US10845384B2 - Surface-mountable apparatus for coupling a test and measurement instrument to a device under test - Google Patents
Surface-mountable apparatus for coupling a test and measurement instrument to a device under test Download PDFInfo
- Publication number
- US10845384B2 US10845384B2 US16/363,790 US201916363790A US10845384B2 US 10845384 B2 US10845384 B2 US 10845384B2 US 201916363790 A US201916363790 A US 201916363790A US 10845384 B2 US10845384 B2 US 10845384B2
- Authority
- US
- United States
- Prior art keywords
- clip
- insert
- test
- conductive
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 82
- 238000005259 measurement Methods 0.000 title claims abstract description 28
- 230000008878 coupling Effects 0.000 title claims abstract description 9
- 238000010168 coupling process Methods 0.000 title claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 9
- 239000000523 sample Substances 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 description 21
- 238000005516 engineering process Methods 0.000 description 19
- 230000004044 response Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 10
- 229910000679 solder Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 for example Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06711—Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
- G01R1/06716—Elastic
- G01R1/06722—Spring-loaded
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06772—High frequency probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06788—Hand-held or hand-manipulated probes, e.g. for oscilloscopes or for portable test instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R13/00—Arrangements for displaying electric variables or waveforms
- G01R13/20—Cathode-ray oscilloscopes
- G01R13/208—Arrangements for measuring with C.R. oscilloscopes, e.g. vectorscope
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/202—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
Definitions
- This disclosure relates to test and measurement systems, and more particularly to test and measurement probes.
- DDR2 double data rate second generation
- SDRAM double data rate fourth generation
- PCIe peripheral component interconnect express
- test points in these products vary greatly in both geometry and accessibility, usually requiring one or two points of contact.
- points of contact include micro traces, vias, component pads, and connector contacts that provide electrical contact with and, thus, access to high-speed signals.
- the test points are not always in the same plane and, if two probe contacts are required at once (e.g., as in the case of a differential probe), tip compliance is highly desirable to assist with positioning the probe for proper contact.
- Points of contact may reside on principal component analysis (PCA) hardware in virtually every angle of orientation, including from vertical to horizontal. In these types of scenarios, the test points are better accessed by probe tips with compliance.
- PCA principal component analysis
- FIG. 1 illustrates an exploded view of an example of a probe tip in accordance with certain embodiments of the disclosed technology.
- FIG. 2 illustrates an assembled view of the probe tip illustrated by FIG. 1 in accordance with certain embodiments of the disclosed technology.
- FIG. 3 illustrates an example of a single-tip test probe in accordance with certain embodiments of the disclosed technology.
- FIG. 4 illustrates an example of a differential probe in accordance with certain embodiments of the disclosed technology.
- FIG. 5 is a graphical representation of an example of a frequency response plot for a test probe tip in accordance with certain embodiments of the disclosed technology.
- FIG. 6 is a depiction of an example round-rod resistor in accordance with various embodiments of the present disclosure.
- FIG. 7 is a depiction of an example round-rod resistor in accordance with various embodiments of the present disclosure.
- FIG. 8 illustrates an example of an apparatus for coupling a test and measurement instrument to a device under test in accordance with various embodiments of the present disclosure.
- FIG. 9 illustrates an example application of the apparatus of FIG. 8 .
- FIG. 10 illustrates another example of an apparatus for coupling a test and measurement instrument to a device under test in accordance with various embodiments of the present disclosure.
- FIG. 11 illustrates an example fabrication technique for a portion of the apparatus of FIG. 10 .
- FIG. 12 a graphical representation of an example of a frequency response plot for an apparatus in accordance with certain embodiments of the disclosed technology.
- Embodiments of the disclosed technology generally include probe tips suitable for use with a test probe and configured to provide a precise, height-compliant, quick, and light-pressure contact with a test point, e.g., on a device under test (DUT).
- a probe tip may, in some embodiments, be configured as a spring probe that includes a resistive or impedance element positioned nearly at the point of contact with the DUT.
- the resistive or impedance element may greatly improve the through response of the spring probe and also decrease the DUT loading significantly, thus enabling high-speed signal acquisition.
- Test probes and probe tips in accordance with the disclosed technology may advantageously create a better physical and electrical control of the contact area between the components of the probe tip and also lend themselves well to fast debugging environments that typically cannot accommodate long contact setup times.
- Test probes and probe tips in accordance with the disclosed technology may advantageously provide superior visibility for connection placement and intuitive operation various classes of products, specifically hand-held or rapid placement probing.
- FIG. 1 illustrates an exploded view of an example of a test probe tip 100 in accordance with certain embodiments of the disclosed technology.
- the test probe tip 100 includes an optional compliance member or force deflecting assembly and a tip component 108 coupled therewith.
- the compliance member or force deflecting assembly includes a barrel component 102 configured to be integrated, or coupled, with a test probe.
- the probe tip 100 also includes a resistive element 106 , e.g., a round rod resistor, and a plunger base component 104 configured to be coupled, e.g., by way of an electro-mechanical bond (e.g., solder, an electrically conductive adhesive, etc.), with an end surface of the resistive element 106 .
- an electro-mechanical bond e.g., solder, an electrically conductive adhesive, etc.
- the resistive element 106 may, in some embodiments, have a tube-like form with resistance disposed on the outside circumference thereof.
- the resistive element 106 may include a resistive coating, or layer, that covers a tube.
- the resistive element 106 can include metallized contacts disposed on either end of the resistive element 106 .
- the tube-like structure of the resistor may enable high bandwidth, low bandwidth loading.
- the cylindrical shape of a of the depicted resistive element 106 may advantageously maximize the cross-sectional strength of the resistive element 106 . It will be appreciated that, while depicted as being cylindrical, the resistive element 106 could also be implemented utilizing another suitable shape (e.g., octagonal, triangular, etc.).
- the tip component 108 is configured to be coupled, e.g., by way of an electro-mechanical bond, with an end surface of the resistive element 106 opposite the end surface that is coupled with the plunger base component 104 .
- an electro-mechanical bond is one that provide electrical connectivity as well as structural/mechanical support.
- the tip component 108 may have one or more points, e.g., to establish or otherwise facilitate fine-grain electrical connectivity with one or more contact points on a DUT.
- a spring mechanism may be trapped or otherwise positioned within the barrel component 102 , and the plunger base 104 may be configured to slide axially inside the barrel component 102 and, consequently, be acted upon by the spring mechanism positioned inside the barrel component 102 to advantageously create a compression resistance.
- FIG. 2 illustrates an assembled view of an example of a test probe tip 200 having an optional compliance member or force deflecting assembly and a tip component coupled therewith in accordance with certain embodiments of the disclosed technology.
- a barrel component 202 receives a plunger base 204 that is coupled, e.g., by way of an electro-mechanical bond, with an end of a resistive element 206 .
- the resistive element 206 may have a tube-like form with resistance on the outside circumference thereof.
- a tip component 208 is coupled, e.g., by way of an electro-mechanical bond, with an end of the resistive element 206 opposite the end thereof that is coupled with the plunger base 204 .
- a spring mechanism may be trapped or otherwise positioned within the barrel component 202 , and the plunger base 204 may be configured to slide axially inside the barrel component 202 and be acted upon by the spring mechanism therein to advantageously create a compression resistance.
- FIG. 3 illustrates an example of a single-tip test probe 300 in accordance with certain embodiments of the disclosed technology.
- the test probe 300 includes a test probe body 302 and a test probe tip 304 , such as the test probe tips 100 and 200 illustrated by FIGS. 1 and 2 , respectively.
- a user may use the test probe 300 to create a compression resistance between the test probe tip 304 and a test point, such as a high-speed signal access point or other suitable point on a DUT, for example.
- FIG. 4 illustrates an example of a differential probe 400 in accordance with certain embodiments of the disclosed technology.
- the differential probe 400 includes a probe body 402 and two test probe tips 404 and 406 , such as the test probe tips 100 and 200 illustrated by FIGS. 1 and 2 , respectively.
- a user may use the differential probe 400 to create a compression resistance between either or both of the test probe tips 404 and 406 and one or two test points, such as a high-speed signal access point or other suitable point on a DUT, for example.
- FIG. 5 is a graphical representation of an example of a frequency response plot 500 for a test probe tip in accordance with certain embodiments of the disclosed technology.
- the configuration of the resistor fabrication e.g., rod tube nature
- close proximity to the contact point of the DUT contact generates a highly flat response to signals on the DUT, yielding high signal reproduction fidelity while keeping DUT loading to a minimum. This is important for measuring signal busses that are sensitive to loading. If the tip/probe input structure loads (e.g., reduces or alters the signal eye) the signaling between transmitter-receiver is interrupted, the communication bus under test fails to work properly, which ruins the test.
- Probe tips in accordance with the disclosed technology advantageously limits this issue greatly.
- FIG. 6 is a depiction of a length-wise cross-section and two width-wise cross-sections along lines 608 and 610 , depicted in the boxes with similar numbering of an example resistor 600 , in accordance with various embodiments of the present disclosure.
- the resistor includes a structural member 602 , a metallic layer 604 a and 604 b disposed around a circumference of either end of structural member 602 , and a resistive layer 606 disposed on an exterior surface of the round rod resistor.
- Structural member 602 is composed of material that provides sufficient structural rigidity and sufficient strength to withstand the stresses of probing without breaking. As such, structural member 602 can prevent the need for resistor 600 to be embedded in an encapsulation material. This can be beneficial, because encapsulating the resistor in an encapsulation material, such as, for example, plastic, can have adverse effects on the flatness of the frequency response of the resulting probe tip. To help maintain the flatness of the frequency response, it can be desirable to have the only insulating material surrounding resistor 600 be air, which is enabled, at least in part, by structural member 602 . Materials providing sufficient structural rigidity and sufficient strength can vary based on the intended use of the probe tip, but can include zirconium, quartz, or any combination of these.
- structural member 602 is depicted as generally being cylindrical in nature, it will be appreciated that other shapes (e.g., octagonal, triangular, etc.) can be utilized without departing from the scope of this disclosure
- Metallic layer 604 a and 604 b can include any suitable material for making an electrical connection with plunger base component 104 and tip component 108 . Such materials can include, silver, gold, copper, or any other suitably electrically conductive material, or combinations of any of these.
- Metallic layer 604 a and 604 b can be applied utilizing any suitable process, such as a micropenning process, or any other suitable process.
- the metallic layers can be formed as caps, or could be formed to leave either end of the structural member exposed.
- Resistive layer 606 can be a thick film resistive layer. This film can be applied through a micropenning process (e.g., resistive ink, such as that available from Ohmcraft), flat screened, or any other suitable process. Resistive layer 606 can include, for example, oxides of ruthenium, iridium and/or rhenium, or any other suitable material. Resistive layer 606 can be applied to contact metallic layer 604 a and 604 b either on a surface of the metallic layers or between the metallic layers and the structural member 602 . In addition, resistive layer, or any other layer for that matter, may be laser cut for additional precision or to adjust an amount of resistance (e.g., by removing portions of the resistive layer) for the resistor.
- resistive ink such as that available from Ohmcraft
- resistive layer 606 can include, for example, oxides of ruthenium, iridium and/or rhenium, or any other suitable material. Resistive layer 606 can be applied to contact
- FIG. 7 is another depiction of a length-wise cross-section and two width-wise cross-sections along lines 708 and 710 , depicted in the boxes with similar numbering of an example resistor 700 , in accordance with various embodiments of the present disclosure.
- the resistor includes semi-cylindrical structural members 702 a and 702 b , a metallic layer 704 a and 704 b disposed around a circumference of either end of structural member 702 , and a resistive layer 706 disposed between structural members 702 a and 702 b.
- Structural members 702 a and 702 b are composed of material that provides sufficient structural rigidity and sufficient strength to withstand the stresses of probing without breaking. As such, structural member 702 can prevent the need for resistor 700 to be embedded in an encapsulation material. This can be beneficial, because encapsulating the resistor in an encapsulation material, such as, for example, plastic, can have adverse effects on the flatness of the frequency response of the resulting probe tip. To help maintain the flatness of the frequency response, it can be desirable to have the only insulating material surrounding resistor 700 to be air, which is enabled, at least in part, by structural member 702 .
- Materials providing sufficient structural rigidity and sufficient strength can vary based on the intended use of the probe tip, but can include zirconium, quartz, or any combination including one or more of these. It will be appreciated that these materials are merely meant to be illustrative of possible material and that other possible materials will be readily discernible to a person of ordinary skill in the art.
- Metallic layer 704 a and 704 b can include any suitable material for making an electrical connection with plunger base component 104 and tip component 108 . Such materials can include, silver, gold, copper, or any other suitably electrically conductive material, or combinations of any of these.
- Metallic layer 704 a and 704 b can be applied utilizing any suitable process, such as a micropenning process, or any other suitable process.
- the metallic layers can be formed as caps, or could be formed to leave either end of the structural member exposed.
- Resistive layer 706 can be a thick film resistive layer. This film can be applied through a micropenning process (e.g., resistive ink, such as that available from Ohmcraft), flat screened, or any other suitable process. Resistive layer 706 can include, for example, oxides of ruthenium, iridium and/or rhenium, or any other suitable material. Resistive layer 606 can be applied to contact metallic layer 604 a and 604 b either on a surface of the metallic layers or between the metallic layers and the structural member 602 . In addition, resistive layer, or any other layer for that matter, may be laser cut for additional precision or to adjust an amount of resistance (e.g., by removing portions of the resistive layer) for the resistor.
- resistive layer, or any other layer for that matter may be laser cut for additional precision or to adjust an amount of resistance (e.g., by removing portions of the resistive layer) for the resistor.
- test and measurement probes include voltage probes, current probes, optical probes, and radio-frequency (RF) probes, among others.
- RF radio-frequency
- a voltage probe is typically used to measure a voltage signal from a DUT.
- Voltage probes typically connect to a DUT using at least two probe contact points, or probe tips, that physically contact test points on a DUT such as the pin of an integrated circuit (IC), the solder ball of a ball grid array (BGA) device, a via or pad of a printed circuit board (PCB), a connector pin, etc.
- the two probe contact points each connect to one of two respective test points of the DUT that each carry one side of the differential signal.
- one probe contact point When measuring a single-ended signal, one probe contact point connects to a test point on the DUT that carries the signal while the other probe contact point connects to a test point on the DUT that carries a reference voltage, such as the DUT's ground voltage.
- a current probe is typically used to measure a current signal from a DUT.
- Current probes typically connect to a DUT using a non-contact probing method of forming a conductive loop or coil around a current-carrying conductor, such as a wire, in the DUT.
- the current probe is able to sense the magnitude and direction of the current flowing through the conductor, and produce an electrical output signal that is representative of the current signal.
- the current probe's conductive loop is typically formed by opening a jaw of the current probe, inserting the conductor into the jaw, and closing the jaw to form the loop.
- Current probes are often quite bulky due to the mechanical components required.
- Embodiments of the presently disclosed technology generally provide a small form-factor solution for probing and measuring either a voltage signal or a current signal, or both in a DUT.
- embodiments enable an easy, non-destructive, micro miniature way to measure a current signal within a DUT.
- embodiments include an apparatus 800 , including a small clip 810 or socket-like device structured to be soldered into a DUT 802 .
- the clip 810 may be soldered between two portions 804 a , 804 b of a surface trace 804 on a PCB 802 .
- the clip 810 is structured either to be hand-soldered in place, or to be handled by an automated pick and place machine, to be processed by known PCB processing operations in the same manner as other electrical components, e.g. surface-mount technology (SMT) components. Users may design and layout a PCB 802 to accommodate the placement of one or more clips 810 .
- SMT surface-mount technology
- a user may cut a surface trace 804 of a PCB to form a gap in the trace, and then solder the clip 810 in place to bridge the gap.
- the clip 810 may be secured to the DUT 802 using a conductive adhesive rather than solder.
- embodiments provide various modes of operation by installing various inserts 815 into the clip.
- the inserts 815 are structured to be easily installed into, e.g. snapped into, the clip 810 , and easily removed from the clip 810 by a user.
- the inserts 815 may have a round cross-section, making them easier to install into the clip 810 since no specific orientation is required.
- a user may install a zero Ohm insert 820 into the clip.
- the zero Ohm insert 820 functions as an electrical short, as if the clip/insert combination 800 was not present in the DUT circuit.
- the zero Ohm insert 820 may comprise a zero Ohm resistor.
- the resistor may be a round rod resistor with good structural integrity and electrical performance, such as the round rod resistors described above.
- a user may install a non-zero Ohm resistive insert 830 into the clip 810 .
- the user may install an insert 830 having a known resistance value.
- the known resistance value may be selected to be appropriate for the signal being measured.
- the resistive insert 830 may be a round rod resistor with good structural integrity.
- a user may measure a voltage signal by, for example, clipping a voltage probe tip onto the clip 810 such that it contacts the two ends 832 , 834 of the resistive insert 830 .
- the resistive insert 830 may be integrated into a probe itself, or into a probe tip itself.
- the user may install a current-measuring insert 840 into the clip 810 .
- FIG. 9 illustrates an exemplary embodiment of an apparatus 900 including a clip 910 , as well as a zero-Ohm insert 920 installed into the clip 910 .
- Apparatus 900 may be installed onto a test PCB with a signal trace cut to form a gap, and the clip 910 conductively attached to bridge the gap in the signal trace.
- the zero-Ohm round rod resistor 920 is installed into the clip.
- FIG. 10 illustrates another exemplary embodiment of the disclosed technology.
- the insert 1020 is a resistive insert with a micro-coil 1026 looped substantially around the perimeter of the insert 1020 .
- a voltage signal may be measured by connecting a probe to the two ends of the insert 1020 , for example, by clipping in a corresponding voltage probe tip such that it contacts the two ends 1022 , 1024 of the insert 1020 .
- a current signal may be measured by connecting a probe to the two ends of the micro-coil 1026 .
- a micro-coil 1026 for a combination insert 1020 may be constructed by wrapping a very thin wire around a pin gauge 1110 , for example.
- FIG. 11 depicts a wire coiled around a 0.011 inch diameter pin gauge.
- FIG. 12 is a chart 1200 showing a comparison of the frequency response of a test circuit with and without the presence of embodiments the disclosed clip/insert system 800 , 900 , 1000 .
- Trace 1210 is a trace of the frequency response of the unmodified test circuit, that is, without a clip or insert installed.
- Trace 1220 is a trace of the frequency response of the test circuit modified to have the clip installed, and a zero Ohm insert installed in the clip.
- Trace 1230 is a trace of the frequency response of the test circuit modified to have the clip installed, and a resistive insert installed in the clip.
- the frequency response of the modified test circuit tracks the frequency response of the unmodified test circuit reasonably well up to around 20 GHz, and does not begin to substantially deviate from the frequency response of the unmodified test circuit until up above 30 GHz.
- Embodiments of the disclosed technology also include other types of inserts to perform other types of signal measurements or testing of a DUT.
- a signal injection insert may be installed into the clip to allow a user to easily inject a signal into a circuit in the DUT. This may be useful in measuring a signal subjected to interference or crosstalk.
- a time-domain reflectometry (TDR) or time-domain transmissometry (TDT) insert may be installed into the clip.
- TDR time-domain reflectometry
- TTT time-domain transmissometry
- Such a TDR insert may allow a user to perform a TDR measurement of a DUT circuit on one or both ends of the clip.
- These inserts may connect to a corresponding probe, or an insert may be integrated into a probe itself, or a probe tip itself.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
Description
Claims (19)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/363,790 US10845384B2 (en) | 2017-11-07 | 2019-03-25 | Surface-mountable apparatus for coupling a test and measurement instrument to a device under test |
DE102020107556.1A DE102020107556A1 (en) | 2019-03-21 | 2020-03-19 | SURFACE-MOUNTED DEVICE FOR COUPLING A TESTING AND MEASURING INSTRUMENT TO A COMPONENT TO BE TESTED |
CN202010201478.6A CN111721977A (en) | 2019-03-21 | 2020-03-20 | Surface mountable apparatus for coupling a test and measurement instrument to a device under test |
JP2020050660A JP7509365B2 (en) | 2019-03-21 | 2020-03-23 | Apparatus for coupling a test and measurement instrument to a device under test, a test and measurement system and a method for setting the operating mode of a device under test - Patents.com |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/806,270 US10241133B2 (en) | 2014-12-31 | 2017-11-07 | Probe tip and probe assembly |
US201962821972P | 2019-03-21 | 2019-03-21 | |
US16/363,790 US10845384B2 (en) | 2017-11-07 | 2019-03-25 | Surface-mountable apparatus for coupling a test and measurement instrument to a device under test |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/806,270 Continuation-In-Part US10241133B2 (en) | 2014-12-31 | 2017-11-07 | Probe tip and probe assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
US20190353682A1 US20190353682A1 (en) | 2019-11-21 |
US10845384B2 true US10845384B2 (en) | 2020-11-24 |
Family
ID=68532523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/363,790 Active US10845384B2 (en) | 2017-11-07 | 2019-03-25 | Surface-mountable apparatus for coupling a test and measurement instrument to a device under test |
Country Status (1)
Country | Link |
---|---|
US (1) | US10845384B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5168256A (en) | 1990-03-16 | 1992-12-01 | Ngk Insulators, Ltd. | Resistor element using conductors having relatively low thermal conductivity |
JPH06267710A (en) | 1993-03-15 | 1994-09-22 | Ngk Insulators Ltd | Resistor element and thermal flowmeter |
JPH0886808A (en) | 1994-07-20 | 1996-04-02 | Sony Tektronix Corp | High voltage probe |
US5581130A (en) * | 1992-04-22 | 1996-12-03 | Valoe Electronique | Circuit board for the control and/or power supply of electrical function devices of a vehicle |
US6373273B2 (en) * | 1999-02-16 | 2002-04-16 | Micron Technology, Inc. | Test insert containing vias for interfacing a device containing contact bumps with a test substrate |
US20100073018A1 (en) * | 2008-09-23 | 2010-03-25 | Tektronix, Inc. | Adjustable probe head |
US20100176828A1 (en) * | 2009-01-09 | 2010-07-15 | Fluke Corporation | Reversible test probe and test probe tip |
US20130033280A1 (en) * | 2011-08-03 | 2013-02-07 | Tektronix, Inc. | Self-retaining via probe |
US20140176176A1 (en) * | 2012-12-21 | 2014-06-26 | Tektronix, Inc. | High bandwidth differential lead with device connection |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9810715B2 (en) * | 2014-12-31 | 2017-11-07 | Tektronix, Inc. | High impedance compliant probe tip |
-
2019
- 2019-03-25 US US16/363,790 patent/US10845384B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5168256A (en) | 1990-03-16 | 1992-12-01 | Ngk Insulators, Ltd. | Resistor element using conductors having relatively low thermal conductivity |
US5581130A (en) * | 1992-04-22 | 1996-12-03 | Valoe Electronique | Circuit board for the control and/or power supply of electrical function devices of a vehicle |
JPH06267710A (en) | 1993-03-15 | 1994-09-22 | Ngk Insulators Ltd | Resistor element and thermal flowmeter |
JPH0886808A (en) | 1994-07-20 | 1996-04-02 | Sony Tektronix Corp | High voltage probe |
US6373273B2 (en) * | 1999-02-16 | 2002-04-16 | Micron Technology, Inc. | Test insert containing vias for interfacing a device containing contact bumps with a test substrate |
US20100073018A1 (en) * | 2008-09-23 | 2010-03-25 | Tektronix, Inc. | Adjustable probe head |
US20100176828A1 (en) * | 2009-01-09 | 2010-07-15 | Fluke Corporation | Reversible test probe and test probe tip |
US20130033280A1 (en) * | 2011-08-03 | 2013-02-07 | Tektronix, Inc. | Self-retaining via probe |
US20140176176A1 (en) * | 2012-12-21 | 2014-06-26 | Tektronix, Inc. | High bandwidth differential lead with device connection |
Also Published As
Publication number | Publication date |
---|---|
US20190353682A1 (en) | 2019-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10241133B2 (en) | Probe tip and probe assembly | |
US9810715B2 (en) | High impedance compliant probe tip | |
US10649005B2 (en) | Contact terminal, inspection jig, and inspection device | |
US6768328B2 (en) | Single point probe structure and method | |
US6822466B1 (en) | Alignment/retention device for connector-less probe | |
JP2012122905A (en) | Contact probe | |
CN101122614A (en) | Test probe and manufacturing method thereof | |
KR101731000B1 (en) | Probe unit for inspection of circuit board and circuit board inspection device | |
JP3878578B2 (en) | Contact probe, semiconductor and electrical inspection apparatus using the same | |
US10845384B2 (en) | Surface-mountable apparatus for coupling a test and measurement instrument to a device under test | |
US10119992B2 (en) | High impedance compliant probe tip | |
US7777509B2 (en) | Method and apparatus for electrical testing | |
JPH06300783A (en) | Contactor for prober | |
JP7509365B2 (en) | Apparatus for coupling a test and measurement instrument to a device under test, a test and measurement system and a method for setting the operating mode of a device under test - Patents.com | |
US10613116B2 (en) | Kelvin connection with positional accuracy | |
JP2007064841A (en) | Calibration board for electronic component tester | |
JPH0829475A (en) | Contact probe of mounted substrate inspection device | |
US10267838B1 (en) | Current sensor having microwave chip resistors in parallel radial arrangement | |
JP2001042002A (en) | Contact board for calibrating timing of semiconductor device tester and probe touching contact board | |
US7078924B2 (en) | Methodology to accurately test clock to signal valid and slew rates of PCI signals | |
JP2019086519A (en) | Test probe and test probe tip | |
JPH02124469A (en) | Probe card | |
US11079408B2 (en) | Resistive test-probe tips | |
JPH03205843A (en) | Probe card device | |
KR101509418B1 (en) | A probe card with non-resistibility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: TEKTRONIX, INC, OREGON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMPBELL, JULIE A.;REEL/FRAME:051122/0327 Effective date: 20191122 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |