US11111279B2 - Nato3 mutant polypeptides and uses thereof - Google Patents
Nato3 mutant polypeptides and uses thereof Download PDFInfo
- Publication number
- US11111279B2 US11111279B2 US15/776,580 US201615776580A US11111279B2 US 11111279 B2 US11111279 B2 US 11111279B2 US 201615776580 A US201615776580 A US 201615776580A US 11111279 B2 US11111279 B2 US 11111279B2
- Authority
- US
- United States
- Prior art keywords
- nato3
- mutant
- cells
- polypeptide
- dopaminergic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 101100119983 Drosophila melanogaster fer3 gene Proteins 0.000 title claims abstract description 362
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 240
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 234
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 234
- 210000002569 neuron Anatomy 0.000 claims abstract description 143
- 230000003291 dopaminomimetic effect Effects 0.000 claims abstract description 116
- 238000000034 method Methods 0.000 claims abstract description 94
- 210000004958 brain cell Anatomy 0.000 claims abstract description 69
- 208000018737 Parkinson disease Diseases 0.000 claims abstract description 28
- 210000004556 brain Anatomy 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000002771 cell marker Substances 0.000 claims abstract description 12
- 238000012258 culturing Methods 0.000 claims abstract description 7
- 230000004936 stimulating effect Effects 0.000 claims abstract description 7
- 235000001014 amino acid Nutrition 0.000 claims description 129
- 230000014509 gene expression Effects 0.000 claims description 99
- 150000001413 amino acids Chemical class 0.000 claims description 96
- 102000040430 polynucleotide Human genes 0.000 claims description 80
- 108091033319 polynucleotide Proteins 0.000 claims description 80
- 239000002157 polynucleotide Substances 0.000 claims description 80
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 70
- 239000004473 Threonine Substances 0.000 claims description 70
- 230000035772 mutation Effects 0.000 claims description 59
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 50
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical class C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 41
- 210000000130 stem cell Anatomy 0.000 claims description 38
- 101150026563 NR4A2 gene Proteins 0.000 claims description 33
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 32
- 239000003550 marker Substances 0.000 claims description 29
- 238000006467 substitution reaction Methods 0.000 claims description 29
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 26
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 25
- 235000013922 glutamic acid Nutrition 0.000 claims description 25
- 239000004220 glutamic acid Substances 0.000 claims description 25
- 235000003704 aspartic acid Nutrition 0.000 claims description 24
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 24
- 101150057663 Foxa2 gene Proteins 0.000 claims description 21
- 239000013604 expression vector Substances 0.000 claims description 19
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 18
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 2
- 150000003355 serines Chemical class 0.000 claims 2
- 210000005064 dopaminergic neuron Anatomy 0.000 abstract description 43
- 230000026731 phosphorylation Effects 0.000 abstract description 25
- 238000006366 phosphorylation reaction Methods 0.000 abstract description 25
- 230000001965 increasing effect Effects 0.000 abstract description 21
- 210000004027 cell Anatomy 0.000 description 164
- 229940024606 amino acid Drugs 0.000 description 106
- 108090000623 proteins and genes Proteins 0.000 description 93
- 241000282414 Homo sapiens Species 0.000 description 73
- 125000003275 alpha amino acid group Chemical group 0.000 description 60
- 102000004169 proteins and genes Human genes 0.000 description 60
- 150000007523 nucleic acids Chemical group 0.000 description 58
- 235000018102 proteins Nutrition 0.000 description 58
- 210000001519 tissue Anatomy 0.000 description 51
- 102000053602 DNA Human genes 0.000 description 46
- 108020004414 DNA Proteins 0.000 description 46
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 46
- 102000039446 nucleic acids Human genes 0.000 description 44
- 108020004707 nucleic acids Proteins 0.000 description 44
- 210000001259 mesencephalon Anatomy 0.000 description 42
- 125000003729 nucleotide group Chemical group 0.000 description 33
- 239000013598 vector Substances 0.000 description 31
- 108091028043 Nucleic acid sequence Proteins 0.000 description 30
- 239000002773 nucleotide Substances 0.000 description 28
- 210000000278 spinal cord Anatomy 0.000 description 27
- 241000699666 Mus <mouse, genus> Species 0.000 description 25
- 230000000694 effects Effects 0.000 description 25
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 25
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 24
- 229960003638 dopamine Drugs 0.000 description 23
- 238000002054 transplantation Methods 0.000 description 21
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 20
- 230000002018 overexpression Effects 0.000 description 20
- 239000002299 complementary DNA Substances 0.000 description 19
- 210000001671 embryonic stem cell Anatomy 0.000 description 19
- -1 serine amino acids Chemical group 0.000 description 19
- 230000006698 induction Effects 0.000 description 18
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 17
- 102000001253 Protein Kinase Human genes 0.000 description 16
- 230000000295 complement effect Effects 0.000 description 16
- 108060006633 protein kinase Proteins 0.000 description 16
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 16
- 238000001890 transfection Methods 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- 230000001537 neural effect Effects 0.000 description 15
- 108020004999 messenger RNA Proteins 0.000 description 14
- 241000894007 species Species 0.000 description 14
- 101100119979 Mus musculus Ferd3l gene Proteins 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- 239000003623 enhancer Substances 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 210000004962 mammalian cell Anatomy 0.000 description 13
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 13
- 241000287828 Gallus gallus Species 0.000 description 12
- 235000013330 chicken meat Nutrition 0.000 description 12
- 230000004069 differentiation Effects 0.000 description 12
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 12
- 230000001105 regulatory effect Effects 0.000 description 12
- 201000010099 disease Diseases 0.000 description 11
- 210000003527 eukaryotic cell Anatomy 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 239000012634 fragment Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- 238000002513 implantation Methods 0.000 description 10
- 229920002477 rna polymer Polymers 0.000 description 10
- 238000002560 therapeutic procedure Methods 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- 125000000539 amino acid group Chemical group 0.000 description 9
- 210000002459 blastocyst Anatomy 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 210000000276 neural tube Anatomy 0.000 description 9
- 108091033380 Coding strand Proteins 0.000 description 8
- 108091000080 Phosphotransferase Proteins 0.000 description 8
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 229940009098 aspartate Drugs 0.000 description 8
- 230000027455 binding Effects 0.000 description 8
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 8
- 102000020233 phosphotransferase Human genes 0.000 description 8
- 210000001778 pluripotent stem cell Anatomy 0.000 description 8
- 239000013615 primer Substances 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 241000700605 Viruses Species 0.000 description 7
- 238000004113 cell culture Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000005014 ectopic expression Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 210000002257 embryonic structure Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229930195712 glutamate Natural products 0.000 description 6
- 208000015122 neurodegenerative disease Diseases 0.000 description 6
- 230000007170 pathology Effects 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 210000001236 prokaryotic cell Anatomy 0.000 description 6
- 210000001082 somatic cell Anatomy 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000013603 viral vector Substances 0.000 description 6
- 230000004568 DNA-binding Effects 0.000 description 5
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 5
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 5
- 241000238631 Hexapoda Species 0.000 description 5
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 102000003923 Protein Kinase C Human genes 0.000 description 5
- 108090000315 Protein Kinase C Proteins 0.000 description 5
- 230000000735 allogeneic effect Effects 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 210000005013 brain tissue Anatomy 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000011260 co-administration Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 239000005090 green fluorescent protein Substances 0.000 description 5
- 210000001161 mammalian embryo Anatomy 0.000 description 5
- 210000001577 neostriatum Anatomy 0.000 description 5
- 210000000653 nervous system Anatomy 0.000 description 5
- 210000005155 neural progenitor cell Anatomy 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- 108091008611 Protein Kinase B Proteins 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 210000001178 neural stem cell Anatomy 0.000 description 4
- 210000004498 neuroglial cell Anatomy 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 230000008672 reprogramming Effects 0.000 description 4
- 210000003523 substantia nigra Anatomy 0.000 description 4
- 238000010361 transduction Methods 0.000 description 4
- 230000026683 transduction Effects 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 108091035707 Consensus sequence Proteins 0.000 description 3
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 3
- 102000004654 Cyclic GMP-Dependent Protein Kinases Human genes 0.000 description 3
- 108010003591 Cyclic GMP-Dependent Protein Kinases Proteins 0.000 description 3
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000701959 Escherichia virus Lambda Species 0.000 description 3
- 241000282326 Felis catus Species 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 3
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 3
- 108020004566 Transfer RNA Proteins 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 3
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229960001714 calcium phosphate Drugs 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000008045 co-localization Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 210000003981 ectoderm Anatomy 0.000 description 3
- 210000001900 endoderm Anatomy 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 3
- 210000003716 mesoderm Anatomy 0.000 description 3
- 230000004770 neurodegeneration Effects 0.000 description 3
- 238000007899 nucleic acid hybridization Methods 0.000 description 3
- 210000001428 peripheral nervous system Anatomy 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 210000004129 prosencephalon Anatomy 0.000 description 3
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 230000010473 stable expression Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000010474 transient expression Effects 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 108010027344 Basic Helix-Loop-Helix Transcription Factors Proteins 0.000 description 2
- 102000018720 Basic Helix-Loop-Helix Transcription Factors Human genes 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 102000004657 Calcium-Calmodulin-Dependent Protein Kinase Type 2 Human genes 0.000 description 2
- 108010003721 Calcium-Calmodulin-Dependent Protein Kinase Type 2 Proteins 0.000 description 2
- 102000019025 Calcium-Calmodulin-Dependent Protein Kinases Human genes 0.000 description 2
- 108010026870 Calcium-Calmodulin-Dependent Protein Kinases Proteins 0.000 description 2
- 102100022789 Calcium/calmodulin-dependent protein kinase type IV Human genes 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 241000702421 Dependoparvovirus Species 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 241001269524 Dura Species 0.000 description 2
- 108091035710 E-box Proteins 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 102100031442 Fer3-like protein Human genes 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 102100029284 Hepatocyte nuclear factor 3-beta Human genes 0.000 description 2
- 101100287682 Homo sapiens CAMK2G gene Proteins 0.000 description 2
- 101100126883 Homo sapiens CAMK4 gene Proteins 0.000 description 2
- 101000846731 Homo sapiens Fer3-like protein Proteins 0.000 description 2
- 101001062347 Homo sapiens Hepatocyte nuclear factor 3-beta Proteins 0.000 description 2
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 208000019022 Mood disease Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 2
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 102100022422 cGMP-dependent protein kinase 1 Human genes 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 210000003837 chick embryo Anatomy 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- DXVKFBGVVRSOLI-UHFFFAOYSA-N ethyl 2-amino-6-chloro-4-(1-cyano-2-ethoxy-2-oxoethyl)-4h-chromene-3-carboxylate Chemical compound C1=C(Cl)C=C2C(C(C#N)C(=O)OCC)C(C(=O)OCC)=C(N)OC2=C1 DXVKFBGVVRSOLI-UHFFFAOYSA-N 0.000 description 2
- 210000003754 fetus Anatomy 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 210000001654 germ layer Anatomy 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000012405 in silico analysis Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000001153 interneuron Anatomy 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000011278 mitosis Effects 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 210000003061 neural cell Anatomy 0.000 description 2
- 210000002241 neurite Anatomy 0.000 description 2
- 210000003757 neuroblast Anatomy 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 210000003446 pia mater Anatomy 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 210000001202 rhombencephalon Anatomy 0.000 description 2
- 210000000413 sensory ganglia Anatomy 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 208000020431 spinal cord injury Diseases 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 210000001587 telencephalon Anatomy 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000003146 transient transfection Methods 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- XSYUPRQVAHJETO-WPMUBMLPSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidazol-5-yl)propanoyl]amino]-3-(1h-imidaz Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 XSYUPRQVAHJETO-WPMUBMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 1
- ZQBULZYTDGUSSK-KRWDZBQOSA-N 1,2-dioctanoyl-sn-glycerol Chemical compound CCCCCCCC(=O)OC[C@H](CO)OC(=O)CCCCCCC ZQBULZYTDGUSSK-KRWDZBQOSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102100022142 Achaete-scute homolog 1 Human genes 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 208000017194 Affective disease Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 102100040069 Aldehyde dehydrogenase 1A1 Human genes 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 108020005098 Anticodon Proteins 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 101150010353 Ascl1 gene Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101100454433 Biomphalaria glabrata BG01 gene Proteins 0.000 description 1
- 101100454434 Biomphalaria glabrata BG04 gene Proteins 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 101000583086 Bunodosoma granuliferum Delta-actitoxin-Bgr2b Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 102000004031 Carboxy-Lyases Human genes 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 102000052052 Casein Kinase II Human genes 0.000 description 1
- 108010010919 Casein Kinase II Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 108010051219 Cre recombinase Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- DWJXYEABWRJFSP-XOBRGWDASA-N DAPT Chemical compound N([C@@H](C)C(=O)N[C@H](C(=O)OC(C)(C)C)C=1C=CC=CC=1)C(=O)CC1=CC(F)=CC(F)=C1 DWJXYEABWRJFSP-XOBRGWDASA-N 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 108010044266 Dopamine Plasma Membrane Transport Proteins Proteins 0.000 description 1
- 108700011215 E-Box Elements Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000001267 GSK3 Human genes 0.000 description 1
- 108060006662 GSK3 Proteins 0.000 description 1
- 102100028496 Galactocerebrosidase Human genes 0.000 description 1
- 108010042681 Galactosylceramidase Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 102000003693 Hedgehog Proteins Human genes 0.000 description 1
- 108090000031 Hedgehog Proteins Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 102100028707 Homeobox protein MSX-1 Human genes 0.000 description 1
- 102100040615 Homeobox protein MSX-2 Human genes 0.000 description 1
- 102100030634 Homeobox protein OTX2 Human genes 0.000 description 1
- 102100027694 Homeobox protein engrailed-1 Human genes 0.000 description 1
- 102100027695 Homeobox protein engrailed-2 Human genes 0.000 description 1
- 101000901099 Homo sapiens Achaete-scute homolog 1 Proteins 0.000 description 1
- 101000985653 Homo sapiens Homeobox protein MSX-1 Proteins 0.000 description 1
- 101000967222 Homo sapiens Homeobox protein MSX-2 Proteins 0.000 description 1
- 101000584400 Homo sapiens Homeobox protein OTX2 Proteins 0.000 description 1
- 101001081126 Homo sapiens Homeobox protein engrailed-1 Proteins 0.000 description 1
- 101001081122 Homo sapiens Homeobox protein engrailed-2 Proteins 0.000 description 1
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 description 1
- 101001038339 Homo sapiens LIM homeobox transcription factor 1-alpha Proteins 0.000 description 1
- 101000984044 Homo sapiens LIM homeobox transcription factor 1-beta Proteins 0.000 description 1
- 101000958041 Homo sapiens Musculin Proteins 0.000 description 1
- 101000603698 Homo sapiens Neurogenin-2 Proteins 0.000 description 1
- 101001132113 Homo sapiens Peroxisomal testis-specific protein 1 Proteins 0.000 description 1
- 101001046426 Homo sapiens cGMP-dependent protein kinase 1 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000028226 Krabbe disease Diseases 0.000 description 1
- 102100020677 Krueppel-like factor 4 Human genes 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 102100040290 LIM homeobox transcription factor 1-alpha Human genes 0.000 description 1
- 102100025457 LIM homeobox transcription factor 1-beta Human genes 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 206010026749 Mania Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000699673 Mesocricetus auratus Species 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101000969137 Mus musculus Metallothionein-1 Proteins 0.000 description 1
- 241000282341 Mustela putorius furo Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 102000008730 Nestin Human genes 0.000 description 1
- 108010088225 Nestin Proteins 0.000 description 1
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 1
- 108050000588 Neurogenic differentiation factor 1 Proteins 0.000 description 1
- 102100038554 Neurogenin-2 Human genes 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 1
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102100035917 Peripheral myelin protein 22 Human genes 0.000 description 1
- 101710199257 Peripheral myelin protein 22 Proteins 0.000 description 1
- 102100034529 Peroxisomal testis-specific protein 1 Human genes 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 101710113459 RAC-alpha serine/threonine-protein kinase Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102100033928 Sodium-dependent dopamine transporter Human genes 0.000 description 1
- 208000027520 Somatoform disease Diseases 0.000 description 1
- 102100021796 Sonic hedgehog protein Human genes 0.000 description 1
- 101710113849 Sonic hedgehog protein Proteins 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 102000009659 Vesicular Monoamine Transport Proteins Human genes 0.000 description 1
- 108010020033 Vesicular Monoamine Transport Proteins Proteins 0.000 description 1
- 102000013814 Wnt Human genes 0.000 description 1
- 108050003627 Wnt Proteins 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 210000002718 aborted fetus Anatomy 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000000576 arachnoid Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 210000001130 astrocyte Anatomy 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 208000029560 autism spectrum disease Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 230000006736 behavioral deficit Effects 0.000 description 1
- 208000036815 beta tubulin Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 206010008129 cerebral palsy Diseases 0.000 description 1
- 210000004289 cerebral ventricle Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- SLPJGDQJLTYWCI-UHFFFAOYSA-N dimethyl-(4,5,6,7-tetrabromo-1h-benzoimidazol-2-yl)-amine Chemical compound BrC1=C(Br)C(Br)=C2NC(N(C)C)=NC2=C1Br SLPJGDQJLTYWCI-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 210000004002 dopaminergic cell Anatomy 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000011977 dual antiplatelet therapy Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 201000002491 encephalomyelitis Diseases 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000007045 gastrulation Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 102000046949 human MSC Human genes 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 239000005414 inactive ingredient Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 208000002780 macular degeneration Diseases 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- NFVJNJQRWPQVOA-UHFFFAOYSA-N n-[2-chloro-5-(trifluoromethyl)phenyl]-2-[3-(4-ethyl-5-ethylsulfanyl-1,2,4-triazol-3-yl)piperidin-1-yl]acetamide Chemical compound CCN1C(SCC)=NN=C1C1CN(CC(=O)NC=2C(=CC=C(C=2)C(F)(F)F)Cl)CCC1 NFVJNJQRWPQVOA-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000944 nerve tissue Anatomy 0.000 description 1
- 210000005055 nestin Anatomy 0.000 description 1
- 210000000933 neural crest Anatomy 0.000 description 1
- 230000004766 neurogenesis Effects 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 239000000712 neurohormone Substances 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 208000027753 pain disease Diseases 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000011809 primate model Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 210000002637 putamen Anatomy 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000009256 replacement therapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000000862 serotonergic effect Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 210000001988 somatic stem cell Anatomy 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- JOPDZQBPOWAEHC-UHFFFAOYSA-H tristrontium;diphosphate Chemical compound [Sr+2].[Sr+2].[Sr+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JOPDZQBPOWAEHC-UHFFFAOYSA-H 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 210000000143 trophectoderm cell Anatomy 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 230000036266 weeks of gestation Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
Definitions
- the present invention relates generally to isolated Nato3 mutant polypeptides and polynucleotides encoding such polypeptides.
- the present invention also relates to methods of stimulating progenitor neuron cells to become dopaminergic progenitor neuronal cells and mature dopaminergic neurons and uses of these Nato3 mutant polypeptides or polynucleotides encoding these Nato3 mutant polypeptides to treat various neurodegenerative diseases and disorders.
- DA dopaminergic
- PD Parkinson's disease
- Nato3 a basic helix-loop-helix (bHLH) transcription factor, is expressed in the floor plate region of the midbrain and spinal cord during development (Segev et al., 2001; Verzi et al., 2002).
- cFPs classical non-neurogenic floor plate cells
- Nato3 is necessary for the generation of DA neurons by floor plate cells in the midbrain (mFP)(Ono et al., 2010).
- mFP midbrain
- Efforts to utilize neuron progenitor cells as a source of dopaminergic neurons for the purpose of transplantation has provided mixed results. Transplantation of neuron progenitor cells is problematic due to the relatively small numbers of autologous progenitor stems cells available for ex-vivo culturing. Moreover, additional issues arise because the neuron progenitor cells may differentiate into non-uniform cell populations. For example, in the treatment of PD, it is necessary that dopaminergic neurons are selectively transplanted and do not contain catecholamine-expressing neurons. Prior to the present application, transplantable cells for the use in treating PD, have been predominantly limited to cells that have not uniformly terminally differentiated into dopaminergic neurons. However, none of these contains pure dopaminergic neurons or cells to differentiate into dopaminergic neurons.
- dopaminergic progenitor neuronal cells Existing methods for transplantation treatment of PD involve the use of dopaminergic progenitor neuronal cells.
- Clinical studies in which human fetal mesencephalic tissue, rich in dopaminergic neuroblasts, have been previously transplanted into the striatum of individuals with PD have shown in principle that dopaminergic neurons may be replaced and symptoms reduced in some cases. But the functional outcome of this treatment has proved highly variable, and human fetal tissue is scarce, suggesting that other sources of dopaminergic neurons are needed to develop a clinically useful cell therapy.
- dopaminergic progenitor neuronal cells may be derived from the midbrain ventral region of aborted fetus tissue or they may be induced to differentiate into neuron progenitor cells.
- hESCs human embryonic stem cells
- floor plate cells are derived in vitro from hESCs by dual inhibition of SMAD signaling and high levels of sonic hedgehog.
- Midbrain floor plate identity is induced by activation of WNT signaling, and dopaminergic neuron precursors are generated in the presence of trophic factors, ascorbic acid, cAMP and DAPT.
- mice After intrastriatal transplantation in mice, rats or non-human primates, these cells give rise to large numbers of dopaminergic neurons with a substantia nigra phenotype, which reinnervate the striatum and ameliorate behavioral deficits in non-human subjects resembling the symptoms in PD patients.
- a substantia nigra phenotype which reinnervate the striatum and ameliorate behavioral deficits in non-human subjects resembling the symptoms in PD patients.
- isolated mutant Nato3 polypeptides are provided.
- the Nato3 mutant polypeptides comprise at least one mutation in any one or more amino acids serine, threonine or tyrosine residues as set forth in SEQ ID NOs:1-5, or any variant, derivative, or ortholog thereof.
- the isolated mutant Nato3 polypeptide comprises at least one mutation in any one or more serine, threonine or tyrosine amino acid residues in the HLH domain defined by amino acids 99 to 158 of SEQ ID NOs: 1-5.
- isolated mutant Nato3 polypeptides of the present invention can include mutant Nato3 polypeptides wherein at least one mutation of the one or more serine, threonine or tyrosine residues occurs in the HLH domain of the Nato3 wild type sequences of SEQ ID NO: 1 or 2.
- the one or more mutations comprises a substitution of amino acids serine or threonine in the HLH domain of the wild type Nato3 amino acid sequence of SEQ ID NO: 1, or 2, with either aspartic acid or glutamic acid.
- the Nato3 mutant polypeptides of the present invention may also include Nato3 mutant polypeptides that have at least one mutation which occurs in the HLH domain defined by amino acid sequences 99 to 158 of SEQ ID NOs: 1-5, for example in human wild type Nato3, as set forth in SEQ ID NO: 1.
- the mutation to any one or more of threonine, tyrosine and serine may occur at positions 99, 100, 101, 102, 104, 116, 117, 130, 132, 133, 135, 138, 140, 142, 144, 147, 149, 150, 151, 154, 155, 156 relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs:1-5.
- the one or more mutations may occur at any one or more positions, for example, at position 99, 100, 130, 133, 138, 142, 144, 149, 151, 154, or combinations thereof, relative to the wild-type sequence of Nato3 as set forth in SEQ ID NO: 1.
- the Nato3 mutant polypeptides of the present invention may also include Nato3 mutant polypeptides that have at least one mutation which occurs in the HLH domain defined by amino acid sequences 99 to 158 of SEQ ID NOs: 1-2, for example in human wild type Nato3, as set forth in SEQ ID NO: 1.
- S140D amino acid aspartic acid
- the substitute amino acid may be any amino acid other than the wild-type amino acid at their respective position.
- the amino acid at any one or more threonine, tyrosine and serine amino acids at positions 99, 100, 101, 102, 104, 116, 117, 130, 132, 133, 135, 138, 140, 142, 144, 147, 149, 150, 151, 154, 155, 156 relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs:1-5 may be substituted with any amino acid other than the wild type amino acid at that position.
- a wild type amino acid at any one or more positions selected from 99, 100, 101, 102, 104, 116, 117, 130, 132, 133, 135, 138, 140, 142, 144, 147, 149, 150, 151, 154, 155, 156 relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs:1-5 may be substituted with a negatively charged amino acid, for example, glutamate (glutamic acid, E) or aspartate (aspartic acid, D).
- glutamate glutamate
- aspartate aspartic acid
- the one or more amino acids at position 99, 100, 130, 133, 138, 142, 144, 149, 151, 154, or combinations thereof, relative to the wild-type sequence of Nato3 as set forth in SEQ ID NO: 1 is substituted with a negatively charged amino acid, for example, glutamate (glutamic acid, E) or aspartate (aspartic acid, D).
- a negatively charged amino acid for example, glutamate (glutamic acid, E) or aspartate (aspartic acid, D).
- the Nato3 mutant polypeptide has one or more mutations at positions 99, 130, and/or 138, or any combination thereof, relative to SEQ ID NO:1.
- the substitute amino acid may be any amino acid other than the wild-type amino acid at that position.
- the present invention provides a Nato3 mutant polypeptide having an amino acid sequence as set forth in SEQ ID NO:1, wherein wild type amino acid 99 (threonine) is replaced with a negatively charged amino acid, for example, D or E.
- the present invention provides a Nato3 mutant polypeptide having an amino acid sequence as set forth in SEQ ID NO:1, wherein wild type amino acid 130 (threonine) is replaced with a negatively charged amino acid, for example, D or E.
- the present invention provides a Nato3 mutant polypeptide having an amino acid sequence as set forth in SEQ ID NO:1, wherein wild type amino acid 138 (serine) is replaced with a negatively charged amino acid, for example, D or E.
- a Nato3 mutant polypeptide may have two or three amino acid substitutions at positions 99, 130 and 138 relative to wild type Nato3 sequence of SEQ ID NO:1.
- the amino acid substitution comprises substitution of the two or three wild type amino acids at positions 99, 130, and 138 with a negatively charged amino acid, for example, D or E.
- the present invention provides a method for stimulating a population of brain cells to differentiate into progenitor dopaminergic neuronal cells, or dopamine neurons, the method comprising increasing phosphorylation of Nato3 in the brain cells and culturing the brain cells until a progenitor dopaminergic neuronal cell marker, or a dopamine neuron cell marker is expressed in the cultured brain cells.
- the method includes increasing phosphorylation of Nato3 in the brain cells by expressing a Nato3 mutant polypeptide in the brain cells or by increasing the expression of a protein kinase that specifically phosphorylates an endogenous Nato3 polypeptide.
- the present invention provides a method for treating or preventing PD in a subject in need thereof.
- the method includes the steps of administering to the subject, a therapeutically effective amount of a composition comprising a mutant Nato3 polypeptide, or a polynucleotide construct encoding the mutant Nato3 polypeptide.
- the composition comprising the mutant Nato3 polypeptide or a polynucleotide construct encoding the mutant Nato3 polypeptide includes a population of dopaminergic progenitor neuronal cells, and/or a population of dopaminergic neurons comprising the mutant Nato3 polypeptide or a polynucleotide construct encoding the mutant Nato3 polypeptide.
- the method comprises administering to the subject in need thereof, a recombinant construct encoding a protein kinase that targets Nato3 in a brain cell, and increases phosphorylation of Nato3.
- the brain cells may differentiate into dopaminergic progenitor neuronal cells and/or dopaminergic neurons.
- the brain cells comprising a mutant Nato3 polypeptide or a polynucleotide construct encoding the mutant Nato3 polypeptide are transplanted directly into the subject's striatum to replace damaged dopaminergic neurons, reinnervate the striatum, and restore dopamine release in the brain of the PD subject.
- the brain cells which are targeted for expression of a mutant Nato3 polypeptide or administered a polynucleotide construct encoding the mutant Nato3 polypeptide, or a protein kinase that specifically targets and increases the phosphorylation of Nato3, include stem cells, including embryonic stem cells, adult induced pluripotent stem cells, mesenchymal stem cells and other tissue stem cells that may be implanted into the brain of a PD patient for generation of dopaminergic progenitor neuron cells and/or dopaminergic neurons.
- FIG. 1 shows a schematic diagram of the progression of specification of neural progenitors and maturation of DA neurons.
- FIG. 2 depicts amino acid sequence homology of Nato3 basic helix loop helix (HLH) domain and other bHLH family members.
- Nato3 from multiple different species MNato3 (Mouse) DNato3 ( Drosophila ), CNato3 (chicken), HNato3 (Human) are shown at the top. Perfect homology is shown in black, functional homology is shown in grey, overall homology with DNato3 is shown on the left (similarity (sim), percent similarity) Amino acids that align with mouse Nato3 at positions T132 and S140 are highlighted.
- FIG. 3 depicts photomicrographs of chicken embryonic spinal cord tissue sections stained with antibodies to progenitor marker expression such as Shh, Lmx1b, and Nurr1 after the induction of expression of the T101E/T132E (double mutant) mouse Nato3 mutant polypeptide.
- Panel A depicts expression of Shh.
- Panel B depicts expression of Lmx1b and Panel C depicts expression of Nurr1.
- FIG. 4 depicts photomicrographs of chicken embryonic spinal cord tissue sections stained with antibodies to progenitor marker expression such as Shh, Lmx1b, and Nurr1 after the addition of T101E/T132E (double mutant) Nato3 mutant polypeptide stained in panels B, E and H.
- progenitor marker expression such as Shh, Lmx1b, and Nurr1
- T101E/T132E double mutant Nato3 mutant polypeptide stained in panels B, E and H.
- Expression of floor plate markers Shh, Lmx1b and Nurr1 were stained with specific fluorescence antibodies shown in panels A, D, and G, and the presence of the Nato3 mutant polypeptide shown in panels B, E, and H are overlayed in panels C, F, and I.
- FIG. 5 depicts photomicrographs of chicken embryonic spinal cord tissue sections stained with antibodies to Foxa2 in posterior neural tube tissue sections containing wild-type Nato3 over-expression compared to T101E/T132E (double mutant) Nato3 mutant polypeptide expression in the same posterior neural tube sections.
- FIG. 6 depicts photomicrographs of chicken embryonic midbrain and forebrain tissue sections stained with antibodies to Nurr1 in embryonic midbrain tissue sections containing untreated compared to T101E/S140D (double mutant) Nato3 mutant polypeptide over expression.
- Panel A depicts immunofluorescence staining Nurr1 expression in the untreated (left) and treated (right) regions of the anterior portion of the midbrain of embryonic brain tissue sections.
- the bright dots seen in panel A indicate the expression of Nurr1+, a dopamine neuron marker, by neural progenitors in that region of tissue. These dots are not seen on the untreated side, indicating that S140D Nato3 may induce Nurr1 expression from neural progenitors that normally would not differentiate into DA neurons.
- Panel B depicts Nato3 T101E/S140D (double mutant) expression (in panel “B”) staining which overlaps with Nurr1 (in panel “B”) staining at 98+2% frequency in this region of the midbrain. Similar results are seen in forebrain tissue sections.
- FIG. 7 depicts photomicrographs of chicken embryonic neural tube sections stained with antibodies to progenitor marker expression such as En1 after the untreated and Nato3S140D over expression (OE) tissue sections.
- En1 expression in panels A, and B is induced in the Nato3 T101E/S140D (double mutant) transfected region (“Nato3 T101E/S140D (double mutant) OE”, overlay indicated as well) of the posterior midbrain relative to the internal negative control (“Untreated”).
- FIGS. 8A-8L show immunofluorescence photomicrographs of chicken embryonic neural tube sections stained with antibodies to progenitor marker expression such as Shh and Nurr1 after the untreated and human Nato3 S138D over expression (OE) tissue sections.
- Overexpression of the human wild type Nato3 gene did not induce Shh strongly (compare “Shh” between FIGS. 8A, 8D, and 8E compared to FIGS. 8B, 8E and 8H ).
- Overlay is shown in the top row between the transfected cells and the lineage marker; Shh in FIGS. 8A and 8B and Nurr1 in FIGS. 8C and 8J ).
- the induction of expression of dopamine neuron lineage marker expression is in the middle row (“Shh” in FIGS. 8D & 8E ; and expression of “Nurr1” in FIGS. 8F and 8K ).
- the transfection of the gene of interest is indicated in the bottom row shown in FIGS. 8G, 8H, 8I, and 8
- Embodiments including the transition phrase “consisting of” or “consisting essentially of” include only the recited components and inactive ingredients.
- a composition “consisting essentially of” a Nato3 mutant polypeptide may include a Nato3 mutant polypeptide and inactive excipients, which may or may not be recited, but may not contain any additional active agents.
- a composition “consisting of” a Nato3 mutant polypeptide may include only the components specifically recited.
- the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%, and all values therebetween.
- administering when used in conjunction with a therapeutic, means to administer a therapeutic composition directly into or onto a target tissue or to administer a therapeutic composition to a subject whereby the therapeutic composition positively impacts the tissue to which it is targeted.
- administering a composition may be accomplished by oral administration, injection, infusion, absorption or by any method in combination with other known techniques.
- administering may include the act of self-administration or administration by another person such as a healthcare provider or a device.
- terapéutica means an agent utilized to treat, combat, ameliorate, or prevent, or any combination thereof, an unwanted condition or disease of a subject.
- an effective amount refers to the amount of a composition (e.g., a Nato3 mutant polypeptide) sufficient to effect beneficial or desired results.
- An effective amount may be administered in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route.
- An effective amount may include a therapeutically effective amount, or a non-therapeutically effective amount.
- terapéuticaally effective amount or “therapeutic dose” as used herein are interchangeable and may refer to the amount of an active agent or pharmaceutical compound or composition that elicits a biological and/or medicinal response in a tissue, system, animal, individual or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, or any combination thereof.
- a biological or medicinal response may include, for example, one or more of the following: (1) preventing a disorder, disease, or condition in an individual that may be predisposed to the disorder, disease, or condition but does not yet experience or display pathology or symptoms of the disorder, disease, or condition, (2) inhibiting a disorder, disease, or condition in an individual that is experiencing or displaying the pathology or symptoms of the disorder, disease, or condition or arresting further development of the pathology and/or symptoms of the disorder, disease, or condition, and/or (3) ameliorating a disorder, disease, or condition in an individual that is experiencing or exhibiting the pathology or symptoms of the disorder, disease, or condition or reversing the pathology and/or symptoms disorder, disease, or condition experienced or exhibited by the individual.
- Isolated when referred to a molecule, refers to a molecule that has been identified and separated and/or recovered from a component of its natural environment and thus is altered “by the hand of man” from its natural state.
- isolated when used in relation to a polypeptide, as in “isolated protein” or “isolated polypeptide” refers to a polypeptide that is identified and separated from at least one contaminant with which it is ordinarily associated in its source.
- an isolated polypeptide (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, e.g., free of human proteins, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
- isolated polypeptide e.g., proteins and enzymes
- isolated polypeptide include a polypeptide, peptide or protein encoded by cDNA or recombinant RNA including one of synthetic origin, or some combination thereof.
- amino acid not only encompasses the 20 common amino acids in naturally synthesized proteins, but also includes any modified, unusual, or synthetic amino acid.
- modified, unusual, or synthetic amino acids One of ordinary skill in the art would be familiar with modified, unusual, or synthetic amino acids.
- a “polynucleotide” refers to a molecule having a nucleic acid sequence.
- a polynucleotide includes a nucleic acid, whether single stranded or double stranded, in which the strand or one nucleic acid strand encodes one or more Nato3 mutant polypeptides or a fragment or variant thereof, e.g. a nucleic acid sequence contained in SEQ ID NO:6-11 or the complement sequence thereof.
- the polynucleotide may contain the nucleotide sequence of the full-length cDNA sequence, including the 5′ and 3′ untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence.
- a “polypeptide” refers to a molecule having an amino acid sequence encoded by a polynucleotide of the invention as broadly defined.
- fragment as applied to a nucleic acid, may ordinarily be at least about 10 nucleotides in length, typically, at least about 20 nucleotides, more typically, from about 20 to about 50 nucleotides, preferably at least about 50 to about 100 nucleotides, even more preferably at least about 100 nucleotides to about 300 nucleotides, yet even more preferably at least about 300 to about 400, and most preferably, the nucleic acid fragment will be greater than about 500 nucleotides in length.
- Nucleic acid molecule includes DNA molecules (e.g. cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs.
- the nucleic acid molecule may be single-stranded or double-stranded, but preferably comprises double-stranded DNA.
- isolated nucleic acid molecule is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid.
- an isolated nucleic acid is free of sequences that naturally flank the nucleic acid (i.e. sequences located at the 5′- and 3′-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- isolated Nato3 mutant DNA molecules may contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic acid is derived (e.g., brain, heart, liver, spleen, etc.).
- an isolated nucleic acid molecule such as a cDNA molecule, may be substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.
- wild-type or “native” (used interchangeably) refers to the naturally-occurring polynucleotide sequence encoding a Nato3 protein, or a portion thereof, or a Nato3 polypeptide sequence, or portion thereof, respectively, as it normally exists in vivo.
- mutant refers to any change in the genetic material of an organism, in particular a change (i.e., deletion, substitution, addition, or alteration) in a wild-type polynucleotide sequence or any change in a wild-type protein sequence.
- variant is used interchangeably with “mutant”.
- Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differ from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild-type.
- Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below.
- Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, 85%, 90% or 95% identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions (Ausubel et al., supra).
- encoding refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom.
- a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system.
- Both the coding strand the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, may be referred to as encoding the protein or other product of that gene or cDNA.
- nucleotide sequence encoding an amino acid sequence includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.
- a “coding region” of a gene consists of the nucleotide residues of the coding strand of the gene and the nucleotides of the non-coding strand of the gene which are homologous with or complementary to, respectively, the coding region of an mRNA molecule which is produced by transcription of the gene.
- a “coding region” of an mRNA molecule also consists of the nucleotide residues of the mRNA molecule which are matched with an anticodon region of a transfer RNA molecule during translation of the mRNA molecule or which encode a stop codon.
- the coding region may thus include nucleotide residues corresponding to amino acid residues which are not present in the mature protein encoded by the mRNA molecule (e.g., amino acid residues in a protein export signal sequence).
- Control sequences are DNA sequences that enable the expression of an operably-linked coding sequence in a particular host organism.
- Prokaryotic control sequences include promoters, operator sequences, and ribosome binding sites.
- Eukaryotic cells utilize promoters, polyadenylation signals, and enhancers.
- “Operably-linked nucleic acid” is operably-linked when it is placed into a functional relationship with another nucleic acid sequence.
- a promoter or enhancer is operably-linked to a coding sequence if it affects the transcription of the sequence, or a ribosome-binding site is operably-linked to a coding sequence if positioned to facilitate translation.
- “operably-linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
- genomic DNA is a DNA strand, which has a nucleotide sequence homologous with a gene.
- genomic DNA is a DNA strand, which has a nucleotide sequence homologous with a gene.
- genomic DNAs are genomic DNAs.
- Oligonucleotide comprises a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction or other application.
- a short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.
- Oligonucleotides comprise portions of a nucleic acid.
- Variant refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.
- Homologs i.e., nucleic acids encoding Nato3 mutant polypeptides molecules derived from species other than human
- other related sequences e.g., paralogs
- hybridization stringency increases as the propensity to form DNA duplexes decreases.
- stringency may be chosen to either favor specific hybridizations (high stringency), which may be used to identify, for example, full-length clones from a library.
- Less-specific hybridizations may be used to identify related, but not exact, DNA molecules (homologous, but not identical) or segments.
- DNA duplexes are stabilized by: (1) the number of complementary base pairs, (2) the type of base pairs, (3) salt concentration (ionic strength) of the reaction mixture, (4) the temperature of the reaction, and (5) the presence of certain organic solvents, such as formamide which decreases DNA duplex stability.
- the longer the probe the higher the temperature required for proper annealing.
- a common approach is to vary the temperature: higher relative temperatures result in more stringent reaction conditions. (Ausubel et al., supra) provide an excellent explanation of stringency of hybridization reactions.
- PCR amplification techniques may be used to amplify Nato3 mutant polypeptide encoding polynucleotides using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers.
- Such nucleic acids may be cloned into an appropriate vector and characterized by DNA sequence analysis.
- oligonucleotides corresponding to Nato3 mutant polypeptides encoding polynucleotides may be prepared by standard synthetic techniques, e.g., an automated DNA synthesizer.
- Primer refers to a polynucleotide that is capable of specifically hybridizing to a designated polynucleotide template and providing a point of initiation for synthesis of a complementary polynucleotide. Such synthesis occurs when the polynucleotide primer is placed under conditions in which synthesis is induced, i.e., in the presence of nucleotides, a complementary polynucleotide template, and an agent for polymerization such as DNA polymerase.
- a primer is typically single-stranded, but may be double-stranded.
- Primers are typically deoxyribonucleic acids, but a wide variety of synthetic and naturally occurring primers are useful for many applications.
- a primer is complementary to the template to which it is designed to hybridize to serve as a site for the initiation of synthesis, but need not reflect the exact sequence of the template. In such a case, specific hybridization of the primer to the template depends on the stringency of the hybridization conditions.
- Primers may be labeled with, e.g., chromogenic, radioactive, or fluorescent moieties and used as detectable moieties.
- vector any plasmid or virus encoding an exogenous nucleic acid.
- the term should also be construed to include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into virions or cells, such as, for example, polylysine compounds and the like.
- the vector may be a viral vector, which is suitable as a delivery vehicle for delivery of the nucleic acid encoding the desired protein, or mutant thereof to a cell, or the vector may be a non-viral vector, which is suitable for the same purpose. Examples of viral and non-viral vectors for delivery of DNA to cells and tissues are well known in the art and are described, for example, in Ma et al. (1997, Proc.
- viral vectors include, but are not limited to, a recombinant vaccinia virus, a recombinant adenovirus, a recombinant retrovirus, a recombinant adeno-associated virus, a recombinant avian pox virus, and the like (Cranage et al., 1986, EMBO J. 5.3057-3063; International Patent Application No. WO94/17810, published Aug. 18, 1994; International Patent Application No. WO94/23744, published Oct. 27, 1994).
- non-viral vectors include, but are not limited to, liposomes, polyamine derivatives of DNA, and the like.
- Probes are substantially purified oligonucleotides that will hybridize under stringent conditions to at least optimally 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence; or an anti-sense strand nucleotide sequence; or of a naturally occurring mutant of the Nato3 DNA sequence of interest.
- the full- or partial length native sequence Nato3 DNA may be used to “pull out” similar (homologous) sequences (Ausubel et al., supra; Sambrook, supra), such as: (1) full-length or fragments of Nato3 cDNA from a cDNA library from any species (e.g. human, murine, feline, canine, bacterial, viral, retroviral, yeast), (2) from cells or tissues, (3) variants within a species, and (4) homologues and variants from other species.
- the probe may be designed to encode unique sequences or degenerate sequences. Sequences may also be genomic sequences including promoters, enhancer elements and introns of native Nato3 sequence.
- Antisense refers particularly to the nucleic acid sequence of the non-coding strand of a double stranded DNA molecule encoding a protein, or to a sequence which is substantially homologous to the non-coding strand. As defined herein, an antisense sequence is complementary to the sequence of a double stranded DNA molecule encoding a protein. It is not necessary that the antisense sequence be complementary solely to the coding portion of the coding strand of the DNA molecule. The antisense sequence may be complementary to regulatory sequences specified on the coding strand of a DNA molecule encoding a protein, which regulatory sequences control expression of the coding sequences.
- a “homolog” means a protein in a group of proteins that perform the same biological function, e.g. proteins that belong to the same Pfam protein family and that provide a common enhanced trait in various organisms of this invention.
- Homologs are expressed by homologous genes.
- homologs include orthologs, e.g., genes expressed in different species that evolved from a common ancestral genes by specification and encode proteins retain the same function, but do not include paralogs, e.g., genes that are related by duplication but have evolved to encode proteins with different functions.
- Homologous genes include naturally occurring alleles and artificially-created variants.
- homolog proteins have typically at least about 60% identity, in some instances at least about 70%, for example about 80% and even at least about 90% identity over the full length of a protein identified as being associated with imparting an enhanced trait when expressed in mammalian cells.
- homolog proteins have an amino acid sequence that has at least 90% identity to a consensus amino acid sequence of proteins and homologs disclosed herein.
- a “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level. Homologous nucleotide sequences encode those sequences coding for isoforms of Nato3. Isoforms may be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, different genes may encode isoforms.
- homologous nucleotide sequences include nucleotide sequences encoding for a mutant Nato3 polypeptide of species other than humans, including, but not limited to vertebrates, and thus may include, e.g., frog, mouse, rat, rabbit, dog, cat cow, horse, and other organisms.
- Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein.
- a homologous nucleotide sequence does not, however, include the exact nucleotide sequence encoding a human Nato3.
- Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions in a Nato3 sequence of interest, as well as a polypeptide possessing Nato3 biological activity.
- Percent (%) nucleic acid sequence identity with respect to a Nato3 wild-type or mutant polynucleotide sequence is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in that particular Nato3 wild-type or mutant polynucleotide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity.
- Alignment for purposes of determining % nucleic acid sequence identity may be achieved in various ways that are within the skill in the art for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, Megalign (DNASTAR) or ClustalX software. Those skilled in the art may determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
- BLAST protein searches may be performed with the XBLAST program (designated “blastn” at the NCBI web site) or the NCBI “blastp” program, using the following parameters: expectation value 10.0, BLOSUM 62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein.
- Gapped BLAST may be utilized as described in Altschul et al. (1997, Nucleic Acids Res. 25: 3389-3402).
- PSI-Blast or PHI-Blast may be used to perform an iterated search which detects distant relationships between molecules and relationships between molecules which share a common pattern.
- the default parameters of the respective programs e.g., XBLAST and NBLAST may be used.
- ORF open reading frame
- An ORF is a nucleotide sequence that has commonly a start codon (ATG) and terminates commonly with one of the three “stop” codons (TAA, TAG, or TGA).
- ATG start codon
- TAA stop codon
- an ORF may be any part of a coding sequence that may or may not comprise a start codon and a stop codon.
- preferable Nato3-ORFs encode at least 50 amino acids.
- Recombinant polynucleotide refers to a polynucleotide having sequences that are not naturally joined together.
- An amplified or assembled recombinant polynucleotide may be included in a suitable vector, and the vector may be used to transform a suitable host cell.
- a recombinant polynucleotide may serve a non-coding function (e.g., promoter, origin of replication, ribosome-binding site, etc.) as well.
- a non-coding function e.g., promoter, origin of replication, ribosome-binding site, etc.
- a “recombinant polypeptide” is one which is produced upon expression of a recombinant polynucleotide.
- amino acid substitution T132E of Nato3 mutant polypeptide denotes that threonine (T) at position 132 of wild type mouse Nato3 as set forth in SEQ ID NO:2 is substituted with glutamic acid (E).
- polypeptide refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic nonnaturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof. Synthetic polypeptides may be synthesized, for example, using an automated polypeptide synthesizer.
- tag polypeptide any protein which, when linked by a peptide bond to a protein of interest, may be used to localize the protein, to purify it from a cell extract, to immobilize it for use in binding assays, or to otherwise study its biological properties and/or function.
- a chimeric (i.e., fusion) protein containing a “tag” epitope may be immobilized on a resin which binds the tag.
- tag epitopes and resins which specifically bind them are well known in the art and include, for example, tag epitopes comprising a plurality of sequential histidine residues (His6), which allows isolation of a chimeric protein comprising such an epitope on nickel-nitrilotriacetic acid-agarose, a hemagglutinin (HA) tag epitope allowing a chimeric protein comprising such an epitope to bind with an anti-HA-monoclonal antibody affinity matrix, a myc tag epitope allowing a chimeric protein comprising such an epitope to bind with an antimyc-monoclonal antibody affinity matrix, a glutathione-S-transferase tag epitope, and a maltose binding protein (MBP) tag epitope, which may induce binding between a protein comprising such an epitope and a glutathione- or maltose Sepharose column, respectively.
- His6 histidine residues
- tags comprising such tag epitopes are well known in the art and is described in standard treatises such as Sambrook et al., supra, and Ausubel et al., supra.
- antibodies to the tag epitope allow detection and localization of the fusion protein in, for example, Western blots, ELISA assays, and immunostaining of cells.
- “Mammal” for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, etc. Preferably, the mammal is human.
- physiologically acceptable carriers are ones which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed.
- physiologically acceptable carrier is an aqueous pH buffered solution.
- physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics
- a polypeptide having biological activity refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention).
- Treatment refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with the disorder as well as those in which the disorder is to be prevented.
- subject generally refers to any living organism to which compounds described herein are administered and may include, but is not limited to, any human, primate, or non-human mammal, for example, an experimental animal or model, such as a mouse, rat, rabbit, guinea pig, hamster, ferret, dog, cat, and the like.
- an experimental animal or model such as a mouse, rat, rabbit, guinea pig, hamster, ferret, dog, cat, and the like.
- a subject may also include non-mammalian animals, or non-vertebrate animals.
- a “subject” may or may not be exhibiting the signs, symptoms, or pathology of aberrant angiogenesis at any stage of any embodiment.
- purified refers to a polypeptide that has been separated or purified from cellular components that naturally accompany it. Typically, the polypeptide is considered “purified” when it is at least 70% (e.g., at least 75%, 80%, 85%, 90%, 95%, or 99%) by dry weight, free from the proteins and naturally occurring molecules with which it is naturally associated.
- administering refers to the act of giving a Nato3 mutant polynucleotide or a cell transformed or transfected Nato3 mutant polynucleotide as part of a therapeutic treatment (e.g., compositions of the present invention) to a subject (e.g., a subject or in vivo, in vitro, or ex vivo cells, tissues, and organs).
- a therapeutic treatment e.g., compositions of the present invention
- Exemplary routes of administration to the human body may be through the eyes (ophthalmic), mouth (oral), skin (transdermal), nose (nasal), lungs (inhalant), oral mucosa (buccal), ear, by injection (e.g., intravenously, subcutaneously, intramuscularly, intracranially, intratumorally, intraperitoneally, etc.) and the like.
- injection e.g., intravenously, subcutaneously, intramuscularly, intracranially, intratumorally, intraperitoneally, etc.
- co-administration refers to the administration of at least two agent(s) (e.g., a Nato3 mutant polypeptide and one or more other agents such as an anti-inflammatory agent, or dopamine or an analog thereof) or therapies to a subject.
- the co-administration of two or more agents or therapies is concurrent.
- a first agent/therapy is administered prior to a second agent/therapy.
- formulations and/or routes of administration of the various agents or therapies used may vary. The appropriate dosage for co-administration may be readily determined by one skilled in the art.
- agents or therapies when agents or therapies are co-administered, the respective agents or therapies are administered at lower dosages than appropriate for their administration alone.
- co-administration is especially desirable in embodiments where the co-administration of the agents or therapies lowers the requisite dosage of a potentially harmful (e.g., toxic) agent(s).
- the term “toxic” refers to any detrimental or harmful effects on a subject, a cell, or a tissue as compared to the same cell or tissue prior to the administration of the toxicant.
- composition refers to the combination of an active agent (e.g., a Nato3 mutant polypeptide) with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
- an active agent e.g., a Nato3 mutant polypeptide
- compositions that do not substantially produce adverse reactions, e.g., toxic, allergic, or immunological reactions, when administered to a subject.
- the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers including, but not limited to, phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents, any and all solvents, dispersion media, coatings, sodium lauryl sulfate, isotonic and absorption delaying agents, disintegrants (e.g., potato starch or sodium starch glycolate), and the like.
- the compositions also may include stabilizers and preservatives. For examples of carriers, stabilizers and adjuvants. (See e.g., Martin, Remington's Pharmaceutical Sciences, 15th Ed., Mack Publ. Co., Easton, Pa. (1975), incorporated herein by reference).
- sample is used in its broadest sense. In one sense, it is meant to include a specimen or culture obtained from any source, as well as biological and environmental samples. Biological samples may be obtained from animals (including humans) and encompass fluids, solids, tissues, and gases. Biological samples include blood products, such as whole blood, plasma, serum and the like, and other fluids typically found within or produced by an organism, such as cerebrospinal fluid, ascites fluid, vitreous fluid and the like.
- the inventors have isolated mutant Nato3 polypeptides having at least one mutation in any one or more serine, threonine and tyrosine residues of a wild-type Nato3 protein.
- a “native amino acid sequence or wild-type amino acid sequence of Nato3” comprises a polypeptide having the same amino acid sequence as the corresponding Nato3 polypeptide derived from nature.
- a native or wild-type Nato3 polypeptide comprises the amino acid sequence of human Nato3 referenced in the National Center for Biotechnology Information (NCBI) Accession No. NP_690862 version NP_690862.1 GI:23097242 (SEQ ID NO:1 see Table 1).
- a “Nato3 mutant polypeptide” means a native Nato3 polypeptide or fragment thereof, having at least one amino acid substitution of a threonine, tyrosine or serine amino acid of a native or wild-type Nato3 amino acid sequence, or fragment thereof.
- Exemplary Nato3 mutant polypeptides may include a native Nato3 polypeptide or fragment thereof, having at least one amino acid substitution of a threonine, tyrosine or serine amino acid in the helix-loop-helix (HLH) domain or structural motif, of the native Nato3 amino acid sequence.
- the HLH domain of Nato3 is also referred to as the Helix-loop-helix DNA-binding domain, or the helix loop helix domain and is described further in accession numbers cd00083, pfam0010, and smart00353 and are readily identifiable using the ncbi website.
- isolated Nato3 mutant polypeptides of the present invention have an amino acid sequence that contains one or more amino acid substitutions at the substituted positions indicated by a serine, threonine and tyrosine residue in the Nato3 protein members of SEQ ID NO: 1-5 as shown in Table 1.
- the mutation of one or more serine, threonine or tyrosine amino acid residues includes at least one mutation of a serine, threonine or tyrosine amino acid residue in the region of Nato3 that spans amino acids 99 to 158, for example, the region or span of amino acids 99 to 158 in the human Nato3 wild-type sequence of SEQ ID NO: 1.
- HLH helix-loop-helix
- This region of Nato3 polypeptides is called the helix-loop-helix (HLH) domain or structural motif, and is fairly well conserved among many species.
- Members of the HLH superfamily have two highly conserved and functionally distinct domains, which together make up a region of approximately 60 amino-acid residues.
- the basic domain At the amino-terminal end of this region is the basic domain, which binds the transcription factor to DNA at a consensus hexanucleotide sequence known as the E box.
- E box consensus hexanucleotide sequence
- Different families of HLH proteins recognize different E-box consensus sequences.
- the HLH domain which facilitates interactions with other protein subunits to form homo- and hetero-dimeric complexes.
- the heterogeneity in the E-box sequence that is recognized and the dimers formed by different HLH proteins determines how they control diverse developmental functions through transcriptional regulation
- a DNA-binding basic region is followed by two alpha-helices separated by a variable loop region.
- the HLH domain forms homo- and heterodimers, dimerization creates a parallel, left-handed, four helix bundle; the basic region N-terminal to the first amphipathic helix mediates high-affinity DNA-binding.
- the HLH domain is found in specific DNA-binding proteins that act as transcription factors, such as Nato3.
- an isolated Nato3 mutant polypeptide of the present invention has an amino acid sequence that contains one or more amino acid substitutions at amino acids threonine, tyrosine and/or serine within amino acids 99-158, relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs: 1-5.
- an isolated Nato3 mutant polypeptide of the present invention has an amino acid sequence that contains one or more amino acid substitutions at threonine, tyrosine and/or serine residues within amino acids 99-158, relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs: 1-5.
- an isolated Nato3 mutant polypeptide of the present invention excludes an isolated mutant Nato3 polypeptide having a mutation at position S140 wherein the serine at position 140 of SEQ ID NO:2 in mouse, is substituted with aspartic acid “D” (See SEQ ID NO: 14).
- an isolated Nato3 mutant polypeptide of the present invention has an amino acid sequence that contains one or more amino acid substitutions at amino acid positions 99, 100, 101, 102, 104, 116, 117, 130, 132, 133, 135, 138, 140, 142, 144, 147, 149, 150, 151, 154, 155, 156 relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs:1-5.
- an isolated Nato3 mutant polypeptide of the present invention has an amino acid sequence that contains one or more amino acid substitutions at amino acid positions 99, 100, 130, 133, 138, 142, 144, 149, 151, 154, relative to the wild-type sequence of Nato3 as set forth in SEQ ID NO: 1.
- the substitution of one or more amino acids threonine, threonine and serine at positions 99, 130, and/or 138 respectively, or any combination thereof, relative to SEQ ID NO:1 may be made with any amino acid other than the wild-type amino acid at that position.
- the substitution of one or more amino acids threonine, threonine and serine at positions 99, 130, and/or 138 respectively of the human Nato3 wild type amino acid sequence of SEQ ID NO: 1 correspond to threonine, threonine and serine at positions 101, 132, and/or 140 respectively in the mouse helix-loop-helix domain of the mouse Nato3 wild type amino acid sequence of SEQ ID NO: 2.
- the threonine amino acid at position 99 may be substituted with any amino acid other than threonine.
- the threonine amino acid at position 99 may be substituted with a negatively charged amino acid, for example, glutamic acid or aspartic acid.
- the threonine amino acid at position 130 may be substituted with any amino acid other than threonine.
- the threonine amino acid at position 130 may be substituted with a negatively charged amino acid, for example, glutamic acid or aspartic acid.
- the serine amino acid at position 138 may be substituted with any amino acid other than serine.
- an illustrative Nato3 mutant polypeptide may include a polypeptide having one to ten amino acid substitutions at amino acid positions 99, 100, 130, 133, 138, 142, 144, 149, 151, 154, or combinations thereof, relative to the wild-type sequence of Nato3 as set forth in SEQ ID NO: 1, wherein the amino acid substitution at each or a combination of positions may be any amino acid other than the wild-type amino acid at their respective position, or an amino acid substitution at each or a combination of positions with a negatively charged amino acid, for example, glutamic acid or aspartic acid.
- Nato3 mutant polypeptides may include double mutants, wherein two of serine or threonine or tyrosine are mutated relative to the native sequence of Nato3. In some embodiments, Nato3 mutant polypeptides may include double mutants, wherein two of serine, threonine and tyrosine are mutated in the HLH domain of a Nato3 native sequence. In some embodiments, Nato3 mutant polypeptides may include double mutants, wherein two of serine, threonine and tyrosine are mutated in the HLH domain of a Nato3 native sequence as provided in SEQ ID NOs:1-5.
- Nato3 mutant polypeptides may include double mutants, wherein two of serine, threonine and tyrosine are mutated in the HLH domain of a Nato3 native sequence as provided in SEQ ID NOs:1-5, for example, T101E and T132E in mouse Nato3 SEQ ID NO:2; T101E and S140D in mouse Nato3 SEQ ID NO:2; T99E and T130E in human Nato3 SEQ ID NO:1; and T99E and S138D in human Nato3 SEQ ID NO:1.
- Nato3 mutant polypeptides have one or more amino acid substitution at threonine, tyrosine and serine residues within amino acids 99-158, or combinations thereof, relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs: 1-5, and may have from about one to about 25 conservative amino acid substitutions provided that at least one threonine, tyrosine and/or serine residue within amino acids 99-158, or combinations thereof, relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs: 1-5 is substituted with any amino acid other than the wild-type amino acid at that position, for example, a negatively charged amino acid, for example, glutamic acid or aspartic acid.
- a negatively charged amino acid for example, glutamic acid or aspartic acid.
- Nato3 mutant polypeptides of the present invention have at least 85%, or at least 90%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97%, or at least 98%, or at least 99%, or at least 99.5% sequence identity to a wild-type Nato3 polypeptide as set forth in SEQ ID NOs: 1-5, and have one or more amino acid substitution at threonine, tyrosine and serine residues within amino acids 99-158, or combinations thereof, relative to a wild-type sequence of Nato3 as set forth in SEQ ID NOs: 1-5.
- the present invention provides a Nato3 mutant polypeptide having at least 85% amino acid sequence identity to SEQ ID NO:1, and having at least one threonine, tyrosine and/or serine amino acid substitution within amino acids 99-158, relative to a wild-type sequence of Nato3 as set forth in SEQ ID NO:1, wherein the replacing amino acid residue is any amino acid other than the wild-type amino acid, for example, the replacing amino acid is a negatively charged amino acid, for example, glutamic acid and/or aspartic acid.
- exemplary Nato3 mutant polypeptides of the present invention include polypeptides having the amino acid sequence of SEQ ID NOs: 12-17, or a polypeptide encoded by a polynucleotide as provided in SEQ ID NOs: 6-11, or a polynucleotide that hybridizes under stringent conditions to a polynucleotide of any one of SEQ ID NOs: 6-11, or a complement sequence thereof.
- Whether a change in the amino acid sequence of a polypeptide results in a functional Nato3 mutant polypeptide may be readily determined by assessing the ability of the Nato3 mutant polypeptide to produce a response in cells in a fashion similar to the wild-type Nato3 protein. Polypeptides in which more than one amino acid replacement has taken place may readily be tested in the same manner.
- Percent (%) amino acid sequence identity with respect to a peptide or polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific peptide or polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity may be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art may determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, as described in U.S. Pat. No. 6,828,146.
- the isolated Nato3 mutant polypeptides of the present technology may be synthesized chemically, or may be obtained recombinantly by expressing a nucleic acid in an expression vector, using standard and well established techniques known in the field of molecular biology.
- the practice of the present technology will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA technology and immunology, which are within the skill of those working in the art. Such techniques are explained fully in the literature. Examples of particularly suitable texts for consultation include the following: Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and II (D. N Glover ed. 1985); Oligonucleotide Synthesis (M. J.
- Nato3 mutant polypeptides are recombinantly produced.
- Methods for producing the isolated Nato3 mutant polypeptides of the present invention may be performed using established and known recombinant methods described in the art, and as exemplified in the Examples section herein.
- the present invention provides a polynucleotide that encodes a Nato3 mutant polypeptide or a complement sequence thereof.
- nucleic acid refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA).
- DNA deoxyribonucleic acid
- RNA ribonucleic acid
- the term should also be understood to include, as applicable to the embodiment being described, single-stranded (such as sense or antisense) and double-stranded polynucleotides.
- Nato3 mutant polypeptide encoding polynucleotides may be combined with or cloned into larger DNA or RNA constructs.
- Nato3 mutant polynucleotides may be cloned into plasmids, cosmids, viral genetic constructs and other expression vectors that contain control sequences that enable the stable or transient expression, and/or transfection and/or transduction of the cloned polynucleotides in one or more cell types, including prokaryotic and eukaryotic cells.
- the present invention also provides isolated and/or recombinant nucleic acids encoding a Nato3 mutant polypeptide or a Nato3 fusion protein.
- the subject nucleic acids may be single-stranded or double-stranded, DNA or RNA molecules. These nucleic acids are useful as therapeutic agents.
- these nucleic acids are useful in making recombinant Nato3 mutant polypeptides which may be administered to an embryonic, cell or an individual as therapeutics.
- these nucleic acids may be directly administered to a cell or an individual as therapeutics such as in gene therapy.
- the invention provides isolated or recombinant nucleic acid sequences that are at least 85%, 90%, 95%, 97%, 98%, 99% or 100% identical to a region of the nucleotide sequence depicted in SEQ ID NOs:6-11 in which the polynucleotide sequence encodes a Nato3 mutant polypeptide as described herein.
- nucleic acid sequences complementary to the subject nucleic acids, and variants of the subject nucleic acids are also within the scope of this invention.
- the nucleic acid sequences of the invention may be isolated, recombinant, and/or fused with a heterologous nucleotide sequence, or in a DNA library.
- nucleic acids of the invention also include polynucleotide sequences that hybridize under highly stringent conditions to the polynucleotide sequence depicted in SEQ ID NO:6-11, or a complement sequence thereof.
- appropriate stringency conditions which promote DNA hybridization may be varied.
- appropriate stringency conditions which promote DNA hybridization may be varied. For example, one could perform the hybridization at 6.0 ⁇ sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0 ⁇ SSC at 50° C.
- the salt concentration in the wash step may be selected from a low stringency of about 2.0 ⁇ SSC at 50° C.
- the temperature in the wash step may be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or temperature or salt concentration may be held constant while the other variable is changed.
- the invention provides nucleic acids which hybridize under low stringency conditions of 6 ⁇ SSC at room temperature followed by a wash at 2 ⁇ SSC at room temperature.
- the recombinant Nato3 mutant polynucleotides or nucleic acids of the invention may be operably linked to one or more regulatory nucleotide sequences in an expression construct.
- Regulatory nucleotide sequences will generally be appropriate for a host cell used for expression. Numerous types of appropriate expression vectors and suitable regulatory sequences are known in the art for a variety of host cells.
- one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and termination sequences, translational start and termination sequences, and enhancer or activator sequences. Constitutive or inducible promoters as known in the art are contemplated by the invention.
- the promoters may be either naturally occurring promoters, or hybrid promoters that combine elements of more than one promoter.
- An expression construct may be present in a cell on an episome, such as a plasmid, or the expression construct may be inserted in a chromosome.
- the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selectable marker genes are well known in the art and will vary with the host cell used.
- the nucleotide sequence encoding a Nato3 mutant polypeptide is operably fused (in frame) to a different signal peptide other than the first 24 amino acid sequences of SEQ ID NO:1, for example, the Nato3 mutant polypeptide is fused to a tag, for example, a hexa-His peptide, Glutathione S-Transferase (GST), Green Fluorescent Protein (GFP), Enhanced Green Fluorescent Protein (e-GFP), c-myc, hemaglutinin antigen (HA), FLAG, SUMO, TAP, maltose binding protein (MBP) at the N-terminus and/or C-terminus.
- GST Glutathione S-Transferase
- GFP Green Fluorescent Protein
- e-GFP Enhanced Green Fluorescent Protein
- c-myc hemaglutinin antigen
- HA hemaglutinin antigen
- FLAG FLAG
- SUMO SUMO
- an exemplary Nato3 mutant polynucleotide is provided in an expression vector comprising a nucleotide sequence encoding a Nato3 mutant polypeptide and operably linked to at least one regulatory sequence.
- Regulatory sequences are art-recognized and are selected to direct expression of the soluble polypeptide. Accordingly, the term regulatory sequence includes promoters, enhancers, and other expression control elements. Exemplary regulatory sequences are described in Goeddel; Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, Calif. (1990).
- any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express DNA sequences encoding a soluble polypeptide.
- useful expression control sequences include, for example, the early and late promoters of SV40, tet promoter, adenovirus or cytomegalovirus immediate early promoter (CMV-IE), the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage lambda, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., PhoS, the promoters of the yeast a-mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokary
- transduction and “transfection” are art recognized and mean the introduction of a nucleic acid, e.g., an expression vector, into a recipient cell by nucleic acid-mediated gene transfer.
- Transformation refers to a process in which a cell's genotype is changed as a result of the cellular uptake of exogenous DNA or RNA, and, for example, the transformed cell expresses a dsRNA construct.
- Transient transfection refers to cases where exogenous DNA does not integrate into the genome of a transfected cell, e.g., where episomal DNA is transcribed into mRNA and translated into protein.
- a cell has been “stably transfected” with a nucleic acid construct when the nucleic acid construct is capable of being inherited by daughter cells.
- the present invention also pertains to a host cell transfected or transformed with a recombinant gene including a coding sequence for one or more of the subject Nato3 mutant polypeptides.
- the host cell may be any prokaryotic or eukaryotic cell.
- a soluble Nato3 mutant polypeptide of the invention may be expressed in bacterial cells such as E. coli , insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells.
- Other suitable host cells are known to those skilled in the art. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available.
- Such vectors include, but are not limited to, the following vectors: 1) Bacterial—pQE70, pQE60, pQE-9 (Qiagen), pBS, pD10, phagescript, psiX174, pbluescript SK, pETDuetTM, pBSKS, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia); 2) Eukaryotic—pWLNEO, pSV2CAT, pOG44, PXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia); and 3) Baculovirus—pPbac and pMbac (Stratagene).
- mammalian expression vectors comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation sites, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking non-transcribed sequences.
- DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required non-transcribed genetic elements.
- transcription of the DNA encoding the Nato3 mutant polypeptides by higher eukaryotes is increased by inserting an enhancer sequence into the vector.
- Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp that act on a promoter to increase its transcription.
- Enhancers useful in the present invention include, but are not limited to, the SV40 enhancer on the late side of the replication origin bp 100 to 270, a cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
- the Nato3 mutant polynucleotide sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (for example, a promoter) to direct mRNA synthesis.
- Promoters useful in the present invention include, but are not limited to, the LTR or SV40 promoter, the E. coli lac or trp, the phage lambda PL and PR, T3 and T7 promoters, and the cytomegalovirus (CMV) immediate early, herpes simplex virus (HSV) thymidine kinase, and mouse metallothionein-I promoters and other promoters known to control expression of gene in prokaryotic or eukaryotic cells or their viruses.
- CMV cytomegalovirus
- HSV herpes simplex virus
- thymidine kinase thymidine kinase
- the expression vector may also contain a ribosome binding site for translation initiation (IRES) and a transcription terminator.
- the vector may also include appropriate sequences for amplifying expression.
- the present invention provides host cells containing the above-described vector constructs.
- the host cell is a higher eukaryotic cell (e.g., a mammalian or insect cell).
- the host cell is a lower eukaryotic cell (e.g., a yeast cell).
- the host cell may be a prokaryotic cell (e.g., a bacterial cell).
- host cells include, but are not limited to, Escherichia coli, Salmonella typhimurium, Bacillus subtilis , species within the genera Pseudomonas, Streptomyces, Staphylococcus , as well as eukaryotic host cells Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila S2 cells, Spodoptera Sf9 cells, Chinese hamster ovary (CHO) cells, COS-7 lines of monkey kidney fibroblasts, C127, 3T3, 293, 293T, HeLa, embryonic stem cells, induced adult pluripotent stem cells, epithelial cell lines, (for example, A549, BEAS-2B, PtK1, NCI H441), BHK cell lines, T-1 (tobacco cell culture line), root cell and cultured plant cells.
- Escherichia coli Salmonella typhimurium
- Bacillus subtilis species within the genera Pseudomonas, Str
- the constructs in host cells may be used in a conventional manner to produce the gene product encoded by the recombinant sequence.
- introduction of the construct into the host cell may be accomplished by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation, gene gun approach and other known methods for introducing DNA into cells (See e.g., Davis et al. [1986] Basic Methods in Molecular Biology).
- the polypeptides and polynucleotides of the invention may be synthetically produced by conventional peptide and oligonucleotide synthesizers.
- Polypeptides and proteins may be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems may also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y. Exemplary methods for expressing Nato3 mutant polypeptides are provided in further detail in the Examples below. Additionally cell penetrating polypeptides may be linked to the Nato3 mutant polypeptides described herein and directly introduced into the target cells by endocytosis.
- the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.
- appropriate means e.g., temperature shift or chemical induction
- cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- microbial cells employed in expression of Nato3 proteins may be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.
- the Nato3 mutant polypeptide of the present invention may be expressed in insect cells using baculoviral vectors, or in mammalian cells using vaccinia virus or specialized eukaryotic expression vectors.
- the Nato3 mutant cDNA sequence may be ligated to heterologous promoters, such as the simian virus (SV40) promoter in the pSV2 vector or other similar vectors and introduced into cultured eukaryotic cells such as COS cells to achieve transient or long-term expression.
- the stable integration of the Nato3 mutant polynucleotide construct may be maintained in mammalian cells by biochemical selection, such as neomycin and mycophenolic acid.
- the DNA sequence may be altered using procedures such as restriction enzyme digestion, fill-in with DNA polymerase, deletion by exonuclease, extension by terminal deoxynucleotide transferase, ligation of synthetic or cloned DNA sequences and site-directed sequence alteration with the use of specific oligonucleotides together with PCR.
- the cDNA sequence or portions thereof may be introduced into eukaryotic expression vectors by conventional techniques. These vectors permit the transcription of the cDNA in eukaryotic cells by providing regulatory sequences that initiate and enhance the transcription of the cDNA and ensure its proper splicing and polyadenylation.
- the endogenous mammalian Nato3 gene promoter may also be used. Different promoters within vectors have different activities, which alters the level of expression of the cDNA. In addition, certain promoters may also modulate function such as the glucocorticoid-responsive promoter from the mouse mammary tumor virus.
- Cell lines may also be produced which have integrated the vector into the genomic DNA.
- the Nato3 mutant polypeptide is produced on a continuous basis.
- Vectors are introduced into recipient cells by various methods including calcium phosphate, strontium phosphate, electroporation, lipofection, DEAE dextran, electroporation, microinjection, or by protoplast fusion.
- the cDNA may be introduced by infection using viral vectors.
- the expression vectors containing the Nato3 mutant polynucleotide or portions thereof may be introduced into a variety of mammalian cells from other species or into non-mammalian cells.
- the recombinant expression vector comprises the selected DNA of the DNA sequences of this invention for expression in a suitable host.
- the DNA is operatively joined in the vector to an expression control sequence in the recombinant DNA molecule so that normal or mutant protein may be expressed.
- the expression control sequence may be selected from the group consisting of sequences that control the expression of genes of prokaryotic or eukaryotic cells and their viruses and combinations thereof.
- the expression control sequence may be selected from the group consisting of the lac system, the trp system, the tac system, the trc system, major operator and promoter regions of phage lambda, the control region of the fd coat protein, early and late promoters of SV40, promoters derived from polyoma, adenovirus, retrovirus, baculovirus, simian virus, 3-phosphoglycerate kinase promoter, yeast acid phosphatase promoters, yeast alpha-mating factors and combinations thereof.
- the host cells to be transfected with the vectors of this invention may be from a host selected from the group consisting of yeasts, fungi, insects, mice or other animals or plant hosts or may be human tissue cells.
- yeasts fungi, insects, mice or other animals or plant hosts
- human tissue cells for the mutant Nato3 DNA sequence, similar systems are employed to express and produce the Nato3 mutant polypeptides.
- the transformed, or transfected cells expressing a polynucleotide that encodes a Nato3 mutant polypeptide or a complementary sequence thereof may be mammalian cells.
- the mammalian cells are stem cells derived from a mammalian source, such as a human embryonic stem cell or a human “adult” (“non-embryonic”) pluripotent stem cell or any other tissue specific stem cells, for example, mesenchymal stem cells.
- embryonic and non-embryonic stem cells may be transformed and/or transfected using established techniques, for example, microinjection, homologous recombination, electroporation, calcium-phosphate mediated transfection, liposome-mediated transfection, retroviral transfection or any other established method for stably or transiently expressing the Nato3 mutant polynucleotide.
- mammalian cells are transduced by the direct addition of a Nato3 mutant polypeptide through the use of a cell-penetrating peptide linked to the Nato3 mutant polypeptide as described in Kim D, Kim C H, Moon J I, et al.
- the present invention provides a population of genetically modified isolated population of dopaminergic neuron progenitors and/or dopaminergic neurons containing a mutant (single or double mutant) Nato3 as exemplified herein.
- the isolated population comprising a polynucleotide are transformed or transfected with a mutant Nato3 polynucleotide operable to encode a mutant Nato3 polypeptide.
- the population of dopaminergic neuron progenitors and/or dopaminergic neurons can be derived from the subject to be treated with the autologous cell population or they may be derived from an allogeneic source and suitable transformed with a polynucleotide operable to encode and express one or more mutant Nato3 polypeptides described herein.
- the population of dopaminergic neuron progenitors and/or dopaminergic neurons thus transformed express at least one marker selected from Shh, Lmx1b, and Foxa2 in at least 50% of the population either prior to implantation when cultured under suitable conditions or after implantation into the subject's brain at site where the dopaminergic neuron progenitors and/or dopaminergic neurons are required or beneficial for treatment.
- methods for successful implantation of autologous and/or allogeneic stem cells have been previously shown.
- the mutant Nato3 polynucleotide may be introduced into living mammalian cells (e.g. brain tissue) of a living organism by means of transformation and/or transfection.
- Cells treated with the mutant Nato3 polynucleotide in this manner could control the expression of the mutant Nato3 polypeptide by means of various promoters, including constitutive promoters as well as inducible promoters that can control the expression of the mutant Nato3 polynucleotide, including but not limited to glucocorticoid responsive promoters, enhancer specific promoters etc.
- Cre recombinase can be placed under the expression of tissue specific promoters such as NG2 to drive expression only in striatal interneurons.
- An adeno-associated virus can have a Cre responsive element that permits the expression of the mutant Nato3 polypeptide in the striatal interneurons, thus converting glial cells into a neuron that can integrate within the living brain, as described in Torper, O., Ottosson, D R., Pereira, M et al. In Vivo Reprogramming of Striatal NG2 Glia into Functional Neurons that Integrate into Local Host Circuitry. Cell Reports. (2015) 12(3):474-481.
- the present invention provides methods for the differentiation of brain cells to dopaminergic neuron progenitors and/or dopaminergic neurons.
- the method includes stimulating a population of brain cells to differentiate into dopaminergic neuron progenitors and/or dopaminergic neurons, and/or dopaminergic neurons by increasing phosphorylation of Nato3 in the brain cells and culturing the brain cells until a progenitor dopaminergic neuronal, or dopamine producing phenotype cell marker is expressed in the cultured brain cells and/or dopaminergic neuron progenitors and/or dopaminergic neurons.
- increasing phosphorylation of Nato3 in the brain cells may include introducing a Nato3 mutant polypeptide encoding polynucleotide and expressing the Nato3 mutant polypeptide in the brain cells.
- increasing phosphorylation of endogenous Nato3 in the brain cells may include expressing an endogenous or heterologous protein kinase in the brain cells that specifically phosphorylates Nato3, or increasing the activity of endogenous protein kinases that target Nato3.
- methods for increasing the phosphorylation of Nato3 in brain cells may include transduction and/or transfection of a polynucleotide encoding cAMP dependent protein kinase.
- Protein kinase B (AKT), Protein kinase C, Protein Kinase G, and/or CAM kinase II into a mammalian brain cell, for example, a human brain cell in vivo, or ex vivo as provided herein.
- a “phosphorylatable” amino acid in the sequence of Nato3 is meant to describe an amino acid within the HLH region of a Nato3 polypeptide (e.g. in the region of Nato3 that spans amino acids 99 to 158, for example, the region or span of amino acids 99 to 158 in the human Nato3 wild-type sequence of SEQ ID NO: 1 that is amenable to be phosphorylated by a protein kinase as described above, e.g. a protein kinase that can bind to and phosphorylate Nato3 in the HLH region.
- phosphorylatable amino acids in the HLH region of Nato3 polypeptides of SEQ ID NOs:1-5 may include: tyrosine, threonine and serine among others.
- brain cells may include any cell in the nervous system, including, terminally differentiated neurons, glia, neuroblasts, and brain stem cells each having the capability to differentiate or be programmed to become dopaminergic progenitor neuronal cells and/or dopaminergic neuronal cells, Brain cells may also include neural progenitor stem cells capable of being differentiated into dopaminergic progenitor neuronal cells and dopaminergic neurons.
- Methods for direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo are known in the art, for example, as provided in Rouaux, C. & Arlotta, P., Nature Cell Biology 15, 214-221 (2013) published online 26 Nov. 2012, the disclosure of which is hereby incorporated by reference in its entirety.
- stem cells have their common scientific meaning and may include omnipotent, pluripotent, multipotent stem cells.
- stem cells may include embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, and other tissue stem cells.
- embryonic stem cells refers to embryonic cells which are capable of differentiating into cells of all three embryonic germ layers (i.e., endoderm, ectoderm and mesoderm), or remaining in an undifferentiated state.
- embryonic stem cells may comprise cells which are obtained from the embryonic tissue formed after gestation (e.g., blastocyst) before implantation of the embryo (i.e., a pre-implantation blastocyst), extended blastocyst cells (EBCs) which are obtained from a post-implantation/pre-gastrulation stage blastocyst and embryonic germ (EG) cells which are obtained from the genital tissue of a fetus any time during gestation, preferably before 10 weeks of gestation.
- EBCs extended blastocyst cells
- EG embryonic germ
- induced pluripotent stem cells refers to cells obtained by de-differentiation of adult somatic cells which are endowed with pluripotency (i.e., being capable of differentiating into the three embryonic germ cell layers, i.e., endoderm, ectoderm and mesoderm).
- pluripotency i.e., being capable of differentiating into the three embryonic germ cell layers, i.e., endoderm, ectoderm and mesoderm.
- such cells are obtained from a differentiated tissue (e.g., a somatic tissue such as skin) and undergo de-differentiation by genetic manipulation which re-program the cell to acquire embryonic stem cells characteristics.
- the induced pluripotent stem cells are formed by inducing the expression of Oct-4, Sox2, Kfl4 and c-Myc in a somatic stem cell.
- Other methods for producing iPS cells are described, for example, in Takahashi et al. (Cell, 131:861-872, 2007) and Nakagawa et al. (Nat. Biotechnol., 26:101-106, 2008).
- the iPS cells are capable of self-renewal and subsequent differentiation into more than one specialized cell type or cell lineage under appropriate growth conditions either in vitro or in vivo.
- pluripotent stem cell refers to a cell capable of self-replication and differentiation into cells of all three germ layers (i.e., ectoderm, mesoderm, and endoderm). Pluripotent stem cells may be, but are not limited to, ESCs and artificially-produced stem cells having characteristics of ESCs but which are not derived from an embryo (e.g., pluripotent stem cells derived from neural progenitor cells and iPS cells). In vitro self-replication, under appropriate conditions, occurs for virtually indefinite period of time and the daughter cells retain the undifferentiated (pluripotent) characteristics of the parent cells.
- the embryonic stem cells of some embodiments of the invention may be obtained using well-known cell-culture methods.
- human embryonic stem cells may be isolated from human blastocysts.
- Human blastocysts are typically obtained from human in vivo pre-implantation embryos or from in vitro fertilized (IVF) embryos.
- IVF in vitro fertilized
- a single cell human embryo may be expanded to the blastocyst stage.
- the zona pellucida is removed from the blastocyst and the inner cell mass (ICM) is isolated by immunosurgery, in which the trophectoderm cells are lysed and removed from the intact ICM by gentle pipetting.
- ICM inner cell mass
- the ICM is then plated in a tissue culture flask containing the appropriate medium which enables its outgrowth. Following 9 to 15 days, the ICM derived outgrowth is dissociated into clumps either by a mechanical dissociation or by an enzymatic degradation and the cells are then re-plated into fresh tissue culture medium. Colonies demonstrating undifferentiated morphology are individually selected by micropipette, mechanically dissociated into clumps, and re-plated. Resulting ES cells are then routinely split every 4-7 days. For further details on methods of preparation human ES cells see Thomson et al., [U.S. Pat. No. 5,843,780; Science 282: 1145, 1998; Curr. Top. Dev. Biol.
- ES cells may also be used with various embodiments of the present invention.
- Human ES cells may be purchased from the NIH human embryonic stem cells registry.
- Non-limiting examples of commercially available embryonic stem cell lines are BG01, BG02, BG03, BG04, CY12, CY30, CY92, CY10, TE03 and TE32.
- ES cells may be obtained from other species as well, including mouse (Mills and Bradley, 2001), golden hamster [Doetschman et al., 1988, Dev Biol. 127: 224-7], rat [Iannaccone et al., 1994, Dev Biol. 163: 288-92] rabbit [Giles et al. 1993, Mol Reprod Dev. 36: 130-8; Graves & Moreadith, 1993, Mol Reprod Dev. 1993, 36: 424-33], several domestic animal species [Notarianni et al., 1991, J Reprod Fertil Suppl. 43: 255-60; Wheeler 1994, Reprod Fertil Dev.
- iPS Induced pluripotent stem cells
- somatic cells may be generated from somatic cells by genetic manipulation of somatic cells, e.g., by retroviral transduction of somatic cells such as fibroblasts, hepatocytes, gastric epithelial cells with transcription factors such as Oct-3/4, Sox2, c-Myc, and KLF4 [Yamanaka S, Cell Stem Cell. 2007, 1(1):39-49; IH Park, Zhao R, West J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451:141-146; K Takahashi, Tanabe K, Ohnuki M, et al.
- embryonic-like stem cells may be generated by nuclear transfer to oocytes, fusion with embryonic stem cells or nuclear transfer into zygotes if the recipient cells are arrested in mitosis. Additionally, embryonic-like stem cells may also be generated by using small molecule treatment, such as HDAC inhibitors and factors that act on specification of mesectodermal and endodermal specification. See for example, Huangfu, Danwei, et al. “Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.” Nature biotechnology 26.7 (2008): 795-797, and Shu J, Wu C, Wu Y, et al. Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers. Cell. 2013; 153(5):963-975.
- the brain cells of the present invention may be of autologous, syngeneic or allogeneic related (matched siblings or haploidentical family members) or unrelated fully mismatched source.
- Culturing of neural progenitor stem cells may be performed in any media that supports neural progenitor stem cell differentiation, examples of which are described herein above.
- methods for differentiating brain cells into dopaminergic progenitor neuronal cells and dopamine producing neuronal cells may be achieved by introducing (either ex vivo or in vivo) using the process of transfection or transformation of these cells, at least one Nato3 mutant polynucleotide.
- the transfection or transformation process results in the stable or transient expression of a Nato3 mutant polypeptide in order to induce differentiation towards a dopamine producing neuron lineage.
- the present invention also contemplates differentiation of brain cells including brain cells towards a dopaminergic progenitor neuronal cell and/or a dopaminergic neuronal cell phenotype by expression of a Nato3 mutant polypeptide, and/or increasing the kinase activity of one or more protein kinases in the brain cells which phosphorylate endogenous and/or exogenously expressed Nato3 polypeptide.
- a terminally differentiated dopaminergic neuronal cell population is generated by introducing and expressing a Nato3 mutant polypeptide in a population of brain cells, for example, stem cells and/or neural progenitor cells.
- differentiation refers to the process whereby an unspecialized stem cell (e.g., PS cells and iPS cells) acquires phenotypic features of a specialized cell or specific cell type, e.g., a dopamine producing neural cell. Differentiation refers to the restriction of the potential of a cell to self-renew and is generally associated with a change in the functional capacity of the cell. Differentiation of a stem cell may be determined by methods well known in the art, including analysis for cell markers or morphological features associated with cells of a defined differentiated state.
- dopaminergic neuron progenitor cells are brain cells that arise from neural stem cells in vivo are identified in the floor plate of the mesencephalon. In vivo and in culture, these cells express a combination of the following markers SHH, OTX2, FOXA2, LMX1A, LMX1B, MSX1, MSX2, EN1, EN2, ASCL1, NGN2, RALDH1 and may undergo mitosis.
- the term “dopaminergic neuron” refers to a specialized cell that at least partially adopts a neuronal morphology in culture (e.g., develops neurites) and expresses tyrosine hydroxylase (TH) and has exited the cell cycle.
- the dopaminergic neuron expresses one or more of neuron-specific enolase (NSE), 1-aromatic amino acid decarboxylase, vesicular monoamine transporter 2, dopamine transporter, Nurr-1, and dopamine-2 receptor (D 2 Receptor).
- the cell population is generated by increasing the phosphorylation of endogenous Nato3, either by transiently or stably introducing a protein kinase that phosphorylates Nato3, or by increasing the activity of one or more protein kinases intracellularly that results in the increased phosphorylation of endogenous Nato3.
- neural stem cells refers to a subset of pluripotent cells which have partially differentiated along a neural cell pathway and express some neural markers including, for example, nestin. Neural stem cells may differentiate into neurons or glial cells (e.g., astrocytes and oligodendrocytes). Neural stem cells include neural progenitor cells and may be used interchangeably.
- neural progenitor cells refer to cultured cells derived from pluripotent stem cells (e.g., ES cells and iPS cells) which express FOXA2 and low levels of ß-tubulin, but not tyrosine hydroxylase (i.e., having a FOXA 2 + /ß-tubulin LO/TH- phenotype). These neural progenitor cells have the capacity to differentiate into a variety of neuronal subtypes; particularly a variety of dopaminergic neuronal subtypes.
- pluripotent stem cells e.g., ES cells and iPS cells
- tyrosine hydroxylase i.e., having a FOXA 2 + /ß-tubulin LO/TH- phenotype
- the present invention provides dopaminergic progenitor neuronal cells and neuronal cells that are matured and terminally differentiated expressing dopamine.
- the dopaminergic progenitor neuronal cells and neuronal cells have been generated by ex vivo differentiation of brain cells after stable or transient transfection or transformation of the brain cells with a polynucleotide operable to encode and express a Nato3 mutant polypeptide as described herein or a protein kinase that specifically phosphorylates Nato3 endogenously in said population of brain cells.
- the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be useful for a variety of therapeutic purposes.
- Representative examples of CNS diseases or disorders that may be beneficially treated with the cells described herein include, but are not limited to, a pain disorder, a motion disorder, a dissociative disorder, a mood disorder, an affective disorder, a neurodegenerative disease or disorder, psychiatric disorders and a convulsive disorder.
- Parkinson's Disease Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Huntingdon's disease (HD), autoimmune encephalomyelitis, spinal cord injury, cerebral palsy, diabetic neuropathy, glaucatomus neuropathy, macular degeneration, action tremors and tardive dyskinesia, panic, anxiety, depression, alcoholism, insomnia, manic behavior, schizophrenia, autism-spectrum disorder, manic-depressive disorders, Alzheimer's and epilepsy.
- ALS Amyotrophic Lateral Sclerosis
- MS Multiple Sclerosis
- HD Huntingdon's disease
- autoimmune encephalomyelitis spinal cord injury, cerebral palsy, diabetic neuropathy, glaucatomus neuropathy, macular degeneration, action tremors and tardive dyskinesia
- panic anxiety, depression, alcoholism
- insomnia manic behavior
- schizophrenia autism-spectrum disorder
- manic-depressive disorders Alzheimer's and epilepsy.
- the mutant Nato3 polypeptide may be administered in the form of a vector containing a polynucleotide sequence operable to encode a mutant Nato3 polypeptide and any other requisite regulatory elements containing promoters and other genetic elements suitable for stable and/or transient expression of a transgene containing the polynucleotide encoding a mutant Nato3 polypeptide.
- the vector may be delivered in ways described herein or known to those in the art.
- the subject's own stem cells for example, tissue-specific stem cells, mesenchymal stem cells, or induced pluripotent stem cells may be transformed with polynucleotides operable to encode and express the mutant Nato3 polypeptide in the patient's own stem cells.
- autologous stem cells are then reintroduced into the subject, into the basal ganglia and/or the substantia nigra for example, or other areas of the brain and/or spinal cord which then differentiate into dopaminergic progenitor neuronal cells and then into dopaminergic neurons for the treatment of PD and other neurological diseases.
- dopaminergic progenitor neuronal cells and dopaminergic neuronal cells comprising a mutant Nato3 polypeptide, or a polynucleotide encoding a mutant Nato3 polypeptide of the present invention, is indicated for treatment of PD, action tremors and tardive dyskinesia.
- dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be also indicated for treatment of traumatic lesions of the nervous system including spinal cord injury and also for treatment of stroke caused by bleeding or thrombosis or embolism because of the need to induce neurogenesis and provide survival factors to minimize insult to damaged neurons.
- the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be obtained from an autologous, semi-allogeneic or non-autologous (i.e., allogeneic or xenogeneic) human donor or embryo or cord/placenta.
- cells may be isolated from a human cadaver or a donor subject.
- the cells dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention of the present invention may be administered to the treated individual using a variety of transplantation approaches, the nature of which depends on the site of implantation.
- transplantation refers to the introduction of the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention to target tissue.
- the cells dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be derived from the recipient or from an allogeneic, semi-allogeneic or xenogeneic donor.
- the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be injected systemically into the circulation, administered intrathecally or grafted into the central nervous system, the spinal cord or into the ventricular cavities or subdurally onto the surface of a host brain.
- Conditions for successful transplantation include: (i) viability of the implant; (ii) retention of the graft at the site of transplantation; and (iii) minimum amount of pathological reaction at the site of transplantation.
- Methods for transplanting various nerve tissues, for example embryonic brain tissue, into host brains have been described in: “Neural grafting in the mammalian CNS”, Bjorklund and Stenevi, eds.
- Intraparenchymal transplantation may be performed using two approaches: (i) injection of cells into the host brain parenchyma or (ii) preparing a cavity by surgical means to expose the host brain parenchyma and then depositing the graft into the cavity. Both methods provide parenchymal deposition between the graft and host brain tissue at the time of grafting, and both facilitate anatomical integration between the graft and host brain tissue. This is of importance if it is required that the graft becomes an integral part of the host brain and survives for the life of the host.
- the graft may be placed in a ventricle, e.g. a cerebral ventricle or subdurally, i.e. on the surface of the host brain where it is separated from the host brain parenchyma by the intervening pia mater or arachnoid and pia mater.
- a ventricle e.g. a cerebral ventricle or subdurally, i.e. on the surface of the host brain where it is separated from the host brain parenchyma by the intervening pia mater or arachnoid and pia mater.
- Grafting to the ventricle may be accomplished by injection of the donor dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention or by growing the cells in a substrate such as 3% collagen to form a plug of solid tissue which may then be implanted into the ventricle to prevent dislocation of the graft.
- the cells may be injected around the surface of the brain after making a slit in the dura. Injections into selected regions of the host brain may be made by drilling a hole and piercing the dura to permit the needle of a microsyringe to be inserted.
- the microsyringe is preferably mounted in a stereotaxic frame and three dimensional stereotaxic coordinates are selected for placing the needle into the desired location of the brain or spinal cord.
- the cells may also be introduced into the putamen, nucleus basalis, hippocampus cortex, striatum, substantia nigra or caudate regions of the brain, as well as the spinal cord.
- the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may also be transplanted to a healthy region of the tissue.
- the exact location of the damaged tissue area may be unknown and the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be inadvertently transplanted to a healthy region.
- the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may preferably migrate to the damaged area.
- the cell suspension is drawn up into the syringe and administered to anesthetized transplantation recipients. Multiple injections may be made using this procedure.
- the cellular suspension procedure thus permits grafting of the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention to any predetermined site in the brain or spinal cord, is relatively non-traumatic, allows multiple grafting simultaneously in several different sites or the same site using the same cell suspension, and permits mixtures of dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention to migrate to different anatomical regions.
- Cells may be administered concomitantly to different locations such as combined administration intrathecally and intravenously to maximize the chance of targeting into affected areas.
- tissue is removed from regions close to the external surface of the central nerve system (CNS) to form a transplantation cavity, for example as described by Stenevi et al. (Brain Res. 114:1-20, 1976), by removing bone overlying the brain and stopping bleeding with a material such a gelfoam. Suction may be used to create the cavity. The graft is then placed in the cavity. More than one transplant may be placed in the same cavity using injection of dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention or solid tissue implants formed therefrom. Preferably, the site of implantation is dictated by the CNS disorder being treated.
- the dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be administered either per se or, preferably as a part of a pharmaceutical composition that further comprises a pharmaceutically acceptable carrier.
- suitable routes of administration include direct administration into the circulation (intravenously or intra-arterial), into the spinal fluid or into the tissue or organ of interest.
- the dopaminergic progenitor neuronal cells and/or dopaminergic neuronal cells of the present invention may be administered directly into the brain.
- the therapeutically effective amount or dose may be estimated initially from in vitro and cell culture assays.
- a dose is formulated in an animal model to achieve a desired concentration or titer.
- Such information may be used to more accurately determine useful doses in humans, the determination of which does not require undue experimentation, but rather using conventional techniques and procedures such as one or more clinical trials.
- Toxicity and therapeutic efficacy of the implantation of dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention may be determined by standard pharmaceutical procedures in vitro, in cell cultures or experimental animals.
- animal models of demyelinating diseases include shiverer (shi/shi, MBP deleted) mouse, MD rats (PLP deficiency), Jimpy mouse (PLP mutation), dog shaking pup (PLP mutation), twitcher mouse (galactosylceramidase defect, as in human Krabbe disease), trembler mouse (PMP-22 deficiency).
- the data obtained from these in vitro and cell culture assays and animal studies may be used in formulating a range of dosage for use in human.
- the dosage may vary depending upon the dosage form employed and the route of administration utilized.
- the exact formulation, route of administration and dosage may be chosen by the individual physician in view of the patient's condition, (see e.g., Fingl, et al., 1975, in “The Pharmacological Basis of Therapeutics”, Ch. 1 p. 1).
- a PD patient may be monitored symptomatically for improved motor functions indicating positive response to treatment.
- the cellular components (i.e. dopaminergic progenitor neuronal cells and dopaminergic neuronal cells of the present invention) of the pharmaceutical composition may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological salt buffer.
- the dopaminergic progenitor neuronal cells and/or dopaminergic neuronal cells of the present invention may be co-administered with therapeutic agents useful in treating neurodegenerative disorders, such as gangliosides; antibiotics, neurotransmitters, neurohormones, toxins, neurite promoting molecules; and antimetabolites and precursors of neurotransmitter molecules such as L-DOPA.
- therapeutic agents useful in treating neurodegenerative disorders such as gangliosides; antibiotics, neurotransmitters, neurohormones, toxins, neurite promoting molecules; and antimetabolites and precursors of neurotransmitter molecules such as L-DOPA.
- the fertilized chicken eggs were White Leghorn and acquired from Michigan State University Poultry Farm in East Lansing, Mich. Fertilized chicken embryos are not allowed to develop past 7 days.
- Embryos were grown and harvested at multiple developmental time points. The tissue was isolated to regions of the spinal cord and the mesencephalon and sectioned. The tissue was washed in PBS, cryoprotected in 15% sucrose and mounted in Tissue Tek OCT (VWR, West Chester, Pa.). They were then frozen and sectioned at 10-micron sections. The tissue sections were cut using a Leica cryostat and mounted on glass slides. The tissue slides were stored at ⁇ 20° C. and the uncut sections were stored at ⁇ 80° C.
- the sections were stained with primary antibodies against the floor plate marker gene the DA neuron marker gene Nurr1 (Santa Cruz, 1:200), and EGFP (anti-goat EGFP, Abcam, 1:200; anti-rabbit EGFP, Abcam, 1:500) in GSS (1% goat serum, 0.1% Triton 100 X, and 0.1 M sodium phosphate buffer pH 7.0) overnight at 4° C.
- GSS 1% goat serum, 0.1% Triton 100 X, and 0.1 M sodium phosphate buffer pH 7.0
- Mutant Nato3 genes were synthesized by IDT technologies with EcoRV and BgIII site engineered into the 5′ and 3′ flanking regions, this includes the mouse Nato3 gene mutants T101E/T132E (double mutant) and T101E/S140D (double mutant), as well as the human Nato3 gene mutant S138D Nato3.
- the clones were excised from the parent plasmid and subcloned into the pCIG vector (Megason and McMahon, 2002). Sequences were then verified using core facilities at GVSU's Annis Water Research Institute (AWRI), grown and harvested using Qiagen DNA high speed maxi prep kit.
- AWRI Annis Water Research Institute
- Chick embryos between 10-14 somites were electroporated using 2.5 ⁇ g of pBS (pBluescript; carrier DNA) and 0.5 ⁇ g bicistronic vector containing EGFP and the gene of interest.
- Pulse amplitude on a BTX amplifier was set at 24 mV for 5 pulses with 1 second between pulses.
- embryos were cooled with a small amount of phosphate buffered saline (PBS) and allowed to incubate at 37° C. for 66 hours post transfection before being harvested into PBS, washed and then fixed in 4% paraformaldehyde (Pfa) at 4° C. for 45 minutes.
- PBS phosphate buffered saline
- GFP expression was confirmed in the embryos to determine the success of transfection.
- Successfully transfected embryos were cryoprotected in 30% sucrose in phosphate buffer and then frozen in OCT for sectioning.
- Embryonic tissue was sectioned at 12 ⁇ m sections in preparation for immunofluorescence.
- Target sites for mutations were chosen by identifying highly conserved putative phosphoacceptor residues that were part of a consensus sequence for protein kinase.
- candidate residues were inspected for 100% conservation among Nato3 species and also strong homology phosphoacceptor residues present on other bHLH family member proteins using CLUSTALW analysis.
- Amino Putative kinase identified Acid residue and position by in silico analysis that target and number on mouse Nato3 phosphorylate threonine and serine that may be phosphorylated amino acid residues in Nato3 mutants Threonine 101 (T101) PKB, PKC, PKG Threonine 132 (T132) PKB, PKC, CAMK Serine 140 (S140) PKC, PKA, CKII, CAMKII
- Mutant Nato3 gene sequence with substitutions at the corresponding residues (T101E/T132E (double mutant), T101E/S140D (double mutant) in the mouse Nato3 gene, and S138D in the human Nato3 gene) were synthesized by Integrated DNA Technologies (IDT) and subcloned into the pCIG expression vector for in vivo expression.
- IDTT Integrated DNA Technologies
- Example 3 T101E/T132E (Double Mutant) Induces Ectopic Expression of Floor Plate Markers and Midbrain DA Neuron Progenitor Markers in the Midbrain and Spinal Cord
- Shh is endogenously expressed by floor plate cells and is one of the most commonly used markers to identify that cell linage in the spinal cord and the midbrain.
- a second commonly used marker is Foxa2, which may be expressed by floor plate cell lineage and midbrain DA progenitors.
- wild-type Nato3 could induce expression of Shh and Foxa2 in the ventral caudal midbrain in a small percentage of transfected cells. In the spinal cord, the wild-type Nato3 could not induce expression of Shh or Foxa2.
- Nato3 T101E/T132E double mutant
- Lmx1b expression is seen in midbrain FP cells that serve as DA neuron progenitors and DA neurons. Thus, unlike Shh, Lmx1b expression indicates that a cell has some characteristics of midbrain progenitors. Similar to the wild-type Nato3, overexpression of T101E/T132E (double mutant) Nato3 induced expression of Lmx1b in various regions of the midbrain and spinal cord, although the induction of expression of Lmx1b by T101E/T132E (double mutant) Nato3 was much more profound.
- Lmx1b expression is seen in midbrain FP cells that serve as DA neuron progenitors and DA neurons. Thus, unlike Shh, Lmx1b expression indicates that a cell has some characteristics of midbrain progenitors. Similar to the wild-type Nato3, overexpression of T101E/T132E (double mutant) Nato3 induced expression of Lmx1b in various regions of the midbrain and spinal cord (Peterson et al., 2015), although the induction of expression of Lmx1b by T101E/T132E (double mutant) Nato3 was much more profound.
- Nurr1 is an immature DA neuron marker and indicates a commitment to a dopamine neuron lineage and exit from the cell cycle. Unlike the markers for floor plate cells (Shh) or DA neuron progenitors (Lmx1b), there seems to be no difference in the amount or location of Nurr1 expression between the T101E/T132E (double mutant) overexpressing and untreated sides of the midbrain. Similar results were seen with the T101E Nato3 mutant (data not shown).
- FIG. 4 demonstrates that overexpression of wild-type Nato3 does not induce expression of Foxa2 in the spinal cord.
- the mutant T101E/T132E double mutant
- a higher magnification image is shown in FIG. 4 , of the effect of T101E/T132E (double mutant) seen in FIG. 3 .
- T101E/T132E double mutant
- the markers Shh See FIG. 4 , Panel C
- Nurr1 induction was not detectable by T101E/T132E (See FIG. 4 , Panels G, H, I).
- T101E/T132E (double mutant) Nato3 may drive cells to become dopamine neuron progenitors, but either not permit maturation, or prevent them from maturing.
- GFP+/Foxa2+ double positive cells may also be seen in the dorsal root ganglion, well outside of the area of the spinal cord is transfected by the electroporation technique.
- T101E/T132E double mutant Nato3 overexpression may induce floor plate and DA neuron progenitor markers in the spinal cord.
- the posterior neural tube (embryonic spinal cord) treated with wild-type Nato3 overexpression represented in panel A of FIG. 5 with regions of symmetry between the treated and untreated sides indicated with asterisks. There was no induction of Foxa2 by WT Nato3 overexpression.
- Panel B of FIG. 5 depicts mutant Nato3 overexpression showing ectopic expression of Foxa2 (expression appears as punctate expression), a marker for floor plate cells and DA neuron progenitors. Overlay of treated cells with Foxa2 expression appears as yellow as shown in panel C.
- T101E/T132E (double mutant) Nato3 overexpressing cells have migrated from the neural tube towards the peripheral nervous system, similar to the type of migration seen by neural crest stem cells as they delaminate from the dorsal neural tube and populate the peripheral nervous system.
- Similar expression patterns of induction of ectopic expression by T101E/T132E (double mutant) Nato3 was seen with Lmx1b, but there was no induction of Nurr1 expression in the spinal cord, similar to results seen in the midbrain (data not shown).
- brackets in panel (A) indicate region of symmetry between untreated (on the left) and treated (on the right) side of the embryo.
- the bright dots seen in panel A indicate the expression of Nurr1+a dopamine neuron marker, by neural progenitors in that region of tissue. These dots are not seen on the untreated side, indicating that T101E/S140D (double mutant) Nato3 may induce Nurr1 expression from neural progenitors that normally would not differentiate into DA neurons.
- Nato3 T101E/S140D (double mutant) expression overlaps with Nurr1 (in panel “B”) at 98+2% frequency in this region of the midbrain.
- phosphorylation may induce transient changes in response to local factors, it may be that in the physiological context, phosphorylation of wild-type Nato3 at the amino acid T101 and T132 could induce the generation of floor plate cell lineage, and phosphorylation at T101 and amino acid S140 could promote the induction of DA neuron progenitor and DA neuron differentiation.
- Creating mutations at specific serine, threonine and tyrosine residues may be useful to characterize the effects of phosphorylation at putative phosphoacceptor sites (McKay and Morrison, 2007). However, in vivo characterization is particularly important because many mutations do not adequately mimic the phosphorylation state of the protein, in part because the negative charge with an amino acid may not be present at physiological pH, and the size of the phosphate group is different than negatively charged sidechain of an amino acid like aspartate or glutamate (Dephoure et al., 2013).
- T101E/T132E and T101E/S140D described herein may be due to subtle differences in the position of the residues on the protein.
- T132 is in the loop region whereas S140 is in the amino termini of helix 2.
- S140 is closer to the phosphate backbone of DNA binding site, which might exert repulsion and disrupt DNA binding. This kind of disruption could exert a dominant negative effect on the protein function.
- FIGS. 8A-8I show the expression of the marker Shh. Like the mouse wild type Nato3 gene, overexpression of the human wild type Nato3 gene did not induce Shh strongly (compare “Shh” between FIGS. 8A, 8D, and 8E compared to FIGS. 8B, 8E and 8H ). Overlay is shown in the top row between the transfected cells and the lineage marker; Shh in FIGS. 8A and 8B ; and the marker Nurr1 in FIGS. 8C and 8J ). The induction of expression of dopamine neuron lineage marker expression is in the middle row (“Shh” in FIGS. 8D & 8E ; and expression of “Nurr1” in FIGS. 8F and 8K ). The transfection of the gene of interest is indicated in the bottom row shown in FIGS. 8G, 8H, 8I and 8L .
- Embodiment 1 an isolated mutant Nato3 polypeptide, the polypeptide comprising at least one mutation in any one or more of serine, threonine or tyrosine amino acid residues in the HLH domain defined by amino acids 99 to 158 of SEQ ID NOs: 1-5, or any variant, derivative, or ortholog thereof, with the proviso that the mutant Nato3 polypeptide with only one mutation is not a mutation of S140D in SEQ ID NO: 2.
- Embodiment 2 the isolated mutant Nato3 polypeptide according to embodiment 1, wherein the at least one mutation occurs in SEQ ID NO: 1-2.
- Embodiment 3 the isolated mutant Nato3 polypeptide according to any one of embodiments 1 or 2, wherein the mutation occurs at a serine, threonine or both.
- Embodiment 4 the isolated mutant Nato3 polypeptide according to any one of embodiments 1 or 2, wherein the mutation occurs at position 99, 130, or 138, or combinations thereof of SEQ ID NO: 1.
- Embodiment 5 the isolated mutant Nato3 polypeptide according to embodiment 4, wherein the mutation occurs at position 99.
- Embodiment 6 the isolated mutant Nato3 polypeptide according to embodiment 5, wherein threonine at position 99 is substituted with glutamic acid, or aspartic acid.
- Embodiment 7 the isolated mutant Nato3 polypeptide according to embodiment 6, wherein threonine at position 99 is substituted with glutamic acid.
- Embodiment 8 the isolated mutant Nato3 polypeptide according to embodiment 6, wherein threonine at position 99 is substituted with aspartic acid.
- Embodiment 9 the isolated mutant Nato3 polypeptide according to embodiment 4, wherein the mutation occurs at position 130.
- Embodiment 10 the isolated mutant Nato3 polypeptide according to embodiment 9, wherein threonine at position 130 is substituted with glutamic acid, or aspartic acid.
- Embodiment 11 the isolated mutant Nato3 polypeptide according to embodiment 10, wherein threonine at position 130 is substituted with glutamic acid.
- Embodiment 12 the isolated mutant Nato3 polypeptide according to embodiment 10, wherein threonine at position 130 is substituted with aspartic acid.
- Embodiment 13 the isolated mutant Nato3 polypeptide according to embodiment 4, wherein the mutation occurs at position 138.
- Embodiment 14 the isolated mutant Nato3 polypeptide according to embodiment 13, wherein serine at position 138 is substituted with glutamic acid, or aspartic acid.
- Embodiment 15 the isolated mutant Nato3 polypeptide according to embodiment 14, wherein serine at position 138 is substituted with glutamic acid.
- Embodiment 16 the isolated mutant Nato3 polypeptide according to embodiment 14, wherein threonine at position 138 is substituted with aspartic acid.
- Embodiment 17 the isolated mutant Nato3 polypeptide according to any one of embodiments 1 or 2, wherein the mutation occurs at position 101, 132 or 140, or combinations thereof of SEQ ID NO: 2.
- Embodiment 18 the isolated mutant Nato3 polypeptide according to embodiment 17, wherein the mutation occurs at position 101.
- Embodiment 19 the isolated mutant Nato3 polypeptide according to embodiment 18, wherein threonine at position 101 is substituted with glutamic acid, or aspartic acid.
- Embodiment 20 the isolated mutant Nato3 polypeptide according to embodiment 19, wherein threonine at position 101 is substituted with glutamic acid.
- Embodiment 21 the isolated mutant Nato3 polypeptide according to embodiment 19, wherein threonine at position 101 is substituted with aspartic acid.
- Embodiment 22 the isolated mutant Nato3 polypeptide according to embodiment 17, wherein the mutation occurs at position 132.
- Embodiment 23 the isolated mutant Nato3 polypeptide according to embodiment 22, wherein threonine at position 132 is substituted with glutamic acid, or aspartic acid.
- Embodiment 24 the isolated mutant Nato3 polypeptide according to embodiment 23, wherein threonine at position 132 is substituted with glutamic acid.
- Embodiment 25 the isolated mutant Nato3 polypeptide according to embodiment 23, wherein threonine at position 132 is substituted with aspartic acid.
- Embodiment 26 the isolated mutant Nato3 polypeptide according to embodiment 17, wherein the mutation occurs at position 140.
- Embodiment 27 the isolated mutant Nato3 polypeptide according to embodiment 13, wherein serine at position 140 is substituted with glutamic acid.
- Embodiment 28 an isolated mutant Nato3 polypeptide, the polypeptide comprising two mutations in two of serine, threonine or tyrosine amino acid residues in the HLH domain defined by amino acid sequences 99 to 158 of SEQ ID NOs: 1-5, or any variant, derivative, or ortholog thereof.
- Embodiment 29 the isolated mutant Nato3 polypeptide according to embodiment 28, wherein the mutations occur in two amino acids selected from T101, T132 and S140 of SEQ ID NO:2.
- Embodiment 30 the isolated mutant Nato3 polypeptide according to embodiment 28, wherein the mutations occur in two amino acids selected from T99, T130 and S138 of SEQ ID NO:1.
- Embodiment 31 the isolated mutant Nato3 polypeptide according to any one of embodiments 28-30, wherein the mutations comprises substituting the wild-type amino acids serine, threonine or tyrosine within the HLH domain defined by amino acid sequences 99 to 158 of SEQ ID NOs: 1-5, with amino acids glutamic acid or aspartic acid.
- Embodiment 32 A method of stimulating a population of brain cells to differentiate into dopaminergic progenitor neuronal cells or dopaminergic neuronal cells, the method comprising increasing phosphorylation of Nato3 in the brain cells and culturing the brain cells until a progenitor dopaminergic neuronal cell marker or a dopaminergic neuronal cell marker is expressed in the cultured brain cells.
- Embodiment 33 the method according to embodiment 32, wherein increasing phosphorylation of Nato3 in the brain cells comprises expressing a Nato3 mutant polypeptide of embodiments 1-32, or a Nato3 mutant polynucleotide which encodes a Nato3 mutant polypeptide of embodiments 1-32 in the brain cells.
- Embodiment 34 the method according to any one of embodiments 32-33, wherein brain cells are stem cells.
- Embodiment 35 the method according to any one of embodiments 32-34, wherein brain cells are isolated from the brain floor plate.
- Embodiment 36 the method according to any one of embodiments 32-35, wherein expressing a Nato3 mutant polypeptide or Nato3 mutant polynucleotide in the brain cells comprises introducing into the brain cells at least one polynucleotide operable to encode a mutant Nato3 polypeptide of embodiments 1-32.
- Embodiment 37 the method of embodiment 36, wherein expressing a Nato3 mutant polypeptide or Nato3 mutant polynucleotide in the brain cells is made by transfecting or transforming the brain cells with an expression vector which comprises a polynucleotide sequence which encodes a mutant Nato3 polypeptide of embodiments 1-32.
- Embodiment 38 the method of any one of embodiments 32-37, wherein expression of a progenitor dopaminergic neuronal cell marker in the brain cells comprises an expression of at least one marker selected from the group consisting of Shh, Lmx1b, and Foxa2.
- Embodiment 39 the method of any one of embodiments 32-38, wherein the dopaminergic progenitor neuronal cells are determined to be differentiated when at least 50% of the population of brain cells express at least one marker selected from the group consisting of Shh, Lmx1b, and Foxa2.
- Embodiment 40 the method of any one of embodiments 32-39, wherein the dopaminergic neuronal cells are determined to be differentiated when at least 50% of the population of brain cells express Nurr1.
- Embodiment 41 the method of any one of embodiments 32-40, wherein increasing phosphorylation of Nato3 in the brain cells comprises increasing the expression or activity of a protein kinase for phosphorylating Nato3 in the brain cells.
- Embodiment 42 the method of embodiment 40, wherein increasing phosphorylation of Nato3 in the brain cells comprises expressing an endogenous or heterologous protein kinase operable to increase phosphorylation of Nato3.
- Embodiment 43 a genetically modified isolated population of dopaminergic neuron progenitors and/or dopaminergic neurons, the isolated population comprising a mutant Nato3 polypeptide, as set forth in embodiments 1-32, and wherein the population of dopaminergic neuron progenitors and/or dopaminergic neurons express at least one marker selected from Shh, Lmx1b, and Foxa2 in at least 50% of the population.
- Embodiment 44 a method for treating or preventing Parkinson's disease (PD) in a subject in need thereof, comprising administering to the subject, a therapeutically effective amount of a composition comprising a mutant Nato3 polypeptide as set forth in embodiments 1-32, or a polynucleotide construct encoding the mutant Nato3 polypeptide as set forth in embodiments 1-32.
- PD Parkinson's disease
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Neurology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Neurosurgery (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
| TABLE 1 |
| Amino acid and polynucleotide sequences of various wild-type and |
| mutant Nato3 polypeptides and polynucleotides in mammals, avians and insects. |
| SEQ | ||
| Nato3 | ID | |
| Species | NO: | Amino Acid Sequence |
| Human | 1 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALALREGR |
| PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVITY | ||
| AQRQAANIRE RKRMFNLNEA FDQLRRKVPT FAYEKRLSRI ETLRLAIVYI | ||
| SFMTELLESC EKKESG | ||
| Mouse | 2 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | ||
| TYAQRQAANI RERKRMFNLN EAFDQLRRKV PTFAYEKRLS RIETLRLAIV | ||
| YISFMTELLQ SKEEKEAS | ||
| Rat | 3 | MAAYPESCLD ANVLNFVADL SLASPRHPFL CEFPPGVPFE DQTLGFREGR |
| GLLQFEGRYQ EVEGGEVDYE DPEEEEEEGE GRGRVASLLG RPKRKRVITY | ||
| AQRQAANIRE RKRMFNLNEA FDQLRRKVPT FAYEKRLSRI ETLRLAIVYI | ||
| SFMTELLQSK EEKEAS | ||
| Chicken | 4 | MSAGLFPAHR RPELLRGTAP PLPCPERLLG ASVLGFVADI SLGAPQSSSR |
| AGPSLGLTSE PPFGDRTLSL REGMARGLPL AAFGDGDLED EEEEEEEERM | ||
| RSASLLDRPR RKRVITYAQR QAANIRERKR MFNLNEAFDQ LRKKVPTFAY | ||
| EKRLSRIETL RLAIVYISFM TELLNGCSRQ EAS | ||
| Drosophila | 5 | MQHPHPIDQP TYMPDVPFQP LWGQEAPPPP IVPYQELIAG FPCTDLSLWQ |
| RSQVTPLVPQ RPSTNGRANG SSSSSKKTRR RVASMAQRRA ANIRERRRMF | ||
| NLNEAFDKLR RKVPTFAYEK RLSRIETLRL AITYIGFMAE LLSGTPSNSH | ||
| KSRSDVYGSM NGHHQAPPPA IHPHHLHPAA AYQRDFASPY NHSLS | ||
| T101E | 6 | ATGGCCGCCTATCCAGAGAGCTGCTTGGATGCTACCGTGCTGAACTTCGTAGCAGATCTCT |
| mouse | CTCTGGCCTCTCCCAGACACCCTCTTCTCTGCGAGTTCCCACCTGGGGTCCCTTTTGGGGA | |
| CCGAACACTGGGGTACAGAGAGGGAAGACCTGGGAGACTGTCGCAGTTTGATGAAAGATAT | ||
| CAGGAAGTAGAGGGGGACGAAGTGGAATATGAGGACCCAGAAGAGGAGGAAGAGGAGGGAG | ||
| AGGGGCGCGGCAGAGTAGCATCCTTGCTGGGCCGCCCCAAAAGAAAAAGAGTTATTGAGTA | ||
| TGCCCAGCGCCAGGCCGCCAACATTCGCGAGAGGAAGAGGATGTTCAACCTAAACGAGGCC | ||
| TTCGACCAGCTGCGCAGAAAGGTACCCACCTTCGCTTATGAGAAGAGACTGTCGAGGATCG | ||
| AGACCCTCCGCTTGGCCATCGTCTACATTTCCTTCATGACCGAGCTCCTGCAGAGCAAGGA | ||
| GGAAAAGGAGGCCAGCTGA | ||
| T132E | 7 | ATGGCCGCCTATCCAGAGAGCTGCTTGGATGCTACCGTGCTGAACTTCGTAGCAGATCTCT |
| mouse | CTCTGGCCTCTCCCAGACACCCTCTTCTCTGCGAGTTCCCACCTGGGGTCCCTTTTGGGGA | |
| CCGAACACTGGGGTACAGAGAGGGAAGACCTGGGAGACTGTCGCAGTTTGATGAAAGATAT | ||
| CAGGAAGTAGAGGGGGACGAAGTGGAATATGAGGACCCAGAAGAGGAGGAAGAGGAGGGAG | ||
| AGGGGCGCGGCAGAGTAGCATCCTTGCTGGGCCGCCCCAAAAGAAAAAGAGTTATTACTTA | ||
| TGCCCAGCGCCAGGCCGCCAACATTCGCGAGAGGAAGAGGATGTTCAACCTAAACGAGGCC | ||
| TTCGACCAGCTGCGCAGAAAGGTACCCGAATTCGCTTATGAGAAGAGACTGTCGAGGATCG | ||
| AGACCCTCCGCTTGGCCATCGTCTACATTTCCTTCATGACCGAGCTCCTGCAGAGCAAGGA | ||
| GGAAAAGGAGGCCAGCTGA | ||
| S140D | 8 | ATGGCCGCCTATCCAGAGAGCTGCTTGGATGCTACCGTGCTGAACTTCGTAGCAGATCTCT |
| mouse | CTCTGGCCTCTCCCAGACACCCTCTTCTCTGCGAGTTCCCACCTGGGGTCCCTTTTGGGGA | |
| CCGAACACTGGGGTACAGAGAGGGAAGACCTGGGAGACTGTCGCAGTTTGATGAAAGATAT | ||
| CAGGAAGTAGAGGGGGACGAAGTGGAATATGAGGACCCAGAAGAGGAGGAAGAGGAGGGAG | ||
| AGGGGCGCGGCAGAGTAGCATCCTTGCTGGGCCGCCCCAAAAGAAAAAGAGTTATTACTTA | ||
| TGCCCAGCGCCAGGCCGCCAACATTCGCGAGAGGAAGAGGATGTTCAACCTAAACGAGGCC | ||
| TTCGACCAGCTGCGCAGAAAGGTACCCACCTTCGCTTATGAGAAGAGACTGGACAGGATCG | ||
| AGACCCTCCGCTTGGCCATCGTCTACATTTCCTTCATGACCGAGCTCCTGCAGAGCAAGGA | ||
| GGAAAAGGAGGCCAGCTGA | ||
| T99E | 9 | ATGGCGGCCTATCCGGAGAGCTGCGTGGACACTACGGTGCTGGACTTCGTCGCAGACCTGT |
| Human | CCCTGGCCTCCCCGAGACGCCCTCTCCTCTGCGACTTCGCACCCGGGGTCTCCTTGGGGGA | |
| CCCAGCCCTTGCGCTCCGAGAGGGAAGACCCAGGAGGATGGCGCGGTTTGAAGAGGGGGAC | ||
| CCAGAAGAAGAGGAGTGCGAAGTGGACCAGGGGGACGGAGAAGAGGAGGAGGAAGAGGAGC | ||
| GCGGAAGAGGTGTCTCCCTATTAGGCCGCCCCAAGAGGAAAAGGGTGATCGAGTACGCCCA | ||
| GCGCCAGGCCGCCAACATCCGCGAAAGGAAGCGGATGTTCAACCTCAACGAGGCCTTTGAC | ||
| CAGCTGCGGAGGAAGGTGCCCACGTTTGCTTACGAGAAAAGGCTGTCCCGGATCGAGACCC | ||
| TCCGCCTGGCCATCGTCTATATCTCCTTCATGACCGAGCTCTTGGAGAGCTGTGAGAAGAA | ||
| GGAAAGCGGCTGA | ||
| T130E | 10 | ATGGCGGCCTATCCGGAGAGCTGCGTGGACACTACGGTGCTGGACTTCGTCGCAGACCTGT |
| Human | CCCTGGCCTCCCCGAGACGCCCTCTCCTCTGCGACTTCGCACCCGGGGTCTCCTTGGGGGA | |
| CCCAGCCCTTGCGCTCCGAGAGGGAAGACCCAGGAGGATGGCGCGGTTTGAAGAGGGGGAC | ||
| CCAGAAGAAGAGGAGTGCGAAGTGGACCAGGGGGACGGAGAAGAGGAGGAGGAAGAGGAGC | ||
| GCGGAAGAGGTGTCTCCCTATTAGGCCGCCCCAAGAGGAAAAGGGTGATCACCTACGCCCA | ||
| GCGCCAGGCCGCCAACATCCGCGAAAGGAAGCGGATGTTCAACCTCAACGAGGCCTTTGAC | ||
| CAGCTGCGGAGGAAGGTGCCCGAGTTTGCTTACGAGAAAAGGCTGTCCCGGATCGAGACCC | ||
| TCCGCCTGGCCATCGTCTATATCTCCTTCATGACCGAGCTCTTGGAGAGCTGTGAGAAGAA | ||
| GGAAAGCGGCTGA | ||
| S138D | 11 | ATGGCGGCCTATCCGGAGAGCTGCGTGGACACTACGGTGCTGGACTTCGTCGCAGACCTGT |
| Human | CCCTGGCCTCCCCGAGACGCCCTCTCCTCTGCGACTTCGCACCCGGGGTCTCCTTGGGGGA | |
| CCCAGCCCTTGCGCTCCGAGAGGGAAGACCCAGGAGGATGGCGCGGTTTGAAGAGGGGGAC | ||
| CCAGAAGAAGAGGAGTGCGAAGTGGACCAGGGGGACGGAGAAGAGGAGGAGGAAGAGGAGC | ||
| GCGGAAGAGGTGTCTCCCTATTAGGCCGCCCCAAGAGGAAAAGGGTGATCACCTACGCCCA | ||
| GCGCCAGGCCGCCAACATCCGCGAAAGGAAGCGGATGTTCAACCTCAACGAGGCCTTTGAC | ||
| CAGCTGCGGAGGAAGGTGCCCACGTTTGCTTACGAGAAAAGGCTGGACCGGATCGAGACCC | ||
| TCCGCCTGGCCATCGTCTATATCTCCTTCATGACCGAGCTCTTGGAGAGCTGTGAGAAGAA | ||
| GGAAAGCGGCTGA | ||
| T101E | 12 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| mouse | PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | |
| EYAQRQAANI RERKRMFNLN EAFDQLRRKV PTFAYEKRLS RIETLRLAIV | ||
| YISFMTELLQ SKEEKEAS | ||
| T132E | 13 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| mouse | PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | |
| TYAQRQAANI RERKRMFNLN EAFDQLRRKV PEFAYEKRLS RIETLRLAIV | ||
| YISFMTELLQ SKEEKEAS | ||
| S140D | 14 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| mouse | PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | |
| TYAQRQAANI RERKRMFNLN EAFDQLRRKV PTFAYEKRLD RIETLRLAIV | ||
| YISFMTELLQ SKEEKEAS | ||
| T99E | 15 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALALREGR |
| Human | PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVIEY | |
| AQRQAANIRE RKRMFNLNEA FDQLRRKVPT FAYEKRLSRI ETLRLAIVYI | ||
| SFMTELLESC EKKESG | ||
| T130E | 16 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALALREGR |
| Human | PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVITY | |
| AQRQAANIRE RKRMFNLNEA FDQLRRKVPE FAYEKRLSRI ETLRLAIVYI | ||
| SFMTELLESC EKKESG | ||
| S138D | 17 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALALREGR |
| Human | PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVITY | |
| AQRQAANIRE RKRMFNLNEA FDQLRRKVPT FAYEKRLDRI ETLRLAIVYI | ||
| SFMTELLESC EKKESG | ||
| T101E/ | 22 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| T132E | PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | |
| mouse | EYAQRQAANI RERKRMFNLN EAFDQLRRKV PEFAYEKRLS RIETLRLAIV | |
| YISFMTELLQ SKEEKEAS | ||
| T101/ | 23 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| S140D | PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | |
| mouse | EYAQRQAANI RERKRMFNLN EAFDQLRRKV PTFAYEKRLD RIETLRLAIV | |
| YISFMTELLQ SKEEKEAS | ||
| T101E/ | 24 | MAAYPESCLD ATVLNFVADL SLASPRHPLL CEFPPGVPFG DRTLGYREGR |
| T132E/ | PGRLSQFDER YQEVEGDEVE YEDPEEEEEE GEGRGRVASL LGRPKRKRVI | |
| S140D | EYAQRQAANI RERKRMFNLN EAFDQLRRKV PEFAYEKRLD RIETLRLAIV | |
| mouse | YISFMTELLQ SKEEKEAS | |
| T99E/ | 25 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALALREGR |
| T130E | PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVIEY | |
| Human | AQRQAANIRE RKRMFNLNEA FDQLRRKVPE FAYEKRLSRI ETLRLAIVYI | |
| SFMTELLESC EKKESG | ||
| T99E/ | 26 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALALREGR |
| S138D | PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVIEY | |
| Human | AQRQAANIRE RKRMFNLNEA FDQLRRKVPT FAYEKRLDRI ETLRLAIVYI | |
| SFMTELLESC EKKESG | ||
| T99E/ | 27 | MAAYPESCVD TTVLDFVADL SLASPRRPLL CDFAPGVSLG DPALAIREGR |
| T132E/ | PRRMARFEEG DPEEEECEVD QGDGEEEEEE ERGRGVSLLG RPKRKRVIEY | |
| S138D | AQRQAANIRE RKRMFNLNEA FDQLRRKVPE FAYEKRLDRI ETLRLAIVYI | |
| SFMTELLESC EKKESG | ||
| Amino | Putative kinase identified |
| Acid residue and position | by in silico analysis that target and |
| number on mouse Nato3 | phosphorylate threonine and serine |
| that may be phosphorylated | amino acid residues in Nato3 mutants |
| Threonine 101 (T101) | PKB, PKC, PKG |
| Threonine 132 (T132) | PKB, PKC, CAMK |
| Serine 140 (S140) | PKC, PKA, CKII, CAMKII |
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/776,580 US11111279B2 (en) | 2015-11-20 | 2016-11-18 | Nato3 mutant polypeptides and uses thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562258043P | 2015-11-20 | 2015-11-20 | |
| US15/776,580 US11111279B2 (en) | 2015-11-20 | 2016-11-18 | Nato3 mutant polypeptides and uses thereof |
| PCT/US2016/062876 WO2017087866A1 (en) | 2015-11-20 | 2016-11-18 | Nato3 mutant polypeptides and uses thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20180346530A1 US20180346530A1 (en) | 2018-12-06 |
| US11111279B2 true US11111279B2 (en) | 2021-09-07 |
Family
ID=58717933
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/776,580 Active 2037-08-30 US11111279B2 (en) | 2015-11-20 | 2016-11-18 | Nato3 mutant polypeptides and uses thereof |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US11111279B2 (en) |
| WO (1) | WO2017087866A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024182311A2 (en) * | 2023-02-27 | 2024-09-06 | Ryne Biotechnology Inc. | Combinations for treatment of parkinson's disease and other primary and secondary parkinsonian disorders |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001071042A2 (en) * | 2000-03-23 | 2001-09-27 | Pe Corporation (Ny) | Detection kits, such as nucleic acid arrays, for detecting the expression of 10,000 or more drosophila genes and uses thereof |
| WO2002068579A2 (en) | 2001-01-10 | 2002-09-06 | Pe Corporation (Ny) | Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof |
| JP2003530817A (en) | 1999-06-01 | 2003-10-21 | ベイラー カレッジ オブ メディスン | Compositions and methods for therapeutic use of atonal-related sequences for hearing impairment, osteoarthritis and cell overgrowth |
| EP1950292A1 (en) | 2005-08-18 | 2008-07-30 | Eisai R&D Management Co., Ltd. | Nato3, MARKER OF GROWING PROGENITOR CELL OF DOPAMINE-PRODUCING NEURON |
| US8198081B2 (en) | 2006-04-11 | 2012-06-12 | Eisai R&D Management Co., Ltd. | Dopaminergic neuron progenitor cell marker 187A5 |
| US8241902B2 (en) | 2006-01-11 | 2012-08-14 | Technion Research & Development Foundation Ltd. | Preparation of adult stem cell-derived connective tissue progenitors |
| US8252755B2 (en) | 2006-09-22 | 2012-08-28 | Dharmacon, Inc. | Duplex oligonucleotide complexes and methods for gene silencing by RNA interference |
| US20130131194A1 (en) | 2008-02-01 | 2013-05-23 | The General Hospital Corporation | Use of microvesicles in diagnosis and prognosis of medical diseases and conditions |
| US20140045915A1 (en) | 2010-08-31 | 2014-02-13 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
| US20140058214A1 (en) | 2012-08-24 | 2014-02-27 | Donald J. Woodward | System for development of therapeutic drugs and procedures |
| WO2014037527A1 (en) * | 2012-09-07 | 2014-03-13 | Cambridge Enterprise Limited | Maturation of mammalian cells by modulation of protein phosphorylation |
| US20140155271A1 (en) | 2011-11-04 | 2014-06-05 | Population Diagnostics, Inc. | Methods and compositions for diagnosing, prognosing, and treating neurological conditions |
| US20140193827A1 (en) | 2013-01-04 | 2014-07-10 | Teva Pharmaceutical Industries, Ltd. | Characterizing a glatiramer acetate related drug product |
| US20140242580A1 (en) | 2011-07-05 | 2014-08-28 | National Taiwan University | Method for predicting response or prognosis of lung adenocarcinoma with egfr-activating mutations |
| US20140350000A1 (en) | 2008-09-25 | 2014-11-27 | Suregene Llc | Genetic Markers for Optimizing Treatment for Schizophrenia |
| US8912157B2 (en) | 2010-01-06 | 2014-12-16 | Curna, Inc. | Treatment of pancreatic developmental gene related diseases by inhibition of natural antisense transcript to a pancreatic developmental gene |
| US20150023927A1 (en) | 2011-08-17 | 2015-01-22 | Children's Medical Center Corporation | Conversion of somatic cells into functional spinal motor neurons, and methods and uses thereof |
-
2016
- 2016-11-18 WO PCT/US2016/062876 patent/WO2017087866A1/en not_active Ceased
- 2016-11-18 US US15/776,580 patent/US11111279B2/en active Active
Patent Citations (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003530817A (en) | 1999-06-01 | 2003-10-21 | ベイラー カレッジ オブ メディスン | Compositions and methods for therapeutic use of atonal-related sequences for hearing impairment, osteoarthritis and cell overgrowth |
| US20040231009A1 (en) | 1999-06-01 | 2004-11-18 | Zoghbi Huda Y. | Composition and methods for the therapeutic use of an atonal-associated sequence for deafness, osteoarthritis and abnormal cell proliferation |
| JP2011062204A (en) | 1999-06-01 | 2011-03-31 | Baylor College Of Medicine | Composition and method for therapeutic use of an atonal-associated sequence for deafness, osteoarthritis, and abnormal cell proliferation |
| US7470673B2 (en) | 1999-06-01 | 2008-12-30 | Baylor College Of Medicine | Composition and methods for the therapeutic use of an atonal-associated sequence for deafness, osteoarthritis and abnormal cell proliferation |
| WO2001071042A2 (en) * | 2000-03-23 | 2001-09-27 | Pe Corporation (Ny) | Detection kits, such as nucleic acid arrays, for detecting the expression of 10,000 or more drosophila genes and uses thereof |
| WO2002068579A2 (en) | 2001-01-10 | 2002-09-06 | Pe Corporation (Ny) | Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof |
| US20100028866A1 (en) * | 2005-08-18 | 2010-02-04 | Eisai R&D Management Co., Ltd. | DOPAMINERGIC NEURON PROLIFERATIVE PROGENITOR CELL MARKER Nato3 |
| EP1950292A1 (en) | 2005-08-18 | 2008-07-30 | Eisai R&D Management Co., Ltd. | Nato3, MARKER OF GROWING PROGENITOR CELL OF DOPAMINE-PRODUCING NEURON |
| US8067161B2 (en) | 2005-08-18 | 2011-11-29 | Eisai R&D Management Co., Ltd. | Dopaminergic neuron proliferative progenitor cell marker Nato3 |
| US20120021417A1 (en) | 2005-08-18 | 2012-01-26 | Eisai R&D Management Co., Ltd. | DOPAMINERGIC NEURON PROLIFERATIVE PROGENITOR CELL MARKER Nato3 |
| US8241902B2 (en) | 2006-01-11 | 2012-08-14 | Technion Research & Development Foundation Ltd. | Preparation of adult stem cell-derived connective tissue progenitors |
| US8541234B2 (en) | 2006-01-11 | 2013-09-24 | Technion Research & Development Foundation Limited | Methods of generating tendon tissue in vitro from connective tissue progenitor cells |
| US8198081B2 (en) | 2006-04-11 | 2012-06-12 | Eisai R&D Management Co., Ltd. | Dopaminergic neuron progenitor cell marker 187A5 |
| US8604173B2 (en) | 2006-04-11 | 2013-12-10 | Eisai R&D Management Co., Ltd. | Dopaminergic neuron progenitor cell marker 187A5 |
| US8501706B2 (en) | 2006-09-22 | 2013-08-06 | Dharmacon, Inc. | Duplex oligonucleotide complexes and methods for gene silencing by RNA interference |
| US8252755B2 (en) | 2006-09-22 | 2012-08-28 | Dharmacon, Inc. | Duplex oligonucleotide complexes and methods for gene silencing by RNA interference |
| US20130131194A1 (en) | 2008-02-01 | 2013-05-23 | The General Hospital Corporation | Use of microvesicles in diagnosis and prognosis of medical diseases and conditions |
| US20140194613A1 (en) | 2008-02-01 | 2014-07-10 | The General Hospital Corporation | Use of microvesicles in diagnosis and prognosis of medical diseases and conditions |
| US20140194319A1 (en) | 2008-02-01 | 2014-07-10 | The General Hospital Corporation | Use of microvesicles in diagnosis and prognosis of medical diseases and conditions |
| US20140350000A1 (en) | 2008-09-25 | 2014-11-27 | Suregene Llc | Genetic Markers for Optimizing Treatment for Schizophrenia |
| US8912157B2 (en) | 2010-01-06 | 2014-12-16 | Curna, Inc. | Treatment of pancreatic developmental gene related diseases by inhibition of natural antisense transcript to a pancreatic developmental gene |
| US20150057338A1 (en) | 2010-01-06 | 2015-02-26 | Curna, Inc. | Treatment of pancreatic developmental gene related diseases by inhibition of natural antisense transcript to a pancreatic developmental gene |
| US20140045915A1 (en) | 2010-08-31 | 2014-02-13 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
| US20140242580A1 (en) | 2011-07-05 | 2014-08-28 | National Taiwan University | Method for predicting response or prognosis of lung adenocarcinoma with egfr-activating mutations |
| US20150023927A1 (en) | 2011-08-17 | 2015-01-22 | Children's Medical Center Corporation | Conversion of somatic cells into functional spinal motor neurons, and methods and uses thereof |
| US20140155271A1 (en) | 2011-11-04 | 2014-06-05 | Population Diagnostics, Inc. | Methods and compositions for diagnosing, prognosing, and treating neurological conditions |
| US20140058214A1 (en) | 2012-08-24 | 2014-02-27 | Donald J. Woodward | System for development of therapeutic drugs and procedures |
| US8985057B2 (en) | 2012-08-24 | 2015-03-24 | Donald J. Woodward | System for development of therapeutic drugs and procedures |
| WO2014037527A1 (en) * | 2012-09-07 | 2014-03-13 | Cambridge Enterprise Limited | Maturation of mammalian cells by modulation of protein phosphorylation |
| US20140193827A1 (en) | 2013-01-04 | 2014-07-10 | Teva Pharmaceutical Industries, Ltd. | Characterizing a glatiramer acetate related drug product |
Non-Patent Citations (18)
Also Published As
| Publication number | Publication date |
|---|---|
| WO2017087866A1 (en) | 2017-05-26 |
| US20180346530A1 (en) | 2018-12-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Dinsmore et al. | Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation | |
| US8153422B2 (en) | Dopaminergic neurons differentiated from embryonic cells for treating neurodegenerative diseases | |
| US20030212024A1 (en) | Compositions and methods for cell dedifferentiation and tissue regeneration | |
| WO2004047747A2 (en) | Compositions and methods for cell dedifferentiation and tissue regeneration | |
| CN110684734A (en) | Midbrain dopamine (DA) neurons for implantation | |
| JP2000295987A (en) | Transdifferentiation of transfected epithelial basal cells into neuralprogenitor cells, neuronal cells and / or glial cells | |
| US20070264712A1 (en) | Expansion and differentiation of neural stem cells under low oxygen conditions | |
| KR102427892B1 (en) | Mesenchymal stem cell expressing brain-derived neurotrophic factor gene and use thereof | |
| EP1694354A1 (en) | Method for preventing and treating diabetes using neurturin | |
| CN111484977A (en) | Method for reprogramming to generate functional noradrenergic neuron | |
| WO2010108503A1 (en) | Promotion of neuronal integration in neural stem cell grafts | |
| US8895303B2 (en) | Method of cell culture and method of treatment comprising a vEPO protein variant | |
| US11111279B2 (en) | Nato3 mutant polypeptides and uses thereof | |
| US7732206B2 (en) | Oligodendrocyte determination genes and uses thereof | |
| US9090874B2 (en) | Olfactory epithelial-derived stem cells and methods of use therefor | |
| WO2008149356A1 (en) | Methods of generating dopaminergic cells and uses thereof | |
| Ara et al. | Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain | |
| Saxena et al. | Role of stem cell research in therapeutic purpose--a hope for new horizon in medical biotechnology. | |
| US20120202745A1 (en) | Adult cerebellum-derived neural stem cells and compositions and methods for producing oligodendrocytes | |
| Higashida et al. | Skin-derived precursors differentiating into dopaminergic neuronal cells in the brains of Parkinson disease model rats | |
| WO2011035030A2 (en) | Induction of neuronal differentiation in non-neuronal cells using a nucleic acid molecule | |
| JP2017063669A (en) | Method for producing neural stem cells using synthetic peptides | |
| US20100068187A1 (en) | Transcription factors for differentiation of adult human olfactory progenitor cells | |
| Bianco et al. | Rapid serum-free isolation of oligodendrocyte progenitor cells from adult rat spinal cord | |
| US20040265995A1 (en) | sFRP1 and uses thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| AS | Assignment |
Owner name: GRAND VALLEY STATE UNIVERSITY, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAYLOR, MERRITT;STRAIGHT, JORDAN;PETERSON, DOUG;AND OTHERS;SIGNING DATES FROM 20170613 TO 20170616;REEL/FRAME:046387/0180 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |