US11090003B2 - Systems for personal portable wireless vital signs scanner - Google Patents
Systems for personal portable wireless vital signs scanner Download PDFInfo
- Publication number
- US11090003B2 US11090003B2 US16/351,523 US201916351523A US11090003B2 US 11090003 B2 US11090003 B2 US 11090003B2 US 201916351523 A US201916351523 A US 201916351523A US 11090003 B2 US11090003 B2 US 11090003B2
- Authority
- US
- United States
- Prior art keywords
- vital signs
- user
- scanner
- scan
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 210000001061 forehead Anatomy 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000003825 pressing Methods 0.000 claims abstract description 8
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 12
- 230000036772 blood pressure Effects 0.000 claims description 10
- 238000006213 oxygenation reaction Methods 0.000 claims description 9
- 238000002106 pulse oximetry Methods 0.000 claims description 9
- 210000003813 thumb Anatomy 0.000 claims description 9
- 239000008280 blood Substances 0.000 claims description 8
- 210000004369 blood Anatomy 0.000 claims description 8
- 210000005224 forefinger Anatomy 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims 6
- 238000004891 communication Methods 0.000 abstract description 18
- 210000003811 finger Anatomy 0.000 description 27
- 238000005259 measurement Methods 0.000 description 17
- 238000004393 prognosis Methods 0.000 description 16
- 238000003860 storage Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000002496 oximetry Methods 0.000 description 11
- 230000036541 health Effects 0.000 description 10
- 210000003128 head Anatomy 0.000 description 8
- 238000009528 vital sign measurement Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 208000037656 Respiratory Sounds Diseases 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 230000005457 Black-body radiation Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6825—Hand
- A61B5/6826—Finger
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02444—Details of sensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14542—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/742—Details of notification to user or communication with user or patient; User input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0406—Constructional details of apparatus specially shaped apparatus housings
- A61B2560/0425—Ergonomically shaped housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0431—Portable apparatus, e.g. comprising a handle or case
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0462—Apparatus with built-in sensors
- A61B2560/0468—Built-in electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
Definitions
- This invention generally relates to vital signs scanning by a portable device with multiple integrated sensors.
- Vital signs of one's body form the base map of ones health. Fluctuations in our vital signs may be predictive of undiagnosed ailments. It's important to have easy access to their vital signs as frequently as needed. Yet the average consumer has no easy method of obtaining many of their vital signs without visiting a hospital or clinic.
- One of the easiest-to-measure vital signs is body temperature. Consumers are able to measure body temperature at home with an inexpensive home thermometer. However the average consumer still does not have easy access to devices for measuring the other important vital signs of ones body, such as blood oxygenation or blood pressure for example. The technology is available to measure the important vital signs, but typically limited to clinics and hospitals.
- the PCP or ER may not be able to provide personalized advice without knowing the specifics about their patients.
- the physician may have some idea about one's health condition based on an annual exam but the data may be outdated and useless with a current medical condition.
- FIG. 1A is a diagram illustrating an exemplary vital signs scanning system with the scanner held at the forehead/temple.
- FIG. 1B is a perspective view of a user squeezing the exemplary vital signs scanner.
- FIG. 1C is a diagram illustrating an exemplary scan screen of a vital signs user interface displayed by a portable wireless multifunctional device.
- FIG. 1D is another diagram illustrating an exemplary vital signs scanning system with the scanner held at the chest position.
- FIGS. 1E-1F are diagrams illustrating how microphones of the exemplary vital signs scanner can capture body sounds, such as from a user's heart or lung.
- FIG. 1G is another diagram illustrating an exemplary vital signs scanning system with the scanner held in fingers of each hand.
- FIG. 2A illustrates an exemplary portable wireless multifunction device to execute the vital signs scanning application.
- FIG. 2B illustrates a schematic representation of the components of the portable wireless multifunctional device.
- FIG. 3A is an exemplary scanning window displayed on the portable wireless device.
- FIG. 3B-3C illustrates an exemplary window generated by the vital signs scanning application on the portable wireless device that displays the user's vital signs.
- FIG. 3D illustrates an exemplary second scan selection window of the vital signs scanning application on the portable wireless device.
- FIGS. 4A-4B illustrate a temperature averaging window generated in a touch screen of the portable wireless multifunction device by the vital signs scanning software application.
- FIGS. 5A-5E illustrate prognosis windows for vital signs in a touch screen of the portable wireless multifunction device.
- FIGS. 6A-6B are perspective views of an embodiment of the invention.
- FIGS. 6C-6D are perspective views of another embodiment of the invention.
- FIG. 7A is an exploded view of the exemplary portable wireless vital signs scanner.
- FIG. 7B illustrates a partially assembled exemplary portable wireless vital signs scanner
- FIG. 8A illustrates a functional block diagram of electronic circuitry within the exemplary portable wireless vital signs scanner.
- FIG. 8B illustrates a main printed circuit board coupled to a daughter printed circuit board with various electronic circuitry within the exemplary portable wireless vital signs scanner mounted to each.
- FIG. 9 illustrates an exemplary window hierarchy of the vital signs graphical user interface provided by the vital signs scanning software application executed by the personal wireless multifunction device.
- FIGS. 10A-19A, 10B-19B, 10C-19C illustrate various views of the vital signs scanner and housing therefor.
- Some embodiments of the invention provide a consumer device that is small enough to be carried in a pocket or purse with which effortless vital signs scans can be performed, anytime, anywhere.
- the consumer device referred to as a vital signs scanner, can transfer the vital signs results to a portable wireless multifunction device, such as a smartphone, for storage and display to a user over time to illustrate health trends.
- the vital signs scanner allows consumers to take greater control of their own basic health and work with PCPs to provide personalized healthcare.
- the vital signs scanner allows users to efficiently measure multiple vital signs simultaneously.
- Vital signs scanning with the vital signs scanner is quick and easy and very convenient in that it can simultaneously capture a plurality of vita signs data with one scanning session (one or two vital signs scans) at a given time and date.
- the vital signs data is transferred to a user's own portable multifunction touch screen device, e.g. a smart phone.
- the portable multifunction device with the assistance of vital signs scanning software, displays the scanning results in an intuitive user interface that is simple to understand.
- the vital signs scanning device provides a method of vital signs scanning to help solve the missing information link so a user can take control of managing his/her own health.
- the vital signs scanner and system also stores the users vital signs measurements and trends over time of a day and date.
- the vital signs scanner and system provides easy access (almost anywhere at anytime) to important vital signs measurements such as blood oxygenation, blood pressure, heart rate, etc.
- the vital signs scanner and system can help share up-to-date vital signs data with a user's PCP for better diagnosis of medical conditions. Perhaps even more importantly, sharing of history and trends of vital signs data before and after an ailment with the user's PCP can provide clues to its cause and not just indicate the symptoms.
- the personal wireless vital signs scanner combines aesthetic design with functionality.
- the personal wireless vital signs scanner is light weight and easily fits into one hand.
- the personal wireless vital signs scanner can be held and operated with just two fingers of one hand.
- the user's other hand is free to hold a smartphone with a vital signs scanning application running to control the vital signs scanning process and view the scanning results.
- Vital signs data of a users body can change at different times of each day.
- the personal wireless vital signs scanner is so small, light, and esthetically pleasing that a user may desire to take it with them to perform a plurality of vital signs scans at different times throughout his/her day over a plurality of days.
- a portable vital signs scanner and system may prove to be useful for healthcare professionals as well. For example, patients could scan for their own vital signs themselves in a busy hospital, clinic or doctors office, rather than wait in long lines just to get a simple checkup before seeing the doctor. The patients scans are then uploaded to a server at the hospital, clinic, or office. With these self-obtained vital signs scans of patients being uploaded to a server, medical assistants and nurses, ordinarily checking for vital signs, can better spend their time curing the ailments of the patients.
- the self-obtained vital signs scans of patients may also serve to triage the patients that are waiting for medical care.
- a self-obtained vital signs scan of a patient indicating an elevated or irregular heart rate may signal hospital staff to attend to this patient immediately or at least a higher priority in a queue of patients.
- the self-obtained vital signs scans of patients provide a clinic staff with a sense of the severity of the condition of patients waiting and can make appropriate schedule priority adjustments, if needed.
- the scanning system 100 includes a portable wireless vital signs scanner 102 and a portable wireless multifunction device 104 in wireless communication with each other over a wireless communication channel 103 A.
- the vital signs scanner 102 includes a plurality of sensors designed to read vital signs from a user's body 101 .
- An instance or snap shot of vital signs, such as temperature, heart rate, blood oxygenation or SpO2, ECG (electrocardiogram), and possibly stress levels, all synchronously measured, can be reported to the device 104 by the scanner 102 in less than a minute. Integration of multiple sensors and scan quality algorithms make it possible to monitor the quality of the scanning process and then provide intuitive user feedback to control the interactive scanning process, to make a great user experience in the vital signs scanning process.
- the wireless vital signs scanner 102 may perform vital signs scans and display the results in under a minute. Generally scans may be completed in approximately ten seconds. The length of a scanning session may depend on the user's ability to correctly utilize the scanner 102 . For example, if the user moves too much during the scanning session, the session will last longer as the device 104 prompts the user to remain still.
- Different types of scans may also take different lengths of time. For example, in a standard ten second head scan where the scanner is held against a user's forehead or temple, temperature, SpO2, ECG, heart rate, blood pressure may be measured. For a 30 second extended head scan, vital signs such as blood pressure and heart rate variability (related to emotional stress) may be captured. For a thirty second chest scan from a user's chest, respiration rate and body sounds may be measured or collected. In any case, the scanning sessions are still short and convenient.
- Short scanning sessions have several advantages.
- a short scanning session allows a user to take a quick break from their daily activities to perform a scan anywhere and at any time.
- the ease and rapidness of performing a vital signs scan will encourage users to perform the scan multiple times a day, providing more complete and accurate trending data.
- the invention provides a consumer oriented scanner that a user can use anytime anywhere to obtain multiple vital sign measurements in seconds.
- Short scanning sessions also conserve power. With ten second scans, the scanner is designed to last for one week of normal usage with one full battery charge. If the power is on for a total of about 30 seconds for each scan, then total power-on time for each day is less than one hour with 100 scans per day.
- the scanner 102 may operate for a week at a time between battery recharging sessions.
- Scanner 102 is an elegant consumer device that is portable. Unlike other vital sign monitors, scanner 102 does not need to be worn. Scanner 102 is perhaps the smallest consumer device that can measure multiple vital signs simultaneously. Measuring approximately 60 mm in diameter and 18 mm high, the scanner 102 can be easily places in a pocket or purse for use at any time convenient to the user. At any time the user has a moment to spare, the scanner 102 may be used to obtain multiple vital sign measurements by simply finger-holding it against the user's forehead/temple and/or chest.
- Multifunction device 104 may be any portable wireless multifunction device such as a smartphone, tablet PC, or the so called smart watches. Generally these devices are pre-owned and already available to the average consumer, so utilizing the display capabilities of multifunction device 104 does not detract from the portability of the invention. The ubiquity of smartphones also means that the average consumer does not need to pay more for a dedicated display device. Combining the vital signs scanner 102 with, a smartphone that a user already has, allows one to take control and greater responsibility for his/her health without sacrificing valuable time and money.
- the portable wireless digital device 104 executes a vital signs scanning software application 140 .
- the instructions of the vital signs scanning software application 140 are executable with the operating system, (e.g., Android and iOS), of the multifunction device 104 .
- the software application may power up the vital signs scanner 102 .
- the vital signs scanner 102 is paired with the portable wireless digital device 104 to form the communication channel 103 A between them.
- each of the scanner 102 and multifunction device 104 has a compatible wireless radio to form a compatible wireless communication channel.
- the communication channel 103 A is a Bluetooth version 4, a smart low energy (LE) supported channel that each wireless radio supports.
- the vital signs scanner 102 sends the vital sign information wirelessly to the portable wireless multifunction scanner 102 over the wireless communication channel 103 A for storage and further analysis.
- the vital signs scanner 102 is pressed against a user's forehead/temple.
- the forehead/temple is identified as the single place with enough blood vessels and thin skin so that temperature, pulse oximetry and ECG can be obtained in sync and time-stamped.
- a scanning button is pressed on the user interface of the application 140 of the portable wireless multifunction device 104 to start the scanner 102 scanning for vital signs information of the user. After scanning for approximately 10 seconds or less, the vital signs scanner 102 sends the vital sign information wirelessly to the portable wireless multifunction device 102 .
- the multifunction device 104 may display the results of the scan on a touchscreen display.
- the vital signs scanner 102 is used periodically to scan for vital signs each day. Statistical information regarding a plurality of scans each day over a plurality of days can be generated and displayed on the touchscreen display device of the device 140 .
- the vital signs scanning software application 140 informs a user of how those vital sign measurements may change during times of a day and over a plurality of days.
- the scanner 102 is designed to be easy to use to minimize user error.
- the scanning software application is intuitive and easy to use. With minimal instruction, an average user can generate medical grade vital signs scans within minutes of using the invention for the first time.
- scan quality algorithm monitor the vita signs scanning process and provides feedback (visual and/or audible) to the user through the multifunction device 104 , and/or alternatively an optional sound generator (see audible sound generator 847 in FIGS. 8A-8B ) in the scanner 102 .
- the user feedback may help the user to perform a better vital signs scan with the wireless vital signs scanner and acquire good quality vital signs measurements.
- Integration of multiple sensors allows for synergistic accuracy of vital signs scans.
- integration of an accelerometer enables motion detection that is often associated with poor signals of pulse oximetry and ECG.
- abnormal signals of both pulse oximetry and ECG suggest the device is not held against the body properly. This can be further confirmed by comparing the surface temperature and ambient temperature of the sensor when not in touch with the user.
- Quality checking of individual vital sign measurements is based on fusion of multiple sensors, including a motion sensor, such as an accelerometer. Signal quality may be checked based on dynamic range detection and thresholding, for example.
- known signal processing techniques such as envelope detection, can be applied to the raw signals from the sensors as a preprocessing or screening step. Quality checking of raw sensor signals from the sensors makes sensor data fusion more robust by rejecting bad signals. Thus, fusing results of multiple sensors can provide better individual measurements of each vital sign.
- the intuitive scanning user interface is designed, in combination with scan quality algorithms and the device's self-diagnostic capability, to help users to finish a vital signs scan successfully.
- the scanning system 100 is user friendly so that it can be used multiple times during the day to obtain data about a user's body 101 .
- One person or one family can exclusively use the scanning system 100 and scanner 102 at home as a personal vital signs scanner. In this manner, a measure of one's personal health and medical data can be obtained right at home with the scanning system 100 without seeing a doctor or being admitted to a hospital.
- Each scan only lasts approximately ten to thirty seconds and obtains multiple vital sings measurements so users can take the scan repeatedly throughout the day without being inconvenienced.
- the scanning system 100 can be used to personally analyze and track one's own vital signs to see various trends over time. Accordingly, the vital signs data can be accumulated over a plurality of days and a plurality of scans at various times each day, then stored in non-volatile manner with the device 104 so the data does not get lost.
- the vital signs data can also be backed up to a computer, a storage device, or storage server so it is not lost if the device 104 is lost or stolen.
- the storage server having greater storage may also be used to accumulate ones user data over a plurality of years when the device 104 is limited by its built-in storage capacity.
- the vital signs scanning system 100 forms an electrical circuit 150 with the user's body 101 .
- the circuit 150 is formed between first and second electrodes of the portable wireless vital signs scanner 102 . From a first electrode of the scanner 102 , the circuit 150 is made with the fingers 111 , the hand 112 , the arm 113 , the chest 114 , the neck 115 , and the head 116 of the user's body 101 to a front electrode.
- the portable wireless vital signs scanner 102 forms an electrical connection to the forehead/temple portion of the head 116 of a user's body 101 .
- Fingers 111 not only serve to hold the scanner 102 , but also as one contact point for one-lead ECG (the other one-lead ECG contact point is forehead/temple).
- the thumb finger 111 in one embodiment and the index finger in another embodiment forms an electrical connection with the portable wireless vital signs scanner 102 .
- the vital signs scanning system 100 may optionally include a personal computer 150 in wireless communication with the portable wireless vital signs scanner 102 over an alternate or additional wireless communication channel 103 B.
- FIG. 1B a perspective view of a user's fingers 111 A- 111 B squeezing the vital signs scanner 102 is shown.
- the vital signs scanner 102 is squeezed between the user's fingers to form at least one electrical connection.
- the front side sensors and a front electrode in the vital signs scanner 102 are then pressed against the user's forehead/temple to form an addition electrical connection.
- the small size 60 mm ⁇ 60 mm ⁇ 18 mm allows the scanner 102 to be held by just two fingers of one hand. At a weight of approximately 60 g, the scanner 102 may be used by just about any person, from a child to the very elderly.
- the scanner 102 is held between the thumb 111 B and forefinger 111 A of the user's left hand.
- the forefinger 111 A may also rest over a sensor 121 and forms an electrical connection to an electrode around the sensor in one embodiment.
- the thumb finger 111 B makes contact with a bottom electrode 122 B.
- the thumb of the left hand couples to the bottom electrical contact (electrode) on the bottom-housing portion of the scanner.
- the forefinger makes contact with a rectangular glass plate over an oximeter sensor 121 in one embodiment.
- the oximeter sensor 121 is moved to the front side of the vital signs scanner 102 so that extraneous light is less likely to interfere with the its readings.
- a front side electrode 122 F makes contact with the user's forehead or temple, when it is pressed up against his/her head.
- An infrared (IR) thermometer sensor is combined with the front side electrode 122 F.
- the IR thermometer sensor makes temperature readings at the user's forehead/temple.
- An oximeter sensor may also be located near the front side electrode 122 F.
- a circuit may be formed through the finger and the hand of the user and a portion of his body back to the front side electrode 122 F in the vital signs scanner 102 .
- a scan button is selected in the software application 140 of the device 104 to command the scanner to scan the vital signs from the user's body and forward them to multifunction device 104 .
- the initial window 140 I includes an instruction area 145 with instruction text 146 T and an instruction FIG. 146F to show the user how the vital signs scanner 120 is utilized. As indicated by the instruction text 146 T, the user is to hold the device to the user's left temple for the best scan.
- the initial window 140 I further includes a scan button 161 , a scan settings button 164 , and a scan preferences icon button 163 .
- the scan button 161 may be a button or a swipe to take the user to the next screen or scanning window.
- the scan preferences button 163 can set up options that are available in the vital signs scanning application 140 .
- the vital signs scanning application 140 includes an option to enter the user's symptoms by selecting the symptoms entry button 171 .
- a photo may also be taken of the medical condition of a user by use of a camera in the device 104 and a photo entry button 175 . Additionally, a user may add a note using an add note button 173 .
- the status of the scanner 102 may also be displayed in one or more of the user interface windows of the vital signs scanning application 140 .
- the scanner 102 can collect a diverse set of physiological information (e.g., vital signs) during one or two acquisition periods totaling approximately sixty seconds (head scan, extended head scan, and/or chest scan).
- physiological information e.g., vital signs
- FIG. 1D a diagram of an exemplary vital signs scanning system with the scanner held at the chest position is illustrated.
- vital signs are first acquired from a first 10-second scan at the forehead/temple as shown in FIG. 1A .
- Vital signs may the further be acquired by secondary scans.
- a longer or extended scan at the forehead/temple with the scanner 102 may be used to capture sensor data as shown in FIG. 1A during a second scanning period.
- a subsequent scan conducted near the chest of the user may be performed with the scanner 102 during another scanning period, such as shown in FIG. 1D .
- a secondary extended scan at the forehead may be over a range of time from about thirty seconds up to a minute so that measures of heart rate variability and respiration rate may be obtained.
- the secondary extended scan at the forehead/temple can also provide for a more robust and accurate measurement of blood pressure.
- the primary and secondary scans at the forehead may occur in one single scan (e.g., 10-second or 30-second) or two separate scans (e.g., a first at 10 seconds and then a second at 30 seconds).
- the secondary extended scan near the chest is mainly to capture vital signs of respiration rate and additional physiological information from the captured body sounds.
- the vital signs scanned at the chest area may also include heart rate variability.
- the secondary extended scan near the chest may last for a period from thirty seconds to a minute.
- the vital signs scanning application executed on the multifunction device 104 may prompt the user for one or both scan locations.
- an exemplary secondary scan selection window 140 S is illustrated being displayed in the touchscreen of the device 104 .
- the exemplary secondary scan selection window 140 S displays instructional text 341 to select user interface buttons displayed below to selectively perform a second and/or third scan or not.
- a second or third scan button 342 may be selected or a finger swipe gesture may alternatively be used to select to perform the second scan or the third scan at the chest of the user.
- a skip button 344 may be selected to avoid the secondary scans. This may be because its inconvenient due to timing or to perform against ones chest with the vital signs scanner, such as when it is inconvenient to do so in public.
- a chest scan may be performed with the scanner 102 as shown by FIGS. 1D, 1E, and 1F , for example.
- a second circuit 150 ′ may be formed with the users body 101 between the electrodes of the scanner 102 .
- the second circuit 150 ′ in this case includes the chest 114 , the arm 113 , the hand 112 , and the finger 111 of the user.
- another circuit 150 ′′ may be formed with the users body between the electrodes of the scanner 102 while the device 104 is nearby.
- This alternate circuit 150 ′′ is formed by fingers on different hands coupling to the electrodes of the scanner 102 .
- a left finger 111 L may couple to a bottom or top electrode in the scanner 102 .
- a right finger 111 R may be coupled to the front electrode of the scanner 102 .
- the circuit in the body includes, the left finger 111 L, the left hand 112 L, the left arm 113 L, the chest 114 , the right arm 113 R, the right hand 112 R, and a right finger 111 R, such as shown in FIG. 1G , to complete a circuit with the scanner 102 .
- the ECG circuitry in the scanner 102 may then obtain further data regarding heart activity of the user that can be combined/fused with the heart activity data of a first scan, to improve the measure of vital signs of heart activity.
- the vital sign measures of heart activity may then be sent to the device 104 for display to the user on its built-in touchscreen display.
- Temperature of the body adjacent the user's chest 114 may also be used by the scanner to improve scanning results of temperature.
- Temperature at the user's finger 111 R may also be used by the scanner to improve scanning results of temperature.
- an accelerometer in the scanner 102 may be used to capture movement of the chest as a measure of respiration rate.
- the vital signs data from these measures are computed by the processor 840 and then sent to the device 140 .
- FIGS. 1E and 1F illustrate the use of the microphones 875 in the scanner 102 to capture body sounds around the chest 114 , such as heart sounds 155 and lung or breathing sounds 157 . These body sounds may be recorded to capture another symptom of a user's medical condition. Body sounds that are captured may also be used to judge the quality of the vital signs scanning process. The recorded body sounds may be stored locally in the memory of the scanner and/or sent to the device 140 for storage with the vital signs data of the same time and date.
- the portable wireless multifunction device 104 includes a text screen 202 , at least one function button 206 , and a power button or switch 207 .
- the multifunction device 104 may display a plurality of application icons on the touch screen 202 . One of these icons may be the vital signs scanning application software icon 140 .
- the portable wireless multifunction device 104 may be a smart phone, a tablet computer, a portable music player, or a wireless portable storage device, for example, that include a processor, a touch screen, and a memory from which application software instructions may be executed.
- the portable wireless multifunction device 104 includes a touch screen monitor 202 , one or more wireless radio transmitters-receivers (wireless radios) 204 A- 204 M coupled to their respective antenna 205 A- 205 M, a processor 206 , non-volatile memory 208 , at least one function button 206 , and a cover button 207 that can switch power on to each electronic circuit within the portable wireless multifunction device 104 .
- wireless radios 204 A- 204 M are compatible with the wireless radio in the wireless vital signs scanner 102 .
- the portable wireless multifunction device 104 may further include a camera 214 , a microphone 215 , and a speaker 216 coupled to the processor 206 as shown. Furthermore the portable wireless digital device includes a battery 210 coupled to the power button 207 . Typically the battery 210 is a rechargeable battery such that an external power source may be coupled thereto via an external power connector 211 and a charge circuit 209 .
- Non-volatile memory 208 of the personal wireless digital device may store the vital signs scanning application software 140 and data 220 related to the vital signs scan application software.
- the processor 206 can read and write to the non-volatile memory such that the vital signs scanning application software can provide a user interface to a user via the touch screen display device 202 .
- the initial vital sign scanning window 140 I may be provided as shown in FIG. 1C .
- the camera 214 of the portable wireless digital device 104 may take photographs of a user's conditions or symptoms via the photograph entry button 175 of the user interface. The photographs may be stored as part of the data 240 in the non-volatile memory.
- the microphone 215 in the portable wireless multifunction device 104 may optionally be used to capture body sounds similar to the microphones in the scanner 102 , as is shown in FIGS. 1E-1F .
- the speaker 216 of the portable wireless digital device 104 may optionally be used to provide audible user feedback to the user of the vital signs scanner 102 to improve the vital signs scan quality as is discussed herein.
- an exemplary scanning window 140 A is shown being displayed by the touch screen display device 202 of the portable wireless multi-function device 104 .
- the scanning application software 140 generates the various images consisting of a scanning progress bar 310 , a scanning icon 312 , a first vital signs graph 314 A, a second vital signs graph 314 B, one or more result buttons 320 , and one or more status icons 324 .
- the status icon 324 may be a wireless connection status icon indicating that the portable wireless digital device 104 is connected to the vital signs scanner 102 .
- the button 320 may be a results button to which to switch to another scanning window/screen of a user interface provided by the scanning application software 140 .
- the scanning icon 312 may include the plurality of color bars 312 A- 312 E that randomly vary in color and length to indicate that scanning is occurring.
- the scanning progress bar 310 illustrates the progress of the scanning session being performed by the portable wireless vital signs scanner 102 . In this case data is being sent from the scanner 102 to the portable wireless multifunction device 104 .
- the initial window 140 I includes a user menu button 162 that may be used to display a users menu on how to operate the vital signs scanner.
- the initial window 140 I may further include a graph button 165 to plot prior scan data stored in the device 104 and display it as graphs in a window.
- the first vital signs graph 314 A may be an electrocardiogram (ECG) graph to illustrate the electrical activity of the user's heart where heart rate and other diagnostic features can be obtained. This waveform is captured by the scanning process of the portable wireless vital signs scanner 102 .
- the second vital signs graph 314 B may be a photoelectric plethysmogram (PPG) display from the data obtained by the pulse oximeter that captures a user's blood volume pulse of both oxygenated and deoxygenated blood. From the photoplesmography waveforms (oxygenated and deoxygenated) a user's oxygen saturation can be obtained.
- ECG electrocardiogram
- PPG photoelectric plethysmogram
- the exemplary scanning results window 140 B is shown being displayed by the touch screen display device 202 .
- the exemplary scanning results window 140 B may be generated by the user after selecting the results button 320 shown in FIG. 3A .
- the scanning results window 140 B includes a plurality of vital signs icons 333 A- 333 E, a plurality of associated measurements 332 A- 332 E, and a plurality of associated vital sign text 331 A- 331 E.
- the vital signs 331 A- 331 E indicated may be heart rate, breathing rate, temperature, blood pressure, and oxygenation.
- the associated vital signs icons 33 A- 33 E may be a heart icon, a breathing icon, a thermometer icon, a blood pressure icon and an oxygenation icon respectively.
- the actual measurements captured during the scanning process are illustrated by the numeric number values 332 A- 332 E.
- the heart rate of 109 is shown near the heart icon 333 A and the heart rate text 331 A.
- Numeric values 332 A- 332 E may be the average measurements captured during the scan that was immediately performed recently.
- the measurements 332 A- 332 E are illustrated near their respective icons 333 A- 333 E and the respective text indicating the vital sign that was measured.
- the results of the scan are typically automatically saved. However, a function button may be required to delete those scan results from the wireless portable multi-function device 104 or alternately a button to upload those results to a storage server.
- FIG. 3D is an illustration of an exemplary window of the vital signs scanning application on the portable wireless device.
- the vital signs scanning application 140 is prompting the user to select a second scan.
- a second scan may be selected by touching scan virtual button 342 or using a finger gesture on the touch screen.
- a third scan may also be selected after the second by touching scan virtual button 342 or using a finger gesture on the touch screen.
- the third scan may be performed at the chest region to measure respiration rate and collect body sounds.
- the user may desire to skip a secondary scan by touching a skip scan virtual button 344 .
- a temperature averaging window 140 C is shown being illustrated in the touch screen 202 by the scanning application software 140 . This may be displayed as a result of selecting the graph button 165 of the initial scanning window 140 I.
- the temperature averaging window 140 C could include a textual heading 400 illustrating the types of graph that are plotted below.
- the textual heading 400 may recite “seven-day average” to let a user know that one or more seven-day average graphs are being displayed below.
- the portable vital signs scanner 102 may be used periodically throughout a 24-hour period each day. The seven day average may look back over a seven day window and time, plotting an average curve 401 A, a maximum curve 401 M, and a minimum curve 401 S.
- the vital sign measurements are plotted on the Y-axis 411 and a time as the time of day on the X-axis 410 .
- the portable wireless vital signs scanner 102 is expected to be used daily at multiple times during a day. In this, manner the vital signs of the user are captured periodically during the day by the vital signs scanner 102 and the personal portable wireless device 104 of the scanning system 100 .
- the maximum curve 401 M and the minimum curve 401 S may be illustrating plots of the maximum value and minimum values over all scans that were previously performed.
- the time of day axis 410 illustrates periodic time values during the span of a 24-hour day. In one embodiment, the far most right point of the curves represents the given time of day 415 of a sliding window.
- the time axis is fixed and the curve 401 A grows from left to right during the time period as scans are made and time actually progresses.
- the scan points 420 A- 420 N are illustrated along the average curve 401 A.
- the scan points 420 A- 420 N may represent actual scans during the day or some measure of average during the preceding seven-day period.
- Interpolation lines 421 A- 421 M may be inserted between each scan point to show a trend line of how the vital sign that is measured varies during times of the day. For example, scanning point 420 J may represent a scan that took place between 4:00 and 7:00 pm and how the body trends towards that during that time of day.
- the illustrated seven day average graph illustrated in FIGS. 4A-4B shows a body temperature graph. This is for illustration purposes only.
- the vital sign measurement curves could be temperature curves, blood pressure curves, oxygenation curves, heart rate curves, breathing/respiration rate curves, for example, that represent measurements that are scanned by the vital signs scanner 102 .
- FIG. 5A-5E a plurality of prognosis windows 140 D- 140 H are illustrated.
- the heart rate prognosis window is shown.
- the temperature prognosis window 140 E is illustrated.
- a breathing rate prognosis window 140 F is illustrated.
- a blood pressure prognosis window 140 G is illustrated.
- a blood oxygenation window 140 H is illustrated.
- each prognosis screen 140 D- 140 H may include a navigation bar 502 , one or more function buttons 503 , a vital signs icon 504 , a return button 505 , a conditions indictor 506 , a vital signs indicator 507 , a measurements value indication 508 , and a vital signs bar 510 .
- the navigation bar 502 may allow a user to navigate the various screens of the vital signs application scanning software 140 . For example, a scan screen icon/button 521 may be provided to jump to the scanning screen. A prognosis screen icon/button 522 may be provided to jump to the prognosis screens 140 D- 140 H.
- the vital signs bar 510 may be provided to navigate through the various vital signs prognosis windows/screens 140 D- 140 H as well as providing a snapshot of the values of each of the vital sign measurements.
- the vital signs bar 510 includes a measurement value indicator 512 and a vital signs icon 511 for each of the vital signs that are scanned and captured by the vital signs scanning system 100 .
- the return button 505 may be used to return to the previous screen that was displayed by the user interface of the scanning application software 140 .
- the function button 503 may be an add a note button to add text about a user's condition or circumstances under which a scan was taken.
- the vital signs icon 504 indicates at a glance what prognosis window is being displayed.
- the conditions indictor 506 for each prognosis screen will provide an indication of the most recent scan in comparison with an expected average value for a given user. For example, a temperature's vital sign is illustrated in FIG. 5B as having the condition indication of high due to a measured value of 101° F.
- the measurement indicator 512 and the vital signs icon 511 may be highlighted to indicate which prognosis screen is being illustrated at a glance.
- the wireless vital signs scanner 102 includes a front electrode 610 , and a front sensor 612 on a front side.
- the front electrode 610 is pressed against the user's forehead/temple, preferably at the temple, in order for the scanner 102 to make an electrical connection to the body of the user.
- the scanner 102 a top sensor window 621 and a top electrode 622 are provided in the topside of the scanner 102 .
- a top sensor 121 may be located underneath the top sensor window 621 to obtain a vital signs measurement from a user's finger that may be pressed on top of the window 621 .
- a top electrode 622 may be used to form an electrical connection to a user's finger and complete a circuit of the user's body such as illustrated in FIG. 1A .
- the housing 600 of the vital signs scanner 102 may generally be circular shaped and include a circular top housing 620 G, a circular bottom housing 620 B, and a hollow cylindrical surface 620 S.
- the side cylindrical ring 620 S may be concave, or convex over a portion of the surface.
- the cylinder side surface 620 S may be a toroid shape over a portion of its body.
- FIG. 6B a top back perspective view of the wireless vital signs scanner 102 is illustrated.
- the wireless vital signs scanner 102 illustrate various aspects of the invention in the side cylindrical surface 620 S.
- the wireless vital signs scanner 102 includes a power button 613 , a serial port connector 614 , an optional wireless connection LED 618 , and a power light-emitting diode 616 .
- the power button 613 may be pressed to power the wireless vital signs scanner 102 on.
- the serial port connector 614 may be a micro universal serial bus connector to allow a micro USB cable to plug thereto.
- the micro USB port may provide an external power source to charge the rechargeable battery within the wireless vital signs scanner 102 and also may serve as a wired data port for updating firmware or transferring data to a computer or storage device.
- the optional wireless connection light-emitting diode 618 provides a visual indicator that the wireless vital signs scanner 102 is coupled to the wireless personal portable multi-function device 104 over its wireless communications channel 103 A as illustrated in FIG. 1A .
- the power light-emitting diode 616 provides an indicator that the wireless vital signs scanner is powered on by the power button 613 .
- a vital signs wireless scanner 102 ′ is illustrated having a generally diamond shaped body housing 620 .
- the housing top 620 T and the housing bottom 620 B generally have a diamond or a square shape to match that of the side cylindrical surface 620 S.
- the top or bottom housing portion 620 T may each include a gripping surface 624 with corrugations or channels so that a user may comfortably and securely hold the wireless vital signs scanner 102 ′.
- the gripping surface 624 may be formed of a conductive material to aid the top and or bottom electrodes in forming an electrical connection to a user's body.
- the wireless vital signs scanner 102 ′ includes the front electrode 610 and front sensor 612 .
- the electrode 622 and the gripping surface 624 are illustrated in the top housing 620 T, they may also be implemented in the bottom housing portion 620 B instead of the top. Instead of an index finger making a connection with a top electrode 622 , a thumb finger may couple to a bottom electrode (not shown) to provide a larger surface area contact to the body in the bottom housing portion 620 B.
- the exterior components of the wireless vital signs scanner 102 are formed of parts that can be wiped clean by a damp towelette or a disinfecting wipe. In this manner, the scanner 102 may be shared by users in a family with less worry about spreading bacteria and germs. Each user may have a personal profile or preferences stored in the scanning software application 140 .
- the wireless vital signs scanner 102 includes a main printed circuit board 701 A and a daughter printed circuit board 701 B coupled perpendicular to the main circuit board 701 A. Because the scanner 102 is wireless, it includes a rechargeable battery and a connector port to which a cable may connect to recharge the battery. Preferably the battery may be charged in an hour or less. If the scanner 102 is used a few times a day, the charge of the rechargeable battery may last about a week.
- the main print circuit board 701 A, the daughter printed circuit board 701 B, and the rechargeable battery form an electronic sub-assembly 701 .
- the electronic sub-assembly 701 is inserted into a housing 702 of the vital signs scanner 102 .
- the sensors on the front daughter board 701 B are aligned into a front sensor opening 710 in the side housing ring 702 C of the housing 702 .
- a ribbon cable 720 electrically connects the front daughter board 701 B to the main print circuit board 701 A.
- a sensor 812 in the front daughter board 701 B includes electrical leads that are coupled to the main printed circuit board 701 A.
- the main printed circuit board 701 A is inserted into the housing ring 702 C so that a serial bus connector 612 aligns with the connector opening 722 and the front sensor 812 is aligned into the front sensor opening 710 .
- a top/bottom electrode 806 B covers over an opening 704 and is electrically coupled to the main printed circuit board 701 A and an ECG circuit mounted thereto.
- the housing 702 of the wireless vital signs scanner 102 includes a top housing portion 702 T with a top electrode 806 B, a side housing ring 702 C, and a base housing portion 702 B.
- the orientation of the housing 702 for the scanner 102 may be altered such that the housing base 702 B becomes the housing top 702 T and the housing top 702 T becomes the housing base 702 B with a bottom electrode 806 B to couple to a thumb. Electrodes may also be in both the housing base 702 B and the housing top 702 T to provide a lower resistive coupling to the user's body.
- the top housing portion 702 T includes a microphone opening 717 T and a plurality of posts 725 and an electrical sensor opening 704 .
- the housing base 702 B may include a microphone opening 717 B and a plurality of pillars 726 that can interface to the posts 725 when the housing is assembled together about the printed circuit boards.
- the wireless vital signs scanner further includes a front cover 711 to fill in the front sensor opening 710 in the side housing ring 702 C.
- the front side cover 711 includes a plastic cover portion 712 and a front electrode portion 727 with a lens 715 transparent to thermal wavelengths to allow the sensor 812 beneath it to capture a measure of temperature.
- the plastic cover 712 is also transparent to various wavelengths of light that are used by the vital signs sensors.
- the front electrode portion 727 of the front cover 711 is formed of a conductive material, such as stainless steel metal, to form a circuit when pressed up against the user's body at the forehead/temple, finger, chest or elsewhere.
- the shape of the front electrode 727 can vary with the shape of the wireless vital signs scanner 102 .
- the side housing ring 702 C includes one or more LED openings 712 to receive the power light-emitting diode 616 and the optional wireless connection light-emitting diode 618 .
- the side housing ring 702 C further includes a power button opening 723 through which the power button 613 may extend.
- FIG. 7B illustrates a partially assembled wireless vital signs scanner 102 .
- the front daughter printed circuit board 701 B includes a slot opening 721 .
- the slot opening 721 may be used to receive a shade 708 that separates the LEDs 808 A- 808 B from the photo diode 810 .
- the shade 708 deters light emitted by the LEDs 808 A- 808 B from directly being impinged onto the photo diode 810 .
- the wire (not shown in FIG. 7B ) from the front electrode 727 may inserted through the opening 706 and then coupled to the main PCB and the ECG circuit.
- the front cover 711 can then assembled to cover over the front opening in the side housing ring 702 C of the housing.
- the daughter printed circuit board 701 B is arranged to be substantially perpendicular with the main printed circuit board 701 A.
- the front cover 711 includes a transparent cover portion 712 and a metallic conductor portion 727 , and the lens 715 .
- the transparent cover portion 712 covers over one or more light-emitting diodes 808 A- 808 B generating various wavelengths of light, and a photo diode 810 that receives various wavelengths of light.
- the light generated by the light-emitting diodes 808 A- 808 B is shined onto the user's forehead and reflected back to the photo diode 810 .
- Light with known time periods may be generated by the light emitting diodes (LEDs) 808 A- 808 B with different wavelengths and radiated onto a user's forehead/temple.
- the reflection is detected by the photo diode 810 to form an electrical signal that is analyzed.
- a measure of oxygenation in the blood stream may be generated.
- the front side cover 711 includes the transparent lens 715 with a center aligned into the optical axis of the front side sensor 812 so that additional vital signs measurement may be made from the forehead/temple of the user.
- An opening 706 in the daughter board 701 B allows a wire to pass through from the front electrode 727 and be coupled to a wire trace on the main PCB that is coupled to the ECG circuitry mounted thereto.
- the metallic electrode portion 727 of the front side cover 711 makes an electrical contact to the forehead/temple or other body portion of the user.
- An insulating ring 736 under the electrode portion 727 of the front side cover may be used to isolate any metal of the infrared thermometer 812 from the electrode portion 727 .
- FIG. 8A illustrates a functional block diagram of electronic circuitry 800 within the portable wireless vital signs scanner 102 .
- the personal portable wireless vital signs scanner 102 associated with a given user profile stored in the user data of the wireless personal multifunction device 104 .
- the wireless communication channel 103 A between the scanner 102 and the multifunction device 104 may be a secure connection with information passed between each.
- the devices are typically paired to each other by a code so that no other wireless device may utilize the wireless communication channel 103 A.
- a different wireless communication channel 103 B may be generated between the vital signs scanner 102 and a personal computer 150 , for example.
- Each of the wireless communication channels 103 A, 103 B may be a Bluetooth communication channel, for example, in which case the signal strength between each over a Bluetooth communication channel is relatively short with a limited distance over a range between zero and twenty-five feet, for example.
- electronic circuitry 800 of the portable wireless vital signs scanner 102 includes a processor 840 at the heart of the system.
- the processor 840 may be a reduced instruction set processor operating with embedded operating system software.
- the processor is an ARM processor operating with MICRIUM's embedded real time operating system (RTOS).
- a wireless radio 870 is coupled to the processor 841 .
- the wireless radio 870 is coupled to an antenna 871 that could be internal, as part of an overall radio system, or external to the wireless radio 870 .
- An optional light emitting diode 848 is coupled to the wireless radio to indicate a successful pairing with the personal portable wireless digital multifunction device 104 .
- the electronic system 800 includes an infrared thermometer 812 , an accelerometer 885 , a pulse oximetry sensor and a pulse oximetry circuit 880 , and analog electrocardiogram circuitry 860 .
- Coupled to the electrocardiogram circuitry 860 is the bottom or top electrode 806 B, the front electrode 711 , bottom/top electrode connection, and the front electrode connection 806 F. As shown in FIG. 1A , a portion of a human body is coupled to the front electrode 711 and the top/bottom electrode 806 B to form a circuit.
- the pulse oximetry circuit 880 is coupled to a pair of light emitting diodes 808 A- 808 B. Each of these emit light patterns that are reflected off of the user's forehead/temple internally. The reflected light is captured by a photodiode 810 and coupled to the circuit 880 . That is, incident light 891 from the light emitting diodes 808 A- 808 B reflects internally off the user's head 116 as reflective light 892 which is received by the photodiode (PD) 810 .
- PD photodiode
- the infrared thermometer 812 detects the surface temperature of a use's forehead/temple (or elsewhere) by measuring thermal radiation (referred to as Blackbody radiation) 813 emanating from the head 116 (or other body portion to which the scanner is pressed) of a user.
- thermal radiation referred to as Blackbody radiation
- a rechargeable battery 850 and a voltage regulator and battery charge controller 854 are coupled together into the circuits in the system 800 when the switch 852 is closed.
- the battery charge controller 854 is coupled to power pins of a serial connector 856 to receive an external DC voltage supply.
- the external voltage supply may be used to recharge the battery and power the system 800 when it is connected.
- the rechargeable battery 850 may hold a charge for a period of seven days, even while scanning multiple times during each day, due to the low power consumption of the circuitry and the limited period of time needed to perform a scan of the vital signs of a user. That is, the vital signs scanner 102 is not expected to be continuously powered on during a day, but powered up periodically to perform the scans as needed.
- the processor 840 may include a processor memory 841 to store system instructions to control the circuitry in the system to obtain the scans and process the information obtained through those scans into a proper user format.
- a nonvolatile memory 844 is coupled to the processor 840 .
- the nonvolatile memory 844 may be soldered to a printed circuit board with the processor 840 .
- a connector 845 is provided so that the nonvolatile memory 844 is a removable memory card so that a user's data may be transferred from one scanner to the next, if needed.
- a power LED 851 may be coupled to the processor 840 to provide an indication that the electronic system 800 is powered up.
- the system can be manually shut down via the scanning software application 140 so that the scanner 102 powers off. However, the scanner 102 can also automatically shut off after a predetermined period of time to conserve power and a charge on the rechargeable battery 850 . The user then just needs to press the power switch 852 , once again, to turn the system back on and scan for vital signs of a user.
- the processor 840 includes one or more analog digital convertors 842 in order to receive analog signals from the infrared thermometer 812 , accelerometer 885 , pulse oximetry circuits 880 , and ECG analog circuits 860 .
- Electronic system 800 may further include a stereo microphone 875 consisting of a top microphone 875 T and a bottom microphone 875 B each coupled to a stereo microphone amplifier 874 .
- the stereo microphone amplifier may have its own analog to digital converter, or the processor's analog digital convertor 842 may be used to convert analog signals into digital signals. For example, an ECG analog signal may be converted into digital signals with the analog digital convertor 842 of the processor.
- the stereo microphone 875 captures audio signals near the wireless vital signs scanner 102 .
- the accelerometer 885 captures movement of the portable wireless vital signs scanner 102 .
- the combination of the audio information and the movement information may be utilized to determine the quality of the scanning information being obtained by the vital signs capturing circuitry.
- the stereo microphone 875 may be used to capture noise from a user talking and plot that on a graph indicating noise spikes, or noise lines 330 , such as shown in FIG. 3A . This provides feedback to a user about the quality of the scan at these intervals.
- the accelerometer 885 and the motion information may be similarly used to make a judgment about the quality of the vital signs scanned information being captured by the vital signs circuitry of the infrared thermometer 812 , the pulse oximetry circuits 880 , and the ECG analog circuits 860 .
- the microphones 875 in the portable wireless scanner 120 may also be used to capture body sounds such as shown in FIGS. 1E-1F and store the captured body sounds in memory 844 to improve vital sign measurements or as a potential symptom of a medical condition of the users body.
- heart beat sounds 155 may be captured by the microphones 875 when the scanner 102 is positioned against skin of the chest 114 near ones heart 156 , as is illustrated in FIG. 1E .
- lung or breathing sounds of air entering and exiting ones lungs, respiration sounds 157 may be captured by the microphones 875 when the scanner 102 is positioned against skin of the chest 114 near a lung 158 in ones body, as is illustrated in FIG. 1F .
- scan quality algorithm monitor the vita signs scanning process and can provide feedback (visual and/or audible) to the user, such as through the multifunction device 104 .
- An optional audible sound generator 847 in the scanner 102 may be coupled to the processor 840 to provide audible user feedback to the user during the scanning process.
- the user feedback may help the user to perform better vital signs scan with the wireless vital signs scanner 102 and acquire a higher quality of vital signs measurements.
- the audible sound generator 847 may generate alert sounds indicating when the scanning process begins and ends. It may also generate an error signal indicating to the user that he is not properly using the scanner 102 and look for instructions on the device 104 .
- FIG. 8B a sketch of the electronic circuits 800 is shown mounted onto the main printed circuit board 801 A and the daughter printed circuit board 801 B.
- FIG. 8B also illustrates alternate locations for electronic circuits in the system 800 for alternate embodiments of the vital sign scanners 102 , 102 ′.
- a slot 803 in the daughter printed circuit board 801 B receives a shade device 708 .
- Light emitted by the LEDs 808 A- 808 B is shaded by the shade device 708 so that it may not directly impinge onto the photo diode 810 in the daughter PCB 801 B. Reflected light, reflected off the user's body, is desirable to be captured by the photo diode 810 .
- Wire leads 830 of the IR sensor 812 and the front electrode contact 806 F are coupled to pads 831 of the main printed circuit board 801 A.
- First and second LEDs 808 A- 808 B and the photodiode 810 are coupled to connector 821 by conductive traces 819 B on the daughter printed circuit board 801 B.
- the main printed circuit board 801 A has a plurality of wire traces 819 A coupling circuits mounted thereto together.
- the daughter printed circuit board 801 B includes a plurality of traces 819 B coupling circuits mounted thereto to connector 821 .
- a ribbon cable 820 is used to couple signals between the daughter memory card 801 B and the main printed circuit board 801 A for the oximetry circuit 880 .
- the oximetry electronic circuit 880 is coupled between the connector 822 and the processor 840 on the main printed circuit board 801 A.
- One set of one or more wire traces 819 A couple the oximetry electronic circuit PPG 880 to the connector 822 .
- Another set of one or more wire traces 819 A couple the oximetry electronic circuit PPG 880 to the processor 840 .
- the oximetry circuitry may be moved to the opposite side as the oximetry electronic circuit PPG 880 ′ coupled between the processors 840 and the LEDs 808 A′- 808 B′, IR photodiode 810 ′ and mounted in the top portion of the housing.
- the bottom or top electrode 806 B is formed of stainless steel to provide a good connection to either a thumb finger or an index finger.
- the electrode 806 B is coupled to a connector 823 and to the ECG circuitry 860 on the main printed circuit board 801 A.
- the main printed circuit board 801 A includes the processor 840 , the wireless radio 870 , the microprocessor memory 841 (either internal or external as shown mounted to the printed circuit board), an accelerometer 885 , an amplifier 874 , oximetry circuitry 880 , 880 ′, user memory 844 , and battery charge circuit 854 .
- Top and bottom microphones 875 T and 875 B extend out from the main printed circuit board 801 A by ribbon cables so that they may be mounted into the respective openings in the housing top and housing bottom.
- the microphones 875 T, 875 B may be coupled to the amplifier 874 which in turn may couple audio signals into the microprocessor 840 .
- Mounted to the main printed circuit board is the power LED 851 and the connection LED 848 .
- a power on/off switch 852 coupled to the voltage regulator battery charge circuit 854 to signal for it to turn power on or off to components with the scanner 102 .
- mounted to the main printed circuit board 801 A is a serial connector 856 coupled to the microprocessor.
- the serial connector 856 is a micro universal serial bus connector.
- An optional audible sound generator 847 may be mounted to the main PCB 801 A and coupled to the processor 840 as shown. To avoid interference, the sound generator 847 may be positioned away from the microphones 875 .
- Main printed circuit board 801 A includes a plurality of openings 826 that receive the pillars 725 , 726 of the housing top 702 T and housing base 702 B.
- the daughter printed circuit board 801 B includes a connector 821 , light emitting diodes 801 A- 801 B, and a photodiode 810 mounted thereto.
- the IR sensor 812 is inserted through a hole in the daughter PCB 801 B, attached thereto with an adhesive, and supported thereby.
- the front electrode 806 F around the IR sensor 812 is attached with an adhesive to the daughter PCB 801 B for support.
- the ribbon cable 820 couples signals of the light emitting diodes 801 A- 801 B and the photodiode 810 regarding oximetry between the daughter board 801 B and the main printed circuit board 801 A for the oximetry circuit 880 .
- signals of the IR sensor 812 regarding temperature are coupled into the processor 840 .
- signals of the ECG circuit 860 to measure heart activity may be coupled into and out of a users body.
- the personal portable wireless vital signs scanner integrates a plurality of sensors and a controller/processor together to synchronously obtain a plurality of vital signs at different times during a users day.
- the vital signs scanning device has a relatively low production cost.
- the low costs of production of the vital signs scanner can allow lower retail pricing and higher volume of sales, enabling an average consumer to afford the vital signs scanning system to personally scan and monitor trends of their vital signs for as an important part of preventive medical care of their own bodies.
- FIG. 9 a diagram illustrating an exemplary hierarchy of windows provided by the scanning application software 140 is illustrated.
- the scanning application software 140 executed by a processor provides a user interface hierarchy of the scanning user interface windows.
- a scanning login window 140 L may be generated by the scanning application software 140 where a user inputs his login identification and password to gain access to personal vital signs scan data stored in the device 104 . If the user is new, the login window 140 L may have a new user button 940 U that jumps to a profile window 140 P that is displayed to the user.
- the new user may input his login user ID 9401 and password 940 P that he desires to use with the scanning software application to identify his personal vital signs scan data.
- Other information such as sex, height, weight associated with a time and date may be entered by the user.
- the user may update this information in the profile so that the vital signs scanning system better knows what conditions might occur for the given user.
- the login and profile windows can also allow the scanning system to be shared with other users in a family. After logging in with user ID and password, the scanning system application may display the initial scanning window 140 I.
- Each of the windows of the vital signs scanning application may be navigated by pressing one or more virtual graphical buttons 940 B, 940 N (e.g., back, next) and/or making one or more finger gestures 940 F (e.g., up/down, left/right) dragged across a touch screen.
- a navigation bar may be provided with navigation buttons to navigate between selected windows. For example, pressing a scan button 161 in the initial window 140 I displays the first scan window 140 A. In the results window 140 B or the second scan window 140 SS, pressing a next scan button 342 causes the next scan to be performed by the scanner 102 . Pressing another button in the initial window 140 I takes a user to an add a note window 140 FA to search and to add a note about a user's condition.
- the scanning application software can automatically display the results window 140 B. Additional buttons in the results window 140 B may be used to navigate to various graph windows 140 GW, such as the temperature graph window 140 C shown in FIGS. 4A-4B . Additional buttons in the results window 140 B may be used to navigate to various prognosis windows 140 PW such as prognosis windows 140 D- 140 H shown in FIGS. 5A-5B . In this manner, vital signs data and information can be displayed to the user in various ways.
- the scanning software application 140 includes a number of instructions and routines that are executed by a personal wireless multifunction device 104 .
- the personal wireless multifunction device 104 may include a smart phone, such as an APPLE IPHONE 5, IPHONE 4S, and SAMSUNG GALAXY S III for example, that support Bluetooth Smart. To help everyone use the device, assistive technology may be added to the scanning software application 140 .
- the significant software routines of the scanning software application 140 include a scan procedure controller based on scan quality algorithm, UI implementation, wide area network interfacing to cloud services, scan results interpretation, and trend charting.
- certain lengths, widths, and/or depths of particular components shown and described for a particular assembly provide overall geometries which may be varied by changing certain sub-sets of such dimensions, but may also be fixed relative to the ratios of these values despite the valued changing (so long as their general relationship remains).
- such dimensions of different component parts also have similar relative relationships which are similarly contemplated, also as apparent to one of ordinary skill.
- the elements of the embodiments of the invention are essentially the code segments or instructions to perform the functional tasks described herein.
- the code segments or instructions are executable by a processor, such as processor 206 , 840 , and can be stored in a storage device or a processor readable storage medium, such as memory 208 , 841 , awaiting execution.
- the processor readable storage medium may include any medium that can store information. Examples of the processor readable storage medium include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable programmable read only memory (EPROM), a floppy diskette, a CD-ROM, an optical disk, a hard disk.
- the code segments or instructions may be downloaded via computer networks such as the Internet, Intranet, etc. into the processor readable storage medium.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/351,523 US11090003B2 (en) | 2013-09-09 | 2019-03-13 | Systems for personal portable wireless vital signs scanner |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361875681P | 2013-09-09 | 2013-09-09 | |
| US201414283211A | 2014-05-20 | 2014-05-20 | |
| US16/351,523 US11090003B2 (en) | 2013-09-09 | 2019-03-13 | Systems for personal portable wireless vital signs scanner |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US201414283211A Continuation | 2013-09-09 | 2014-05-20 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20190307400A1 US20190307400A1 (en) | 2019-10-10 |
| US11090003B2 true US11090003B2 (en) | 2021-08-17 |
Family
ID=68096655
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/351,523 Active 2034-10-18 US11090003B2 (en) | 2013-09-09 | 2019-03-13 | Systems for personal portable wireless vital signs scanner |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US11090003B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210177292A1 (en) * | 2019-12-12 | 2021-06-17 | Jabil Inc. | Health and Vital Signs Monitoring Patch with Display and Making of Same |
| US11229370B2 (en) * | 2014-05-05 | 2022-01-25 | Healthy.Io Ltd. | Portable device with multiple integrated sensors for vital signs scanning |
| US11478181B2 (en) * | 2019-12-12 | 2022-10-25 | Jabil Inc. | Health and vital signs monitoring patch with display and making of same |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9179844B2 (en) | 2011-11-28 | 2015-11-10 | Aranz Healthcare Limited | Handheld skin measuring or monitoring device |
| US11087467B2 (en) | 2014-05-12 | 2021-08-10 | Healthy.Io Ltd. | Systems and methods for urinalysis using a personal communications device |
| US10991096B2 (en) | 2014-05-12 | 2021-04-27 | Healthy.Io Ltd. | Utilizing personal communications devices for medical testing |
| US10362984B2 (en) | 2015-01-27 | 2019-07-30 | Healthy.Io Ltd | Measuring and monitoring skin feature colors, form and size |
| CN107613859B (en) * | 2015-05-09 | 2021-03-02 | 株式会社村田制作所 | Hand-held electrocardiogram measuring device |
| US10013527B2 (en) | 2016-05-02 | 2018-07-03 | Aranz Healthcare Limited | Automatically assessing an anatomical surface feature and securely managing information related to the same |
| US11116407B2 (en) | 2016-11-17 | 2021-09-14 | Aranz Healthcare Limited | Anatomical surface assessment methods, devices and systems |
| WO2018185560A2 (en) | 2017-04-04 | 2018-10-11 | Aranz Healthcare Limited | Anatomical surface assessment methods, devices and systems |
| USD879837S1 (en) * | 2017-06-13 | 2020-03-31 | Maschinenfabrik Reinhausen Gmbh | Measuring instrument face with surface ornamentation |
| US11158420B2 (en) | 2019-01-02 | 2021-10-26 | Healthy.Io Ltd. | Tracking wound healing progress using remote image analysis |
| US12014500B2 (en) | 2019-04-14 | 2024-06-18 | Holovisions LLC | Healthy-Selfie(TM): methods for remote medical imaging using a conventional smart phone or augmented reality eyewear |
| US11308618B2 (en) | 2019-04-14 | 2022-04-19 | Holovisions LLC | Healthy-Selfie(TM): a portable phone-moving device for telemedicine imaging using a mobile phone |
| WO2020234653A1 (en) | 2019-05-20 | 2020-11-26 | Aranz Healthcare Limited | Automated or partially automated anatomical surface assessment methods, devices and systems |
Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5921936A (en) * | 1995-12-22 | 1999-07-13 | Colin Corporation | System and method for evaluating the circulatory system of a living subject |
| US20020026114A1 (en) * | 2000-08-30 | 2002-02-28 | Seppo Nissila | Electrode structure |
| US6409675B1 (en) * | 1999-11-10 | 2002-06-25 | Pacesetter, Inc. | Extravascular hemodynamic monitor |
| US20020128567A1 (en) * | 2000-07-06 | 2002-09-12 | Lange Daniel H. | System for delivering pain-reduction medication |
| US20020165462A1 (en) * | 2000-12-29 | 2002-11-07 | Westbrook Philip R. | Sleep apnea risk evaluation |
| US6491647B1 (en) * | 1998-09-23 | 2002-12-10 | Active Signal Technologies, Inc. | Physiological sensing device |
| US20030107487A1 (en) * | 2001-12-10 | 2003-06-12 | Ronen Korman | Method and device for measuring physiological parameters at the wrist |
| US20040167408A1 (en) * | 2002-12-06 | 2004-08-26 | Omron Healthcare Co., Ltd. | Medicine case, medicine case with blood pressure measuring function, medication management system, and blood pressure monitor |
| US20040193068A1 (en) * | 2001-06-13 | 2004-09-30 | David Burton | Methods and apparatus for monitoring consciousness |
| US20050027203A1 (en) * | 2003-07-30 | 2005-02-03 | Masahiro Umeda | Portable electrocardiograph |
| US20070100219A1 (en) * | 2005-10-27 | 2007-05-03 | Smiths Medical Pm, Inc. | Single use pulse oximeter |
| US20070276632A1 (en) * | 2006-05-26 | 2007-11-29 | Triage Wireless, Inc. | System for measuring vital signs using bilateral pulse transit time |
| US20070299322A1 (en) * | 2003-11-18 | 2007-12-27 | Sony Corporation | Input Device, Input Method, And Electronic Device |
| US20080091090A1 (en) * | 2006-10-12 | 2008-04-17 | Kenneth Shane Guillory | Self-contained surface physiological monitor with adhesive attachment |
| US20080221413A1 (en) * | 2007-03-09 | 2008-09-11 | Carine Hoarau | Multiple configuration medical sensor and technique for using the same |
| US20080243020A1 (en) * | 2005-10-08 | 2008-10-02 | Chang-An Chou | Physiological Signal Collecting And Monitoring Device And System |
| US20090171170A1 (en) * | 2007-12-28 | 2009-07-02 | Nellcor Puritan Bennett Llc | Medical Monitoring With Portable Electronic Device System And Method |
| US20100191074A1 (en) * | 2007-09-13 | 2010-07-29 | Chang-An Chou | Distributed multi-channel physiological monitoring and analyzing system |
| US20110015496A1 (en) * | 2009-07-14 | 2011-01-20 | Sherman Lawrence M | Portable medical device |
| US20110145012A1 (en) * | 2009-12-11 | 2011-06-16 | Cerner Innovation, Inc. | Generating a healthcare timeline |
| US20110191116A1 (en) * | 2008-07-24 | 2011-08-04 | Löser Medizintechnik GmbH | Method for monitoring the medical condition of a patient |
| US20120022385A1 (en) * | 2009-04-02 | 2012-01-26 | Murata Manufacturing Co., Ltd. | Electrocardiographic Signal Detection Device |
| US20120150545A1 (en) * | 2009-06-15 | 2012-06-14 | Adam Jay Simon | Brain-computer interface test battery for the physiological assessment of nervous system health |
| US8244336B2 (en) * | 2006-11-24 | 2012-08-14 | Beijing Choice Electronic Technology Co., Ltd. | Portable electrocardiograph |
| US20120245482A1 (en) * | 2010-09-16 | 2012-09-27 | Bolser Jeffrey W | Anesthesia Monitoring Device and Method |
| US20130116520A1 (en) * | 2011-09-01 | 2013-05-09 | Masoud Roham | Single and multi node, semi-disposable wearable medical electronic patches for bio-signal monitoring and robust feature extraction |
| US20130276785A1 (en) * | 2010-08-17 | 2013-10-24 | Richard J. Melker | Central Site Photoplethysmography, Medication Administration, And Safety |
| US20140051941A1 (en) * | 2012-08-17 | 2014-02-20 | Rare Light, Inc. | Obtaining physiological measurements using a portable device |
| US8782681B2 (en) * | 2007-03-08 | 2014-07-15 | The Nielsen Company (Us), Llc | Method and system for rating media and events in media based on physiological data |
| US20150148646A1 (en) * | 2013-11-27 | 2015-05-28 | Samsung Electronics Co., Ltd. | Electrode and device for detecting biosignal and method of using the same |
| US9149599B2 (en) * | 2008-04-09 | 2015-10-06 | Lotus Magnus, Llc | Brain stimulation systems and methods |
| US20150313498A1 (en) * | 2012-10-12 | 2015-11-05 | The Regents Of The University Of California | Configuration and spatial placement of frontal electrode sensors to detect physiological signals |
| US20150313484A1 (en) * | 2014-01-06 | 2015-11-05 | Scanadu Incorporated | Portable device with multiple integrated sensors for vital signs scanning |
| US20150335283A1 (en) * | 2013-12-31 | 2015-11-26 | Samsung Electronics Co., Ltd. | Electrocardiogram Watch Clasp |
| US20160000379A1 (en) * | 2014-07-01 | 2016-01-07 | Vadim Ivanovich Pougatchev | Method and apparatus for dynamic assessment and prognosis of the risks of developing pathological states |
| US9782122B1 (en) * | 2014-06-23 | 2017-10-10 | Great Lakes Neurotechnologies Inc | Pain quantification and management system and device, and method of using |
| US9808206B1 (en) * | 2013-09-09 | 2017-11-07 | Scanadu, Inc. | Data acquisition quality and data fusion for personal portable wireless vital signs scanner |
| US9841812B2 (en) * | 2012-11-02 | 2017-12-12 | Sony Corporation | Image display device and information input device |
-
2019
- 2019-03-13 US US16/351,523 patent/US11090003B2/en active Active
Patent Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5921936A (en) * | 1995-12-22 | 1999-07-13 | Colin Corporation | System and method for evaluating the circulatory system of a living subject |
| US6491647B1 (en) * | 1998-09-23 | 2002-12-10 | Active Signal Technologies, Inc. | Physiological sensing device |
| US6409675B1 (en) * | 1999-11-10 | 2002-06-25 | Pacesetter, Inc. | Extravascular hemodynamic monitor |
| US20020128567A1 (en) * | 2000-07-06 | 2002-09-12 | Lange Daniel H. | System for delivering pain-reduction medication |
| US20020026114A1 (en) * | 2000-08-30 | 2002-02-28 | Seppo Nissila | Electrode structure |
| US20020165462A1 (en) * | 2000-12-29 | 2002-11-07 | Westbrook Philip R. | Sleep apnea risk evaluation |
| US20040193068A1 (en) * | 2001-06-13 | 2004-09-30 | David Burton | Methods and apparatus for monitoring consciousness |
| US20030107487A1 (en) * | 2001-12-10 | 2003-06-12 | Ronen Korman | Method and device for measuring physiological parameters at the wrist |
| US20040167408A1 (en) * | 2002-12-06 | 2004-08-26 | Omron Healthcare Co., Ltd. | Medicine case, medicine case with blood pressure measuring function, medication management system, and blood pressure monitor |
| US20050027203A1 (en) * | 2003-07-30 | 2005-02-03 | Masahiro Umeda | Portable electrocardiograph |
| US20070299322A1 (en) * | 2003-11-18 | 2007-12-27 | Sony Corporation | Input Device, Input Method, And Electronic Device |
| US20080243020A1 (en) * | 2005-10-08 | 2008-10-02 | Chang-An Chou | Physiological Signal Collecting And Monitoring Device And System |
| US20070100219A1 (en) * | 2005-10-27 | 2007-05-03 | Smiths Medical Pm, Inc. | Single use pulse oximeter |
| US20070276632A1 (en) * | 2006-05-26 | 2007-11-29 | Triage Wireless, Inc. | System for measuring vital signs using bilateral pulse transit time |
| US20080091090A1 (en) * | 2006-10-12 | 2008-04-17 | Kenneth Shane Guillory | Self-contained surface physiological monitor with adhesive attachment |
| US8244336B2 (en) * | 2006-11-24 | 2012-08-14 | Beijing Choice Electronic Technology Co., Ltd. | Portable electrocardiograph |
| US8782681B2 (en) * | 2007-03-08 | 2014-07-15 | The Nielsen Company (Us), Llc | Method and system for rating media and events in media based on physiological data |
| US20080221413A1 (en) * | 2007-03-09 | 2008-09-11 | Carine Hoarau | Multiple configuration medical sensor and technique for using the same |
| US20100191074A1 (en) * | 2007-09-13 | 2010-07-29 | Chang-An Chou | Distributed multi-channel physiological monitoring and analyzing system |
| US20090171170A1 (en) * | 2007-12-28 | 2009-07-02 | Nellcor Puritan Bennett Llc | Medical Monitoring With Portable Electronic Device System And Method |
| US9149599B2 (en) * | 2008-04-09 | 2015-10-06 | Lotus Magnus, Llc | Brain stimulation systems and methods |
| US20110191116A1 (en) * | 2008-07-24 | 2011-08-04 | Löser Medizintechnik GmbH | Method for monitoring the medical condition of a patient |
| US20120022385A1 (en) * | 2009-04-02 | 2012-01-26 | Murata Manufacturing Co., Ltd. | Electrocardiographic Signal Detection Device |
| US20120150545A1 (en) * | 2009-06-15 | 2012-06-14 | Adam Jay Simon | Brain-computer interface test battery for the physiological assessment of nervous system health |
| US20110015496A1 (en) * | 2009-07-14 | 2011-01-20 | Sherman Lawrence M | Portable medical device |
| US20110145012A1 (en) * | 2009-12-11 | 2011-06-16 | Cerner Innovation, Inc. | Generating a healthcare timeline |
| US20130276785A1 (en) * | 2010-08-17 | 2013-10-24 | Richard J. Melker | Central Site Photoplethysmography, Medication Administration, And Safety |
| US20120245482A1 (en) * | 2010-09-16 | 2012-09-27 | Bolser Jeffrey W | Anesthesia Monitoring Device and Method |
| US20130116520A1 (en) * | 2011-09-01 | 2013-05-09 | Masoud Roham | Single and multi node, semi-disposable wearable medical electronic patches for bio-signal monitoring and robust feature extraction |
| US20140051941A1 (en) * | 2012-08-17 | 2014-02-20 | Rare Light, Inc. | Obtaining physiological measurements using a portable device |
| US20150313498A1 (en) * | 2012-10-12 | 2015-11-05 | The Regents Of The University Of California | Configuration and spatial placement of frontal electrode sensors to detect physiological signals |
| US9841812B2 (en) * | 2012-11-02 | 2017-12-12 | Sony Corporation | Image display device and information input device |
| US9808206B1 (en) * | 2013-09-09 | 2017-11-07 | Scanadu, Inc. | Data acquisition quality and data fusion for personal portable wireless vital signs scanner |
| US20150148646A1 (en) * | 2013-11-27 | 2015-05-28 | Samsung Electronics Co., Ltd. | Electrode and device for detecting biosignal and method of using the same |
| US20150335283A1 (en) * | 2013-12-31 | 2015-11-26 | Samsung Electronics Co., Ltd. | Electrocardiogram Watch Clasp |
| US20150313484A1 (en) * | 2014-01-06 | 2015-11-05 | Scanadu Incorporated | Portable device with multiple integrated sensors for vital signs scanning |
| US9782122B1 (en) * | 2014-06-23 | 2017-10-10 | Great Lakes Neurotechnologies Inc | Pain quantification and management system and device, and method of using |
| US20160000379A1 (en) * | 2014-07-01 | 2016-01-07 | Vadim Ivanovich Pougatchev | Method and apparatus for dynamic assessment and prognosis of the risks of developing pathological states |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11229370B2 (en) * | 2014-05-05 | 2022-01-25 | Healthy.Io Ltd. | Portable device with multiple integrated sensors for vital signs scanning |
| US20210177292A1 (en) * | 2019-12-12 | 2021-06-17 | Jabil Inc. | Health and Vital Signs Monitoring Patch with Display and Making of Same |
| US11478181B2 (en) * | 2019-12-12 | 2022-10-25 | Jabil Inc. | Health and vital signs monitoring patch with display and making of same |
| US20230019660A1 (en) * | 2019-12-12 | 2023-01-19 | Jabil Inc. | Health and Vital Signs Monitoring Patch with Display and Making of Same |
| US11980467B2 (en) * | 2019-12-12 | 2024-05-14 | Jabil Inc. | Health and vital signs monitoring patch with display and making of same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190307400A1 (en) | 2019-10-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11090003B2 (en) | Systems for personal portable wireless vital signs scanner | |
| US20200359971A1 (en) | Data acquisition quality and data fusion for personal portable wireless vital signs scanner | |
| US20190350535A1 (en) | Systems, methods, and apparatus for personal and group vital signs curves | |
| US20200196962A1 (en) | Systems, methods, and apparatus for personal and group vital signs curves | |
| US11276483B2 (en) | Systems, methods, and apparatus for personal medical record keeping | |
| US12089914B2 (en) | Enhanced physiological monitoring devices and computer-implemented systems and methods of remote physiological monitoring of subjects | |
| JP7047032B2 (en) | Systems and methods for obtaining physical function measurements using mobile devices | |
| CN115066206B (en) | 12-Lead electrocardiogram using three-electrode device | |
| JP2022040338A (en) | System and method for obtaining bodily function measurements using mobile device | |
| CN111012323B (en) | Device for estimating blood pressure and device for supporting blood pressure estimation | |
| US20150073285A1 (en) | Universal ecg electrode module for smartphone | |
| CN110381817A (en) | For providing the system and method for blood pressure sensor placement and the user feedback of contact quality | |
| KR20170118439A (en) | Electronic device for measuring biometric data and device for charging the electronic device | |
| US20100076331A1 (en) | Device and Method for Measuring Three-Lead ECG in a Wristwatch | |
| CN110383021A (en) | Use the blood pressure measuring system of resistance-type force sensor array | |
| US20080208009A1 (en) | Wearable Device, System and Method for Measuring Vital Parameters | |
| JP2021535818A (en) | Monitoring devices and methods | |
| CN1623175A (en) | Method and device for measuring physiological parameters at the wrist | |
| KR102173725B1 (en) | Apparatus and Method for measuring physiological signal | |
| US12405211B2 (en) | Nerd of the rings (smart ring with spectroscopic sensors) | |
| KR102720653B1 (en) | Electronic device for measuring biometric information and method of operating the same | |
| US20160022213A1 (en) | Clip adaptor for an activity monitor device and other devices | |
| KR20210147379A (en) | Method and electronic device for measuring blood pressure | |
| KR20250067765A (en) | Ear-worn oxygen monitoring system | |
| JP3569247B2 (en) | Biological information measuring device and health management system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: SCANADU INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHAO, WENYI;WOOLSEY, BRANDON DENNIS;DE BROUWER, WALTER;AND OTHERS;SIGNING DATES FROM 20140519 TO 20140520;REEL/FRAME:052680/0344 |
|
| AS | Assignment |
Owner name: HEALTHY.IO LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCANADU INCORPORATED;REEL/FRAME:053615/0808 Effective date: 20200625 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |