US11112864B2 - Display device and display system including the same - Google Patents
Display device and display system including the same Download PDFInfo
- Publication number
- US11112864B2 US11112864B2 US16/256,191 US201916256191A US11112864B2 US 11112864 B2 US11112864 B2 US 11112864B2 US 201916256191 A US201916256191 A US 201916256191A US 11112864 B2 US11112864 B2 US 11112864B2
- Authority
- US
- United States
- Prior art keywords
- gaze
- user
- image
- image data
- display panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/147—Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/1423—Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/36—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
- G09G5/39—Control of the bit-mapped memory
- G09G5/391—Resolution modifying circuits, e.g. variable screen formats
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0261—Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0407—Resolution change, inclusive of the use of different resolutions for different screen areas
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0442—Handling or displaying different aspect ratios, or changing the aspect ratio
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2354/00—Aspects of interface with display user
Definitions
- aspects of some example embodiments relate generally to a display device.
- the viewer wears a glasses-like display system and watches an image displayed by a display device included in the glasses-like display system to experience the virtual reality.
- the display device included in the glasses-like display system is required to display the image with respect to (or, around) a user's gaze (or, line of sight).
- the display device included in the glasses-like display system is required to display an image which reflects the user's gaze.
- a gaze detecting sensor may generate a gate detection signal by detecting the user's gaze
- a processing unit e.g., a central processing unit (CPU), an application processor (AP), etc.
- CPU central processing unit
- AP application processor
- GPU graphic processing unit
- a display device receives the image data from the graphic processing unit to display an image which reflects the user's gaze.
- the image data may be generated by reflecting the changed user's gaze.
- a specific delay (e.g., latency) due to image data rendering may occur between a time point at which the user's gaze is changed and a time point at which the image which reflects the changed user's gaze is displayed.
- the user may feel dizziness due to the delay when experiencing the virtual reality.
- a delay corresponding to at least 16.6 microseconds (ms) may occur when a display device included in the related art display system operates at 60 hertz (Hz).
- aspects of some example embodiments relate generally to a display device.
- some example embodiments of the present inventive concept relate to a display device capable of displaying an image which reflects a user's gaze and a display system including the display device (e.g., a head mounted display (HMD) system, a virtual reality (VR) system, etc.).
- a display device capable of displaying an image which reflects a user's gaze and a display system including the display device (e.g., a head mounted display (HMD) system, a virtual reality (VR) system, etc.).
- HMD head mounted display
- VR virtual reality
- Some example embodiments may include a display device that can prevent or reduce a delay due to image data rendering of a graphic processing unit from occurring between a time point at which a user's gaze is changed and a time point at which an image which reflects the changed user's gaze is displayed.
- Some example embodiments may include a display system including the display device.
- a display device may include a display panel configured to display a first image having a first resolution and a display panel driving circuit configured to drive the display panel.
- the display panel driving circuit may receive image data corresponding to a second image having a second resolution that is higher than the first resolution, may receive user's gaze data indicating a user's gaze, may select partial image data which reflects the user's gaze from the image data based on the user's gaze data, and may drive the display panel to display the first image based on the partial image data.
- the display panel driving circuit may select the partial image data to locate the user's gaze in a central region of the first image.
- horizontal center coordinates of the partial image data may be determined as the user's gaze moves in a horizontal direction on the display panel.
- the horizontal center coordinates may not move when the user's gaze is located in a predetermined central region of the display panel.
- the horizontal center coordinates may move to the left when the user's gaze moves to the left beyond the predetermined central region of the display panel.
- the horizontal center coordinates may move to the right when the user's gaze moves to the right beyond the predetermined central region of the display panel.
- vertical center coordinates of the partial image data may be determined as the user's gaze moves in a vertical direction on the display panel.
- the vertical center coordinates may not move when the user's gaze is located in a predetermined central region of the display panel.
- the vertical center coordinates may move upwardly when the user's gaze moves upwardly beyond the predetermined central region of the display panel.
- the vertical center coordinates may move downwardly when the user's gaze moves downwardly beyond the predetermined central region of the display panel.
- a display system may include a display device configured to output a first image having a first resolution, a gaze detecting sensor configured to detect a user's gaze to generate a gaze detection signal, a processing unit configured to generate user's gaze data indicating the user's gaze based on the gaze detection signal, and a graphic processing unit configured to generate image data corresponding to a second image having a second resolution that is higher than the first resolution.
- the display device may receive the user's gaze data from the processing unit, may receive the image data from the graphic processing unit, and may output the first image by reflecting the user's gaze based on the user's gaze data and the image data.
- the display device may provide information relating to the user's gaze data or information relating to the user's gaze which the first image reflects to the graphic processing unit.
- the display device may include a display panel configured to display the first image and a display panel driving circuit configured to receive the image data, to receive the user's gaze data, to select partial image data which reflects the user's gaze from the image data based on the user's gaze data, and to drive the display panel to display the first image based on the partial image data.
- the display panel driving circuit may select the partial image data to locate the user's gaze in a central region of the first image.
- horizontal center coordinates of the partial image data may be determined as the user's gaze moves in a horizontal direction on the display panel.
- the horizontal center coordinates may not move when the user's gaze is located in a predetermined central region of the display panel.
- the horizontal center coordinates may move to the left when the user's gaze moves to the left beyond the predetermined central region of the display panel.
- the horizontal center coordinates may move to the right when the user's gaze moves to the right beyond the predetermined central region of the display panel.
- vertical center coordinates of the partial image data may be determined as the user's gaze moves in a vertical direction on the display panel.
- the vertical center coordinates may not move when the user's gaze is located in a predetermined central region of the display panel.
- the vertical center coordinates may move upwardly when the user's gaze moves upwardly beyond the predetermined central region of the display panel.
- the vertical center coordinates may move downwardly when the user's gaze moves downwardly beyond the predetermined central region of the display panel.
- a display device may prevent or reduce a delay due to image data rendering of a graphic processing unit from occurring between a time point at which a user's gaze is changed and a time point at which an image which reflects the changed user's gaze is displayed by controlling a display panel driving circuit to receive image data corresponding to a second image having a resolution (e.g., a second resolution) that is higher than a resolution (e.g., a first resolution) of a first image to be displayed on a display panel, to receive user's gaze data indicating a user's gaze, to select partial image data which reflects the user's gaze from the image data based on the user's gaze data, and to drive the display panel to display the first image based on the partial image data.
- a resolution e.g., a second resolution
- a resolution e.g., a first resolution
- a display system including the display device may prevent or reduce instances of a user feeling dizziness due to a gaze-change in experiencing virtual reality.
- FIG. 1 is a block diagram illustrating a display device according to some example embodiments.
- FIG. 2 is a diagram for describing a process in which the display device of FIG. 1 displays a first image which reflects a user's gaze.
- FIGS. 3A and 3B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a vertical direction when a user views a central region of a display panel.
- FIGS. 4A and 4B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a vertical direction when a user views a lower region of a display panel.
- FIGS. 5A and 5B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a vertical direction when a user views an upper region of a display panel.
- FIGS. 6A and 6B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a horizontal direction when a user views a central region of a display panel.
- FIGS. 7A and 7B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a horizontal direction when a user views a right region of a display panel.
- FIGS. 8A and 8B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a horizontal direction when a user views a left region of a display panel.
- FIG. 9 is a block diagram illustrating a display system according to some example embodiments.
- FIG. 10 is a diagram illustrating an example in which the display system of FIG. 9 is implemented as a head mounted display system.
- FIG. 11 is a diagram illustrating an example in which a display device interacts with a graphic processing unit in the display system of FIG. 9 .
- FIG. 12 is a diagram illustrating another example in which a display device interacts with a graphic processing unit in the display system of FIG. 9 .
- FIG. 1 is a block diagram illustrating a display device according to some example embodiments
- FIG. 2 is a diagram for describing a process in which the display device of FIG. 1 displays a first image which reflects a user's gaze.
- the display device 100 may include a display panel 120 and a display panel driving circuit 140 .
- the display panel driving circuit 140 may include a display timing controller 142 and a display panel driver 144 (e.g., a scan driver and a data driver).
- the display panel 120 may include a plurality of pixel circuits P.
- the display panel 120 may be a liquid crystal display (LCD) panel.
- each of the pixel circuits P may include a liquid crystal element.
- the display panel 120 may be an organic light emitting display (OLED) panel.
- each of the pixel circuits P may include a light emitting element (e.g., an organic light emitting diode, etc).
- the pixel circuits P may be arranged in various forms in the display panel 120 .
- the display panel 120 may display a first image FIM having a first resolution using the pixel circuits P.
- the display panel 120 may be connected to the display panel driver 144 included in the display panel driving circuit 140 .
- the display panel 120 may display the first image FIM having the first resolution in response to a data signal DS and a scan signal SS provided from the display panel driver 144 .
- the display panel driving circuit 140 may drive the display panel 120 .
- the display panel driving circuit 140 may be connected to the display panel 120 via data-lines.
- the display panel driving circuit 140 may provide the data signal DS to the display panel 120 via the data-lines.
- the first resolution of the first image FIM is m ⁇ n, where m and n are integers greater than or equal to 1
- the number of the data-lines may be m.
- the display panel driving circuit 140 may be connected to the display panel 120 via scan-lines. Thus, the display panel driving circuit 140 may provide the scan signal SS to the display panel 120 via the scan-lines.
- the display panel driving circuit 140 may control the display panel 120 to display the first image FIM having the first resolution by providing the data signal DS and the scan signal SS to the display panel 120 .
- the display panel driving circuit 140 may receive image data SID corresponding to a second image SIM having a second resolution that is higher than the first resolution of the first image FIM.
- a graphic processing unit may generate the image data SID corresponding to the second image SIM having the second resolution.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution from the graphic processing unit.
- the graphic processing unit may not generate (e.g., perform rendering) image data corresponding to the first image FIM having the first resolution, which the display device 100 outputs (e.g., the display panel 140 displays).
- the graphic processing unit may generate the image data SID corresponding to the second image SIM having the second resolution that is bigger than the image data corresponding to the first image FIM having the first resolution.
- the display device 100 may select partial image data FID from the image data SID and may perform a displaying operation based on the partial image data FID corresponding to the first image FIM having the first resolution.
- the display panel driving circuit 140 may receive user's gaze data UED indicating a user's gaze.
- a gaze detecting sensor may generate a gaze detection signal by detecting the user's gaze
- a processing unit may generate the user's gaze data UED based on the gaze detection signal.
- the display panel driving circuit 140 may receive the user's gaze data UED from the processing unit.
- the display device 100 directly receives the user's gaze data UED and determines the image data which reflects the user's gaze (e.g., the partial image data FID), whereas a related art display device may receive the image data which reflects the user's gaze from the graphic processing unit (e.g., the graphic processing unit receives the user's gaze data UED and determines the image data which reflects the user's gaze).
- the graphic processing unit of the present inventive concept does not receive the user's gaze data UED.
- the display panel driving circuit 140 may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED. For example, the display panel driving circuit 140 may grasp (or, obtain) the user's gaze based on the user's gaze data UED and may select the partial image data FID (e.g., corresponding to the first image FIM) from the image data SID (e.g., corresponding to the second image SIM), where the partial image data FID corresponds to a given region around the user's gaze. In an example embodiment, the display panel driving circuit 140 may select the partial image data FID to locate the user's gaze in the central region of the first image FIM.
- the partial image data FID e.g., corresponding to the first image FIM
- the user's gaze may be located at a center of the first image FIM. In some example embodiments, the user's gaze may be located at any position in the central region of the first image FIM. For example, when the user's gaze is located at the center of the first image FIM, when the coordinates of the user's gaze on the second image SIM are (x, y), and when the first resolution of the first image FIM is m ⁇ n, the partial image data FID corresponding to a region defined by a horizontal coordinates section between x ⁇ (m/2) and x+(m/2) on the second image SIM and a vertical coordinates section between y ⁇ (n/2) and y+(n/2) on the second image SIM may be selected from the image data SID.
- the display panel driving circuit 140 may drive the display panel 120 to display the first image FIM having the first resolution based on the partial image data FID.
- the display panel driving circuit 140 may generate the data signal DS and the scan signal SS for displaying only the first image FIM among the second image SIM and may provide the data signal DS and the scan signal SS to the display panel 120 .
- the horizontal center coordinates of the partial image data FID corresponding to the first image FIM may be determined.
- the display panel driving circuit 140 may move the horizontal center coordinates of the partial image data FID corresponding to the first image FIM to the left when the user's gaze moves to the left on the display panel 120 and may move the horizontal center coordinates of the partial image data FID corresponding to the first image FIM to the right when the user's gaze moves to the right on the display panel 120 .
- the display panel driving circuit 140 may not move the horizontal center coordinates of the partial image data FID corresponding to the first image FIM if the movement is not large. Specifically, when the user's gaze is located in a predetermined central region of the display panel 120 , the horizontal center coordinates of the partial image data FID corresponding to the first image FIM may not move. In addition, when the user's gaze moves to the left beyond the predetermined central region of the display panel 120 , the horizontal center coordinates of the partial image data FID corresponding to the first image FIM may move to the left.
- the predetermined central region may be changed according to requirements for the display device 100 . For example, when it is not required to move the horizontal center coordinates of the partial image data FID corresponding to the first image FIM for the small change of the user's gaze, the predetermined central region may become larger. On the other hand, when it is required to move the horizontal center coordinates of the partial image data FID corresponding to the first image FIM for even the small change of the user's gaze, the predetermined central region may become smaller.
- the vertical center coordinates of the partial image data FID corresponding to the first image FIM may be determined.
- the display panel driving circuit 140 may move the vertical center coordinates of the partial image data FID corresponding to the first image FIM upwardly when the user's gaze moves upwardly on the display panel 120 and may move the vertical center coordinates of the partial image data FID corresponding to the first image FIM downwardly when the user's gaze moves downwardly on the display panel 120 .
- the display panel driving circuit 140 may not move the vertical center coordinates of the partial image data FID corresponding to the first image FIM if the movement is not large. Specifically, when the user's gaze is located in a predetermined central region of the display panel 120 , the vertical center coordinates of the partial image data FID corresponding to the first image FIM may not move. In addition, when the user's gaze moves upwardly beyond the predetermined central region of the display panel 120 , the vertical center coordinates of the partial image data FID corresponding to the first image FIM may move upwardly.
- the vertical center coordinates of the partial image data FID corresponding to the first image FIM may move downwardly.
- the predetermined central region may be changed according to requirements for the display device 100 . For example, when it is not required to move the vertical center coordinates of the partial image data FID corresponding to the first image FIM for the small change of the user's gaze, the predetermined central region may become larger. On the other hand, when it is required to move the vertical center coordinates of the partial image data FID corresponding to the first image FIM for even the small change of the user's gaze, the predetermined central region may become smaller.
- the display device 100 may effectively prevent or reduce the delay due to the image data rendering of the graphic processing unit from occurring between the time point at which the user's gaze is changed and the time point at which the image which reflects the changed user's gaze is displayed by receiving the image data SID corresponding to the second image SIM having the resolution (e.g., the second resolution) that is higher than the resolution (e.g., the first resolution) of the first image FIM to be displayed on the display panel 120 , by receiving the user's gaze data UED indicating the user's gaze, by selecting the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED, and by displaying the first image FIM based on the partial image data FID.
- the resolution e.g., the second resolution
- the first resolution e.g., the first resolution
- the display device 100 may not require the graphic processing unit to generate (e.g., perform the rendering) the image which reflects the changed user's gaze.
- the graphic processing unit of the present inventive concept may generate the image data SID to provide the image data SID to the display device 100 , regardless of the change of the user's gaze.
- the display device 100 may implement the image which reflects the user's gaze (e.g., the first image FIM) in a simple way by directly receiving the user's gaze data UED and by selecting the partial image data FID corresponding to the first image FIM having the first resolution from the image data SID received from the graphic processing unit.
- the display device 100 may respond to the change of the user's gaze quickly as compared to a related art display device and thus may prevent or reduce instances of the user feeling the dizziness due to the gaze-change in experiencing the virtual reality.
- the display device 100 includes only the display panel 120 and the display panel driving circuit 140 (e.g., including the display timing controller 142 and the display panel driver 144 ), it should be understood that the display device 100 may further include other components (e.g., a processor, a frame buffer memory device, a line buffer memory device, etc).
- FIGS. 3A and 3B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a vertical direction when a user views a central region of a display panel.
- FIGS. 3A and 3B as the user's gaze moves in the vertical direction FDN on the display panel 120 , the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM may be determined.
- FIGS. 3A and 3B show an example in which the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM do not move when the user's gaze is located in the predetermined central region of the display panel 120 .
- the first resolution of the first image FIM is 1920 ⁇ 1080 and the second resolution of the second image SIM is 2560 ⁇ 1440.
- FIGS. 3A and 3B it is assumed in FIGS.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution, may receive the user's gaze data UED indicating the user's gaze, and may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- a vertical direction region VTP of the image data SID corresponding to the second image SIM may be divided into a first vertical blank region VBP 1 , an active region ACP, and a second vertical blank region VBP 2 , and the active region ACP may be determined as the partial image data FID corresponding to the first image FIM.
- the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM may not move.
- the first vertical blank region VBP 1 may have the same size as the second vertical blank region VBP 2 .
- 1st through 180th horizontal lines Line 1 through Line 180 of the second image SIM may belong to the first vertical blank region VBP 1
- 1261st through 1440th horizontal lines Line 1261 through Line 1440 of the second image SIM may belong to the second vertical blank region VBP 2
- 181st through 1260th horizontal lines Line 181 through Line 1260 of the second image SIM may belong to the active region ACP.
- the first vertical blank region VBP 1 may include 180 horizontal lines Line 1 through Line 180
- the second vertical blank region VBP 2 may include 180 horizontal lines Line 1261 through Line 1440
- the active region ACP may include 1080 horizontal lines Line 181 through Line 1260.
- the display panel driving circuit 140 may select the partial image data FID corresponding to the first image FIM from the image data SID corresponding to the second image SIM by corresponding (or, matching) the 181st through 1260th horizontal lines Line 181 through Line 1260 (e.g., belonging to the active region ACP) of the second image SIM to 1st through 1080th horizontal lines of the first image FIM.
- FIGS. 4A and 4B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a vertical direction when a user views a lower region of a display panel.
- FIGS. 4A and 4B as the user's gaze moves in the vertical direction FDN on the display panel 120 , the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM may be determined.
- FIGS. 4A and 4B show an example in which the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM move downwardly when the user's gaze moves downwardly beyond the predetermined central region of the display panel 120 .
- the first resolution of the first image FIM is 1920 ⁇ 1080 and the second resolution of the second image SIM is 2560 ⁇ 1440.
- FIGS. 4A and 4B it is assumed in FIGS.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution, may receive the user's gaze data UED indicating the user's gaze, and may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- a vertical direction region VTP of the image data SID corresponding to the second image SIM may be divided into a first vertical blank region VBP 1 , an active region ACP, and a second vertical blank region VBP 2 , and the active region ACP may be determined as the partial image data FID corresponding to the first image FIM.
- the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM may move downwardly.
- the first vertical blank region VBP 1 may have a size that is bigger than that of the second vertical blank region VBP 2 .
- 1st through 200th horizontal lines Line 1 through Line 200 of the second image SIM may belong to the first vertical blank region VBP 1
- 1281st through 1440th horizontal lines Line 1281 through Line 1440 of the second image SIM may belong to the second vertical blank region VBP 2
- 201st through 1280th horizontal lines Line 201 through Line 1280 of the second image SIM may belong to the active region ACP.
- the first vertical blank region VBP 1 may include 200 horizontal lines Line 1 through Line 200
- the second vertical blank region VBP 2 may include 160 horizontal lines Line 1281 through Line 1440
- the active region ACP may include 1080 horizontal lines Line 201 through Line 1280.
- the display panel driving circuit 140 may select the partial image data FID corresponding to the first image FIM from the image data SID corresponding to the second image SIM by corresponding (or, matching) the 201st through 1280th horizontal lines Line 201 through Line 1280 (e.g., belonging to the active region ACP) of the second image SIM to 1st through 1080th horizontal lines of the first image FIM.
- FIGS. 5A and 5B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a vertical direction when a user views an upper region of a display panel.
- FIGS. 5A and 5B as the user's gaze moves in the vertical direction FDN on the display panel 120 , the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM may be determined.
- FIGS. 5A and 5B show an example in which the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM move upwardly when the user's gaze moves upwardly beyond the predetermined central region of the display panel 120 .
- the first resolution of the first image FIM is 1920 ⁇ 1080 and the second resolution of the second image SIM is 2560 ⁇ 1440.
- FIGS. 5A and 5B it is assumed in FIGS.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution, may receive the user's gaze data UED indicating the user's gaze, and may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- a vertical direction region VTP of the image data SID corresponding to the second image SIM may be divided into a first vertical blank region VBP 1 , an active region ACP, and a second vertical blank region VBP 2 , and the active region ACP may be determined as the partial image data FID corresponding to the first image FIM.
- the vertical center coordinates VCC of the partial image data FID corresponding to the first image FIM may move upwardly.
- the first vertical blank region VBP 1 may have a size that is smaller than that of the second vertical blank region VBP 2 .
- 1st through 150th horizontal lines Line 1 through Line 150 of the second image SIM may belong to the first vertical blank region VBP 1
- 1231st through 1440th horizontal lines Line 1231 through Line 1440 of the second image SIM may belong to the second vertical blank region VBP 2
- 151st through 1230th horizontal lines Line 151 through Line 1230 of the second image SIM may belong to the active region ACP.
- the first vertical blank region VBP 1 may include 150 horizontal lines Line 1 through Line 150
- the second vertical blank region VBP 2 may include 210 horizontal lines Line 1231 through Line 1440
- the active region ACP may include 1080 horizontal lines Line 151 through Line 1230.
- the display panel driving circuit 140 may select the partial image data FID corresponding to the first image FIM from the image data SID corresponding to the second image SIM by corresponding (or, matching) the 151st through 1230th horizontal lines Line 151 through Line 1230 (e.g., belonging to the active region ACP) of the second image SIM to 1st through 1080th horizontal lines of the first image FIM.
- FIGS. 6A and 6B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a horizontal direction when a user views a central region of a display panel.
- FIGS. 6A and 6B as the user's gaze moves in the horizontal direction SDN on the display panel 120 , the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM may be determined.
- FIGS. 6 A and 6 B show an example in which the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM do not move when the user's gaze is located in the predetermined central region of the display panel 120 .
- the first resolution of the first image FIM is 1920 ⁇ 1080 and the second resolution of the second image SIM is 2560 ⁇ 1440.
- FIGS. 6A and 6B it is assumed in FIGS.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution, may receive the user's gaze data UED indicating the user's gaze, and may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- a horizontal direction region HTP of the image data SID corresponding to the second image SIM may be divided into a first horizontal blank region HBP 1 , an active region ACP, and a second horizontal blank region HBP 2 , and the active region ACP may be determined as the partial image data FID corresponding to the first image FIM.
- the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM may not move.
- the first horizontal blank region HBP 1 may have the same size as the second horizontal blank region HBP 2 .
- 1st through 320th vertical lines 1 through 320 of the second image SIM may belong to the first horizontal blank region HBP 1
- 2241st through 2560th vertical lines 2241 through 2560 of the second image SIM may belong to the second horizontal blank region HBP 2
- 321st through 2240th vertical lines 321 through 2240 of the second image SIM may belong to the active region ACP.
- the first horizontal blank region HBP 1 may include 320 vertical lines 1 through 320
- the second horizontal blank region HBP 2 may include 320 vertical lines 2241 through 2560
- the active region ACP may include 1920 vertical lines 321 through 2240.
- the display panel driving circuit 140 may select the partial image data FID corresponding to the first image FIM from the image data SID corresponding to the second image SIM by corresponding (or, matching) the 321st through 2240th vertical lines 321 through 2240 (e.g., belonging to the active region ACP) of the second image SIM to 1st through 1920th vertical lines of the first image FIM.
- FIGS. 7A and 7B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a horizontal direction when a user views a right region of a display panel.
- FIGS. 7A and 7B as the user's gaze moves in the horizontal direction SDN on the display panel 120 , the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM may be determined.
- FIGS. 7A and 7B show an example in which the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM move to the right when the user's gaze moves to the right beyond the predetermined central region of the display panel 120 .
- the first resolution of the first image FIM is 1920 ⁇ 1080 and the second resolution of the second image SIM is 2560 ⁇ 1440.
- FIGS. 7A and 7B it is assumed in FIGS.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution, may receive the user's gaze data UED indicating the user's gaze, and may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- a horizontal direction region HTP of the image data SID corresponding to the second image SIM may be divided into a first horizontal blank region HBP 1 , an active region ACP, and a second horizontal blank region HBP 2 , and the active region ACP may be determined as the partial image data FID corresponding to the first image FIM.
- the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM may move to the right.
- the first horizontal blank region HBP 1 may have a size that is bigger than that of the second horizontal blank region HBP 2 .
- 1st through 340th vertical lines 1 through 340 of the second image SIM may belong to the first horizontal blank region HBP 1
- 2261st through 2560th vertical lines 2261 through 2560 of the second image SIM may belong to the second horizontal blank region HBP 2
- 341st through 2260th vertical lines 341 through 2260 of the second image SIM may belong to the active region ACP.
- the first horizontal blank region HBP 1 may include 340 vertical lines 1 through 340
- the second horizontal blank region HBP 2 may include 300 vertical lines 2261 through 2560
- the active region ACP may include 1920 vertical lines 341 through 2260.
- the display panel driving circuit 140 may select the partial image data FID corresponding to the first image FIM from the image data SID corresponding to the second image SIM by corresponding (or, matching) the 341st through 2260th vertical lines 341 through 2260 (e.g., belonging to the active region ACP) of the second image SIM to 1st through 1920th vertical lines of the first image FIM.
- FIGS. 8A and 8B are diagrams illustrating an example in which the display device of FIG. 1 selects a first image from a second image in a horizontal direction when a user views a left region of a display panel.
- FIGS. 8A and 8B as the user's gaze moves in the horizontal direction SDN on the display panel 120 , the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM may be determined.
- FIGS. 8A and 8B show an example in which the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM move to the left when the user's gaze moves to the left beyond the predetermined central region of the display panel 120 .
- the first resolution of the first image FIM is 1920 ⁇ 1080 and the second resolution of the second image SIM is 2560 ⁇ 1440.
- FIGS. 8A and 8B it is assumed in FIGS.
- the display panel driving circuit 140 may receive the image data SID corresponding to the second image SIM having the second resolution, may receive the user's gaze data UED indicating the user's gaze, and may select the partial image data FID which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- a horizontal direction region HTP of the image data SID corresponding to the second image SIM may be divided into a first horizontal blank region HBP 1 , an active region ACP, and a second horizontal blank region HBP 2 , and the active region ACP may be determined as the partial image data FID corresponding to the first image FIM.
- the horizontal center coordinates HCC of the partial image data FID corresponding to the first image FIM may move to the left.
- the first horizontal blank region HBP 1 may have a size that is smaller than that of the second horizontal blank region HBP 2 .
- 1st through 290th vertical lines 1 through 290 of the second image SIM may belong to the first horizontal blank region HBP 1
- 2211th through 2560th vertical lines 2211 through 2560 of the second image SIM may belong to the second horizontal blank region HBP 2
- 291st through 2210th vertical lines 291 through 2210 of the second image SIM may belong to the active region ACP.
- the first horizontal blank region HBP 1 may include 290 vertical lines 1 through 290
- the second horizontal blank region HBP 2 may include 350 vertical lines 2211 through 2560
- the active region ACP may include 1920 vertical lines 291 through 2210.
- the display panel driving circuit 140 may select the partial image data FID corresponding to the first image FIM from the image data SID corresponding to the second image SIM by corresponding (or, matching) the 291st through 2210th vertical lines 291 through 2210 (e.g., belonging to the active region ACP) of the second image SIM to 1st through 1920th vertical lines of the first image FIM.
- FIG. 9 is a block diagram illustrating a display system according to some example embodiments
- FIG. 10 is a diagram illustrating an example in which the display system of FIG. 9 is implemented as a head mounted display system
- FIG. 11 is a diagram illustrating an example in which a display device interacts with a graphic processing unit in the display system of FIG. 9
- FIG. 12 is a diagram illustrating another example in which a display device interacts with a graphic processing unit in the display system of FIG. 9 .
- the display system 500 may include a display device 520 , a graphic processing unit 540 , a gaze detecting sensor 560 , and a processing unit 580 .
- the display system 500 may be implemented as a head mounted display system 500 (or, a virtual reality system).
- the display system 500 is not limited thereto.
- the display system 500 may be implemented as a cellular phone, a video phone, a smart pad, a smart watch, a tablet PC, a car navigation system, a television, a computer monitor, a laptop, etc.
- the display system 500 may further include a plurality of ports for communicating with a video card, a sound card, a memory card, a universal serial bus (USB) device, other systems, etc.
- USB universal serial bus
- the display device 520 may output a first image having a first resolution.
- the gaze detecting sensor 560 may detect a user's gaze to generate a gaze detection signal EDS and may provide the gaze detection signal EDS to the processing unit 580 .
- the processing unit 580 may generate user's gaze data UED indicating the user's gaze based on the gaze detection signal EDS and may provide the user's gaze data UED to the display device 520 .
- the processing unit 580 may perform various computing functions for operations of the display system 500 .
- the processing unit 580 may be a microprocessor, a central processing unit (CPU), an application processor (AP), etc.
- the processing unit 580 may be coupled to other components via an address bus, a control bus, a data bus, etc.
- the processing unit 580 may be coupled to an extended bus such as a peripheral component interconnection (PCI) bus.
- the graphic processing unit 540 may generate image data SID corresponding to a second image having a second resolution that is higher than the first resolution of the first image that the display device 520 outputs and may provide the image data SID to the display device 520 .
- data communication may be performed between the graphic processing unit 540 and the display device 520 using a given interface.
- the graphic processing unit 540 may transmit the image data SID corresponding to the second image having the second resolution to the display device 520 using an embedded display port (eDP) interface.
- eDP embedded display port
- an interface between the graphic processing unit 540 and the display device 520 is not limited thereto.
- the display system 500 may further include a memory device, a storage device, a power supply, etc.
- the memory device and the storage device may store data for operations of the display system 500 .
- the memory device may include at least one non-volatile memory device such as an erasable programmable read-only memory (EPROM) device, an electrically erasable programmable read-only memory (EEPROM) device, a flash memory device, a phase change random access memory (PRAM) device, a resistance random access memory (RRAM) device, a nano floating gate memory (NFGM) device, a polymer random access memory (PoRAM) device, a magnetic random access memory (MRAM) device, a ferroelectric random access memory (FRAM) device, etc, and/or at least one volatile memory device such as a dynamic random access memory (DRAM) device, a static random access memory (SRAM) device, a mobile DRAM device, etc.
- the storage device may include a solid state drive (SSD) device, a hard disk
- the display device 520 may receive the user's gaze data UED indicating the user's gaze from the processing unit 580 , may receive the image data SID corresponding to the second image having the second resolution from the graphic processing unit 540 , and may output the first image having the first resolution by reflecting the user's gaze based on the user's gaze data UED and the image data SID.
- the display panel driving circuit 522 may receive the image data SID from the graphic processing unit 540 , may receive the user's gaze data UED from the processing unit 580 , and may select partial image data which reflects the user's gaze from the image data SID based on the user's gaze data UED.
- the display panel driving circuit 522 may select the partial image data so that the user's gaze may be located in a central region of the first image.
- horizontal center coordinates of the partial image data may be determined as the user's gaze moves in a horizontal direction on the display panel. For example, when the user's gaze is located in a predetermined central region of the display panel, the horizontal center coordinates of the partial image data may not move. When the user's gaze moves to the left beyond the predetermined central region of the display panel, the horizontal center coordinates of the partial image data may move to the left. When the user's gaze moves to the right beyond the predetermined central region of the display panel, the horizontal center coordinates of the partial image data may move to the right.
- vertical center coordinates of the partial image data may be determined as the user's gaze moves in a vertical direction on the display panel. For example, when the user's gaze is located in the predetermined central region of the display panel, the vertical center coordinates of the partial image data may not move. When the user's gaze moves upwardly beyond the predetermined central region of the display panel, the vertical center coordinates of the partial image data may move upwardly. When the user's gaze moves downwardly beyond the predetermined central region of the display panel, the vertical center coordinates of the partial image data may move downwardly. Since these operations are described above, duplicated description will not be repeated.
- the graphic processing unit 540 may provide the image data SID to the display device 520 , but may not receive any feedback relating to the user's gaze from the display device 520 . In other words, the graphic processing unit 540 may generate the image data SID, regardless of the change of the user's gaze. In another example embodiment, as illustrated in FIG. 12 , the graphic processing unit 540 may receive information DRI relating to the user's gaze data UED or information DRI relating to the user's gaze that the first image reflects from the display device 520 while providing the image data SID to the display device 520 .
- the graphic processing unit 540 may generate the image data SID by reflecting the change of the user's gaze based on the feedback relating to the user's gaze, where the feedback relating to the user's gaze is received from the display device 520 .
- the graphic processing unit 540 may reflect the change of the user's gaze in generating (or, performing rendering) next image data SID.
- the display device 520 may prevent or reduce a delay due to image data rendering of the graphic processing unit 540 from occurring between a time point at which the user's gaze is changed and a time point at which the image which reflects the changed user's gaze is displayed by receiving the image data SID corresponding to the second image having the resolution (e.g., the second resolution) that is higher than the resolution (e.g., the first resolution) of the first image to be displayed on the display panel, by receiving the user's gaze data UED indicating the user's gaze, by selecting the partial image data which reflects the user's gaze from the image data SID based on the user's gaze data UED, and by displaying the first image based on the partial image data.
- the display system 500 including the display device 520 may prevent or reduce instances of a user feeling dizziness due to the gaze-change in experiencing virtual reality.
- the present inventive concept may be applied to a display device and a display system including the display device.
- the present inventive concept may be applied to a cellular phone, a smart phone, a video phone, a smart pad, a tablet PC, a car navigation system, a television, a computer monitor, a laptop, a digital camera, an HMD system, a VR system, etc.
- the electronic or electric devices and/or any other relevant devices or components according to embodiments of the present invention described herein may be implemented utilizing any suitable hardware, firmware (e.g. an application-specific integrated circuit), software, or a combination of software, firmware, and hardware.
- the various components of these devices may be formed on one integrated circuit (IC) chip or on separate IC chips.
- the various components of these devices may be implemented on a flexible printed circuit film, a tape carrier package (TCP), a printed circuit board (PCB), or formed on one substrate.
- the various components of these devices may be a process or thread, running on one or more processors, in one or more computing devices, executing computer program instructions and interacting with other system components for performing the various functionalities described herein.
- the computer program instructions are stored in a memory which may be implemented in a computing device using a standard memory device, such as, for example, a random access memory (RAM).
- the computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, or the like.
- a person of skill in the art should recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed across one or more other computing devices without departing from the spirit and scope of the exemplary embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Computer Hardware Design (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
Claims (20)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020180017487A KR102651104B1 (en) | 2018-02-13 | 2018-02-13 | Display device and display system including the same |
| KR10-2018-0017487 | 2018-02-13 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20190250706A1 US20190250706A1 (en) | 2019-08-15 |
| US11112864B2 true US11112864B2 (en) | 2021-09-07 |
Family
ID=67542273
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/256,191 Active US11112864B2 (en) | 2018-02-13 | 2019-01-24 | Display device and display system including the same |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US11112864B2 (en) |
| KR (1) | KR102651104B1 (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5751259A (en) * | 1994-04-13 | 1998-05-12 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Wide view angle display apparatus |
| KR20170004816A (en) | 2015-07-02 | 2017-01-11 | 삼성전자주식회사 | Display apparatus and control method thereof |
| KR20170016753A (en) | 2015-08-04 | 2017-02-14 | 엘지전자 주식회사 | Head mounted display and method for controlling the same |
| KR20170088181A (en) | 2016-01-22 | 2017-08-01 | 삼성전자주식회사 | Head mounted display device and method for controlling the same |
| US20170302972A1 (en) | 2016-04-15 | 2017-10-19 | Advanced Micro Devices, Inc. | Low latency wireless virtual reality systems and methods |
| US20190005884A1 (en) * | 2017-06-30 | 2019-01-03 | Lg Display Co., Ltd. | Display device and gate driving circuit thereof, control method and virtual reality device |
| US20200120322A1 (en) * | 2017-05-18 | 2020-04-16 | Sony Interactive Entertainment Inc. | Image generating device, image display system, and image generating method |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20170013737A (en) * | 2015-07-28 | 2017-02-07 | 엘지전자 주식회사 | Head mount display apparatus and method for operating the same |
-
2018
- 2018-02-13 KR KR1020180017487A patent/KR102651104B1/en active Active
-
2019
- 2019-01-24 US US16/256,191 patent/US11112864B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5751259A (en) * | 1994-04-13 | 1998-05-12 | Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry | Wide view angle display apparatus |
| KR20170004816A (en) | 2015-07-02 | 2017-01-11 | 삼성전자주식회사 | Display apparatus and control method thereof |
| KR20170016753A (en) | 2015-08-04 | 2017-02-14 | 엘지전자 주식회사 | Head mounted display and method for controlling the same |
| KR20170088181A (en) | 2016-01-22 | 2017-08-01 | 삼성전자주식회사 | Head mounted display device and method for controlling the same |
| US20170302972A1 (en) | 2016-04-15 | 2017-10-19 | Advanced Micro Devices, Inc. | Low latency wireless virtual reality systems and methods |
| US20200120322A1 (en) * | 2017-05-18 | 2020-04-16 | Sony Interactive Entertainment Inc. | Image generating device, image display system, and image generating method |
| US20190005884A1 (en) * | 2017-06-30 | 2019-01-03 | Lg Display Co., Ltd. | Display device and gate driving circuit thereof, control method and virtual reality device |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102651104B1 (en) | 2024-03-26 |
| US20190250706A1 (en) | 2019-08-15 |
| KR20190098302A (en) | 2019-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11823648B2 (en) | Electronic device with foveated display system | |
| KR102275707B1 (en) | Display driver, display device and display system | |
| US11568774B2 (en) | Image correction unit, display device including the same, and method of displaying image of the display device | |
| US10803785B2 (en) | Electronic device and method for controlling output timing of signal corresponding to state in which content can be received based on display location of content displayed on display | |
| US20170076425A1 (en) | Electronic device and method for displaying an image on head mounted display device | |
| US11721279B2 (en) | Organic light emitting display device and method of operating the same | |
| CN112309326A (en) | Display device performing multi-frequency driving | |
| KR20160046620A (en) | Display driver circuit and display system | |
| US11817067B2 (en) | Display driving circuit | |
| US11024262B2 (en) | Method for compensating for screen movement of display and electronic device for supporting the same | |
| KR20160128926A (en) | Method and system for generating mask overlay for display panel corresponding to touch path | |
| US11112864B2 (en) | Display device and display system including the same | |
| KR102765253B1 (en) | Display driving circuit | |
| WO2019150624A1 (en) | Display device and display system | |
| EP4199503A1 (en) | Electronic apparatus and control method thereof | |
| KR102510841B1 (en) | A method for driving a plurality of pixel lines and an electronic device thereof | |
| US20230410701A1 (en) | Display device | |
| KR102695746B1 (en) | An electronic device including a display and an enhancing method of a distortion of an image displayed by the electronic device | |
| US20160209977A1 (en) | Data driver circuit and display device using the same | |
| KR20240109848A (en) | Display driving circuit | |
| KR20240128170A (en) | Head mounted display device, method of compensating image of head mounted display device and head mounted display system | |
| CN115602103A (en) | Display device and electronic device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, KYUNGMAN;LEE, DONGGYU;REEL/FRAME:048122/0108 Effective date: 20181128 |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |