US11124245B2 - Sill of a vehicle body, vehicle body and method of manufacturing a vehicle body - Google Patents

Sill of a vehicle body, vehicle body and method of manufacturing a vehicle body Download PDF

Info

Publication number
US11124245B2
US11124245B2 US16/671,349 US201916671349A US11124245B2 US 11124245 B2 US11124245 B2 US 11124245B2 US 201916671349 A US201916671349 A US 201916671349A US 11124245 B2 US11124245 B2 US 11124245B2
Authority
US
United States
Prior art keywords
sill
vehicle
protrusion
recess
sill part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/671,349
Other languages
English (en)
Other versions
US20200140021A1 (en
Inventor
Stefan Grottke
Stefan Schmitz
Rodscha Drabon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Assigned to BENTELER AUTOMOBILTECHNIK GMBH reassignment BENTELER AUTOMOBILTECHNIK GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHMITZ, STEFAN, DRABON, RODSCHA, GROTTKE, STEFAN
Publication of US20200140021A1 publication Critical patent/US20200140021A1/en
Application granted granted Critical
Publication of US11124245B2 publication Critical patent/US11124245B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D24/00Connections between vehicle body and vehicle frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2036Floors or bottom sub-units in connection with other superstructure subunits the subunits being side panels, sills or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/09Means for mounting load bearing surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/157Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body for side impacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/02Side panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/02Side panels
    • B62D25/025Side sills thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/023Assembly of structural joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/026Connections by glue bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/06Connections between superstructure or understructure sub-units readily releasable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/06Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components the sub-units or components being doors, windows, openable roofs, lids, bonnets, or weather strips or seals therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/01Reducing damages in case of crash, e.g. by improving battery protection

Definitions

  • the present invention relates to a sill of a vehicle body, a vehicle body comprising such a sill and a method of manufacturing a vehicle body.
  • a chassis which comprises the vehicle frame, a floor as well as the drive train and running gear to which superstructure module assemblies are attached.
  • the superstructure module assemblies may include sidewall carcasses.
  • the superstructure module assemblies can be attached to the chassis by gluing or screwing, for example.
  • a disadvantage of this vehicle body is that the connection between the chassis and the superstructure module assemblies must be made depending on the design of the individual superstructure module assemblies and forces which occur, for example, in a side impact can only be absorbed by the vehicle frame.
  • the object of this invention is therefore to create a solution with which a reliable connection between a vehicle frame and the vehicle superstructure can be created while still providing reliable protection in the event of a side impact, in particular a pole impact.
  • the invention is based on the finding that this problem can be solved by constructing at least the sill of the vehicle body in two parts, consisting of a part which is part of the vehicle superstructure and a part which is part of the vehicle frame, and that the sill parts are connected to each other via a defined interface.
  • the invention relates to a sill of a vehicle body.
  • the sill comprises a lower sill part and an upper sill part which is placed on and attached to the lower sill part.
  • the sill is characterized in that the upper sill part is part of a vehicle superstructure, in that in one side of a first sill part facing the further sill part a recess and at one side of the further sill part facing the first sill part a protrusion is provided, wherein the shape of the recess corresponds to the shape of the protrusion and the protrusion interlocks with the recess.
  • a sill is in particular a part of the substructure of a vehicle body.
  • the vehicle body comprises at least a vehicle frame and a vehicle superstructure.
  • the vehicle superstructure may comprise a floor with seat cross beams as well as a pillar structure such as the A, B and C pillars, the front body, the rear body and the roof construction.
  • the sill is located in the lateral area of the passenger compartment.
  • the sill can therefore also be referred to as the side sill.
  • the sill extends in the longitudinal direction of the vehicle and thus also in the longitudinal direction of the vehicle body.
  • the sill is at least partially formed by a part of the vehicle frame of the vehicle body.
  • the sill lies in the longitudinal direction of the vehicle body between the A-pillar and the C-pillar of the vehicle body, in particular longitudinally below the door entrance of the vehicle superstructure.
  • the sill parts are preferably made of closed hollow profiles and especially preferably of multi-chamber profiles.
  • at least one of the sill parts consists of a plate with only one profile chamber formed onto it.
  • at least one sill part can be a plate with an embossed recess.
  • the sill parts can, for example, be extruded profiles or expressions, respectively, and can consist, for example, of one or more aluminium alloys.
  • the sill comprises a lower sill part and an upper sill part which is placed and fixed onto the lower sill part.
  • Directions such as vertical, horizontal, top and bottom refer, unless otherwise indicated, to the sill or to the vehicle body, respectively, in a mounted state.
  • the horizontal direction is to be understood in such a way that it runs approximately parallel to the road surface, but may well be inclined by a few degrees.
  • horizontal means an inclination to the road surface of no more than 10 degrees.
  • Vertical also means that this direction is approximately perpendicular to the horizontal direction, but can again be inclined by a few degrees, especially not more than 10 degrees.
  • an upper sill part whose underside lies at least partially on the upper side of the lower sill.
  • the width of the upper sill part, at least in the area where it rests on the lower sill part, is equal to the width of the lower sill part, in the area where the upper sill part rests on the lower sill part.
  • the upper sill part is attached to the lower sill part.
  • This fastening is preferably made via the contact surface of the two sill parts.
  • the sill according to the invention is characterized in that the upper sill part is part of a vehicle superstructure.
  • the upper sill part is for example formed by the lower part of a side wall of the vehicle superstructure in the area of the door entrances.
  • the upper sill part can also be a separate component that is connected, for example screwed, welded or adhesively connected to a part of the vehicle superstructure, for example a side wall.
  • the sill according to the invention is characterized in that in one side of a first sill part, which faces the further sill part, a recess is provided and on one side of the further sill part, which faces the first sill part, a protrusion is provided.
  • the recess and the protrusion extend in a vertical direction.
  • the recess and the protrusion are arranged on the respective sill part in such a way that they are aligned with each other in the assembled state.
  • the protrusion can therefore mate with, i.e. be inserted into the recess.
  • the position of the recess on one sill part is thus aligned horizontally with the position of the protrusion on the other sill part.
  • the recess and the protrusion may be located in the middle of the width of the respective side of the sill facing the other sill.
  • the side of the sill part facing the other sill part which and in the assembled state being in contact with the other sill part is referred to below also as the contact surface.
  • the contact surface is also referred to as the adhesion surface.
  • the shape of the recess also corresponds to the shape of the protrusion.
  • the shape of the recess represents a negative shape to the shape of the protrusion.
  • the protrusion interlocks with the recess.
  • the entire surface of the protrusion is in contact with the surface of the recess and thus fills it.
  • the mating of the protrusion with the recess can be tension-free.
  • the protrusion is held force-fit in the recess in addition to the interlocking fit, e.g. is pressed into the recess.
  • the recess for example, can have a V-shaped, a U-shaped or a semi-circular cross-section or be a deeply grooved notch.
  • protrusions and several recesses can be provided, wherein then preferably also one protrusion is aligned with one recess and interlocks with it. It is also possible for both a protrusion and a recess to be provided on a sill part. In this case, a protrusion and a recess are also provided on the other sill part. For a better understanding, essentially only sill parts are described in the following, of which one has a recess and one a protrusion.
  • the sill consisting of an upper and a lower sill part, the upper sill part of which is part of the vehicle superstructure, and the sill parts having at least one recess and a protrusion interlocking by mating with the recess, a number of advantages can be achieved.
  • the structure of the vehicle body is simplified.
  • the protrusion and recess can be used to connect or at least pre-fixate the two sill parts.
  • This connection also creates a connection between the vehicle frame and the vehicle superstructure. At least with regard to the forces acting on the vehicle body from the side, the connection prevents by means of protrusion and recess a horizontal movement of the vehicle superstructure in relation to the vehicle frame.
  • the specific provision of recess and protrusion at the respective sill parts creates a defined interface via which the vehicle superstructure can be connected to the vehicle frame. Therein, the shape and design of the vehicle superstructure is independent of the interface.
  • a vehicle superstructure for a Sport Utility Vehicle can be mounted on the same vehicle frame as the vehicle superstructure for a so-called people mover with lower access.
  • the provision of a protrusion and recess increases the area through which the upper sill part is in contact with the lower sill part.
  • This contact surface can serve as a fastening surface, for example as an adhesion surface, or as a surface for inserting fastening elements such as rivets.
  • the connection between the upper and lower sill parts is also improved.
  • the advantage of providing a recess with an interlocking protrusion is that it increases the stability of the sill. In particular, the bending stiffness of the sill in the horizontal direction is increased. It can therefore better withstand a side impact, in particular a pole crash.
  • the protrusion at the sill part is formed by a hollow chamber.
  • the sill parts can represent multi-chamber profiles.
  • the sill part can also represent a plate with a hollow chamber formed onto it. If during the manufacturing of the sill part, on which a protrusion is formed, the protrusion is formed by a hollow chamber, on the one hand the manufacturing of the sill part is simplified.
  • the shape of the protrusion can be specifically adjusted and the wall thickness of the chamber that forms the protrusion can also be adjusted.
  • the protrusion can also be post-treated, for example by calibration.
  • the weight of the sill part on which the projection is provided is not or only slightly higher when the protrusion is designed as a hollow chamber than with a sill part without a protrusion.
  • the recess and the protrusion preferably extend in the longitudinal direction of the sill.
  • the advantage of this embodiment is that the contact surface between the two sill parts can be maximized.
  • the recess and protrusion extend over the entire length of the sill. This embodiment is advantageous because the recess and the protrusion in the case of a hollow profile, in particular a multi-chamber profile, can thus be formed during profile production and do not have to be subsequently worked on or inserted into the respective sill part.
  • the sides of the sill parts, in which the recess and on which the protrusion are provided are horizontal. This allows the respective side, for example the upper side of the lower sill part and the lower side of the upper sill part, which lie in the horizontal plane, in the event of a side crash to absorb a certain amount of the force acting on the sill or at least to prevent the sill from kinking.
  • the sides in which the recess and the protrusion are provided are, for example, flat surfaces. This further simplifies the manufacturing of the sill, as the die for producing a sill part by extrusion has a less complex cross-section.
  • the recess and the protrusion extend over the entire width of the respective sill part.
  • the width of the sill part is defined as its dimension in the width direction of the vehicle in the area of the contact surface.
  • the entire upper side of the lower sill part can be a recess and the entire underside of the upper sill part a protrusion. This means that the contact surfaces are formed by the protrusion and the recess alone and the size of the contact surfaces is thus increased.
  • the recess is provided in the upper side of the lower sill part and the protrusion is provided in the lower side of the upper sill part.
  • the advantage of this embodiment is that the height of the upper sill part, which forms part of the vehicle superstructure, may be small. This means that also vehicle superstructures can be used which must have a low entry height in the door area, such as, for example, a people mover, and can be placed on the same vehicle frame used for an SUV for example.
  • the contact surface between the protrusion and recess is in the area of the lower sill part.
  • the protrusion and the shape of the recess can provide stiffening in this area and can further increase safety.
  • the protrusion is formed on the lower sill part and the corresponding recess is formed on the upper sill part.
  • the upper and lower sill parts lie against each other over the entire surface of the side facing the other sill part.
  • the width of the two sill parts is the same in the area of the contact surface.
  • the upper and lower sill parts are adhesively connected together.
  • An adhesive layer is preferably applied between the upper and lower sill parts. This adhesive layer can be applied to the side of one of the sill parts facing the other sill part before the other sill part is applied. Alternatively, the adhesive layer can also be applied to both sides of the sill parts facing each other.
  • at least one sill part has at least one fastening lug when the sill parts are connected by adhesive bonding. The fastening lug(s) are preferably at a distance from the contact surface via which the sill parts are adhesively connected together.
  • the fastening lug or the fastening lugs may be provided on the outside of the sill parts, which is directed outwards in the assembled state of the vehicle.
  • a fastening lug may be provided on the outside of the lower sill part and extend in the width direction of the vehicle.
  • an arrangement of the fastening lug on the inner side of the lower sill part can also be useful if this is possible in terms of installation space and accessibility.
  • the sides of the sill parts facing each other represent the adhesion surface.
  • the area in which the projection and recess abut against each other, is part of the adhesion surface.
  • the adhesive layer extends over the entire contact surface of the two sill parts.
  • the adhesive layer preferably extends over the recess and the protrusion.
  • a cold-hardening adhesive is preferably used as the adhesive for gluing the two sill parts together.
  • a cold-hardening two-component structural adhesive can be used. Since the sill parts are adhesively connected together using adhesive, in particular cold-hardening adhesive, there is no risk of distortion which can occur with a thermal connection, e.g. welding. Compared to a rivet or screw connection, the production of an adhesive layer is easier and the sill can therefore be manufactured more quickly.
  • a spacer is formed on the side of one of the sill parts facing the other sill part.
  • the spacer is an elevation from the side of the sill part, the height of which is selected so that the free end of the elevation is in contact with the other sill part in the state in which the protrusion is inserted into the recess.
  • the adhesion gap between the sill parts can be adjusted and maintained by means of the spacer. This prevents the adhesive from being squeezed out.
  • spacers can be provided distributed over the contact surface, and in particular over the adhesion surface between the sill parts, so that the height of the adhesion gap can be guaranteed over the entire adhesion surface.
  • the spacer or the spacers may extend over the entire length of the sill part. With this embodiment, the spacer can be formed as an extruded extension and thus be formed by extrusion during the manufacturing of the sill part.
  • the lower sill part consists of an inner and an outer sill profile, which are preferably connected to each other by adhesive connection which at least partially extends vertically and a snap-in connection.
  • snap-in arms can be provided on one of the sill profiles, which interlock with the snap-in receiving sections in the form of grooves on the other sill profile.
  • the snap-in arms and snap-in receiving sections are preferably located close to the adhesion surface over which the sill profiles are adhesively connected to each other.
  • the materials of the inner and outer sill profiles may have different strengths in relation to each other.
  • the outer sill profile with lower strength can serve as a deformation zone in the event of a crash.
  • the impact energy is converted into deformation energy and thus absorbed in the outer sill profile.
  • the inner sill profile can prevent the sill from kinking or from an object such as a pole penetrating through due to a higher strength.
  • the sill profiles are connected to each other after the adhesive has been applied to the connection surface(s) via the snap-in connection, the correct alignment of the sill profiles to each other can be ensured by the snap-in connection already during the hardening of the adhesive.
  • the adhesive connection between the sill profiles is supported by the snap-in connection also in the event of a crash.
  • the connection both by means of snap-in elements and by means of adhesive the hold of the sill profiles together can still be guaranteed even in the event of deformation of the outer sill profile.
  • the use of an adhesive connection and a snap-in connection is advantageous over a connection using separate fastening elements, such as screws or rivets, as the number of parts required to produce the lower sill part is reduced.
  • the manufacturing time is reduced, as the snap-in arms(s) can be snapped-in simultaneously with the corresponding snap-in receiving sections and thus only one step is required to establish the snap-in connection.
  • the recess is formed in the lower part of the sill by bevels on the inner and outer sill profile.
  • the bevels are located in the upper part of the inner and outer sill profile above the connecting surface of the two sill profiles.
  • the recess has a V-shape or trapezoidal shape.
  • This embodiment is particularly advantageous because the cross section of the two sill profiles can be easily produced with a bevel.
  • the recess can have a large depth without weakening the individual sill profiles. The large depth of the recess can improve the hold between the lower sill part and the upper sill part. This improvement is due to the larger overlap between the upper sill part and the lower sill part on the one hand and to the larger contact surface over which the upper sill part can be adhesively connected to the lower sill part or otherwise fastened on the other.
  • the hold between the first and the second sill profile is preferably given by both adhesive connection and snap-in connection, this is sufficient to prevent the sill profiles from being pushed apart by the weight of the upper sill part inserted into the recess and the vehicle superstructure mounted thereon.
  • the invention relates to a vehicle body comprising at least a vehicle frame and a vehicle superstructure.
  • vehicle body is characterized by the fact that the vehicle body has two sills according to the invention.
  • the sills are arranged in the area of the door entrance of the vehicle body and can also be referred to as door sills.
  • the running gear of the vehicle is attached to the vehicle frame.
  • Other components such as the drive train, can also be attached to the vehicle frame.
  • the vehicle frame which can also be referred to as the ladder frame, with the attached components can also be referred to as the rolling chassis in this embodiment.
  • the vehicle body is an e-mobility vehicle body.
  • the vehicle frame is adhesively connected to the vehicle body at least in the area of the lower sill part. In the area of the lower sill part the vehicle frame is adhesively connected to the upper sill part. In addition, preferably other parts of the vehicle superstructure are bonded to the vehicle frame. An adhesive layer can be applied to the upper side of the vehicle frame.
  • the present invention relates to a method of manufacturing a vehicle body according to the invention.
  • the process is characterized in that the vehicle superstructure is placed on the vehicle frame and the at least one protrusion is inserted into the at least one recess.
  • the insertion of the protrusion into the recess takes place, according to the invention, during the placing of the vehicle superstructure on the vehicle frame.
  • adhesive is applied to at least part of the contact surfaces of the vehicle superstructure and/or the vehicle frame before the vehicle superstructure is placed on the vehicle frame.
  • the adhesive is applied at least in the area of the sill.
  • the adhesive shall preferably be applied over the entire contact surface between the vehicle frame and the vehicle superstructure.
  • At least one of the sill parts is mechanically calibrated.
  • the sill part is mechanically calibrated in the area of the protrusion. This can compensate for tolerances that may occur during the manufacturing of the sill part, especially during extrusion. For example, calibration can produce an outer wall parallelism in the area of the protrusion. Furthermore, a certain twisting of the sill part can be eliminated.
  • the calibration can be carried out using an inner mandrel and a two-piece press forming tool.
  • the inner mandrel is moved into a sill part, in particular into a profile chamber, for example the hollow chamber of the protrusion, and two press tool halves are moved together around the sill part from the outside.
  • the inner mandrel is moved in and the press forming tool halves are moved together for the purpose of plastic deformation of the sill part during and/or after the press forming tool halves are moved together.
  • the protrusion and/or recess is formed by hydroforming.
  • the protrusion or recess formed in this way can also be treated by calibration, in particular mechanical calibration. This allows adhesive surfaces to be formed locally over the length and/or width of the sill part.
  • FIG. 1 shows a schematic side view of an embodiment of the vehicle body according to the invention
  • FIG. 2 shows a schematic exploded view of the embodiment of the vehicle body according to the invention as shown in FIG. 1 ;
  • FIG. 3 shows a schematic perspective view of an embodiment of a vehicle frame for the vehicle body according to the invention
  • FIG. 4 shows a schematic cross-sectional view through an embodiment of a sill according to the invention
  • FIG. 5 shows a schematic detail view of the lower sill part of the sill according to the embodiment shown in FIG. 4 ;
  • FIG. 6 shows a schematic cross-sectional view through a further embodiment of a sill according to the invention.
  • FIG. 7 shows a schematic cross-sectional view through a further embodiment of a sill according to the invention.
  • FIG. 1 shows an embodiment of a vehicle body 1 according to the invention.
  • the vehicle body 1 in the depicted embodiment consists of a vehicle frame 2 and a vehicle superstructure 3 mounted on the vehicle frame 2 .
  • the vehicle superstructure 3 comprises in the depicted embodiment a pillar structure 30 , which has an A-pillar 300 , B-pillar 301 and a C-pillar 302 .
  • the vehicle superstructure 3 has a roof structure 31 which is attached to or formed together with the pillar structure 30 .
  • the lower part of the vehicle superstructure 3 between the A-pillar 300 and C-pillar 302 i.e. in the area of the door cut-out, is referred to below as the upper sill part 6 .
  • the upper sill part 6 can be formed in one piece with the pillars 300 , 301 , 302 or the pillars 300 , 301 , 302 can be attached on the upper sill part 6 .
  • the pillars 300 , 301 , 302 together with the upper sill part 6 and, if necessary, a longitudinal roof beam, form a side wall of the vehicle body 1 .
  • the vehicle superstructure 3 also comprises a floor element 32 arranged between the upper sill parts 6 .
  • seat cross beams 33 are provided which extend perpendicularly to the upper sill parts 6 .
  • the vehicle frame 2 which is shown in more detail in FIG. 3 , comprises, in the depicted embodiment, two lower sill parts 5 which extend in the longitudinal direction of the vehicle frame 2 and form in the middle part of the length of the vehicle frame 2 the sides of the vehicle frame 2 .
  • the lower sill parts 5 are connected at their front end and rear end respectively with further frame parts of the vehicle frame 2 for the front superstructure and the rear superstructure of the vehicle.
  • the connection in the depicted embodiment is a connection via nodes, which can be, for example, cast nodes.
  • FIG. 3 also shows two fastening lugs 518 on the lower sill part 5 .
  • the fixation lugs 518 protrude outwards from the outside of the lower sill part 5 .
  • These fixation lugs 518 can be used to fixate the vehicle body 3 to the vehicle frame and in particular to the lower sill part 5 .
  • the fixation lugs 518 can be used for pre-fixation, for example by screwing the vehicle body 3 to the vehicle frame 2 . This pre-fixation is particularly advantageous for the duration of hardening of the adhesive by which the vehicle body 3 is connected to the vehicle frame 2 .
  • FIG. 4 shows a schematic cross-section through an embodiment of a sill 4 .
  • the sill 4 consists of an upper sill part 6 and a lower sill part 5 .
  • the upper sill part 6 is part of the vehicle superstructure 3 .
  • the upper sill part 6 is the part of the vehicle superstructure 3 located in the lower part between the pillars 300 , 301 , 302 of the vehicle superstructure 3 on the sides of the vehicle body 1 .
  • the lower sill part 5 is a part of the vehicle frame 2 .
  • the lower sill part 5 represents the part of the longitudinal beam of the vehicle frame 2 which lies in the middle part of the longitudinal beam of the vehicle frame 2 .
  • the upper sill part 6 represents a multi-chamber profile in the shown embodiment.
  • the upper sill part 6 has a main body 60 .
  • the underside of the main body 60 of the upper sill part 6 represents a flat surface in the shown embodiment.
  • a protrusion 61 is formed in the underside of the main body 60 .
  • the protrusion 61 is arranged in the middle of the width of the main body 60 on the underside.
  • the protrusion 61 is formed by a hollow chamber which is adjoined to the main body 60 below it. In the shown embodiment, the protrusion 61 lies below the vertical partition wall of the main body 60 .
  • the protrusion 61 has a trapezoidal cross-section, with the cross-section tapering downwards from the underside of the main body 60 .
  • further components are attached to the upper sill part 6 on the upper side.
  • these can represent shielding components of the vehicle superstructure 3 , such as sheet metal components.
  • the lower sill part 5 in the embodiment shown consists of two sill profiles 50 , 51 .
  • the inner sill profile 50 is inseparably connected to the outer sill profile 51 .
  • FIG. 5 The construction of the lower two-part sill part 5 is shown in FIG. 5 .
  • the inner sill profile 50 is a multi-chamber profile.
  • the partition walls 503 lie horizontally in the inner sill profile 50 and represent flat walls.
  • the inner sill profile 50 has two partition walls 503 and thus three profile chambers 500 , which are arranged one above the other.
  • the fastening rail 508 rests on the bottom wall 506 of the inner sill profile 50 .
  • the bottom wall 506 which can also be referred to as the floor, there is a passage opening 507 for the pass-through of a screw 8 .
  • the passage opening 507 is aligned with the screw hole of the fastening rail 508 and a screw sleeve 509 which is positioned on the fastening rail 508 .
  • the bottom wall 506 of the inner sill profile 50 has a greater wall thickness than the other walls and the partition walls 503 of the inner sill profile 50 .
  • FIG. 4 shows that a battery holder 9 is attached to the inner sill profile 50 which is facing the centre of the vehicle frame 1 .
  • the battery holder 9 is screwed to the fastening rail 508 in the inner sill profile 50 using screws 8 .
  • the battery holder 9 represents a multi-chamber profile in the embodiment shown.
  • FIG. 4 shows a drive battery 90 which is inserted into the battery holder 9 .
  • the side walls 504 , 505 of the inner sill profile 50 have different heights in the shown embodiment.
  • the side wall 504 which faces away from the outer sill profile 51 and faces towards the centre of the vehicle frame 2 in the mounted state has a greater height than the second side wall 505 , which faces towards the second sill profile 51 .
  • These different heights are due to a bevel 502 of the inner sill profile 50 which adjoins to the top of the side wall 505 via an inwardly oriented step and is inclined towards the first side wall 504 .
  • the outer side of the second side wall 505 i.e. the side of the side wall 505 facing the second sill profile 51 , forms in the depicted embodiment a connecting surface 501 of the inner sill profile 50 .
  • a groove is provided in the upper side which extends in the longitudinal direction of the inner sill profile 50 .
  • the groove represents a snap-in receiving section for the snap-in connection with the outer sill profile 51 .
  • a further groove is provided in the underside of the bottom wall 506 . This groove represents a further snap-in receiving section for the snap-in connection with the outer sill profile 51 .
  • the outer sill profile 51 is also a multi-chamber profile.
  • the outer sill profile 51 represents a round hollow profile.
  • the partition walls 513 of the outer sill profile 51 are designed as bent walls. Thus, mostly round profile chambers 510 are formed. In particular, the partition walls represent 513 partial oval sections.
  • the side walls 514 , 515 of the outer sill profile 51 have different heights in the shown embodiment.
  • the side wall 514 which faces away from the inner sill profile 50 and in the mounted state is located outside on the vehicle frame 2 , has a greater height than the second side wall 515 , which faces towards the inner sill profile 50 .
  • These different heights are due to a bevel 512 of the outer sill profile 51 , which adjoins to the upper end of the side wall 515 and is tilted towards the first side wall 514 .
  • a first snap-in protrusion is formed at the upper end of the second side wall 515 .
  • This has a stem which extends outwards from the side wall 515 in the direction of the inner sill profile 50 .
  • a snap-in nose is provided at the free end of the stem.
  • a further snap-in protrusion is provided on the second side wall 515 of the outer sill profile 51 , offset downwards at a distance from the first snap-in protrusion. The distance between the first snap-in protrusion and the second snap-in protrusion corresponds to the height of the side wall 505 of the inner sill profile 50 .
  • the second snap-in protrusion in the shown embodiment also has a stem and a snap-in nose at the free end of the stem.
  • the snap-in nose of the second snap-in protrusion extends from the stem upwards.
  • the area of the outer side, i.e. the side facing the inner sill profile 50 , the second side wall 515 of the second sill profile 51 between the upper and lower snap-in protrusion forms the connecting surface 511 of the outer sill profile 51 .
  • the snap-in noses of the snap-in protrusions mate with the grooves of the inner sill profile 50 , which serve as snap-in receiving sections.
  • the inner sill profile 50 and the outer sill profile 51 are connected via a snap-in connection.
  • the adhesive gap formed between the connecting surfaces 511 , 501 contains adhesive (not shown).
  • the adhesive is applied to one or both connecting surfaces 511 , 501 before the sill profiles 50 , 51 are placed against each other and fixed to each other by means of the snap-in protrusions and snap-in receiving sections.
  • the bevels 502 , 512 on the inner and outer sill profile 50 , 51 form a recess 7 in the upper side of the lower sill part 5 .
  • the recess 7 has a V-shaped or trapezoidal cross-section.
  • the cross-section of the recess 7 corresponds to the cross-section of the protrusion 61 on the upper part of the sill 6 .
  • spacers 5000 and 519 are also provided in FIG. 5 .
  • the spacers 5000 and 519 protrude upwards and ensure that the adhesive is not pressed out when connecting the upper 6 and lower sill part 5 .
  • FIG. 6 shows a further embodiment of the sill 4 according to the invention in cross-section. This embodiment differs from the embodiment shown in FIG. 4 in that the lower sill part 5 is formed in one piece. In addition, the part of the vehicle superstructure 3 on the upper sill part 6 is provided with a further profile part on the upper side, which differs from the embodiment according to FIG. 4 .
  • FIG. 7 shows a cross-section of another embodiment of the sill 4 according to the invention.
  • Sill 4 differs from sill 4 as shown in FIG. 6 in the design of the upper sill part 6 .
  • the upper sill part 6 has a plate-shaped main body 60 .
  • the protrusion 61 is formed on the underside of the plate-shaped main body 60 .
  • the protrusion 61 is formed by a hollow chamber.
  • the protrusion 61 also has a trapezoidal cross-section in this embodiment, which tapers downwards.
  • the protrusion 61 protrudes into the recess 7 of the lower sill part 5 , which has the same shape as the lower sill part 5 according to FIG. 6 .
  • the adhesive layer 10 is not exclusively applied to the lower sill part 5 of the vehicle frame 2 . Rather, in the shown embodiment, adhesive is also applied on the upper side of the parts of the longitudinal beam for the rear area and on the upper side of the cross beams in the rear area. In this way, in addition to the connection between the lower sill part 5 and the upper sill part 6 , an adhesive connection can also be made between the vehicle frame 2 in the rear area and the vehicle superstructure in the rear area. This connection is also indicated in FIG. 1 .
  • the sill is divided into an upper and a lower part.
  • the vehicle body is divided into the rolling chassis of an e-mobility vehicle structure, which comprises a ladder-frame, and the vehicle superstructure, which essentially provides the vehicle body pillar structure (sides and doors), roof structure and passenger compartment.
  • the vehicle superstructure which essentially provides the vehicle body pillar structure (sides and doors), roof structure and passenger compartment.
  • other parts of the ladder frame are preferably connected on their upper side to the vehicle superstructure by means of an adhesive layer.
  • the invention has a number of advantages and can be realized in different embodiments. Because of the recess and the protrusion at the sill parts, a graduated pattern is created and thus an increase in the adhesion surface area, so that in the event of a side pole impact, one sill part is supported by the other and supports or relieves the adhesive connection preferably provided between the sill parts. Preferably the contact of the sill parts and the adhesive connection are full-surface. According to an embodiment, mechanical calibration of the two sill parts can remove extrusion tolerances (outer wall parallelism, torsion, height, width) from the adhesive surfaces. In addition, it is also possible, for example by hydroforming or mechanical calibration of the sill profiles, to form locally defined adhesive surfaces over the length and/or width.
  • connection between the two sill parts is preferably a tension-free connection between the recess and a hollow chamber (tongue and groove).
  • protrusions defining the adhesion gap which may, for example, have a height of 0.5 mm, can be provided on one or both sill parts in the adhesion surfaces.
  • a battery attachment can be attached to the sill plate, which can be used to attach the batteries of the vehicle, e.g. of an electric vehicle, to the underside of the sill.
US16/671,349 2018-11-02 2019-11-01 Sill of a vehicle body, vehicle body and method of manufacturing a vehicle body Active 2040-04-20 US11124245B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018127375.4 2018-11-02
DE102018127375.4A DE102018127375A1 (de) 2018-11-02 2018-11-02 Schweller einer Fahrzeugkarosserie, Fahrzeugkarosserie und Verfahren zur Herstellung einer Fahrzeugkkarosseriee

Publications (2)

Publication Number Publication Date
US20200140021A1 US20200140021A1 (en) 2020-05-07
US11124245B2 true US11124245B2 (en) 2021-09-21

Family

ID=70458294

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/671,349 Active 2040-04-20 US11124245B2 (en) 2018-11-02 2019-11-01 Sill of a vehicle body, vehicle body and method of manufacturing a vehicle body

Country Status (3)

Country Link
US (1) US11124245B2 (zh)
CN (1) CN111137359B (zh)
DE (1) DE102018127375A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105986A1 (en) * 2020-10-01 2022-04-07 Subaru Corporation Vehicle bodyside structure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191290B2 (ja) * 2018-12-26 2022-12-19 マツダ株式会社 バッテリ搭載装置
JP7132161B2 (ja) * 2019-03-20 2022-09-06 トヨタ自動車株式会社 ロッカ外装部構造
DE102019130050A1 (de) * 2019-11-07 2021-05-12 Bayerische Motoren Werke Aktiengesellschaft Bodengruppe für einen elektrisch betreibbaren Kraftwagen
JP7231572B2 (ja) * 2020-01-17 2023-03-01 トヨタ自動車株式会社 車体下部構造
US11254362B2 (en) * 2020-01-30 2022-02-22 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle rocker with load transferring spacer
DE102020114757B4 (de) 2020-06-03 2023-03-02 Bayerische Motoren Werke Aktiengesellschaft Hochvoltspeichereinrichtung für einen Kraftwagen
DE102020117317B3 (de) 2020-07-01 2021-11-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schweller-Rahmen-Anordnung sowie eine Fahrzeugkarosserieanordnung mit einer derartigen Schweller-Rahmen-Anordnung
CN112338055A (zh) * 2020-10-12 2021-02-09 湖北华越汽车零部件有限公司 一种汽车大梁双梁合压工艺
DE102020214997A1 (de) 2020-11-27 2022-06-02 Ford Global Technologies, Llc Kraftfahrzeug mit geschützten Traktionsbatterien
CN114987625B (zh) * 2022-06-17 2023-07-25 岚图汽车科技有限公司 下车体及车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015637A1 (de) 2009-03-24 2010-10-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fahrzeug
US20130062912A1 (en) * 2010-04-16 2013-03-14 Thyssenkrupp Steel Europe Ag Carrier Element for a Motor Vehicle
US20130140854A1 (en) * 2010-08-26 2013-06-06 Toyota Jidosha Kabushiki Kaisha Vehicle body rocker structure
US20130264840A1 (en) * 2012-04-05 2013-10-10 Honda Motor Co., Ltd Side body structure for vehicle
DE102015219922A1 (de) 2014-10-23 2016-04-28 Toyota Jidosha Kabushiki Kaisha Fahrzeugbatterie-Befestigungsstruktur
DE102016103371A1 (de) 2015-03-05 2016-09-08 Ford Global Technologies, Llc Energieabsorbierende Schwellerbaugruppe
US20170305250A1 (en) * 2016-04-21 2017-10-26 Toyota Jidosha Kabushiki Kaisha Battery mounting structure for vehicle
US20200140018A1 (en) * 2018-11-02 2020-05-07 Benteler Automobiltechnik Gmbh Sill and vehicle frame of a vehicle body and method of manufacturing a sill
US20210122222A1 (en) * 2019-10-27 2021-04-29 Ford Global Technologies, Llc Battery tray for protecting the vehicle battery of a hybrid motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403063A (en) * 1993-05-21 1995-04-04 Sjostedt; Robbie J. Modular integral floor construction for vehicle body
US8308227B2 (en) * 2007-09-19 2012-11-13 Toyota Jidoshi Kabushiki Kaisha Structure for side portion of vehicle body
JP4719785B2 (ja) * 2008-10-31 2011-07-06 本田技研工業株式会社 車体側部構造
EP2463181B1 (de) 2010-12-07 2018-07-18 Magna Steyr Fahrzeugtechnik AG & Co KG Kraftfahrzeug und Verfahren zur Herstellung eines Kraftfahrzeugs
DE102015207376A1 (de) * 2015-04-22 2016-10-27 Bayerische Motoren Werke Aktiengesellschaft Kraftfahrzeug
US9821854B2 (en) * 2015-11-24 2017-11-21 Honda Motor Co., Ltd. Side sill for a vehicle body
CN106143633B (zh) * 2016-07-29 2019-02-12 奇瑞新能源汽车技术有限公司 车身侧围b柱连接结构
CN206317896U (zh) * 2016-11-30 2017-07-11 浙江吉利控股集团有限公司 汽车地板搭接结构
EP3360761B1 (de) * 2017-02-09 2019-07-10 MAGNA STEYR Fahrzeugtechnik AG & Co KG Schweller für ein kraftfahrzeug

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015637A1 (de) 2009-03-24 2010-10-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fahrzeug
US20130062912A1 (en) * 2010-04-16 2013-03-14 Thyssenkrupp Steel Europe Ag Carrier Element for a Motor Vehicle
US20130140854A1 (en) * 2010-08-26 2013-06-06 Toyota Jidosha Kabushiki Kaisha Vehicle body rocker structure
US20130264840A1 (en) * 2012-04-05 2013-10-10 Honda Motor Co., Ltd Side body structure for vehicle
DE102015219922A1 (de) 2014-10-23 2016-04-28 Toyota Jidosha Kabushiki Kaisha Fahrzeugbatterie-Befestigungsstruktur
US20160114699A1 (en) 2014-10-23 2016-04-28 Toyota Jidosha Kabushiki Kaisha Vehicle battery mounting structure
DE102016103371A1 (de) 2015-03-05 2016-09-08 Ford Global Technologies, Llc Energieabsorbierende Schwellerbaugruppe
US9505442B2 (en) 2015-03-05 2016-11-29 Ford Global Technologies, Llc Energy absorbing rocker assembly
US20170305250A1 (en) * 2016-04-21 2017-10-26 Toyota Jidosha Kabushiki Kaisha Battery mounting structure for vehicle
US20200140018A1 (en) * 2018-11-02 2020-05-07 Benteler Automobiltechnik Gmbh Sill and vehicle frame of a vehicle body and method of manufacturing a sill
US20210122222A1 (en) * 2019-10-27 2021-04-29 Ford Global Technologies, Llc Battery tray for protecting the vehicle battery of a hybrid motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220105986A1 (en) * 2020-10-01 2022-04-07 Subaru Corporation Vehicle bodyside structure
US11654969B2 (en) * 2020-10-01 2023-05-23 Subaru Corporation Vehicle bodyside structure

Also Published As

Publication number Publication date
US20200140021A1 (en) 2020-05-07
CN111137359B (zh) 2022-09-27
CN111137359A (zh) 2020-05-12
DE102018127375A1 (de) 2020-05-07

Similar Documents

Publication Publication Date Title
US11124245B2 (en) Sill of a vehicle body, vehicle body and method of manufacturing a vehicle body
US11040740B2 (en) Sill and vehicle frame of a vehicle body and method of manufacturing a sill
CN107792194B (zh) 用于机动车辆车身的b柱及具有此类b柱的机动车辆车身
EP2749480B1 (en) Structure for side portion of vehicle
US5860694A (en) Integral bodyshell structure for a motor vehicle and method of producing the bodyshell structure
CN107074300B (zh) 车辆底部结构和车身
EP2730485B1 (en) Vehicle body structure and method for assembling vehicle body structure
US9988093B2 (en) Exoskeleton vehicle upper body structure
KR102576301B1 (ko) 3차원 차량 도어 프레임 내부 보강 요소를 제조하는 방법, 차량 도어 프레임을 제조하는 방법 및 차량 보강 구조물을 제조하는 방법
US20200391798A1 (en) Side Skirt Arrangement of a Body of an Electrically Operable Motor Vehicle
CN108407893B (zh) 用于机动车的门槛板
JP2000505395A (ja) 本体下方部分と本体上方部分とからなる自動車本体及びそのような自動車本体の本体上方部分の製造方法
CN108602417B (zh) 机动车上的具有碰撞型材和负载传递元件的布置结构、负载传递元件和机动车或者车门
CN107107960B (zh) 包括一体的且构造为弧形管的b柱增强件的车身结构以及相应构造的b柱增强件
US10829159B2 (en) Vehicle having reinforcement assemblies
CN109969272B (zh) 一种汽车骨架、汽车顶盖骨架及汽车侧围骨架
CN106005028A (zh) 车身侧围a柱总成
CN218172396U (zh) 汽车前门框架结构及汽车
CN206012733U (zh) 一种车身侧围b柱总成
CN212149046U (zh) 汽车骨架结构及汽车
CN213619973U (zh) 一种燃料电池氢能源汽车的b柱结构
CN109292003B (zh) 一种发动机舱侧边梁结构
DE102008033745A1 (de) Türelement
CN106184394B (zh) 车身侧围c柱总成
CN206012732U (zh) 一种车身侧围c柱总成

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BENTELER AUTOMOBILTECHNIK GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GROTTKE, STEFAN;SCHMITZ, STEFAN;DRABON, RODSCHA;SIGNING DATES FROM 20191115 TO 20191128;REEL/FRAME:051148/0718

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE