US10906535B2 - System and method for vulnerable road user detection using wireless signals - Google Patents
System and method for vulnerable road user detection using wireless signals Download PDFInfo
- Publication number
- US10906535B2 US10906535B2 US16/057,837 US201816057837A US10906535B2 US 10906535 B2 US10906535 B2 US 10906535B2 US 201816057837 A US201816057837 A US 201816057837A US 10906535 B2 US10906535 B2 US 10906535B2
- Authority
- US
- United States
- Prior art keywords
- vru
- vehicle
- location
- wireless
- wireless signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/09—Taking automatic action to avoid collision, e.g. braking and steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q9/00—Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
- B60Q9/008—Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
- B60W60/0017—Planning or execution of driving tasks specially adapted for safety of other traffic participants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/14—Determining absolute distances from a plurality of spaced points of known location
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/402—Type
- B60W2554/4029—Pedestrians
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4045—Intention, e.g. lane change or imminent movement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9316—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9318—Controlling the steering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/93185—Controlling the brakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0221—Receivers
Definitions
- the present invention relates to methods and systems for detecting vulnerable road users (VRUs) using wireless signals.
- VRUs vulnerable road users
- VRU detection is a topic which has attracted great interest from the car industry because fast and reliable detection of VRUs can be used to significantly enhance traffic safety.
- Most of the existing solutions for VRU detection are either image-based (e.g., video cameras) or rely on distance sensors (e.g., short or long range radars, laser scanners).
- distance sensors e.g., short or long range radars, laser scanners.
- the present invention provides a method for detecting vulnerable road users (VRUs) using wireless signals.
- a wireless receiver receives wireless signals from mobile devices and determines received signal strength indication (RSSI) levels of the wireless signals.
- RSSI received signal strength indication
- the wireless signals and the RSSI levels of the wireless signals received by the wireless receiver are analyzed so as to determine at least one location of the VRUs.
- a notification is issued to the vehicle or a driver of the vehicle based on the at least one determined location of the VRUs.
- FIG. 1 is a schematic system overview according to an embodiment of the present invention
- FIG. 2 schematically illustrates a method for dynamic localization from a vehicle according to an embodiment of the present invention
- FIG. 3 is a schematic system overview according to another embodiment of the present invention including road side units (RSUs);
- RSUs road side units
- FIG. 4 schematically illustrates a system and method for dynamic localization from a vehicle using the RSUs
- FIG. 5 is a flow chart illustrating steps of the method for dynamic localization estimation according to an embodiment of the present invention
- FIG. 6 is a flow chart is a flow chart illustrating steps of a method for detecting VRUs with and without mobile devices and for taking actions based thereon;
- FIG. 7 is a schematic overview of a method for performing trilateration using three wireless receivers according to an embodiment of the present invention.
- FIG. 8 is a schematic overview of detecting vehicles using wireless receivers according to an embodiment of the present invention.
- Embodiments of the present invention provide a method and systems for detecting VRUs by receiving wireless signals sent by or reflected from the VRUs through a wireless receiver and a wireless transceiver which are part of RSUs and/or are built-in or attached to the vehicles themselves.
- embodiments of the present invention can be particularly advantageously implemented in autonomous vehicles.
- VRU detection can be performed locally and activities or actions based thereon can be self-enforced.
- VRU detection according to embodiments of the present invention can be performed more quickly at reduced computational costs, and at reduced costs and constraints for associated hardware. This is an especially important improvement in the field of traffic safety, and particularly in the context of autonomous driving, in which even relatively small delays in detection caused by required computational effort can result in an accident either being avoided or not.
- Wireless signals such as Wi-Fi or Bluetooth can be used to try to gain an understanding of mobility patterns of people.
- F. J. Wu, et al. “We Hear Your Activities Through Wi-Fi Signals,” In Proceedings of IEEE World Forum on the Internet of Things (WF-IoT '16), pp. 251-256 (December 2016) and G. Solmaz, et al., “Together or Alone: Detecting Group Mobility with Wireless Fingerprints,” In Proceedings of IEEE ICC '17 ( May 2017), each of which is hereby incorporated by reference herein, discuss using Wi-Fi and Bluetooth, respectively, to not only detect people in the vicinity, but also understand their mobility behaviors such as waiting (static), walking, running or moving in a group.
- Wireless signals e.g., Wi-Fi probes or Bluetooth signals
- a wireless receiver device can be cellular phones (e.g., smartphones), tablet computers, or in the Bluetooth case Bluetooth Low Energy (BLE) beacons.
- BLE Bluetooth Low Energy
- This approach also referred to herein as the mobile device-based approach, uses the received signal strength indication (RSSI) levels to help understand some of the mobility behaviors. As a simple example, if there is no received wireless signal for a time period, this might indicate that no one exists in the vicinity of the wireless receiver device. If wireless signals are received from a device and the RSSI levels are relatively high and stable, this might indicate that someone is waiting close to the wireless receiver device.
- RSSI received signal strength indication
- the mobile device-based approach can be used to provide information about mobility patterns of the individuals who carry the mobile devices, the existing solutions rely on statically placed wireless receivers for sniffing out the wireless signals. The mobility behaviors are determined relative to the known, fixed position of the wireless receivers.
- ACM (2013) which is hereby incorporated by reference herein, show how such a technique can be applied in indoor or outdoor environments, even in the case of existing walls blocking the way of the signals, as wireless signals can pass through walls. While the reflection-based approach can be used to localize individuals, the localization is relative to a fixed location because existing solutions are limited to the static situation in which the position of the device that can send and receive wireless signals is fixed at a particular location.
- VRU detection from a vehicle presents particular challenges because the vehicle is dynamic and typically moves at a much greater rate of speed than the VRUs. Moreover, the vehicles and VRUs can each have different and adaptable paths of travel relative to each other. Despite the ability of the complex image-based and/or distance sensor-based systems to partially address these unique challenges, VRU detection from a vehicle still faces a number of unsolved problems including that:
- the VRU may be on the road or outside of the road.
- the VRU outside of the road can suddenly enter the road. Therefore, people outside of the road should also be detected, especially in the case of autonomous driving.
- VRU detection should operate reliably in all these environments and conditions.
- VRU detection is an extremely time-critical operation. Any failure or small delay in the operation may cause injuries or death of people in traffic.
- the data processing for all received inputs from different sensors is computationally complex (especially for certain computer vision-based algorithms or solutions) which requires significant time and computational processing power.
- the existing approaches and technologies are unable to adequately detect VRUs in cases of darkness (e.g., streets without much lighting), obstacles that block the view of the camera or distance sensors, areas where usage of camera is not allowed due to privacy constraints.
- these solutions require, in addition to expensive equipment such as the cameras, a high amount of computational processing power, as well as specialized hardware such as Graphics Processing Units (GPUs) relative to embodiments of the present invention.
- GPUs Graphics Processing Units
- a method for detecting vulnerable road users (VRUs) using wireless signals includes: receiving, by a wireless receiver, wireless signals from mobile devices and determining received signal strength indication (RSSI) levels of the wireless signals; analyzing the wireless signals and the RSSI levels of the wireless signals received by the wireless receiver so as to determine at least one location of the VRUs; and issuing a notification to a vehicle or a driver of the vehicle based on the at least one determined location of the VRUs.
- RSSI received signal strength indication
- the wireless receiver is disposed at a first static location, and a second wireless receiver is disposed at a second static location, the first and second locations being known with respect to each other, and wherein wireless signals received by the second wireless receiver and associated RSSI levels are analyzed together with the wireless signals received at the first static location to determine the at least one location of the VRUs.
- the wireless receiver is attached to or embedded in the vehicle.
- a second wireless receiver is disposed at a static location, and wireless signals received by the second wireless receiver and associated RSSI levels are analyzed together with the wireless signals received at the vehicle to determine the at least one location of the VRUs.
- the method includes receiving, by a wireless transceiver, wireless signals sent by the wireless transceiver and reflected back to the wireless transceiver from objects in the vicinity of the vehicle, wherein the wireless signals reflected back to the wireless transceiver are used to determine at least one location of at least one additional VRU which does not have a mobile device.
- the wireless signals are received by the wireless receiver at a plurality of time intervals, the method further comprising determining an estimation area for the at least one location of the VRUs at each of the time intervals and then determining a calibrated estimation area for the at least one location of the VRUs from the estimation areas.
- the method includes: comparing a distance from the vehicle to the at least one determined location of the VRUs to an estimated stopping distance of the vehicle; determining a behavior of the VRUs based on the wireless signals that are received by the wireless receiver at the plurality of time intervals; and determining whether the behavior of the VRUs is expected at the at least one determined location of the VRUs, wherein the notification to the vehicle or the driver includes a description of the behavior where it is determined that the behavior is not expected for the VRUs at the at least one determined location.
- the vehicle is an autonomous vehicle, the method further comprising issuing a control action for stopping the vehicle or diverting a path of the vehicle based on a determination that the behavior is not expected for the VRUs at the at least one determined location.
- the method includes storing the behavior and the at least one determined location in a database, wherein the determining whether the behavior of the VRUs is expected at the at least one determined location of the VRUs is performed by checking the database.
- the method includes identifying the mobile devices from the wireless signals received by the wireless receiver and determining that one of the VRUs carries at least two of the mobile devices based on reflections from the one of the VRUs being received by the wireless transceiver indicating a single entity.
- the wireless receiver includes a plurality of antennas which change directions during the receiving of the wireless signals from the mobile devices, the method further comprising using trilateration on the received wireless signals to determine the at least one location of the VRUs.
- the method includes the vehicle self-enforcing a dynamic speed limit which was changed in the vehicle based on the VRU detection and broadcasting the changed speed limit to other vehicles in the vicinity using vehicle-to-vehicle communications.
- a system for detecting vulnerable road users is provided, the system being configured to communicate with a wireless receiver configured to receive wireless signals from mobile devices.
- the system includes: a processing server configured to analyze the wireless signals and received signal strength indication (RSSI) levels of the wireless signals received by the wireless receiver so as to determine at least one location of the VRUs; and an alert system configured to issue a notification to the vehicle or a driver of the vehicle based on the at least one determined location of the VRUs
- RSSI received signal strength indication
- the wireless receiver is attached to or embedded in the vehicle.
- a second wireless receiver is disposed at a static location, and the processing server is configured to analyze wireless signals received by the second wireless receiver and associated RSSI levels together with the wireless signals received at the vehicle to determine the at least one location of the VRUs.
- FIG. 1 is a high-level system overview of a system 10 for VRU detection.
- a vehicle 12 which can be an autonomous or non-autonomous vehicle (e.g., car, bus, truck, motorbike, and bicycle), has a built-in (embedded) or attached wireless device including a wireless receiver 14 and/or a wireless transceiver 15 .
- the vehicle 12 also includes an embedded computer or processing server 16 programmed to use the inputs from the wireless device and run the analytics for detecting VRUs.
- the vehicle 12 can also include a VRU alert system 18 , for example, including a display, warning light and/or alarm, and/or consisting of a controller for directing corrective actions of the vehicle 12 , which is notified by the processing server 16 if one or more VRUs are detected.
- a VRU alert system 18 for example, including a display, warning light and/or alarm, and/or consisting of a controller for directing corrective actions of the vehicle 12 , which is notified by the processing server 16 if one or more VRUs are detected.
- a VRU alert system 18 for example, including a display, warning light and/or alarm, and/or consisting of a controller for directing corrective actions of the vehicle 12 , which is notified by the processing server 16 if one or more VRUs are detected.
- embodiments of the present invention provide for wireless signal-based VRU detection, as well as a dynamic localization estimation method for accurate VRU localization.
- embodiments of the present invention provide for a number of improvements over existing VRU detection systems as discussed above, such as in terms of speed and computational resource savings
- embodiments of the present invention can also be used to enhance and improve existing VRU detection systems which are based on cameras, radar, or LIDAR technologies.
- embodiments of the present invention can be used therein to localize VRUs accurately from the vehicle 12 with usage of a wireless receiver 14 and a wireless transceiver 15 , where the localization is handled by software which resides in a processing server 16 within the vehicle 12 .
- the wireless receiver 14 and/or the wireless transceiver 15 optionally along with the processing server 16 , are located in an RSU 28 (see FIG. 3 ).
- the location of the VRUs can be accurately detected at the RSU, e.g., using the trilateration methods described herein, and the behaviors of the VRUs, e.g., being expected or unexpected, can be determined from taking multiple measurements of the VRUs. For example, if the behavior is unexpected (e.g., moving into the road at a time or location which creates a hazard (e.g., with respect to the road type, vehicle locations and vehicle trajectories, etc.)), then actions can be taken as discussed herein by the road-side unit broadcasting alerts to nearby vehicles.
- the behavior e.g., moving into the road at a time or location which creates a hazard (e.g., with respect to the road type, vehicle locations and vehicle trajectories, etc.)
- actions can be taken as discussed herein by the road-side unit broadcasting alerts to nearby vehicles.
- the wireless receiver 14 is used for VRUs with a mobile device 20 .
- the wireless receiver 14 collects Wi-Fi or Bluetooth packets (or both) from the mobile devices. If the VRU with a mobile device 20 has an application installed, the GPS location of the VRU can be sent to the wireless receiver 14 through Wi-Fi or Bluetooth. If such an application is not installed, the Wi-Fi probes of the mobile devices can be sniffed by the wireless receiver 14 . Moreover, Bluetooth signals can be sniffed or received from broadcasted messages (e.g., from a BLE beacon device). The wireless receiver 14 has built-in software which is designed to take the received signals as input and output them to the processing server 16 .
- the wireless transceiver 15 is used for VRUs without a mobile device 21 , and can also be used for the VRUs with a mobile device 20 .
- the wireless transceiver 15 first broadcasts wireless signals and then detects (through its receiver) the reflections of these signals.
- the wireless transceiver 15 has built-in software which is designed to take the received signals as input and output them to the processing server 16 .
- the processing server 16 is equipped with software running on hardware including a processing unit for performing VRU detection according to an embodiment of the present invention.
- the processing server 16 has access to physical data storage (e.g., database), as well as a network communicator and multiple analytics modules.
- the network communicator is used to receive packets from the wireless device and share VRU detection information with the vehicle.
- the database storage keeps the received packets from the wireless receiver 14 and/or wireless transceiver 15 .
- the analytics modules run on top of the processing unit and send warnings to the VRU alert system 18 when VRUs are detected.
- the processing server 16 can be programmed to share the VRU detection information with the existing systems of the vehicle (e.g., the camera-based system).
- the processing server 16 resides within the vehicle 12 for faster processing, quicker issuance and reception of control actions and avoidance of delay or communication malfunction.
- the processing server 16 does not have to reside in the vehicle 12 .
- the processing server 16 could also be physically located in one or more RSUs or in the Cloud.
- the VRU alert system 18 is active in a case where the processing server 16 sends VRU detection information.
- the autonomous driving control system of the vehicle 12 is notified by the VRU alert system 18 .
- the autonomous driving control system can then use the VRU detection information, for example including a dynamic localization estimation, to make safe traffic decisions and/or take safety actions to account for and avoid the detected VRUs.
- the driver of the vehicle 12 is alerted, preferably with a visual or an auditory signal.
- the processing server 16 is connected via a wireless network to cloud servers 22 to receive data from the processing server 16 in the vehicle 12 .
- the cloud servers 22 can then be used to store historical data representing old measurements.
- Information services can share the data with various other applications and can provide a user interface and visualization. The data could be used by traffic operators or with other vehicles, e.g., so they may choose to travel a particular route with fewer VRUs or can avoid potential conflicts with localized VRUs.
- each signal e.g., for 3 different locations, may give an estimated distance to a VRU without a mobile device 21 , and therefore trilateration is also possible using the transceiver and the same logic.
- a beamforming technique can be used with an array of antennas to further enhance accuracy. According to an embodiment of the present invention, a combination of beamforming and leveraging the movement of the car for trilateration is provided for better detection of pedestrians.
- the antenna can be at least one monopole omnidirectional antenna with an omnidirectional radiation pattern and having a gain of, for example, 3 dBi.
- the dynamic localization estimation from the vehicle provides for accurate localization even though the wireless receiver 14 and/or transceiver 15 are moving with the vehicle 12 relative to the VRUs.
- the movement of the vehicle can be advantageously leveraged, e.g., by using 3 RSSI values for trilateration and/or determining relative directions of the vehicle 12 and VRU 25 using such RSSI values at different times.
- the position and direction of the vehicle can be determined easily and accurately at different times using a GPS sensor of the vehicle 12 , and is preferably considered for each estimate of VRU location at each time interval.
- FIG. 2 shows the same vehicle 12 with two measurements and localization estimations during its travel at times t 0 and t 1 .
- the location of a VRU 25 can be more accurately estimated using a calibrated estimation area consisting of an area of overlap between the two estimations.
- a location estimation is provided as a circular area with a certain radius, where the estimated location is the center point and the radius represents the possible error range. When two such estimates representing two circular areas are obtained, their area of intersection can be used as the final estimate. Similar logic applies to more than two circular estimates.
- FIG. 2 shows the simplified case of two estimations and only one VRU 25 , which is a pedestrian, it is to be understood that more measurements and estimates could be made at times t 0 , t 1 , t 2 , . . . , t n and that the estimations can be applied to many pedestrians and cyclists simultaneously.
- the VRUs with mobile devices 20 their device's IDs such as a media access control (MAC) address can be used to differentiate one person from another.
- MAC media access control
- the estimation may result in two estimation areas.
- This problem is a limitation of existing mobile device-based approaches.
- this problem is overcome according to an embodiment of the present invention in that, by additionally using the wireless transceiver, the pedestrian or the cyclist can be detected as a single entity through the wireless signal reflections from the body (and the bicycle in the case of cyclist).
- the approach according to an embodiment of the present invention using the combination of the wireless receiver 14 and the wireless transceiver 15 leverages the fact that the vehicles mostly have relatively high speeds compared to the relatively low speeds of the pedestrians or cyclists by allowing the vehicle to take many measurements from different positions, even in a case where only a single omnidirectional antenna is used. Due to the time criticalness of traffic safety scenarios, the detection of the VRU should be quick which means that the time difference between times t 0 , t 1 , t 2 , . . . , t n should be very small for certain scenarios (e.g., a second or a fraction of a second) to enable the autonomous vehicle or the driver of a non-autonomous vehicle to be notified as quickly as possible.
- certain scenarios e.g., a second or a fraction of a second
- the present invention also allows for verification of VRUs having a mobile device using information from the wireless transceiver, in addition to separate detection of the VRUs with and without mobile devices in accordance with other embodiments.
- a VRU with a mobile device it is possible, for a VRU with a mobile device, to combine estimation areas from the wireless receiver and the wireless transceiver to predict the location and/or behavior of that VRU.
- FIG. 3 illustrates a system 100 according to an embodiment of the present invention which uses RSUs 28 .
- Each RSU 28 is installed in the vicinity of a road or traffic route, such as near or at a building or at traffic lights, cross-walks, bus stops, etc.
- Each RSU 28 includes a wireless receiver and/or transceiver which can be the same type as those described for the vehicle 12 . Accordingly, the RSUs 28 are also able to collect data about the locations and mobility patterns or behaviors of VRUs with and/or without mobile devices. This data is transmitted to the vehicle 12 by an RSU to vehicle wireless communication 30 using vehicle to X (V2X) communication protocols such as ITS-G5.
- V2X vehicle to X
- the vehicle 12 and the RSUs 28 can communicate through the Cloud or using a short-range communication to receiver in the vehicle 12 .
- the RSUs 28 can localize and/or determine behaviors of the VRUs using the techniques above. In this case, as compared an embodiment in which the wireless receiver and/or transceiver are attached to the vehicle 12 , the RSUs 28 do not treat the VRUs as having not moved between measurement time intervals.
- the vehicle 12 for example using its processing server, aggregates and processes the data from the RSUs 28 , possibly along with other information from camera or sensor-based systems, and/or, according to a further embodiment, along with the data about the VRUs coming from the wireless receiver 14 and/or transceiver 15 attached to the vehicle 12 .
- the RSUs can also transmit information about detected and localized VRUs and/or their determined behaviors to the cloud servers 22 .
- the data from the RSUs 28 can be used to confirm, correct and/or more accurately locate the VRUs and their respective mobility pattern and behavior.
- the estimation areas from the vehicle 12 at time t 0 and t 1 e.g., through triangulation or trilateration
- location estimations from the VRUs can be used to provide a calibrated estimation area 26 of reduced size as the additional inputs from the RSUs 28 can be used to further delimit, shift and/or reduce the size of the estimation areas.
- a final estimation area could be provided by overlapping areas of at least two estimation areas from the vehicle 12 and at least two estimation areas of the RSUs.
- mobility patterns or behaviors of the VRUs detected by the RSUs 28 can be used to predict next location estimations for subsequent time intervals.
- Improved location estimations for the VRUs can also be obtained by using data from two or more RSUs 28 at different locations which can then be used for triangulation or trilateration.
- multiple triangulations or trilaterations e.g., at times t 0 and t 1
- can be performed from different locations of the vehicle 12 during its travel e.g., as the vehicle 12 reaches an intersection at which the RSUs 28 are statically installed).
- the RSUs 28 can localize vehicles with respect to the VRUs.
- the wireless receivers and/or the transceivers of the RSUs 28 could be used for this purpose.
- Multiple measurements from multiple RSUs 28 at known, fixed locations can be combined by a processing server to localize the vehicle in the same manner as the VRUs (e.g., by trilateration).
- the RSSI-based distance estimations can be performed from the RSUs or from the vehicle.
- FIG. 5 shows a flow chart illustrating steps of a dynamic localization estimation mechanism according to an embodiment of the present invention.
- the vehicle While the vehicle is moving it keeps recording WiFi data in a step S 1 , for example by sniffing for WiFi packets and/or receiving data through an application installed on the mobile devices.
- the RSUs records the Wifi data.
- an RSSI-based distance and initial location estimation can be made in step S 2 for each time.
- the data captured can be further enhanced, in terms of directional insights, by using techniques that include, but are not limited to, beamforming, rotating directional antennas and/or meta antennas.
- the mechanism uses the recorded data to identify VRUs and create a probabilistic model about the location of the VRUs, which over a period of time, is improved with information coming from multiple location estimations that are refined into a calibrated model.
- a calibrated location estimation is made in a step S 3 .
- the probabilistic models provide an estimated location point with a surrounding circular region to represent the possibility of error.
- the calibrated model can be produced from the probabilistic model by determining the intersecting regions and spatial overlap of the probabilistic models.
- the calibrated location estimation is then used within the vehicle to make autonomous driving decisions for autonomous cars or is displayed (or used as a warning to the driver) for non-autonomous cars.
- the calibrated location estimation is also transmitted to a cloud server in a step S 5 for further distribution to other connected users (e.g., other vehicles, other road users or traffic operators).
- FIG. 6 illustrates a method for detecting VRUs with and without mobile devices according to an embodiment of the present invention.
- an RSU is installed and/or a wireless receiver and a wireless transceiver are attached to or embedded in the vehicle.
- steps S 11 and S 12 carried out simultaneously the wireless receiver receives RSSI signal levels it sniffs out for the mobile devices within its detection range and the wireless transceiver receives back the wireless signals it emits after reflection from VRUs.
- an estimation area is determined for each VRU based on the estimated location from the RSSI signal or the reflected wireless signal, as the case may be, taking into account an expected error.
- the expected error can be based, for example, on experimental or historical data.
- a step S 14 it is determined whether further measurements should be taken. If additional measurements are to be taken, steps S 10 -S 13 are repeated. Preferably, at least two measurements and estimation areas are determined for each VRU so that the overlapping areas of the estimation areas can be combined in step S 15 to provide a predicted location. As discussed above, the behaviors can also be determined. The timing between measurements and whether or not the VRU should be treated as static or not can be selected based on the desired detection scheme. For example, if it is desired to determine the behavior of the VRU, it may be desired to not treat the VRU as being static. On the other hand, treating the VRU as static and choosing a short time interval between measurements can allow for a quick and accurate location prediction by leveraging the relatively high speed of the vehicle.
- the locations and/or behaviors can be stored in the Cloud and used for future predictions and traffic management or vehicle control decisions. For example, other vehicles can be informed of the locations and/or behaviors to adjust their speed or route.
- the processing server which determined the predicted location and/or behavior in step S 15 issues a notification of the locations and/or behavior.
- the notification in the case of an autonomous or semi-autonomous vehicle (e.g., one equipped with safety override rules), the notification can trigger automated control actions and, in the case of a vehicle operated or assisted in operation by a human driver, the location and/or behavior can be displayed to the driver.
- trilateration can be performed using three wireless receivers which are part of the vehicles and/or part of RSUs.
- three wireless receivers which can receive signals at the same time from one wireless sender (in the wireless range of the wireless sender).
- At least one of the receivers has an associated processing unit and each receiver has its own accurate real-time location information (e.g., using GPS).
- Each wireless receiver receives signal(s) from the sender through their antennas at the same time.
- Each received signal has an associated RSSI value.
- RSSI values of the receivers as well as the locations of the receivers are gathered (transmitted) to the receiver which has the processing unit.
- the receiver with the processing unit defines circles for each receiver using the respective received RSSI values.
- Each circle has the center point which is the location of the corresponding receiver and radius which is equal to the distance estimation.
- the intersection point of the three circles can then be determined by the processor and used as the location estimation. Because the intersection point may have some possible error based on the accuracy of the location estimation based on RSSI signal strengths, the location estimation can be defined as a circular area to account for such possible error and given as an output to the vehicle, for example, for taking control actions.
- the wireless receivers could be all mobile (e.g., attached to vehicle(s)), all static (RSUs) or a combination of both.
- the scenario can also be extended to situations where there are more than three receivers by either using all of them or a combination of at least three of the receivers.
- the receivers could be close to each other or far from each other.
- three different measurements can be performed (based on current location of the vehicle and the RSSI value at the same time) and the trilateration technique can be applied based on the at least three measurements.
- FIG. 7 illustrates an example of using trilateration to determine the location of a VRU with a mobile device 20 using two RSUs 28 and a vehicle 12 equipped with at least the wireless receiver 14 and optionally the wireless transceiver 15 .
- the RSSI values of the two RSUs and their locations are sent to the vehicle through wireless communication 30 .
- the vehicle's processing unit defines a circle for each receiver, where the receiver's location is the center and the radius is based on the distance estimation using the RSSI value.
- the output of the VRU location estimation is also defined as a circle indicating an estimation area 27 , where the center point is the estimation and the circular area defines the accuracy of the estimation, such that the VRU is expected somewhere in the defined circular area with high confidence.
- Processing units of the RSUs or, for example, in the Cloud could also be used for the trilateration.
- FIG. 8 illustrates an example of determining the location of a vehicle 12 using three RSUs 28 .
- the method for trilateration described above can be analogously applied for detecting vehicle locations, similar to the detecting VRU locations.
- the target becomes a vehicle instead of a VRU, assuming one of the two possibilities: 1) a wireless sender device attached to the target vehicle broadcasting wireless signals, or 2) a mobile device carried by a passenger broadcasting signals from the vehicle which does not have a wireless sender device.
- the wireless receivers can receive these signals and determine RSSI values from them.
- the trilateration technique can be applied for the target vehicle 12 similar to the VRU.
- One of the receivers gathers the data to its processing unit for performing the trilateration.
- the circles defined by the positions of the RSUs and the respective RSSI values provide the location estimation at the center of the estimation area 31 having a radius accounting for possible error.
- the wireless receivers can be attached to the RSUs, other vehicles, or a combination of both.
- This embodiment can be useful for scenarios where a target vehicle 12 does not have an interface with the other vehicles or RSUs, such that even if the target vehicle knows its own location using GPS, it cannot transmit this information to the RSUs or to other vehicles. In this case, location of the target vehicle can be estimated.
- the technique that leverages the relative stability of the location of VRU as opposed to the relative mobility of the vehicle does not apply to this scenario, unless the target vehicle is static at the time (e.g., in parking state or waiting in a traffic light) or moving very slow compared to another vehicle which estimates the location of the target vehicle.
- detection can be considered in four different situations.
- the first two situations are based on the current wireless signal ranges considering Wi-Fi and Bluetooth. These ranges are expected in 30 meters range and in ideal conditions they can be considered for up to 100 meters.
- the second two situations are based on longer ranges using other technologies such as LoRa technology which enables longer range transmissions up to 22 kilometers.
- Whether detection is considered to be short range or long range not only depends on the distance between the person and the vehicle, but also depends on the current speed of the vehicle, the vehicle's or the driver's reaction time and the vehicle's braking capabilities. All of these factors can be considered for estimating a stopping distance.
- the stopping distance can also be estimated using a combination of other various factors, such as the type of braking system (e.g., anti-lock braking system (ABS)), vehicle weight, tire pressures, etc.
- ABS anti-lock braking system
- the braking distances are typically tested thoroughly by vehicle vendors and the results of such tests can be used as input for the VRU detection system, as well as for making decisions and taking actions based on the detected situation.
- Short range detection can be considered to occur when the estimated stopping distance is shorter than the distance between a detected person and the vehicle.
- Long range detection can be considered to occur when the estimated stopping distance is longer than the distance. According to these definitions, the following situations are considered:
- Situation 1 Short range detection of expected behavior: This is the case when one or more people are detected in a short range (as defined above) and the estimated locations and/or behavior of the detected people are as expected (e.g., pedestrians waiting (not moving) in a bus stop (nearby, but not on the road)). In this case, the autonomous car or the driver can be notified with the location of the people.
- Situation 2 Short range detection of unexpected behavior: This is the case when one or more people are detected in a short range and they are either (unexpectedly) located on the road or very close to the road or path of travel. In this case, the autonomous car or the driver is warned by the system for taking immediate action.
- This warning can include the location of the people and the type of unexpected behavior (e.g., waiting in the road or crossing the road). Even though it may not be possible to stop in sufficient distance based on the short range detection, in the case of an autonomous car, slowing or divertive action to mitigate the consequences of an accident, if plausible, can be immediately taken based on the warning.
- Situation 3 Long range detection of expected behavior: This is the case when one or more people are detected in a long range scenario (as defined above) and the estimated locations and/or behaviors of the detected people are as expected. In this case, the locations of the people can be logged and stored in the Cloud without a notification by the system.
- the present invention can be used for self-enforcement of speed limits.
- the VRU detection estimation system outputs the estimated locations of people or cyclists around the vehicle. Based on the number and location of VRUs, as well as on the type of road (e.g., a highway or a street), certain speed limits can be dynamically enforced to the drivers or the autonomous vehicles.
- the speed limit could be centrally enforced by a traffic authority or it could be decided by the car manufacturer as a safety measure.
- the processing server of the vehicle could be provided with a memory containing a set of rules based on detections of types of VRUs and their associated behaviors so that automated warnings and actions can be taken based on the detection.
- the speed limit dynamically changes and if the vehicle's current speed is higher than the enforced limit, then the driver is notified to reduce the speed or the vehicle can automatically reduce its own speed.
- Self-enforcement of the speed limit occurs when the vehicle automatically adjusts its own speed.
- the vehicle can broadcast a message which includes the current speed limit and the location of the vehicle itself. Other vehicles which receive this message can directly apply the new speed limit and reduce their speed if necessary (e.g., using vehicle-to-vehicle communication).
- detection can occur more quickly for time-critical situations where it is critical for a driver or an autonomous car to take immediate action.
- wireless signals e.g., RSSI levels
- the processing of wireless signals is computationally much less intensive than that of processing video or image signals according to existing VRU detection methods.
- a wireless signal-based solution reduces the computational complexity dramatically.
- RSSI levels can be represented by merely a time-series data of double values. This reduction in data size to be processed can be efficiently leveraged for real-time signal processing for time-critical situations such as the Situation 2 (explained above), thereby significantly improving the time to detection.
- Embodiments of the present invention provide, for example, for the following improvements:
- the approach can be easily tested with off-the-shelf solutions for localization. 7) The approach enables VRU detection even in the case of darkness or obstacles. 8) The approach avoids significant overhead in terms of storage, computation or communication. 9) Can be easily retrofitted to existing vehicles.
- the present invention provides a method for detecting a VRU from a vehicle using wireless signals, the method comprising:
- Embodiments of the present invention can be implemented as part of intelligent transportation solutions, or provided to the car industry as a solution for VRU detection of autonomous cars as a complementary solution to camera-based technology.
- VRUs can also alert the VRUs with mobile devices through pushing notifications in an application installed on the mobile devices. Notifications can also be pushed to vehicles and a the same time to nearby VRUs using an application on the mobile devices which subscribes by geolocation. VRUs could be alerted about approaching vehicles or areas where other VRUs are located, or could be alerted to cease with an unexpected behavior, such as walking into an intersection when the light is red or approaching a roadway at a location where it is known to be unsafe or there is no cross-walk.
- the notifications for the vehicles and/or the VRUs can also provide information taken directly or learned from the prior VRU locations and/or behaviors, for example stored in the Cloud. For example, information could be provided about certain areas where a large number of VRUs have been detected at particular times of the day, for example, for re-routing decisions.
- the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise.
- the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
3) VRU detection is an extremely time-critical operation. Any failure or small delay in the operation may cause injuries or death of people in traffic.
4) The data processing for all received inputs from different sensors is computationally complex (especially for certain computer vision-based algorithms or solutions) which requires significant time and computational processing power.
2) Situation 2: Short range detection of unexpected behavior: This is the case when one or more people are detected in a short range and they are either (unexpectedly) located on the road or very close to the road or path of travel. In this case, the autonomous car or the driver is warned by the system for taking immediate action. This warning can include the location of the people and the type of unexpected behavior (e.g., waiting in the road or crossing the road). Even though it may not be possible to stop in sufficient distance based on the short range detection, in the case of an autonomous car, slowing or divertive action to mitigate the consequences of an accident, if plausible, can be immediately taken based on the warning.
3) Situation 3: Long range detection of expected behavior: This is the case when one or more people are detected in a long range scenario (as defined above) and the estimated locations and/or behaviors of the detected people are as expected. In this case, the locations of the people can be logged and stored in the Cloud without a notification by the system. On the other hand, if the traffic law enforces a certain speed limit in a case where pedestrians are present, the system can notify the vehicle or the driver to reduce the speed if necessary.
4) Situation 4: Long range detection of unexpected behavior: This is the case when one or more people are detected in a long range scenario and they are either (unexpectedly) located on the road or very close to the road. In this case, the autonomous car or the driver is warned by the system for taking action. This warning includes the location of the people and the type of unexpected behavior. In the case of an autonomous car, preferably stopping, or alternatively divertive action to prevent any accident, can be taken immediately based on the warning.
3) Simultaneous usage of wireless receivers for detecting signals from mobile devices and wireless transceivers for detecting body reflections of transmitted wireless signals.
4) The approach is computationally much less intensive compared to the existing computer vision-based solutions.
5) The approach can be applied using wireless devices which are much simpler and less expensive than the cameras used in image-based detection.
6) The approach can be easily tested with off-the-shelf solutions for localization.
7) The approach enables VRU detection even in the case of darkness or obstacles.
8) The approach avoids significant overhead in terms of storage, computation or communication.
9) Can be easily retrofitted to existing vehicles.
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/057,837 US10906535B2 (en) | 2018-05-18 | 2018-08-08 | System and method for vulnerable road user detection using wireless signals |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862673372P | 2018-05-18 | 2018-05-18 | |
| US16/057,837 US10906535B2 (en) | 2018-05-18 | 2018-08-08 | System and method for vulnerable road user detection using wireless signals |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20190351896A1 US20190351896A1 (en) | 2019-11-21 |
| US10906535B2 true US10906535B2 (en) | 2021-02-02 |
Family
ID=68534151
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/057,837 Active 2039-05-16 US10906535B2 (en) | 2018-05-18 | 2018-08-08 | System and method for vulnerable road user detection using wireless signals |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US10906535B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210366269A1 (en) * | 2020-05-22 | 2021-11-25 | Wipro Limited | Method and apparatus for alerting threats to users |
| US20220319308A1 (en) * | 2021-03-31 | 2022-10-06 | Honda Motor Co., Ltd. | Smart traffic assistant systems and methods |
| US20230176212A1 (en) * | 2020-04-29 | 2023-06-08 | Lg Electronics Inc. | Method for operating rsu related to vru location in wireless communication system |
| US12175802B2 (en) | 2021-06-15 | 2024-12-24 | Microsoft Technology Licensing, Llc | Generation and management of notifications providing data associated with activity determinations pertaining to a vehicle |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3640665A1 (en) * | 2018-10-16 | 2020-04-22 | Aptiv Technologies Limited | Method to improve the determination of a position of a roadside unit, roadside unit and system to provide position information |
| JP7336732B2 (en) * | 2019-03-27 | 2023-09-01 | パナソニックIpマネジメント株式会社 | Wireless communication device, roadside unit and wireless communication method |
| KR20210063134A (en) | 2019-11-22 | 2021-06-01 | 삼성전자주식회사 | Electronic device for processing v2x message and operating method thereof |
| US11017661B1 (en) | 2019-11-27 | 2021-05-25 | B&H Licensing Inc. | Method and system for pedestrian-to-vehicle collision avoidance based on amplified and reflected wavelength |
| US11014555B1 (en) * | 2019-11-27 | 2021-05-25 | B&H Licensing Inc. | Method and system for pedestrian-to-vehicle collision avoidance based on emitted wavelength |
| CN111257005B (en) * | 2020-01-21 | 2022-11-01 | 北京百度网讯科技有限公司 | Method, apparatus, apparatus and storage medium for testing autonomous vehicles |
| CN115210776B (en) * | 2020-03-03 | 2025-05-27 | 瑞典爱立信有限公司 | Object position information supply for autonomous vehicle maneuvers |
| US12418772B2 (en) | 2020-03-20 | 2025-09-16 | Lg Electronics Inc. | Method and apparatus for detecting terminal that deviates from cluster |
| KR20210152600A (en) * | 2020-06-08 | 2021-12-16 | 주식회사 만도모빌리티솔루션즈 | Wireless terminal location-based accident prevention apparatus and method |
| CN111800761B (en) * | 2020-07-06 | 2025-07-08 | 腾讯科技(深圳)有限公司 | Vehicle communication processing method and device, computer readable medium and electronic equipment |
| US11138870B1 (en) * | 2020-07-22 | 2021-10-05 | International Business Machines Corporation | On-demand roadway crossing |
| US12211375B2 (en) * | 2020-08-27 | 2025-01-28 | Blackberry Limited | Method and apparatus for providing road user alerts |
| US12067881B1 (en) * | 2020-09-29 | 2024-08-20 | United Services Automobile Association (Usaa) | Motor vehicle safety systems and methods for protecting bicyclists |
| WO2022191819A1 (en) * | 2021-03-08 | 2022-09-15 | Guss Automation Llc | Autonomous vehicle safety system and method |
| US20230215274A1 (en) * | 2021-12-30 | 2023-07-06 | Gevin Joseph McDaniel | Intersection right-turn pedestrian alert system |
| CN115346396A (en) * | 2022-06-27 | 2022-11-15 | 浙江大华技术股份有限公司 | Blind spot early warning method, device, system, terminal and computer-readable storage medium |
| DE102024103284A1 (en) * | 2024-02-06 | 2025-08-07 | Bayerische Motoren Werke Aktiengesellschaft | Methods for signal-based positioning and vehicle control as well as correspondingly configured assistance systems and motor vehicles |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5268692A (en) * | 1991-03-14 | 1993-12-07 | Grosch Theodore O | Safe stopping distance detector, antenna and method |
| US20040257274A1 (en) * | 2003-06-23 | 2004-12-23 | Lucent Technologies Inc. | Network support for access to location information of a mobile device |
| US20170017846A1 (en) * | 2015-07-15 | 2017-01-19 | Umm Al-Qura University | Crowd and traffic monitoring apparatus and method |
| US20170124878A1 (en) * | 2015-11-03 | 2017-05-04 | Quantum Dimension, Inc. | Collision advoidance devices utilizing low power wireless networks, methods and systems utilizing same |
| US20170236347A1 (en) * | 2015-06-05 | 2017-08-17 | Dean Drako | Pattern Analytics and Physical Access Control System Method of Operation |
| US20180090005A1 (en) * | 2016-09-27 | 2018-03-29 | GM Global Technology Operations LLC | Method And Apparatus For Vulnerable Road User Incidence Avoidance |
| US20190073883A1 (en) * | 2017-09-05 | 2019-03-07 | I3 International Inc. | System for tracking the location of people |
| US20190331763A1 (en) * | 2018-04-27 | 2019-10-31 | Lyft, Inc. | Simultaneous object detection and data transfer with a vehicle radar |
-
2018
- 2018-08-08 US US16/057,837 patent/US10906535B2/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5268692A (en) * | 1991-03-14 | 1993-12-07 | Grosch Theodore O | Safe stopping distance detector, antenna and method |
| US20040257274A1 (en) * | 2003-06-23 | 2004-12-23 | Lucent Technologies Inc. | Network support for access to location information of a mobile device |
| US20170236347A1 (en) * | 2015-06-05 | 2017-08-17 | Dean Drako | Pattern Analytics and Physical Access Control System Method of Operation |
| US20170017846A1 (en) * | 2015-07-15 | 2017-01-19 | Umm Al-Qura University | Crowd and traffic monitoring apparatus and method |
| US20170124878A1 (en) * | 2015-11-03 | 2017-05-04 | Quantum Dimension, Inc. | Collision advoidance devices utilizing low power wireless networks, methods and systems utilizing same |
| US20180090005A1 (en) * | 2016-09-27 | 2018-03-29 | GM Global Technology Operations LLC | Method And Apparatus For Vulnerable Road User Incidence Avoidance |
| US20190073883A1 (en) * | 2017-09-05 | 2019-03-07 | I3 International Inc. | System for tracking the location of people |
| US20190331763A1 (en) * | 2018-04-27 | 2019-10-31 | Lyft, Inc. | Simultaneous object detection and data transfer with a vehicle radar |
Non-Patent Citations (8)
| Title |
|---|
| Article titled "Pedestrian Detection and Localization Using Antenna Array and Sequential Triangulation" by Shi et al. and published in Sep. 2005. (Year: 2005). * |
| Dirk Lill, et al., "Development of a Wireless Communication and Localization System for VRU eSafety", 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Jul. 21-23, 2010, pp. 459-463. |
| Fadel Adib, et al., "Multi-Person Localization via RF Body Reflections", USENIX, May 4-6, 2015, pp. 1-14. |
| Fadel Adib, et al., "See Through Walls with Wi-Fi!", ACM SIGCOMM '13, Aug. 2013, pp. 1-12. |
| Fang-Jing Wu, et al., ,,Crowd Estimator: Approximating Crowd Sizes with Multi-modal Data for Internet-of-Things Services, MobiSys '18 Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, Jun. 10-15, 2018, pp. 337-349. |
| Fang-Jing Wu, et al., ,,We Hear Your Activities through Wi-Fi Signals, 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Dec. 12-14, 2016, pp. 1-6. |
| Gürkan Solmaz, et al., "Together or Alone: Detecting Group Mobility with Wireless Fingerprints", 2017 IEEE International Conference on Communications (ICC), May 21-25, 2017, pp. 1-7. |
| Xiaofei Li, et al., "A Unified Framework for Concurrent Pedestrian and Cyclist Detection", IEEE Transactions on Intelligent Transportation Systems, vol. 18, No. 2, Feb. 2017, pp. 269-281. |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20230176212A1 (en) * | 2020-04-29 | 2023-06-08 | Lg Electronics Inc. | Method for operating rsu related to vru location in wireless communication system |
| US20210366269A1 (en) * | 2020-05-22 | 2021-11-25 | Wipro Limited | Method and apparatus for alerting threats to users |
| US12002345B2 (en) * | 2020-05-22 | 2024-06-04 | Wipro Limited | Environment-based-threat alerting to user via mobile phone |
| US20220319308A1 (en) * | 2021-03-31 | 2022-10-06 | Honda Motor Co., Ltd. | Smart traffic assistant systems and methods |
| US12175802B2 (en) | 2021-06-15 | 2024-12-24 | Microsoft Technology Licensing, Llc | Generation and management of notifications providing data associated with activity determinations pertaining to a vehicle |
Also Published As
| Publication number | Publication date |
|---|---|
| US20190351896A1 (en) | 2019-11-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10906535B2 (en) | System and method for vulnerable road user detection using wireless signals | |
| EP3791376B1 (en) | Method and system for vehicle-to-pedestrian collision avoidance | |
| US11017661B1 (en) | Method and system for pedestrian-to-vehicle collision avoidance based on amplified and reflected wavelength | |
| US11014555B1 (en) | Method and system for pedestrian-to-vehicle collision avoidance based on emitted wavelength | |
| EP3980982B1 (en) | Wireless communication-based classification of objects | |
| JP7537787B2 (en) | Collision prevention method, device, server and computer program | |
| US20220227360A1 (en) | Distributed method and system for collision avoidance between vulnerable road users and vehicles | |
| Liu et al. | Cooperation of V2I/P2I communication and roadside radar perception for the safety of vulnerable road users | |
| WO2018233699A1 (en) | Vehicle positioning method, device and terminal device | |
| US20190221116A1 (en) | Traffic Control Utilizing Vehicle-Sourced Sensor Data, and Systems, Methods, and Software Therefor | |
| KR20210012952A (en) | Methods, computer programs, apparatuses, a vehicle, and a traffic entity for updating an environmental model of a vehicle | |
| US11645913B2 (en) | System and method for location data fusion and filtering | |
| KR20220039537A (en) | Method for estimating traffic density using adas probe data | |
| Tahmasbi-Sarvestani et al. | System architecture for cooperative vehicle-pedestrian safety applications using DSRC communication | |
| CN118946921A (en) | Collision warning based on intersection information from map messages | |
| US11900808B2 (en) | Apparatus, method, and computer program for a first vehicle and for estimating a position of a second vehicle at the first vehicle | |
| KR102739944B1 (en) | Method for expanding the cognitive range of autonomous vehicles in c-its smart edge rsu | |
| US20240147242A1 (en) | Method and apparatus for providing a shared mobility service | |
| WO2020244770A1 (en) | 5g cellular network-based warning method and system for motorcycle-related threats | |
| KR20240132271A (en) | Systems and methods for radio frequency (RF) ranging-assisted localization and map generation | |
| Pydimarri et al. | Connected Vehicles Testbed for Real-time Deployment of Use Cases at TiHAN IIT Hyderabad | |
| Pop et al. | Sensor Networks as a Support Mechanism in Intelligent Transportation Systems | |
| CN118401863A (en) | System and method for Radio Frequency (RF) ranging assisted positioning and map generation | |
| WO2025124873A1 (en) | Sensing in a wireless communication system | |
| Dardari et al. | Research Article High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: NEC LABORATORIES EUROPE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOLMAZ, GUERKAN;GARCIA GALVAO ALMEIDA, MIGUEL;SIGNING DATES FROM 20180606 TO 20180607;REEL/FRAME:046780/0978 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC LABORATORIES EUROPE GMBH;REEL/FRAME:060714/0232 Effective date: 20201126 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |