • the apparatus enters the drill string through an inlet, e.g., a drill pipe, at the earth surface.
  • a drilling fluid driving by a mud pump, is circulated through the wellbore so that the apparatus moves downhole with the drilling fluid via the drill string to a position above the BHA.
  • the apparatus returns to the earth surface through the drill string.
  • the apparatus is brought back to the surface by the buoyancy force generated by the buoyance-generating device.
  • a buoyance-generating device may be a hollow cylinder or contains a ballast tank filled with a liquid.
  • the apparatus may also be brought back to the surface by activating the thruster in the apparatus to generate a upward motive force.
  • This disclosure further provides a method for transmitting data from a wellbore using the apparatus.
  • the apparatus is first lowered through a drill string down the wellbore.
  • the instrument sub in the apparatus collects data in the wellbore and returns to the surface afterwards.
  • the instrument sub has a plurality of sensors that collect data concerning properties of an earth formation surrounding the wellbore.
  • the apparatus is connected to a data acquiring system on a earth surface through a wireline and transmits the data to the data acquiring system through the wireline.
  • the instrument sub comprises a receiver for receiving signals from a transmitter installed in the BHA.
  • the apparatus is used for wireline well logging.
  • the apparatus is tethered to a wireline and lowed into an open wellbore that does not have the drill string.
  • the apparatus is retrieved back to the surface by both pulling wireline and activating the buoyancy generating device or the thruster, which facilitates the retrieval especially through the horizontal well section.
  • FIG. 1 is a schematic illustration of a drilling rig of the current disclosure.
  • FIG. 2 is a schematic illustration of an exemplary downhole shuttle of the current disclosure.
  • FIG. 1 schematically illustrates a drilling system.
  • the drill string 2 extends from the derrick 1 on the earth surface into the borehole 3 .
  • the drill bit 4 is installed at the distal end of the drill string 2 .
  • the BHA 5 is installed above the drill bit 4 .
  • the mud pump 6 pumps the drilling mud from the mud tank 7 downhole through the drill string 1 .
  • the mud flow circulates back to the mud tank 7 through the annulus between the drill string 2 and the borehole 3 .
  • the BHA 5 contains a mud pulser, a mud motor, a measurement-while-drilling (MWD) instruments, and logging-while-drilling (LWD) instruments.
  • MWD measurement-while-drilling
  • LWD logging-while-drilling
  • the MWD instruments and LWD instruments are collectively referred to as the MWD tool.
  • the MWD tool can be powered by a mud motor, a battery, or both the mud motor and the battery (not shown).
  • the MWD tool has one or more internal memory, a microprocessor, software and/or firmware with pre-programed instructions installed in the memory, and input/output communication ports for communications with other tools in the BHA, e.g., a mud pulser.
  • the firmware controls the operation of the MWD tool, e.g., the operation of the sensors and telemetry instruments.
  • the drilling system also includes a plurality of sensors.
  • a pressure sensor 8 is installed in the passage of the mud flow at the surface.
  • the surface data acquisition system 9 acquires data using one or more telemetry methods, e.g., mud pulse telemetry, wired drill pipe telemetry, electromagnetic telemetry, acoustic telemetry.
  • the borehole 3 has a substantially vertical section and a substantially horizontal section connected together via a curvilinear section.
  • a downhole shuttle 20 is shown disposed in the wellbore, residing inside the drill string above the BHA 5 .
  • FIG. 2 shows an embodiment of the downhole shuttle 20 of the current disclosure. It has a thruster module 201 , which contains a thruster that provides a motive force to drive the shuttle to move about the drill string or to stabilize the shuttle inside the drill string when needed.
  • the thruster can be a propeller, a impeller, a rotatable thruster, a retractable thruster, etc.
  • the thruster can change the direction of the motive force it generates, e.g., to push the shuttle uphole, downhole, or sideway.
  • the thruster has controllable-pitch propellers that can be reversed to generate thrust in reverse directions.
  • the thruster can be mounted on a rotatable axis that can rotate to change the direction of the thruster.
  • the downhole shuttle 20 also includes the instrument sub 203 .
  • the instrument sub 203 contains instruments that measure borehole conditions as well as the properties of the earth formation surrounding the wellbore, also referred to as well logging tools.
  • well-logging tools measure formation properties including natural gamma ray emission, density, porosity, borehole caliper, resistivity, sonic property, etc.
  • the downhole shuttle 20 further contains a power module 202 , which contains a power source 205 (e.g., a battery), as well as an electronics module 204 that performs functions such as controlling the shuttle 20 (e.g., using microcontroller), storing data, software, and/or firmware (e.g., in one or more non-volatile memory), and providing communication ports that connect to the instrument sub 203 (COM, Bluetooth, USB, etc.).
  • a power module 202 which contains a power source 205 (e.g., a battery), as well as an electronics module 204 that performs functions such as controlling the shuttle 20 (e.g., using microcontroller), storing data, software, and/or firmware (e.g., in one or more non-volatile memory), and providing communication ports that connect to the instrument sub 203 (COM, Bluetooth, USB, etc.).
  • a power source 205 e.g., a battery
  • an electronics module 204 that performs functions such as controlling the shuttle 20 (e.g.
  • the battery 205 in the power module 202 is rechargeable.
  • the thruster in the thruster module 201 can generate power in the mud flow.
  • the propeller is connected to an electric motor. When the electric motor is not activated to drive the propeller, e.g., when the thruster is moving downhole with the mud flow or is stopped at the bottom, the mud flow rotates the propeller to reverse the electric motor, which generates power to charge the battery.
  • the electronics module 204 may also include circuitry and devices to accomplish wired or wireless communications with the data acquiring system 9 on the surface.
  • the wired communication can be through a wireline (not shown) that connects the shuttle 20 and a surface equipment, e.g., the data acquiring system 9 .
  • the electronics module 204 may still include devices for wired or wireless communication with the BHA, e.g., a receiver that couples with a transmitter in the BHA to receive data from the BHA and to save the data in memory in the electronics module 204 .
  • the saved data can be retrieved after the shuttle 20 returns to the surface.
  • the electronics module 204 may further include a control circuitry that controls the movement of the shuttle. E.g., accelerometers in the control circuitry determines whether the shuttle is moving or not.
  • the electronics module 204 is a part of the power module 202 in a same drill collar. In other embodiments, the electronics module 204 can be installed in a different drill collar either by itself or with other instruments (e.g., the instrument sub 203 ).
  • the shuttle 20 also contains a buoyancy-generating device 206 that generates a buoyancy force that lifts the shuttle 20 upward.
  • the buoyancy-generating device 206 may be simple, e.g., one or more hollow cylinders. It can also be more sophisticated.
  • the buoyancy-generating device 206 may contain a mechanism to adjust buoyancy in a controllable manner. It may include a ballast tank and a source of compressed air. When a higher buoyancy is required, the compressed air is injected into the ballast tank to replace the liquid inside the ballast tank and to increase buoyancy.
  • the thruster module 201 , the power module 202 , the instrument sub 203 , the buoyancy-generating device 206 may be installed in one or more tubular housings, e.g., one or more drill collars.
  • the thruster 201 may be installed in an annular housing.
  • the instrument sub 203 , the power module 202 , and the buoyancy-generating device 206 may be installed in their respective drill collars.
  • the shuttle optionally contains a tool module 207 , which carries out certain workover such as well clean-up, setting plugs, etc.
  • the tool module 207 can be a robotic arm that performs functions such as opening or closing valves, retrieving small objects.
  • the robotic arm may retrieve certain instruments from the BHA, e.g., a releasable instrument sub installed inside the BHA.
  • the arrangement of components in the shuttle 20 is not limited to the embodiment shown in FIG. 2 .
  • the modules can be connected in different orders.
  • the thruster module 201 can be arranged at one or both ends of the shuttle.
  • the buoyancy-generating 206 can be located at one end or in the middle of the shuttle.
  • tubular housings are axially connected together to form a substantially rigid, unitary tubular body.
  • the connections between two adjacent tubular housings can use any known fastener, e.g., bolts, or by welding.
  • some or all of the tubular housings or modules are connected via flexible joints, e.g., a chain, an adjustable articulated joint, a latch, etc.
  • the tubular housing are equipped with a plurality of free-rolling wheels or fins to reduce friction between the tubular housing and the drill pipe.
  • Two or more, preferably four or more, wheels or fins can be installed along a circumference of the outer wall of the tubular body at one or more points along its axial direction.
  • the tubular housing has a diameter that is smaller than the inner diameter of the drill pipe by, e.g., 1 ⁇ 2′′, 1′′, or 2′′, so that the tubular housing can move along the drill pipe relatively freely.
  • the tubular body which is a unitary rigid tubular structure or contains multiple tubular housings or modules, has a total length that is smaller than the radius of the curvilinear section of the drill string. The total length can be from less than 1 meter up to several meters.
  • the shuttle can be tethered with a wireline.
  • the wireline may contain a power cable that supply power to the shuttle, a communication cable for sending data to and retrieving data from the shuttle, and/or a retaining cable to control the movement of the shuttle.
  • the shuttle may not need the buoyancy-generating device or the thruster as it can be retrieved by pulling the retaining cable.
  • the shuttle may still have the buoyancy-generating device or the thruster and use one or both in addition to the retaining cable when retrieving the shuttle to the surface.
  • the wireline for the tethered shuttle enters the drill string through a specially designed drill pipe, which has an opening on the sidewall that allows the wireline to pass.
  • the shuttle is placed in the special drill pipe on the surface, with the wireline attached to it.
  • the special drill pipe is lowered into the wellbore with the wireline extending out from its side.
  • the wireline can be released or retrieved using a pulley on the surface.
  • the downhole shuttle is first placed inside a drill pipe at the surface.
  • the mud pump is turned on to create a downward flow inside the drill pipe to carry the shuttle to the bottomhole.
  • the shuttle may be passive (i.e., not powered on) so that it is carried by the mud flow downhole.
  • the thruster in the shuttle may be turned on to facilitate the downward movement.
  • certain thrusters e.g., propeller turbine
  • the thruster may be reversed to create an upward movement so that the shuttle can be stabilized at certain locations along the wellbore or slow down the downward movement so that the instruments in the shuttle may take proper measurements at these certain locations.
  • the shuttle when a tethered shuttle is used, the shuttle can be stopped at any point along the wellbore by adjusting the length of the wireline.
  • the shuttle has well logging tools installed in the instrument sub.
  • the well logging tools make measurements along the wellbore.
  • the shuttle can be lowered to the proximity of the BHA, e.g., right above the BHA.
  • the instrument sub in the shuttle can communicate with the BHA to accomplish short distance wireless transmission via, e.g., Bluetooth or electromagnetic transmission.
  • the shuttle can download data from one or more memory equipped locally in the BHA. In addition to avoiding a tripping operation, that short distance wireless transmission does not suffer signal loss and other interferences to the extent that the long distance transmission experiences so the data reliability can be improved.
  • the operator may shut off the mud pump so the mud flow stops flowing. As such, the shuttle is lifted by the buoyancy-generating device upward along the drill string to the surface.
  • the buoyancy-generating device cannot carry the shuttle uphole and the thruster is turned on to push or pull the shuttle in these sections.
  • the ON or Off state of the thruster can be determined by several methods. For example, accelerometers in the control circuitry in the electronics module 204 are used to determine whether the shuttle is moving or is stopped. If the shuttle is stopped or moving too slowly, the control circuitry is programed to turn on the thruster to move the shuttle along the drill string.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

An apparatus for traveling between an earth surface and a wellbore in an earth formation contains an instrument sub, a thruster for generating a motive force, and a power source that provides power to the instrument sub and the thruster. The instrument sub contains well logging instruments. The instrument sub, the thruster, and the power source are connected to form or are disposed in a substantially tubular body. The apparatus further contains a buoyance-generating device.

Description

FIELD OF TECHNOLOGY
The present disclosure relates generally to downhole tools in drilling operations, and particularly to apparatus and methods for transporting tools between the earth surface and bottomhole.
BACKGROUND
Drilling operations in gas and oil exploration involve driving a drill bit into the ground to create a borehole (i.e., a wellbore) to extract oil and/or gas from a pay zone. The drill bit is installed at the distal end of a drill string, which extends from a derrick on the surface into the borehole. The drill string is formed by connected a series of drill pipes together. A bottom hole assembly (BHA) is installed proximately above the drill bit in the drill string.
The BHA contains instruments that collect and/or transmit sensor data regarding the drilling tools, wellbore conditions, earth formation, etc. to the surface. Such information is used to determine drilling conditions including drift of the drill bit, inclination and azimuth, which in turn are used to calculate the trajectory of the borehole. Some of the data are transmitted real-time uphole to the surface using the telemetry technology. Real-time data are crucial in monitoring and controlling the drilling operation, especially in directional drilling.
Modern telemetry technologies include mud pulse telemetry, electromagnet telemetry, acoustic telemetry, and wired drill pipe telemetry. Mud pulse telemetry uses modulated mud pulses to carry data uphole. It has a low data transmission rate, which may be insufficient to transmit data real-time to the surface. As such, only critical data are transmitted in real time while a large portion are stored locally in a memory stalled in the BHA. In wired drill pipe telemetry, each drill pipe has a communication cable embedded inside. When a series of drill pipes are connected together, sections of communication cable form a continuous communication cable from the BHA to the surface along the drill string. The advantage of the wired telemetry is that the data transmission through the cable is bidirectional and is also much faster than that of mud pulse telemetry. However, connecting two sections of communication cable at the joint between two drill pipes requires sophisticated and expensive coupling devices. Deeper the borehole is, more numerous of such joints there are. Breakage of the communication cable at any of the joints would disable the telemetry, which requires expensive repairs. Electromagnetic telemetry and acoustic telemetry are both limited by signal attenuation, especially in deep wells.
Wireline logging are widely employed to investigate the earth formation. A sonde (i.e., a logging tool) tethered with a wireline is first lowered into the borehole and reeled along the drill string back to the surface. The sonde contains sensors that measure the properties such as resistivity, conductivity, formation pressure, sonic properties, as well as wellbore dimension. However, in horizontal and deviated drilling, the sonde cannot be lowered by gravity alone and requires to be pushed or otherwise carried down to the bottom hole.
Accordingly, there are pressing needs for tools and methods for transporting tools and data between the earth surface and bottomhole.
SUMMARY
The present disclosure provides apparatus for traveling between an earth surface and a wellbore in an earth formation via a drill string. The apparatus contains an instrument sub, a thruster for generating a motive force and a power source that provides power to the instrument sub and the thruster. The apparatus may be in a substantially tubular shape. The instrument sub, the thruster, and the power source are connected to form a tubular body or are disposed in a tubular body. The apparatus further contains a buoyance-generating device.
The instrument sub contains a plurality of instruments for measuring properties of the earth formation or in a wellbore. It also contains non-volatile memory, microcontroller, and interface that wirelessly communicates with instruments in the BHA in the wellbore.
The buoyance-generating device provides a variable buoyancy. The buoyance-generating device has a ballast tank and a compressed air source. Fluid in the ballast tank is expelled from the ballast tank using the compressed air to increase buoyancy.
The apparatus may also have a plurality of free rolling wheels mounted about a surface of the tubular body. It can either be tethered using a wireline or autonomous. The wireline supplies power to the apparatus and transmits data to and from the apparatus.
This disclosure further provides a method for transporting the apparatus between an earth surface and a wellbore via a drill string. In this method, the apparatus enters the drill string through an inlet, e.g., a drill pipe, at the earth surface. A drilling fluid, driving by a mud pump, is circulated through the wellbore so that the apparatus moves downhole with the drilling fluid via the drill string to a position above the BHA. When the mud pump is turned off and the circulation of the drilling fluid stops, the apparatus returns to the earth surface through the drill string.
In one embodiment of the method, the apparatus is brought back to the surface by the buoyancy force generated by the buoyance-generating device. Such a buoyance-generating device may be a hollow cylinder or contains a ballast tank filled with a liquid. The apparatus may also be brought back to the surface by activating the thruster in the apparatus to generate a upward motive force.
This disclosure further provides a method for transmitting data from a wellbore using the apparatus. The apparatus is first lowered through a drill string down the wellbore. The instrument sub in the apparatus collects data in the wellbore and returns to the surface afterwards. The instrument sub has a plurality of sensors that collect data concerning properties of an earth formation surrounding the wellbore.
In some embodiments, the apparatus is connected to a data acquiring system on a earth surface through a wireline and transmits the data to the data acquiring system through the wireline. The instrument sub comprises a receiver for receiving signals from a transmitter installed in the BHA.
In still some embodiments, the apparatus is used for wireline well logging. The apparatus is tethered to a wireline and lowed into an open wellbore that does not have the drill string. When logging is done, the apparatus is retrieved back to the surface by both pulling wireline and activating the buoyancy generating device or the thruster, which facilitates the retrieval especially through the horizontal well section.
DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the embodiments described in this disclosure, reference is made to the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic illustration of a drilling rig of the current disclosure; and
FIG. 2 is a schematic illustration of an exemplary downhole shuttle of the current disclosure.
DETAILED DESCRITPION
Reference will now be made in detail to several embodiments of the present disclosure(s), examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the disclosure described herein.
FIG. 1 schematically illustrates a drilling system. The drill string 2 extends from the derrick 1 on the earth surface into the borehole 3. The drill bit 4 is installed at the distal end of the drill string 2. The BHA 5 is installed above the drill bit 4. The mud pump 6 pumps the drilling mud from the mud tank 7 downhole through the drill string 1. The mud flow circulates back to the mud tank 7 through the annulus between the drill string 2 and the borehole 3.
The detailed structure of the BHA 5 is not shown in FIG. 1. In one embodiment of this disclosure, the BHA 5 contains a mud pulser, a mud motor, a measurement-while-drilling (MWD) instruments, and logging-while-drilling (LWD) instruments. In this disclosure, the MWD instruments and LWD instruments are collectively referred to as the MWD tool. The MWD tool can be powered by a mud motor, a battery, or both the mud motor and the battery (not shown). The MWD tool has one or more internal memory, a microprocessor, software and/or firmware with pre-programed instructions installed in the memory, and input/output communication ports for communications with other tools in the BHA, e.g., a mud pulser. The firmware controls the operation of the MWD tool, e.g., the operation of the sensors and telemetry instruments.
The drilling system also includes a plurality of sensors. A pressure sensor 8 is installed in the passage of the mud flow at the surface. The surface data acquisition system 9 acquires data using one or more telemetry methods, e.g., mud pulse telemetry, wired drill pipe telemetry, electromagnetic telemetry, acoustic telemetry.
In one of the embodiments in the current disclosure, as shown in FIG. 1, the borehole 3 has a substantially vertical section and a substantially horizontal section connected together via a curvilinear section. A downhole shuttle 20 is shown disposed in the wellbore, residing inside the drill string above the BHA 5.
FIG. 2 shows an embodiment of the downhole shuttle 20 of the current disclosure. It has a thruster module 201, which contains a thruster that provides a motive force to drive the shuttle to move about the drill string or to stabilize the shuttle inside the drill string when needed. The thruster can be a propeller, a impeller, a rotatable thruster, a retractable thruster, etc. In some embodiments, the thruster can change the direction of the motive force it generates, e.g., to push the shuttle uphole, downhole, or sideway. For example, the thruster has controllable-pitch propellers that can be reversed to generate thrust in reverse directions. Alternatively, the thruster can be mounted on a rotatable axis that can rotate to change the direction of the thruster.
In this embodiment, the downhole shuttle 20 also includes the instrument sub 203. The instrument sub 203 contains instruments that measure borehole conditions as well as the properties of the earth formation surrounding the wellbore, also referred to as well logging tools. Such well-logging tools measure formation properties including natural gamma ray emission, density, porosity, borehole caliper, resistivity, sonic property, etc.
The downhole shuttle 20 further contains a power module 202, which contains a power source 205 (e.g., a battery), as well as an electronics module 204 that performs functions such as controlling the shuttle 20 (e.g., using microcontroller), storing data, software, and/or firmware (e.g., in one or more non-volatile memory), and providing communication ports that connect to the instrument sub 203 (COM, Bluetooth, USB, etc.).
In some embodiments, the battery 205 in the power module 202 is rechargeable. The thruster in the thruster module 201 can generate power in the mud flow. For example, the propeller is connected to an electric motor. When the electric motor is not activated to drive the propeller, e.g., when the thruster is moving downhole with the mud flow or is stopped at the bottom, the mud flow rotates the propeller to reverse the electric motor, which generates power to charge the battery.
The electronics module 204 may also include circuitry and devices to accomplish wired or wireless communications with the data acquiring system 9 on the surface. The wired communication can be through a wireline (not shown) that connects the shuttle 20 and a surface equipment, e.g., the data acquiring system 9. The electronics module 204 may still include devices for wired or wireless communication with the BHA, e.g., a receiver that couples with a transmitter in the BHA to receive data from the BHA and to save the data in memory in the electronics module 204. The saved data can be retrieved after the shuttle 20 returns to the surface.
The electronics module 204 may further include a control circuitry that controls the movement of the shuttle. E.g., accelerometers in the control circuitry determines whether the shuttle is moving or not.
In the embodiment of FIG. 2, the electronics module 204 is a part of the power module 202 in a same drill collar. In other embodiments, the electronics module 204 can be installed in a different drill collar either by itself or with other instruments (e.g., the instrument sub 203).
The shuttle 20 also contains a buoyancy-generating device 206 that generates a buoyancy force that lifts the shuttle 20 upward. The buoyancy-generating device 206 may be simple, e.g., one or more hollow cylinders. It can also be more sophisticated. For example, the buoyancy-generating device 206 may contain a mechanism to adjust buoyancy in a controllable manner. It may include a ballast tank and a source of compressed air. When a higher buoyancy is required, the compressed air is injected into the ballast tank to replace the liquid inside the ballast tank and to increase buoyancy.
The thruster module 201, the power module 202, the instrument sub 203, the buoyancy-generating device 206 may be installed in one or more tubular housings, e.g., one or more drill collars. For example, the thruster 201 may be installed in an annular housing. The instrument sub 203, the power module 202, and the buoyancy-generating device 206 may be installed in their respective drill collars.
The shuttle optionally contains a tool module 207, which carries out certain workover such as well clean-up, setting plugs, etc. For example, the tool module 207 can be a robotic arm that performs functions such as opening or closing valves, retrieving small objects. For example, the robotic arm may retrieve certain instruments from the BHA, e.g., a releasable instrument sub installed inside the BHA.
The arrangement of components in the shuttle 20 is not limited to the embodiment shown in FIG. 2. The modules can be connected in different orders. For example, the thruster module 201 can be arranged at one or both ends of the shuttle. The buoyancy-generating 206 can be located at one end or in the middle of the shuttle.
In some embodiments, the tubular housings are axially connected together to form a substantially rigid, unitary tubular body. The connections between two adjacent tubular housings can use any known fastener, e.g., bolts, or by welding. In other embodiments, some or all of the tubular housings or modules are connected via flexible joints, e.g., a chain, an adjustable articulated joint, a latch, etc.
In still other embodiments, the tubular housing are equipped with a plurality of free-rolling wheels or fins to reduce friction between the tubular housing and the drill pipe. Two or more, preferably four or more, wheels or fins can be installed along a circumference of the outer wall of the tubular body at one or more points along its axial direction.
In still some embodiments, the tubular housing has a diameter that is smaller than the inner diameter of the drill pipe by, e.g., ½″, 1″, or 2″, so that the tubular housing can move along the drill pipe relatively freely. In other embodiment, the tubular body, which is a unitary rigid tubular structure or contains multiple tubular housings or modules, has a total length that is smaller than the radius of the curvilinear section of the drill string. The total length can be from less than 1 meter up to several meters.
In further embodiments, the shuttle can be tethered with a wireline. The wireline may contain a power cable that supply power to the shuttle, a communication cable for sending data to and retrieving data from the shuttle, and/or a retaining cable to control the movement of the shuttle. In this embodiment, the shuttle may not need the buoyancy-generating device or the thruster as it can be retrieved by pulling the retaining cable. Alternatively, the shuttle may still have the buoyancy-generating device or the thruster and use one or both in addition to the retaining cable when retrieving the shuttle to the surface.
The some specific embodiments, the wireline for the tethered shuttle enters the drill string through a specially designed drill pipe, which has an opening on the sidewall that allows the wireline to pass. The shuttle is placed in the special drill pipe on the surface, with the wireline attached to it. The special drill pipe is lowered into the wellbore with the wireline extending out from its side. The wireline can be released or retrieved using a pulley on the surface.
This disclosure also provides methods for transmitting data from a wellbore using the downhole shuttle 20. In one embodiment, the downhole shuttle is first placed inside a drill pipe at the surface. The mud pump is turned on to create a downward flow inside the drill pipe to carry the shuttle to the bottomhole. In this mode, the shuttle may be passive (i.e., not powered on) so that it is carried by the mud flow downhole. Alternatively, the thruster in the shuttle may be turned on to facilitate the downward movement.
In this mode, certain thrusters (e.g., propeller turbine) can be used to generate power to charge the battery. If necessary, the thruster may be reversed to create an upward movement so that the shuttle can be stabilized at certain locations along the wellbore or slow down the downward movement so that the instruments in the shuttle may take proper measurements at these certain locations. In some other embodiments, when a tethered shuttle is used, the shuttle can be stopped at any point along the wellbore by adjusting the length of the wireline.
In some methods of the current disclosure, the shuttle has well logging tools installed in the instrument sub. The well logging tools make measurements along the wellbore. In other methods, the shuttle can be lowered to the proximity of the BHA, e.g., right above the BHA. The instrument sub in the shuttle can communicate with the BHA to accomplish short distance wireless transmission via, e.g., Bluetooth or electromagnetic transmission. The shuttle can download data from one or more memory equipped locally in the BHA. In addition to avoiding a tripping operation, that short distance wireless transmission does not suffer signal loss and other interferences to the extent that the long distance transmission experiences so the data reliability can be improved.
Once the shuttle completes its mission downhole, the operator may shut off the mud pump so the mud flow stops flowing. As such, the shuttle is lifted by the buoyancy-generating device upward along the drill string to the surface. However, in certain sections of the drill string, e.g., deviated or horizontal sections, the buoyancy-generating device cannot carry the shuttle uphole and the thruster is turned on to push or pull the shuttle in these sections.
The ON or Off state of the thruster can be determined by several methods. For example, accelerometers in the control circuitry in the electronics module 204 are used to determine whether the shuttle is moving or is stopped. If the shuttle is stopped or moving too slowly, the control circuitry is programed to turn on the thruster to move the shuttle along the drill string.
While in the foregoing specification this disclosure has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purpose of illustration, it will be apparent to those skilled in the art that the disclosure is susceptible to alteration and that certain other details described herein can vary considerably without departing from the basic principles of the disclosure. In addition, it should be appreciated that structural features or method steps shown or described in any one embodiment herein can be used in other embodiments as well.

Claims (16)

What is claimed is:
1. An apparatus for traveling between an earth surface and a wellbore in an earth formation via a drill string, comprising:
an instrument sub;
a thruster for generating a motive force;
a power source that provides power to the instrument sub and the thruster,
wherein the instrument sub, the thruster, and the power source are connected to form or are disposed in a substantially tubular body, and
wherein the apparatus has a wireline attached thereto, and the wireline supplies power to the apparatus and transmits data between the apparatus and a surface instrument.
2. The apparatus of claim 1, further comprises a buoyance-generating device.
3. The apparatus of claim 2, wherein the buoyance-generating device provides a variable buoyancy.
4. The apparatus of claim 3, wherein the buoyance-generating device comprises a ballast tank and a compressed air source, wherein a fluid in the ballast tank is expelled from the ballast tank using the compressed air to increase buoyancy.
5. The apparatus of claim 2, wherein the tubular body is a rigid, unitary structure.
6. The apparatus of claim 2, wherein one or more of the instrument sub, the tubular body has one or more sections connected via one or more articulated joints.
7. The apparatus of claim 2, further comprising a plurality of free rolling wheels mounted about a surface of the tubular body.
8. The apparatus of claim 1, wherein the instrument sub comprises a plurality of instruments for measuring properties of the earth formation or a condition in the wellbore.
9. The apparatus of claim 1, wherein the instrument sub contains a non-volatile memory, a microcontroller, and an interface that wirelessly communicates with instruments in a bottom hole assembly in the wellbore.
10. The apparatus of claim 1, wherein the thruster is a propeller or an impeller.
11. A method for transporting the apparatus of claim 1 between an earth surface and a wellbore via a drill string, comprising:
attaching the apparatus to the surface instrument via the wireline;
positioning the apparatus at an inlet of the drill string at the earth surface;
circulating a drilling fluid through the wellbore so that the apparatus moves downhole with the drilling fluid via the drill string to a position above a bottom hole assembly; and
stopping the circulation of the drilling fluid to return the apparatus to the earth surface via the drill string.
12. The method of claim 11, further comprising: filling a ballast tank in the buoyancy-generating device with air to generate a buoyancy force.
13. The method of claim 12, further comprising: activating the thruster in the apparatus to generate a motive force.
14. A method for transmitting data from a wellbore using the apparatus of claim 1, comprising:
lowering the apparatus through a drill string down the wellbore;
collecting data using the instrument sub in the apparatus;
transmitting the collected data to a data acquiring system through the wireline; and
returning the apparatus to an earth surface.
15. The method of claim 14, wherein the instrument sub comprises a plurality of sensors that collect data concerning properties of an earth formation surrounding the wellbore.
16. The method of claim 14, wherein the instrument sub comprises a receiver for receiving signals from a transmitter installed in the BHA.
US16/440,739 2019-06-13 2019-06-13 Autonomous through-tubular downhole shuttle Active 2040-04-03 US11180965B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/440,739 US11180965B2 (en) 2019-06-13 2019-06-13 Autonomous through-tubular downhole shuttle
CN202010532313.7A CN112081548A (en) 2019-06-13 2020-06-12 Autonomous passing tubular downhole shuttle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/440,739 US11180965B2 (en) 2019-06-13 2019-06-13 Autonomous through-tubular downhole shuttle

Publications (2)

Publication Number Publication Date
US20200392803A1 US20200392803A1 (en) 2020-12-17
US11180965B2 true US11180965B2 (en) 2021-11-23

Family

ID=73735539

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/440,739 Active 2040-04-03 US11180965B2 (en) 2019-06-13 2019-06-13 Autonomous through-tubular downhole shuttle

Country Status (2)

Country Link
US (1) US11180965B2 (en)
CN (1) CN112081548A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180965B2 (en) * 2019-06-13 2021-11-23 China Petroleum & Chemical Corporation Autonomous through-tubular downhole shuttle
US11530584B2 (en) * 2020-12-24 2022-12-20 Baker Hughes Oilfield Operations Llc Downhole robotic shuttle for performing programed operations
US11592457B2 (en) * 2021-02-18 2023-02-28 Arcbyt, Inc. Methods and systems for tunnel profiling
BR112023017540A2 (en) * 2021-05-26 2023-12-05 Halliburton Energy Services Inc INSTRUMENTED CLEANER DART, AND, METHODS OF SETTING UP AN INSTRUMENTED DART AND MONITORING A PUMPING OPERATION
US11846148B2 (en) * 2021-09-29 2023-12-19 Saudi Arabian Oil Company Balloon-equipped autonomous downhole logging tool for oil and gas wells
US11859456B2 (en) 2021-12-03 2024-01-02 Saudi Arabian Oil Company Contactless conveyance for logging while levitating (LWL)
US12065895B2 (en) 2022-10-20 2024-08-20 Saudi Arabian Oil Company Passive logging while levitating (PLWL): contactless conveyance

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260112A (en) * 1963-08-05 1966-07-12 Mobil Oil Corp Temperature-recording device and method
US4676310A (en) * 1982-07-12 1987-06-30 Scherbatskoy Serge Alexander Apparatus for transporting measuring and/or logging equipment in a borehole
US5259452A (en) * 1990-05-14 1993-11-09 Institut Francais Du Petrole System for sensing acoustic waves in wells, allowing the mechanical uncoupling of the sensors
US5967816A (en) 1997-02-19 1999-10-19 Schlumberger Technology Corporation Female wet connector
US6234257B1 (en) * 1997-06-02 2001-05-22 Schlumberger Technology Corporation Deployable sensor apparatus and method
US6360823B1 (en) * 2000-07-20 2002-03-26 Intevep, S.A. Apparatus and method for performing downhole measurements
US6443228B1 (en) * 1999-05-28 2002-09-03 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
US20040168828A1 (en) * 2003-02-10 2004-09-02 Mock Philip W. Tractor with improved valve system
US6971265B1 (en) * 1999-07-14 2005-12-06 Schlumberger Technology Corporation Downhole sensing apparatus with separable elements
US7219725B2 (en) * 2004-09-16 2007-05-22 Christian Chisholm Instrumented plunger for an oil or gas well
US7385523B2 (en) * 2000-03-28 2008-06-10 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and operation
US7438125B2 (en) * 2004-04-20 2008-10-21 Production Control Services, Inc. Variable orifice bypass plunger
US8171989B2 (en) * 2000-08-14 2012-05-08 Schlumberger Technology Corporation Well having a self-contained inter vention system
US20160059939A1 (en) * 2014-08-29 2016-03-03 Reece Innovation Centre Limited In or relating to crawlers
WO2016055408A1 (en) 2014-10-06 2016-04-14 Norwegian University Of Science And Technology (Ntnu) Guidance of underwater snake robots
US9470073B2 (en) * 2012-06-05 2016-10-18 Saudi Arabian Oil Company Downhole fluid transport plunger with motor and propeller and associated method
US9482781B2 (en) * 2009-03-13 2016-11-01 Saudi Arabian Oil Company Systems, transmitter assemblies, and associated propulsion devices to explore and analyze subterranean geophysical formations
US9528354B2 (en) * 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US9546544B2 (en) * 2013-04-17 2017-01-17 Saudi Arabian Oil Company Apparatus for driving and maneuvering wireline logging tools in high-angled wells
US9650851B2 (en) * 2012-06-18 2017-05-16 Schlumberger Technology Corporation Autonomous untethered well object
US20180021945A1 (en) 2015-01-29 2018-01-25 Eelume As Underwater manipulator arm robot
US10047605B2 (en) * 2012-01-09 2018-08-14 Sinvent As Method and system for wireless in-situ sampling of a reservoir fluid
US10267144B2 (en) * 2014-06-30 2019-04-23 Welltec A/S Downhole sensor system
US20200392803A1 (en) * 2019-06-13 2020-12-17 China Petroleum & Chemical Corporation Autonomous through-tubular downhole shuttle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6923273B2 (en) * 1997-10-27 2005-08-02 Halliburton Energy Services, Inc. Well system
US7832500B2 (en) * 2004-03-01 2010-11-16 Schlumberger Technology Corporation Wellbore drilling method
CN102758607B (en) * 2012-07-18 2015-07-01 吉艾科技(北京)股份公司 Cable backward releasing method
CN106988734A (en) * 2016-01-20 2017-07-28 中国石油化工股份有限公司 A kind of downhole data transferring device, data uploading system and data uploading method
CN207048773U (en) * 2017-06-02 2018-02-27 中石化石油工程技术服务有限公司 A kind of self-floating digital independent device
CN109594975B (en) * 2018-11-07 2020-02-18 西南石油大学 Underground data acquisition and carrying method and device
CN109681193B (en) * 2019-02-19 2019-11-05 西南石油大学 A kind of automatic reciprocation type data acquisition in underground and transmitting device

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260112A (en) * 1963-08-05 1966-07-12 Mobil Oil Corp Temperature-recording device and method
US4676310A (en) * 1982-07-12 1987-06-30 Scherbatskoy Serge Alexander Apparatus for transporting measuring and/or logging equipment in a borehole
US5259452A (en) * 1990-05-14 1993-11-09 Institut Francais Du Petrole System for sensing acoustic waves in wells, allowing the mechanical uncoupling of the sensors
US5967816A (en) 1997-02-19 1999-10-19 Schlumberger Technology Corporation Female wet connector
US6234257B1 (en) * 1997-06-02 2001-05-22 Schlumberger Technology Corporation Deployable sensor apparatus and method
US6443228B1 (en) * 1999-05-28 2002-09-03 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
US6976535B2 (en) * 1999-05-28 2005-12-20 Baker Hughes Incorporated Method of utilizing flowable devices in wellbores
US6971265B1 (en) * 1999-07-14 2005-12-06 Schlumberger Technology Corporation Downhole sensing apparatus with separable elements
US7385523B2 (en) * 2000-03-28 2008-06-10 Schlumberger Technology Corporation Apparatus and method for downhole well equipment and process management, identification, and operation
US6360823B1 (en) * 2000-07-20 2002-03-26 Intevep, S.A. Apparatus and method for performing downhole measurements
US8171989B2 (en) * 2000-08-14 2012-05-08 Schlumberger Technology Corporation Well having a self-contained inter vention system
US20040168828A1 (en) * 2003-02-10 2004-09-02 Mock Philip W. Tractor with improved valve system
US7438125B2 (en) * 2004-04-20 2008-10-21 Production Control Services, Inc. Variable orifice bypass plunger
US7219725B2 (en) * 2004-09-16 2007-05-22 Christian Chisholm Instrumented plunger for an oil or gas well
US9482781B2 (en) * 2009-03-13 2016-11-01 Saudi Arabian Oil Company Systems, transmitter assemblies, and associated propulsion devices to explore and analyze subterranean geophysical formations
US10047605B2 (en) * 2012-01-09 2018-08-14 Sinvent As Method and system for wireless in-situ sampling of a reservoir fluid
US9470073B2 (en) * 2012-06-05 2016-10-18 Saudi Arabian Oil Company Downhole fluid transport plunger with motor and propeller and associated method
US9650851B2 (en) * 2012-06-18 2017-05-16 Schlumberger Technology Corporation Autonomous untethered well object
US9528354B2 (en) * 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US9546544B2 (en) * 2013-04-17 2017-01-17 Saudi Arabian Oil Company Apparatus for driving and maneuvering wireline logging tools in high-angled wells
US10267144B2 (en) * 2014-06-30 2019-04-23 Welltec A/S Downhole sensor system
US20160059939A1 (en) * 2014-08-29 2016-03-03 Reece Innovation Centre Limited In or relating to crawlers
WO2016055408A1 (en) 2014-10-06 2016-04-14 Norwegian University Of Science And Technology (Ntnu) Guidance of underwater snake robots
US20180021945A1 (en) 2015-01-29 2018-01-25 Eelume As Underwater manipulator arm robot
US20200392803A1 (en) * 2019-06-13 2020-12-17 China Petroleum & Chemical Corporation Autonomous through-tubular downhole shuttle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mark A. Andersen, "The Defining Series: Introduction to Wireline Logging", Oilfield Review, Spring 2011, vol. 23, No 1.

Also Published As

Publication number Publication date
CN112081548A (en) 2020-12-15
US20200392803A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US11180965B2 (en) Autonomous through-tubular downhole shuttle
US11753885B2 (en) Autonomous tractor using counter flow-driven propulsion
US6923273B2 (en) Well system
US7549471B2 (en) Deployment tool for well logging instruments conveyed through the interior of a pipe string
US7646310B2 (en) System for communicating downhole information through a wellbore to a surface location
US10001007B2 (en) Well logging with autonomous robotic diver
CN111133169B (en) Internal and external downhole architecture with downlink activation
US10459107B2 (en) Well monitoring with autonomous robotic diver
US10519767B2 (en) Adaptive shell module with embedded functionality
US9617790B2 (en) Downhole drilling motor and method of use
US11359486B2 (en) Mud pulser and method for operating thereof
US10760412B2 (en) Drilling communication system with Wi-Fi wet connect
US20070044959A1 (en) Apparatus and method for evaluating a formation
US20080314644A1 (en) Device for a Borehole Arrangement
US20210156200A1 (en) Nanocrystalline tapes for wireless transmission of electrical signals and power in downhole drilling systems
US20080053703A1 (en) Downhole tool with turbine-powered pump
US20210047886A1 (en) Nanocrystalline tapes for wireless transmission of electrical signals and power in downhole drilling systems
US20170241219A1 (en) Well Telemetry with Autonomous Robotic Diver
US20180216418A1 (en) Adjustable Hydraulic Coupling For Drilling Tools And Related Methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHINA PETROLEUM & CHEMICAL CORPORATION, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHAO, JINHAI;ZHAN, SHENG;HAN, JUN;SIGNING DATES FROM 20190604 TO 20190605;REEL/FRAME:049464/0078

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: EX PARTE QUAYLE ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE