US10822989B2 - Adjustable blade outer air seal apparatus - Google Patents

Adjustable blade outer air seal apparatus Download PDF

Info

Publication number
US10822989B2
US10822989B2 US16/166,279 US201816166279A US10822989B2 US 10822989 B2 US10822989 B2 US 10822989B2 US 201816166279 A US201816166279 A US 201816166279A US 10822989 B2 US10822989 B2 US 10822989B2
Authority
US
United States
Prior art keywords
outer air
blade outer
air seal
support ring
ring structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US16/166,279
Other versions
US20190120076A1 (en
Inventor
Michael G. McCaffrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
Raytheon Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Technologies Corp filed Critical Raytheon Technologies Corp
Priority to US16/166,279 priority Critical patent/US10822989B2/en
Publication of US20190120076A1 publication Critical patent/US20190120076A1/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Application granted granted Critical
Publication of US10822989B2 publication Critical patent/US10822989B2/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RTX CORPORATION reassignment RTX CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RAYTHEON TECHNOLOGIES CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling

Definitions

  • This disclosure relates to blade outer air seals and, more particularly, to adjustable blade outer air seals.
  • Compressor sections and turbine sections of gas turbine engines typically include one or more stages of static vanes and rotating blades.
  • a casing is typically provided circumferentially around the stages and a shroud inside of the casing provides a relatively tight clearance with tips of the rotating blades to reduce gas leakage.
  • a tip clearance control mechanism adjusts the radial position of the shroud.
  • the shroud is indirectly moved by moving the case or other support structure, for example, which inhibits the ability to move the shroud quickly and precisely.
  • An adjustable blade outer air seal apparatus includes a case extending circumferentially around an axis, and a support ring non-rigidly mounted to the case on spring connections radially inwards of the case, whereby the support ring radially floats with respect to the case. At least one blade outer air seal segment is radially adjustable relative to the support ring.
  • the spring connections bias the support ring to a centered position with respect to the case.
  • At least one blade outer air seal segment includes a lower body portion that has a leading end and a trailing end, circumferential sides, and a radially inner gas path surface and an opposed radially outer surface, with a shaft that extends radially outwards from the radially outer surface and through an unthreaded opening in the support ring structure such that a threaded end of the shaft projects from an outer surface of the support ring structure.
  • the shaft includes an internal cavity.
  • a further embodiment of any of the foregoing embodiments includes an actuation arm that engages the threaded end.
  • a further embodiment of any of the foregoing embodiments includes a clamp secured on the threaded end such that the actuation arm is secured between the clamp and the support ring structure.
  • a further embodiment of any of the foregoing embodiments includes a thrust plate between the actuation arm and the support ring structure.
  • a further embodiment of any of the foregoing embodiments includes a spacer mounted adjacent the support ring structure.
  • the spacer is adjustable in radial size.
  • the radial size controls a radial position of the at least one blade outer air seal segment relative to the support ring.
  • the spacer includes a variable number of stacked washers that define the radial size of the spacer.
  • the at least one blade outer air seal segment and the support ring structure include an anti-rotation feature limiting rotation of the at least one blade outer air seal segment about a radial axis, the anti-rotation feature including a slot and a tab received in the slot, and the tab and the slot are located at a leading end or a trailing end of the at least one blade outer air seal segment.
  • a gas turbine engine includes a compressor section, a combustor section, and a turbine section. At least one of the compressor section and the turbine section include an adjustable blade outer air seal apparatus comprising a case structure extending circumferentially about an engine central axis.
  • a support ring is non-rigidly mounted to the case on spring connections radially inwards of the case, whereby the support ring radially floats with respect to the case.
  • At least one blade outer air seal segment is radially adjustable relative to the support ring.
  • a further embodiment of any of the foregoing embodiments includes a fan and a gear assembly.
  • the fan is rotatably coupled to the turbine section through the gear assembly.
  • the spring connections bias the support ring to a centered position with respect to the case.
  • a further embodiment of any of the foregoing embodiments includes a spacer mounted adjacent the support ring structure.
  • the spacer is adjustable in radial size.
  • the radial size controls a radial position of the at least one blade outer air seal segment relative to the support ring.
  • the spacer includes a variable number of stacked washers that define the radial size of the spacer.
  • a method for adjusting position of a blade outer air seal includes setting a starting radial position of a blade outer air seal to obtain a desired starting clearance between the blade outer air seal and a rotatable blade.
  • the setting includes adjusting a radial size of an adjustable spacer and, after the setting, in response to one or more flight conditions, using an actuation arm for fine adjustment control of the radial position of the blade outer air seal.
  • the fine adjustment control includes changing the radial position in an increment of approximately 0.001 inches.
  • the adjustable spacer includes a variable number of stacked washers that define the radial size of the spacer, and the setting includes selecting the number of the stacked washers to use.
  • FIG. 1 illustrates an example gas turbine engine.
  • FIG. 2 illustrates a cross-section through selected portions of a gas turbine engine.
  • FIG. 3 illustrates an example adjustable blade outer air seal apparatus.
  • FIG. 4 illustrates an example threaded shaft of an adjustable blade outer air seal apparatus.
  • FIG. 5 illustrates a clamp of an adjustable blade outer air seal apparatus.
  • FIG. 6 illustrates a perspective view of the clamp of FIG. 5 .
  • FIG. 7 illustrates another example adjustable blade outer air seal apparatus.
  • FIG. 8 illustrates another adjustable blade outer air seal apparatus.
  • FIG. 9A illustrates an example blade outer air seal apparatus in a compressor section of a gas turbine engine.
  • FIG. 9B illustrates another cross-section of the adjustable blade outer air seal apparatus of FIG. 9A .
  • FIG. 1 schematically illustrates a gas turbine engine 20 .
  • the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22 , a compressor section 24 , a combustor section 26 and a turbine section 28 .
  • Alternative engines might include an augmentor section (not shown) among other systems or features.
  • the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26 then expansion through the turbine section 28 .
  • FIG. 1 schematically illustrates a gas turbine engine 20 .
  • the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22 , a compressor section 24 , a combustor section 26 and a turbine section 28 .
  • Alternative engines might include an augmentor section (not shown) among other systems or features.
  • the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flow
  • the engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38 . It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
  • the low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42 , a low pressure compressor 44 and a low pressure turbine 46 .
  • the inner shaft 40 is connected to the fan 42 through a gear assembly 48 to drive the fan 42 at a lower speed than the low speed spool 30 .
  • the high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54 .
  • a combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54 .
  • the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
  • the core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52 , mixed and burned with fuel in the combustor 56 , then expanded over the high pressure turbine 54 and low pressure turbine 46 .
  • the turbines 46 , 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
  • the engine 20 in one example a high-bypass geared aircraft engine.
  • the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10)
  • the gear assembly 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3
  • the low pressure turbine 46 has a pressure ratio that is greater than about 5.
  • the engine 20 bypass ratio is greater than about ten (10:1)
  • the fan diameter is significantly larger than that of the low pressure compressor 44
  • the low pressure turbine 46 has a pressure ratio that is greater than about 5:1.
  • Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle.
  • the gear assembly 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • the fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet.
  • TSFC Thrust Specific Fuel Consumption
  • Low fan pressure ratio is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system.
  • the low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45.
  • Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tambient deg R)/518.7) ⁇ circumflex over ( ) ⁇ 0.5].
  • the “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.
  • FIG. 2 schematically illustrates a cross-section through the turbine section 28 of the engine 20 , although the examples herein are also understood to be applicable to the compressor section 24 or other rotatable machinery.
  • the engine 20 includes a case structure 70 that extends generally circumferentially around the axis A of the engine 20 .
  • a support ring structure 72 is mounted radially inwards of the case structure 70 with regard to the axis A.
  • at least one blade outer air seal segment 74 (one shown) is mounted relative to the support ring structure 72 . It is to be understood that a plurality of blade outer air seal segments 74 may be provided to form a complete annular shroud around central axis A.
  • the at least one blade outer air seal segment 74 is radially adjustable relative to the support ring structure 72 , which provides the ability to directly adjust the radial position of the blade outer air seal segment 74 without having to indirectly adjust the position by moving the case structure 70 and/or support ring structure 72 .
  • the support ring structure 72 is “floating” with regard to the case structure 70 . That is, the support ring structure 72 is non-rigidly connected with the case structure 70 using spring connections 76 .
  • the spring connections 76 serve to center the support ring structure 72 relative to the case structure 70 and axis A. Thus, under certain load conditions, the support ring structure 72 is permitted to move relative to the case structure 70 .
  • the blade outer air seal segments 74 are radially adjustable relative to the support ring structure 72 and are not rigidly affixed relative to the case structure 70 .
  • this embodiment includes the “floating” arrangement, it is to be understood that other embodiments and the disclosed examples disclosed are not limited to a “floating” arrangement.
  • FIG. 3 shows an example adjustable blade outer air seal apparatus 80 that incorporates the blade outer air seal segment 74 .
  • the blade outer air seal segment 74 includes a lower body portion 82 that generally extends between a leading end 84 and a trailing end 86 , circumferential sides 88 (one shown) and a radially inner seal surface 90 .
  • the seal surface 90 is a gas path surface that faces in a direction toward rotating blade B.
  • the blade outer air seal segment 74 includes a threaded shaft 92 that extends radially outwardly from the lower body portion 82 .
  • the threaded shaft 92 extends through an unthreaded opening 94 in the support ring structure 72 .
  • a threaded portion 96 on the periphery of the upper part of the threaded shaft 92 threadingly engages an actuation arm 98 .
  • the actuation arm 98 extends between a first end 98 a , which is threadingly engaged with the threaded portion 96 of the threaded shaft 92 , and a second end 98 b that is used to rotate the actuation arm 98 relative to radial axis C.
  • the first end 98 a of the actuation arm 98 is secured between a clamp member 100 and a radially outer surface of the support ring structure 72 .
  • an adjustable spacer 102 , seal bushing 104 and thrust plate 106 are provided between the first end 98 a of the actuation arm 98 and the radially outer surface of the support ring structure 72 .
  • each actuation arm 98 of each blade outer air seal 74 includes a dedicated actuator, such as a motor.
  • the actuation arms 98 are coupled to a common actuator through a unison ring, for example.
  • a thread pitch of the threaded portion 96 of the threaded shaft 92 is selected such that for a given angular rotation of the actuation arm 98 , the blade outer air seal segment 74 moves a predetermined amount in a radial direction along axis C.
  • the thread pitch is 28 threads per inch (11 threads per centimeter) such that approximately 10° rotation of the actuation arm 98 causes a radial position change of the blade outer air seal segment 74 of approximately 0.001 inches (0.00254 centimeters).
  • the adjustable blade outer air seal apparatus 80 provides fine control of the radial position of the seal surface 90 .
  • the position of the blade outer air seal segment 74 is radially adjusted in response to at least one of an aircraft maneuver and a detected engine temperature.
  • an aircraft maneuver such as a change in aircraft pitch, can cause the engine 20 to deflect.
  • the aircraft maneuver causes a control signal to be sent to the actuator or actuators to radially retract the blade out air seals 74 .
  • a detected change temperature can cause thermal expansion or contraction in portions of the engine 20 .
  • a control signal is sent to the actuator or actuators to radially move the blade out air seals 74 .
  • the adjustable blade outer air seal apparatus 80 is able to rapidly respond to a signal to move.
  • the blade outer air seals 74 are radially adjusted in a response time of less than one second between initiating a control signal to move and movement between radial positions.
  • the adjustable spacer 102 is used to initially set the radial position of the blade outer air seal segment 74 .
  • the adjustable spacer 102 has a radial dimension 102 a that is adjustable to control an initial radial position of the blade outer air seal segment 74 relative to the support ring structure 72 . That is, for a selected relatively smaller radial dimension 102 a , the initial position of the blade outer air seal segment 74 is relatively closer to axis A in along radial axis C. For a selected relatively larger radial dimension 102 a , the radial position of the blade outer air seal segment 74 is relatively farther from axis A along radial axis C.
  • the adjustable spacer 102 is a stacked washer system. For example, greater or fewer number of washers are provided in the stack to adjust the radial dimension 102 a of the adjustable spacer 102 to set an initial radial position of the blade outer air seal segment 74 . In this manner, a user initially sets a desirable clearance R between the seal surface 90 and the tip of the rotating blade B and thereafter finely adjusts the clearance R using the actuation arm 98 .
  • the adjustable spacer 102 is a shim that has predetermined radial dimension 102 a to set a desired initial radial position of the blade outer air seal segment 74 .
  • the bushing 104 provides an air seal between the unthreaded opening 94 in the support ring structure 72 and the gas path surface provided by the seal surface 90 . Further, as the gas flowing over the blade B varies in pressure, the pressure variations are reacted through the blade outer air seal segment 74 into the thrust plate 106 . Thus, the thrust plate 106 facilitates load management in the adjustable blade outer air seal apparatus 80 .
  • the blade outer air seal segment 74 optionally includes a cavity 108 that extends through the threaded shaft 92 and lower body portion 82 .
  • the cavity 108 includes an end 108 a that opens at the seal surface 90 of the blade outer air seal segment 74 .
  • a sensor probe 110 is received at least partially within the cavity 108 .
  • the sensor probe 110 facilitates determining the clearance R.
  • the sensor probe 110 includes an end 110 a that is flush with the seal surface 90 at the open end 108 a of the cavity 108 and the radial axis C along which the cavity 108 extends is centered with regard to the lower body portion 82 in order to gauge the blade outer air seal 74 position at the center.
  • the sensor probe 110 is a laser sensor, microwave sensor, or other suitable type of sensor for use within a gas turbine engine environment.
  • FIG. 4 a portion of another example threaded shaft 192 is shown.
  • like reference numerals designate like elements where appropriate and reference numerals with the addition of one-hundred or multiples thereof designate modified elements that are understood to incorporate the same features and benefits of the corresponding elements.
  • the threaded shaft 192 shown in FIG. 4 may be used in place of the threaded shaft 92 as shown in FIG. 3 .
  • the threaded portion 196 of the threaded shaft 192 includes trapezoidal threads 196 a , also known as acme threads.
  • the trapezoidal threads 196 a provide a high strength threaded connection between the threaded shaft 192 and the actuation arm 98 .
  • FIGS. 5 and 6 schematically show selected portions of two neighboring adjustable blade outer air seal apparatuses 80 , as previously described.
  • the clamp member 100 in this example is common between the neighboring adjustable blade outer air seal apparatuses 80 . That is, the clamp member 100 extends between at least two actuation arms 98 to clamp the respective first ends 98 a onto the support ring structure 72 .
  • the common clamp member 100 is rigidly secured directly to the support ring structure 72 using fastener 100 a .
  • the common clamp member 100 is shown as securing two actuator arms 98 in this example, it is to be understood that the clamp member 100 can alternatively be adapted to clamp a single actuation arm 98 or greater than two actuation arms 98 in other examples.
  • FIG. 7 shows another example adjustable blade outer air seal apparatus 280 that is somewhat similar to the adjustable blade outer air seal apparatus 80 as described with reference to FIG. 3 .
  • the blade outer air seal segment 74 and the threaded shaft 292 are integrally formed as a single, monolithic structure with the cavity 208 extending there through to end 208 a that is flush with a seal surface 290 of the blade outer air seal segment 274 .
  • a sensor probe 210 is located at least partially within the cavity 208 such that an end 210 a of the sensor probe 210 is flush with the seal surface 290 .
  • a retaining nut 210 b secures the sensor probe 210 relative to the blade outer air seal segment 274 .
  • a threaded interface 210 c is provided between the retainer nut 210 b and the upper portion of the threaded shaft 292 .
  • the adjustable blade outer air seal apparatus 280 includes an upper bushing 294 a located between the first and 98 a of the actuation arm 98 and clamp member 100 , and a lower bushing 294 b between the first end 98 a of the actuation arm 98 and the support ring structure 272 .
  • an adjustable spacer 202 in this example is located between the lower bushing 294 b and the support ring structure 272 .
  • the adjustable spacer 202 is provided over the lower bushing 294 b and between the lower bushing 294 b and the first end 98 a of the actuation arm 98 .
  • the support ring structure 272 and blade outer air seal segment 274 are additionally provided with an anti-rotation feature 290 a located the leading end 284 , the trailing end 286 or both.
  • the anti-rotation feature 290 a includes a tab 290 b extending circumferentially and a slot 290 c that inter-fit to limit rotational movement about radial axis C.
  • the tab 290 b is provided on the blade outer air seal segment 274 and a slot 290 c is provided in the support ring structure 272 , however, it is to be understood that the tab 290 b can alternatively be provided on the support ring structure 272 and a slot 290 c on the blade outer air seal segment 274 .
  • FIG. 8 illustrates another embodiment of an adjustable blade air seal apparatus 380 .
  • the threaded shaft 392 and the lower body portion 382 of the blade outer air seal segment 374 are non-integral.
  • the lower body portion 382 of the blade outer air seal segment 74 includes a boss 382 a for connection with the threaded shaft 392 .
  • the boss 382 a is integrally formed with the lower body portion 382 .
  • the boss 382 a is a separate piece that is affixed, such as by welding, to the lower body portion 382 .
  • the threaded portion 396 of the threaded shaft 392 is received into the boss 382 a and engages a corresponding threaded portion 382 b of the boss 382 a . Rotation of the threaded shaft 392 thereby causes movement of the lower body portion 382 .
  • a splined connection 399 is provided between the first end 398 a and an upper portion of the threaded shaft 392 .
  • the splined connection 399 allows the first end 398 a of the actuation arm 398 to be slid onto the threaded shaft 392 and rotate the shaft with regard to axis C. The rotation of the threaded shaft 392 moves the lower body portion 382 of the blade outer air seal segment 374 through the threaded engagement with the boss 382 a.
  • FIGS. 9A and 9B illustrate cross-sections of selected portions of another example adjustable blade outer air seal apparatus 480 used in the compressor section 24 .
  • the blade outer air seal segment 474 and support ring structure 472 include a seal 491 .
  • the seal 491 limits gas leakage around the blade outer air seal segment 474 through cavity P from the trailing end 486 back to the leading end 484 .
  • the seal limits flow of relatively higher pressure gas that is already passed over the blade B around the blade outer air seal segment 474 back to an upstream position at the leading end 484 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

An adjustable blade outer air seal apparatus includes a case that extends circumferentially around an axis, a support ring non-rigidly mounted to the case on spring connections radially inwards of the case, whereby the support ring floats with respect to the case, and at least one blade outer air seal segment that is radially adjustable relative to the support ring.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 14/749,695, filed Jun. 25, 2015, which is a continuation of U.S. patent application Ser. No. 13/396,016, filed Feb. 14, 2012, now U.S. Pat. No. 9,228,447 issued Jan. 5, 2016.
BACKGROUND
This disclosure relates to blade outer air seals and, more particularly, to adjustable blade outer air seals.
Compressor sections and turbine sections of gas turbine engines typically include one or more stages of static vanes and rotating blades. A casing is typically provided circumferentially around the stages and a shroud inside of the casing provides a relatively tight clearance with tips of the rotating blades to reduce gas leakage. In some examples, a tip clearance control mechanism adjusts the radial position of the shroud. Typically, the shroud is indirectly moved by moving the case or other support structure, for example, which inhibits the ability to move the shroud quickly and precisely.
SUMMARY
An adjustable blade outer air seal apparatus according to an example of the present disclosure includes a case extending circumferentially around an axis, and a support ring non-rigidly mounted to the case on spring connections radially inwards of the case, whereby the support ring radially floats with respect to the case. At least one blade outer air seal segment is radially adjustable relative to the support ring.
In a further embodiment of any of the foregoing embodiments, the spring connections bias the support ring to a centered position with respect to the case.
In a further embodiment of any of the foregoing embodiments, at least one blade outer air seal segment includes a lower body portion that has a leading end and a trailing end, circumferential sides, and a radially inner gas path surface and an opposed radially outer surface, with a shaft that extends radially outwards from the radially outer surface and through an unthreaded opening in the support ring structure such that a threaded end of the shaft projects from an outer surface of the support ring structure.
In a further embodiment of any of the foregoing embodiments, the shaft includes an internal cavity.
A further embodiment of any of the foregoing embodiments includes an actuation arm that engages the threaded end.
A further embodiment of any of the foregoing embodiments includes a clamp secured on the threaded end such that the actuation arm is secured between the clamp and the support ring structure.
A further embodiment of any of the foregoing embodiments includes a thrust plate between the actuation arm and the support ring structure.
A further embodiment of any of the foregoing embodiments includes a spacer mounted adjacent the support ring structure. The spacer is adjustable in radial size. The radial size controls a radial position of the at least one blade outer air seal segment relative to the support ring.
In a further embodiment of any of the foregoing embodiments, the spacer includes a variable number of stacked washers that define the radial size of the spacer.
In a further embodiment of any of the foregoing embodiments, the at least one blade outer air seal segment and the support ring structure include an anti-rotation feature limiting rotation of the at least one blade outer air seal segment about a radial axis, the anti-rotation feature including a slot and a tab received in the slot, and the tab and the slot are located at a leading end or a trailing end of the at least one blade outer air seal segment.
A gas turbine engine according to an example of the present disclosure includes a compressor section, a combustor section, and a turbine section. At least one of the compressor section and the turbine section include an adjustable blade outer air seal apparatus comprising a case structure extending circumferentially about an engine central axis. A support ring is non-rigidly mounted to the case on spring connections radially inwards of the case, whereby the support ring radially floats with respect to the case. At least one blade outer air seal segment is radially adjustable relative to the support ring.
A further embodiment of any of the foregoing embodiments includes a fan and a gear assembly. The fan is rotatably coupled to the turbine section through the gear assembly.
In a further embodiment of any of the foregoing embodiments, the spring connections bias the support ring to a centered position with respect to the case.
A further embodiment of any of the foregoing embodiments includes a spacer mounted adjacent the support ring structure. The spacer is adjustable in radial size. The radial size controls a radial position of the at least one blade outer air seal segment relative to the support ring.
In a further embodiment of any of the foregoing embodiments, the spacer includes a variable number of stacked washers that define the radial size of the spacer.
A method for adjusting position of a blade outer air seal according to an example of the present disclosure includes setting a starting radial position of a blade outer air seal to obtain a desired starting clearance between the blade outer air seal and a rotatable blade. The setting includes adjusting a radial size of an adjustable spacer and, after the setting, in response to one or more flight conditions, using an actuation arm for fine adjustment control of the radial position of the blade outer air seal.
In a further embodiment of any of the foregoing embodiments, the fine adjustment control includes changing the radial position in an increment of approximately 0.001 inches.
In a further embodiment of any of the foregoing embodiments, the adjustable spacer includes a variable number of stacked washers that define the radial size of the spacer, and the setting includes selecting the number of the stacked washers to use.
BRIEF DESCRIPTION OF THE DRAWINGS
The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
FIG. 1 illustrates an example gas turbine engine.
FIG. 2 illustrates a cross-section through selected portions of a gas turbine engine.
FIG. 3 illustrates an example adjustable blade outer air seal apparatus.
FIG. 4 illustrates an example threaded shaft of an adjustable blade outer air seal apparatus.
FIG. 5 illustrates a clamp of an adjustable blade outer air seal apparatus.
FIG. 6 illustrates a perspective view of the clamp of FIG. 5.
FIG. 7 illustrates another example adjustable blade outer air seal apparatus.
FIG. 8 illustrates another adjustable blade outer air seal apparatus.
FIG. 9A illustrates an example blade outer air seal apparatus in a compressor section of a gas turbine engine.
FIG. 9B illustrates another cross-section of the adjustable blade outer air seal apparatus of FIG. 9A.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.
The engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided.
The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a gear assembly 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
The engine 20 in one example a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10), the gear assembly 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about 5. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The gear assembly 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
A significant amount of thrust is provided by the bypass flow due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of 0.8 Mach and 35,000 ft, with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tambient deg R)/518.7){circumflex over ( )}0.5]. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second.
FIG. 2 schematically illustrates a cross-section through the turbine section 28 of the engine 20, although the examples herein are also understood to be applicable to the compressor section 24 or other rotatable machinery. As shown, the engine 20 includes a case structure 70 that extends generally circumferentially around the axis A of the engine 20. A support ring structure 72 is mounted radially inwards of the case structure 70 with regard to the axis A. As further shown, at least one blade outer air seal segment 74 (one shown) is mounted relative to the support ring structure 72. It is to be understood that a plurality of blade outer air seal segments 74 may be provided to form a complete annular shroud around central axis A. As will be described in more detail below, the at least one blade outer air seal segment 74 is radially adjustable relative to the support ring structure 72, which provides the ability to directly adjust the radial position of the blade outer air seal segment 74 without having to indirectly adjust the position by moving the case structure 70 and/or support ring structure 72.
In the example non-limiting embodiment, the support ring structure 72 is “floating” with regard to the case structure 70. That is, the support ring structure 72 is non-rigidly connected with the case structure 70 using spring connections 76. The spring connections 76 serve to center the support ring structure 72 relative to the case structure 70 and axis A. Thus, under certain load conditions, the support ring structure 72 is permitted to move relative to the case structure 70. Due at least in part to the “floating” design of the support ring structure 72 and case structure 70, the blade outer air seal segments 74 are radially adjustable relative to the support ring structure 72 and are not rigidly affixed relative to the case structure 70. Although this embodiment includes the “floating” arrangement, it is to be understood that other embodiments and the disclosed examples disclosed are not limited to a “floating” arrangement.
FIG. 3 shows an example adjustable blade outer air seal apparatus 80 that incorporates the blade outer air seal segment 74. In this example, the blade outer air seal segment 74 includes a lower body portion 82 that generally extends between a leading end 84 and a trailing end 86, circumferential sides 88 (one shown) and a radially inner seal surface 90. The seal surface 90 is a gas path surface that faces in a direction toward rotating blade B.
In this example, the blade outer air seal segment 74 includes a threaded shaft 92 that extends radially outwardly from the lower body portion 82. The threaded shaft 92 extends through an unthreaded opening 94 in the support ring structure 72. A threaded portion 96 on the periphery of the upper part of the threaded shaft 92 threadingly engages an actuation arm 98. The actuation arm 98 extends between a first end 98 a, which is threadingly engaged with the threaded portion 96 of the threaded shaft 92, and a second end 98 b that is used to rotate the actuation arm 98 relative to radial axis C.
In the illustrated embodiment, the first end 98 a of the actuation arm 98 is secured between a clamp member 100 and a radially outer surface of the support ring structure 72. Optionally, an adjustable spacer 102, seal bushing 104 and thrust plate 106 are provided between the first end 98 a of the actuation arm 98 and the radially outer surface of the support ring structure 72.
In operation, the actuation arm 98 is rotated about radial axis C, which is generally perpendicular to axis A. The clamp member 100 limits movement of the actuation arm 98 such that the threaded engagement between the first end 98 a of the actuation arm 98 and the threaded portion 96 of the threaded shaft 92 causes the blade outer air seal segment 74 to move radially. As an example, an actuation mechanism (not shown) is mechanically connected with the second end 98 b to rotate the actuation arm 98 an appropriate amount to change the radial position of the blade outer air seal segment 74. In one example, each actuation arm 98 of each blade outer air seal 74 includes a dedicated actuator, such as a motor. Alternatively, the actuation arms 98 are coupled to a common actuator through a unison ring, for example.
In a further example, a thread pitch of the threaded portion 96 of the threaded shaft 92 is selected such that for a given angular rotation of the actuation arm 98, the blade outer air seal segment 74 moves a predetermined amount in a radial direction along axis C. In a further embodiment, the thread pitch is 28 threads per inch (11 threads per centimeter) such that approximately 10° rotation of the actuation arm 98 causes a radial position change of the blade outer air seal segment 74 of approximately 0.001 inches (0.00254 centimeters). Thus, the adjustable blade outer air seal apparatus 80 provides fine control of the radial position of the seal surface 90. Given this description, one of ordinary skill in the art will recognize other suitable thread pitches to meet their particular needs. Put another way, if greater or lesser angular rotation is desired of the actuation arm 98, a different thread pitch can be used. However, using a relatively fine pitch allows for very small and precise movement of the blade outer air seal segment 74 in order to adjust a radial distance R between the seal surface 90 of the blade outer air seal segment 74 and a tip of the rotating or rotatable blade B.
In a further example, the position of the blade outer air seal segment 74 is radially adjusted in response to at least one of an aircraft maneuver and a detected engine temperature. As an example, an aircraft maneuver, such as a change in aircraft pitch, can cause the engine 20 to deflect. To limit rub between the blade outer air seals 74 and the blades B, the aircraft maneuver causes a control signal to be sent to the actuator or actuators to radially retract the blade out air seals 74. By limiting rub during such aircraft maneuvers, the lifetime of the blade outer air seals 74 is extended. In another example, a detected change temperature can cause thermal expansion or contraction in portions of the engine 20. In response to a detected change in temperature or predetermined temperature threshold, a control signal is sent to the actuator or actuators to radially move the blade out air seals 74.
In a further example, because the blade outer air seals 74 are directly mechanically moved instead of moving the case structure 70 or support ring structure 72 to indirectly move the blade outer air seals 74, the adjustable blade outer air seal apparatus 80 is able to rapidly respond to a signal to move. In one example, the blade outer air seals 74 are radially adjusted in a response time of less than one second between initiating a control signal to move and movement between radial positions.
In a further example where the adjustable spacer 102 is used, the adjustable spacer 102 is used to initially set the radial position of the blade outer air seal segment 74. As shown, the adjustable spacer 102 has a radial dimension 102 a that is adjustable to control an initial radial position of the blade outer air seal segment 74 relative to the support ring structure 72. That is, for a selected relatively smaller radial dimension 102 a, the initial position of the blade outer air seal segment 74 is relatively closer to axis A in along radial axis C. For a selected relatively larger radial dimension 102 a, the radial position of the blade outer air seal segment 74 is relatively farther from axis A along radial axis C.
In a further embodiment, the adjustable spacer 102 is a stacked washer system. For example, greater or fewer number of washers are provided in the stack to adjust the radial dimension 102 a of the adjustable spacer 102 to set an initial radial position of the blade outer air seal segment 74. In this manner, a user initially sets a desirable clearance R between the seal surface 90 and the tip of the rotating blade B and thereafter finely adjusts the clearance R using the actuation arm 98. In another alternative, the adjustable spacer 102 is a shim that has predetermined radial dimension 102 a to set a desired initial radial position of the blade outer air seal segment 74.
In a further example where the thrust plate 106 and bushing 104 are used, the bushing 104 provides an air seal between the unthreaded opening 94 in the support ring structure 72 and the gas path surface provided by the seal surface 90. Further, as the gas flowing over the blade B varies in pressure, the pressure variations are reacted through the blade outer air seal segment 74 into the thrust plate 106. Thus, the thrust plate 106 facilitates load management in the adjustable blade outer air seal apparatus 80.
In a further embodiment, the blade outer air seal segment 74 optionally includes a cavity 108 that extends through the threaded shaft 92 and lower body portion 82. In this example, the cavity 108 includes an end 108 a that opens at the seal surface 90 of the blade outer air seal segment 74. In a further example, a sensor probe 110 is received at least partially within the cavity 108. The sensor probe 110 facilitates determining the clearance R. For example, the sensor probe 110 includes an end 110 a that is flush with the seal surface 90 at the open end 108 a of the cavity 108 and the radial axis C along which the cavity 108 extends is centered with regard to the lower body portion 82 in order to gauge the blade outer air seal 74 position at the center. The sensor probe 110 is a laser sensor, microwave sensor, or other suitable type of sensor for use within a gas turbine engine environment.
Referring to FIG. 4, a portion of another example threaded shaft 192 is shown. In this disclosure, like reference numerals designate like elements where appropriate and reference numerals with the addition of one-hundred or multiples thereof designate modified elements that are understood to incorporate the same features and benefits of the corresponding elements. The threaded shaft 192 shown in FIG. 4 may be used in place of the threaded shaft 92 as shown in FIG. 3. In this example, however, the threaded portion 196 of the threaded shaft 192 includes trapezoidal threads 196 a, also known as acme threads. As an example, the trapezoidal threads 196 a provide a high strength threaded connection between the threaded shaft 192 and the actuation arm 98.
FIGS. 5 and 6 schematically show selected portions of two neighboring adjustable blade outer air seal apparatuses 80, as previously described. In the drawing, only the support ring structure 72, first end 98 a of the actuation arm 98 and clamp member 100 are shown. In this example, the cross-section is taken perpendicular to axis A to show the clamp member 100. The clamp member 100 in this example is common between the neighboring adjustable blade outer air seal apparatuses 80. That is, the clamp member 100 extends between at least two actuation arms 98 to clamp the respective first ends 98 a onto the support ring structure 72. The common clamp member 100 is rigidly secured directly to the support ring structure 72 using fastener 100 a. Although the common clamp member 100 is shown as securing two actuator arms 98 in this example, it is to be understood that the clamp member 100 can alternatively be adapted to clamp a single actuation arm 98 or greater than two actuation arms 98 in other examples.
FIG. 7 shows another example adjustable blade outer air seal apparatus 280 that is somewhat similar to the adjustable blade outer air seal apparatus 80 as described with reference to FIG. 3. In this example, the blade outer air seal segment 74 and the threaded shaft 292 are integrally formed as a single, monolithic structure with the cavity 208 extending there through to end 208 a that is flush with a seal surface 290 of the blade outer air seal segment 274. A sensor probe 210 is located at least partially within the cavity 208 such that an end 210 a of the sensor probe 210 is flush with the seal surface 290. In this example, a retaining nut 210 b secures the sensor probe 210 relative to the blade outer air seal segment 274. In this regard, a threaded interface 210 c is provided between the retainer nut 210 b and the upper portion of the threaded shaft 292.
In this example, the adjustable blade outer air seal apparatus 280 includes an upper bushing 294 a located between the first and 98 a of the actuation arm 98 and clamp member 100, and a lower bushing 294 b between the first end 98 a of the actuation arm 98 and the support ring structure 272. Further, an adjustable spacer 202 in this example is located between the lower bushing 294 b and the support ring structure 272. Alternatively, the adjustable spacer 202 is provided over the lower bushing 294 b and between the lower bushing 294 b and the first end 98 a of the actuation arm 98.
In a further embodiment, the support ring structure 272 and blade outer air seal segment 274 are additionally provided with an anti-rotation feature 290 a located the leading end 284, the trailing end 286 or both. In this example, the anti-rotation feature 290 a includes a tab 290 b extending circumferentially and a slot 290 c that inter-fit to limit rotational movement about radial axis C. In the example shown, the tab 290 b is provided on the blade outer air seal segment 274 and a slot 290 c is provided in the support ring structure 272, however, it is to be understood that the tab 290 b can alternatively be provided on the support ring structure 272 and a slot 290 c on the blade outer air seal segment 274.
FIG. 8 illustrates another embodiment of an adjustable blade air seal apparatus 380. In this example, the threaded shaft 392 and the lower body portion 382 of the blade outer air seal segment 374 are non-integral. In this regard, the lower body portion 382 of the blade outer air seal segment 74 includes a boss 382 a for connection with the threaded shaft 392. In one example, the boss 382 a is integrally formed with the lower body portion 382. Alternatively, the boss 382 a is a separate piece that is affixed, such as by welding, to the lower body portion 382. In this example, the threaded portion 396 of the threaded shaft 392 is received into the boss 382 a and engages a corresponding threaded portion 382 b of the boss 382 a. Rotation of the threaded shaft 392 thereby causes movement of the lower body portion 382.
Because the threaded portion 396 in this example engages the boss 382 a, there is not a threaded connection between the first end 398 a of actuation arm 398. Instead, in this example, a splined connection 399 is provided between the first end 398 a and an upper portion of the threaded shaft 392. The splined connection 399 allows the first end 398 a of the actuation arm 398 to be slid onto the threaded shaft 392 and rotate the shaft with regard to axis C. The rotation of the threaded shaft 392 moves the lower body portion 382 of the blade outer air seal segment 374 through the threaded engagement with the boss 382 a.
FIGS. 9A and 9B illustrate cross-sections of selected portions of another example adjustable blade outer air seal apparatus 480 used in the compressor section 24. In the drawing, the threaded shaft 392 and connection with the actuation arm 398, as described with reference to FIG. 8, are not shown. The blade outer air seal segment 474 and support ring structure 472 include a seal 491. The seal 491 limits gas leakage around the blade outer air seal segment 474 through cavity P from the trailing end 486 back to the leading end 484. Thus, in operation, the seal limits flow of relatively higher pressure gas that is already passed over the blade B around the blade outer air seal segment 474 back to an upstream position at the leading end 484.
Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.

Claims (15)

What is claimed is:
1. An adjustable blade outer air seal apparatus, comprising:
a case structure extending circumferentially;
a support ring structure mounted radially inwards of the case structure;
at least one blade outer air seal segment radially adjustably mounted relative to the support ring structure, the at least one blade outer air seal segment including a threaded shaft;
the blade outer air seal segment and the threaded shaft are integrally formed as a single, monolithic structure; and
an actuation arm engaging a threaded portion of the threaded shaft and a clamp member secured on the threaded shaft such that the actuation arm is secured between the clamp member and the support ring structure.
2. The adjustable blade outer air seal apparatus of claim 1, further comprising a cavity extending through the monolithic structure to an end that is flush with a seal surface of the blade outer air seal segment.
3. The adjustable blade outer air seal apparatus of claim 2, further comprising a sensor probe at least partially within the cavity.
4. The adjustable blade outer air seal apparatus as recited in claim 3, wherein the sensor probe has a probe end that is flush with the seal surface.
5. The adjustable blade outer air seal apparatus of claim 2, wherein the cavity extends through the threaded shaft.
6. The adjustable blade outer air seal apparatus as recited in claim 1, wherein the threaded shaft extends through an unthreaded opening in the support ring structure.
7. The adjustable blade outer air seal apparatus as recited in claim 1, further comprising a threaded portion on the threaded shaft and the threaded portion includes trapezoidal threads.
8. The adjustable blade outer air seal apparatus as recited in claim 1, wherein the support ring structure is non-rigidly mounted to the case structure.
9. The adjustable blade outer air seal apparatus as recited in claim 1, wherein the support ring structure further comprises a first seal limiting gas leakage between the support ring structure and the blade outer air seal segment.
10. The adjustable blade outer air seal apparatus as recited in claim 9, wherein the first seal engages a trailing end of the blade outer air seal segment.
11. The adjustable blade outer air seal apparatus as recited in claim 1, wherein the threaded shaft is an externally threaded shaft.
12. A gas turbine engine comprising:
a compressor section;
a combustor section in fluid communication with the compressor section; and
a turbine section in fluid communication with the combustor, and
at least one of the compressor section and the turbine section including an adjustable blade outer air seal apparatus, the blade outer air seal apparatus comprising:
a case structure extending circumferentially;
a support ring structure mounted radially inwards of the case structure;
at least one blade outer air seal segment radially adjustably mounted relative to the support ring structure; and
a cavity disposed between the blade outer air seal segment and the support ring structure; and
a first seal arranged between the support ring structure and the blade outer air seal segment, the first seal configured to limit gas leakage between the support ring structure and the blade outer air seal segment.
13. The gas turbine engine of claim 12, wherein the first seal extends axially from the support ring structure.
14. The gas turbine engine of claim 13, wherein the first seal engages a trailing end of the blade outer air seal segment.
15. The gas turbine engine as recited in claim 12, including a fan coupled to be driven through a gear assembly by the turbine section.
US16/166,279 2012-02-14 2018-10-22 Adjustable blade outer air seal apparatus Active 2032-05-27 US10822989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/166,279 US10822989B2 (en) 2012-02-14 2018-10-22 Adjustable blade outer air seal apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/396,016 US9228447B2 (en) 2012-02-14 2012-02-14 Adjustable blade outer air seal apparatus
US14/749,695 US10280784B2 (en) 2012-02-14 2015-06-25 Adjustable blade outer air seal apparatus
US16/166,279 US10822989B2 (en) 2012-02-14 2018-10-22 Adjustable blade outer air seal apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/749,695 Continuation US10280784B2 (en) 2012-02-14 2015-06-25 Adjustable blade outer air seal apparatus

Publications (2)

Publication Number Publication Date
US20190120076A1 US20190120076A1 (en) 2019-04-25
US10822989B2 true US10822989B2 (en) 2020-11-03

Family

ID=48945690

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/396,016 Active 2034-08-02 US9228447B2 (en) 2012-02-14 2012-02-14 Adjustable blade outer air seal apparatus
US14/749,695 Active 2033-12-29 US10280784B2 (en) 2012-02-14 2015-06-25 Adjustable blade outer air seal apparatus
US16/166,279 Active 2032-05-27 US10822989B2 (en) 2012-02-14 2018-10-22 Adjustable blade outer air seal apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/396,016 Active 2034-08-02 US9228447B2 (en) 2012-02-14 2012-02-14 Adjustable blade outer air seal apparatus
US14/749,695 Active 2033-12-29 US10280784B2 (en) 2012-02-14 2015-06-25 Adjustable blade outer air seal apparatus

Country Status (4)

Country Link
US (3) US9228447B2 (en)
EP (1) EP2815082B1 (en)
SG (1) SG11201404091VA (en)
WO (1) WO2013123172A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066497B2 (en) * 2013-03-11 2018-09-04 United Technologies Corporation Actuator for gas turbine engine blade outer air seal
EP3044425B1 (en) * 2013-09-11 2021-03-10 United Technologies Corporation Blade outer air seal having angled retention hook
EP3049638B1 (en) * 2013-09-27 2022-01-19 Raytheon Technologies Corporation Gas turbine engine rapid response clearance control system and corresponding method
EP3052768B1 (en) * 2013-10-04 2019-10-16 United Technologies Corporation Gas turbine engine ramped rapid response clearance control system
US10364694B2 (en) * 2013-12-17 2019-07-30 United Technologies Corporation Turbomachine blade clearance control system
JP6436639B2 (en) * 2014-03-27 2018-12-12 三菱日立パワーシステムズ株式会社 Rotating machine and rotating machine control method
US9938846B2 (en) * 2014-06-27 2018-04-10 Rolls-Royce North American Technologies Inc. Turbine shroud with sealed blade track
US9945256B2 (en) 2014-06-27 2018-04-17 Rolls-Royce Corporation Segmented turbine shroud with seals
US10047624B2 (en) 2015-06-29 2018-08-14 Rolls-Royce North American Technologies Inc. Turbine shroud segment with flange-facing perimeter seal
US10196919B2 (en) 2015-06-29 2019-02-05 Rolls-Royce North American Technologies Inc. Turbine shroud segment with load distribution springs
US10094234B2 (en) 2015-06-29 2018-10-09 Rolls-Royce North America Technologies Inc. Turbine shroud segment with buffer air seal system
GB201518131D0 (en) * 2015-10-14 2015-11-25 Rolls Royce Plc Shroud assembly for a gas turbine engine
US10316686B2 (en) 2015-12-04 2019-06-11 United Technologies Corporation High response turbine tip clearance control system
US10975721B2 (en) 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
US10132184B2 (en) 2016-03-16 2018-11-20 United Technologies Corporation Boas spring loaded rail shield
US10138749B2 (en) 2016-03-16 2018-11-27 United Technologies Corporation Seal anti-rotation feature
US10337346B2 (en) 2016-03-16 2019-07-02 United Technologies Corporation Blade outer air seal with flow guide manifold
US10422241B2 (en) 2016-03-16 2019-09-24 United Technologies Corporation Blade outer air seal support for a gas turbine engine
US10513943B2 (en) 2016-03-16 2019-12-24 United Technologies Corporation Boas enhanced heat transfer surface
US10443616B2 (en) 2016-03-16 2019-10-15 United Technologies Corporation Blade outer air seal with centrally mounted seal arc segments
US10161258B2 (en) 2016-03-16 2018-12-25 United Technologies Corporation Boas rail shield
US10443424B2 (en) 2016-03-16 2019-10-15 United Technologies Corporation Turbine engine blade outer air seal with load-transmitting carriage
US10422240B2 (en) 2016-03-16 2019-09-24 United Technologies Corporation Turbine engine blade outer air seal with load-transmitting cover plate
US10415414B2 (en) 2016-03-16 2019-09-17 United Technologies Corporation Seal arc segment with anti-rotation feature
US10138750B2 (en) 2016-03-16 2018-11-27 United Technologies Corporation Boas segmented heat shield
US10107129B2 (en) 2016-03-16 2018-10-23 United Technologies Corporation Blade outer air seal with spring centering
US10563531B2 (en) 2016-03-16 2020-02-18 United Technologies Corporation Seal assembly for gas turbine engine
US10450882B2 (en) 2016-03-22 2019-10-22 United Technologies Corporation Anti-rotation shim seal
US9850770B2 (en) 2016-04-29 2017-12-26 Stein Seal Company Intershaft seal with asymmetric sealing ring
US10458429B2 (en) 2016-05-26 2019-10-29 Rolls-Royce Corporation Impeller shroud with slidable coupling for clearance control in a centrifugal compressor
US10280799B2 (en) 2016-06-10 2019-05-07 United Technologies Corporation Blade outer air seal assembly with positioning feature for gas turbine engine
US11225880B1 (en) 2017-02-22 2022-01-18 Rolls-Royce Corporation Turbine shroud ring for a gas turbine engine having a tip clearance probe
DE102017211316A1 (en) * 2017-07-04 2019-01-10 MTU Aero Engines AG Turbomachinery sealing ring
US11015665B2 (en) * 2018-01-24 2021-05-25 Hamilton Sunstrand Corporation Proportional control brake
US10697315B2 (en) * 2018-03-27 2020-06-30 Rolls-Royce North American Technologies Inc. Full hoop blade track with keystoning segments
US10704408B2 (en) * 2018-05-03 2020-07-07 Rolls-Royce North American Technologies Inc. Dual response blade track system
US10822964B2 (en) 2018-11-13 2020-11-03 Raytheon Technologies Corporation Blade outer air seal with non-linear response
US10920618B2 (en) 2018-11-19 2021-02-16 Raytheon Technologies Corporation Air seal interface with forward engagement features and active clearance control for a gas turbine engine
US10934941B2 (en) 2018-11-19 2021-03-02 Raytheon Technologies Corporation Air seal interface with AFT engagement features and active clearance control for a gas turbine engine
US11913343B2 (en) * 2019-10-03 2024-02-27 Rtx Corporation Replaceable rotor blade tip clearance measurement device for a gas turbine engine
US11131207B1 (en) * 2020-05-01 2021-09-28 Raytheon Technologies Corporation Semi-autonomous rapid response active clearance control system
US20220178266A1 (en) * 2020-12-04 2022-06-09 General Electric Company Fast response active clearance control system with piezoelectric actuator
US11655724B1 (en) 2022-04-25 2023-05-23 General Electric Company Clearance control of fan blades in a gas turbine engine
US12012858B1 (en) 2023-04-28 2024-06-18 Rtx Corporation Failsafe blade outer airseal retention

Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616257A (en) 1946-01-09 1952-11-04 Bendix Aviat Corp Combustion chamber with air inlet means providing a plurality of concentric strata of varying velocities
US2947364A (en) 1955-01-25 1960-08-02 Rolls Royce Propeller-driving compound gas-turbine engine for aircraft
US3227418A (en) 1963-11-04 1966-01-04 Gen Electric Variable clearance seal
GB2042646A (en) 1979-02-20 1980-09-24 Rolls Royce Rotor blade tip clearance control for gas turbine engine
US4334822A (en) 1979-06-06 1982-06-15 Mtu Motoren- Und Turbinen-Union Munchen Gmbh Circumferential gap seal for axial-flow machines
US4576548A (en) 1984-01-17 1986-03-18 Westinghouse Electric Corp. Self-aligning static seal for gas turbine stator vanes
GB2240818A (en) 1990-02-12 1991-08-14 Gen Electric Blade tip clearance control apparatus in a gas turbine engine
US5049033A (en) 1990-02-20 1991-09-17 General Electric Company Blade tip clearance control apparatus using cam-actuated shroud segment positioning mechanism
US5096375A (en) 1989-09-08 1992-03-17 General Electric Company Radial adjustment mechanism for blade tip clearance control apparatus
US5104287A (en) * 1989-09-08 1992-04-14 General Electric Company Blade tip clearance control apparatus for a gas turbine engine
US5129231A (en) 1990-03-12 1992-07-14 United Technologies Corporation Cooled combustor dome heatshield
US5203673A (en) 1992-01-21 1993-04-20 Westinghouse Electric Corp. Tip clearance control apparatus for a turbo-machine blade
US5253471A (en) 1990-08-16 1993-10-19 Rolls-Royce Plc Gas turbine engine combustor
US5307637A (en) 1992-07-09 1994-05-03 General Electric Company Angled multi-hole film cooled single wall combustor dome plate
US5419115A (en) 1994-04-29 1995-05-30 United Technologies Corporation Bulkhead and fuel nozzle guide assembly for an annular combustion chamber
US5479774A (en) 1991-04-30 1996-01-02 Rolls-Royce Plc Combustion chamber assembly in a gas turbine engine
US5623827A (en) 1995-01-26 1997-04-29 General Electric Company Regenerative cooled dome assembly for a gas turbine engine combustor
US5639210A (en) 1995-10-23 1997-06-17 United Technologies Corporation Rotor blade outer tip seal apparatus
EP0806680A2 (en) 1996-05-08 1997-11-12 United Technologies Corporation Microwave air-path clearance sensor
US5791872A (en) 1997-04-22 1998-08-11 Rolls-Royce Inc. Blade tip clearence control apparatus
US5956955A (en) 1994-08-01 1999-09-28 Bmw Rolls-Royce Gmbh Heat shield for a gas turbine combustion chamber
US6037581A (en) 1996-01-15 2000-03-14 Siemens Aktiengesellschaft Device for recording a change in position at a turbine configuration
US6547522B2 (en) 2001-06-18 2003-04-15 General Electric Company Spring-backed abradable seal for turbomachinery
US6572115B1 (en) 2001-12-21 2003-06-03 General Electric Company Actuating seal for a rotary machine and method of retrofitting
US6786487B2 (en) 2001-12-05 2004-09-07 General Electric Company Actuated brush seal
US6840519B2 (en) 2001-10-30 2005-01-11 General Electric Company Actuating mechanism for a turbine and method of retrofitting
US6997673B2 (en) 2003-12-11 2006-02-14 Honeywell International, Inc. Gas turbine high temperature turbine blade outer air seal assembly
US20060042257A1 (en) 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Combustor heat shield and method of cooling
US20060067815A1 (en) 2004-09-30 2006-03-30 Farshad Ghasripoor Compliant seal and system and method thereof
US20060140754A1 (en) 2004-12-27 2006-06-29 Mitsubishi Heavy Industries, Ltd. Gas turbine
US7079957B2 (en) 2003-12-30 2006-07-18 General Electric Company Method and system for active tip clearance control in turbines
EP1741880A2 (en) 2005-07-02 2007-01-10 Rolls-Royce plc Variable displacement turbine liner
US20070082530A1 (en) 2005-10-07 2007-04-12 Burd Steven W Gas turbine combustor bulkhead panel
US7259552B2 (en) 2002-05-31 2007-08-21 Siemens Power Generation, Inc. Wear monitor for turbo-machine
US7435049B2 (en) 2004-03-30 2008-10-14 General Electric Company Sealing device and method for turbomachinery
US20090128166A1 (en) 2007-11-21 2009-05-21 Rolls-Royce Plc Apparatus to measure the clearance between a first component and a second component
EP2090754A2 (en) 2008-02-18 2009-08-19 United Technologies Corporation Gas turbine engines and methods involving blade outer air seals
WO2009130262A1 (en) 2008-04-23 2009-10-29 Abb Turbo Systems Ag Carrier ring of a conducting device with sealing air channel
US20100078893A1 (en) 2008-09-30 2010-04-01 General Electric Company Active retractable seal for turbomachinery and related method
US7694505B2 (en) 2006-07-31 2010-04-13 General Electric Company Gas turbine engine assembly and method of assembling same
US7704041B2 (en) 2006-04-07 2010-04-27 General Electric Company Variable clearance positive pressure packing ring and carrier arrangement with coil type spring
US7748945B2 (en) 2006-12-07 2010-07-06 Jerry Wayne Johnson Floating sealing ring
US20100209231A1 (en) 2009-02-16 2010-08-19 Rolls-Royce Plc Combination of mechanical actuator and case cooling apparatus
US20100303612A1 (en) 2009-05-26 2010-12-02 General Electric Company System and method for clearance control
US20110044801A1 (en) 2009-08-18 2011-02-24 Pratt & Whitney Canada Corp. Blade outer air seal cooling
US8011883B2 (en) 2004-12-29 2011-09-06 United Technologies Corporation Gas turbine engine blade tip clearance apparatus and method
US20120057958A1 (en) 2009-05-28 2012-03-08 Hermann Klingels Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
US8162324B2 (en) 2006-08-15 2012-04-24 General Electric Company Compliant plate seal with an annular ring for turbomachinery and methods of assembling the same
US8177483B2 (en) 2009-05-22 2012-05-15 General Electric Company Active casing alignment control system and method
US20130017057A1 (en) 2011-07-15 2013-01-17 Ken Lagueux Blade outer air seal assembly
US8475110B2 (en) 2009-07-30 2013-07-02 General Electric Company System and method for online monitoring of corrosion of gas turbine components
US8558538B2 (en) 2008-09-29 2013-10-15 Rosemount Aerospace Inc. Blade tip clearance measurement sensor for gas turbine engines
US8608427B2 (en) 2006-08-17 2013-12-17 Mtu Aero Engines Gmbh Arrangement for optimising the running clearance for turbomachines
US8636464B2 (en) 2009-08-24 2014-01-28 Rolls-Royce Plc Adjustable fan case liner and mounting method
US8678742B2 (en) 2009-05-28 2014-03-25 Mtu Aero Engines Gmbh Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
US8721270B2 (en) 2010-05-12 2014-05-13 Siemens Aktiengesellschaft Passage wall section for an annular flow passage of an axial turbomachine with radial gap adjustment

Patent Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2616257A (en) 1946-01-09 1952-11-04 Bendix Aviat Corp Combustion chamber with air inlet means providing a plurality of concentric strata of varying velocities
US2947364A (en) 1955-01-25 1960-08-02 Rolls Royce Propeller-driving compound gas-turbine engine for aircraft
US3227418A (en) 1963-11-04 1966-01-04 Gen Electric Variable clearance seal
GB2042646A (en) 1979-02-20 1980-09-24 Rolls Royce Rotor blade tip clearance control for gas turbine engine
US4330234A (en) * 1979-02-20 1982-05-18 Rolls-Royce Limited Rotor tip clearance control apparatus for a gas turbine engine
US4334822A (en) 1979-06-06 1982-06-15 Mtu Motoren- Und Turbinen-Union Munchen Gmbh Circumferential gap seal for axial-flow machines
US4576548A (en) 1984-01-17 1986-03-18 Westinghouse Electric Corp. Self-aligning static seal for gas turbine stator vanes
US5104287A (en) * 1989-09-08 1992-04-14 General Electric Company Blade tip clearance control apparatus for a gas turbine engine
US5096375A (en) 1989-09-08 1992-03-17 General Electric Company Radial adjustment mechanism for blade tip clearance control apparatus
GB2240818A (en) 1990-02-12 1991-08-14 Gen Electric Blade tip clearance control apparatus in a gas turbine engine
US5056988A (en) 1990-02-12 1991-10-15 General Electric Company Blade tip clearance control apparatus using shroud segment position modulation
US5049033A (en) 1990-02-20 1991-09-17 General Electric Company Blade tip clearance control apparatus using cam-actuated shroud segment positioning mechanism
US5129231A (en) 1990-03-12 1992-07-14 United Technologies Corporation Cooled combustor dome heatshield
US5253471A (en) 1990-08-16 1993-10-19 Rolls-Royce Plc Gas turbine engine combustor
US5479774A (en) 1991-04-30 1996-01-02 Rolls-Royce Plc Combustion chamber assembly in a gas turbine engine
US5203673A (en) 1992-01-21 1993-04-20 Westinghouse Electric Corp. Tip clearance control apparatus for a turbo-machine blade
US5307637A (en) 1992-07-09 1994-05-03 General Electric Company Angled multi-hole film cooled single wall combustor dome plate
US5419115A (en) 1994-04-29 1995-05-30 United Technologies Corporation Bulkhead and fuel nozzle guide assembly for an annular combustion chamber
US5956955A (en) 1994-08-01 1999-09-28 Bmw Rolls-Royce Gmbh Heat shield for a gas turbine combustion chamber
US5623827A (en) 1995-01-26 1997-04-29 General Electric Company Regenerative cooled dome assembly for a gas turbine engine combustor
US5639210A (en) 1995-10-23 1997-06-17 United Technologies Corporation Rotor blade outer tip seal apparatus
US6037581A (en) 1996-01-15 2000-03-14 Siemens Aktiengesellschaft Device for recording a change in position at a turbine configuration
EP0806680A2 (en) 1996-05-08 1997-11-12 United Technologies Corporation Microwave air-path clearance sensor
US5818242A (en) 1996-05-08 1998-10-06 United Technologies Corporation Microwave recess distance and air-path clearance sensor
US5791872A (en) 1997-04-22 1998-08-11 Rolls-Royce Inc. Blade tip clearence control apparatus
US6547522B2 (en) 2001-06-18 2003-04-15 General Electric Company Spring-backed abradable seal for turbomachinery
US6840519B2 (en) 2001-10-30 2005-01-11 General Electric Company Actuating mechanism for a turbine and method of retrofitting
US6786487B2 (en) 2001-12-05 2004-09-07 General Electric Company Actuated brush seal
US6572115B1 (en) 2001-12-21 2003-06-03 General Electric Company Actuating seal for a rotary machine and method of retrofitting
US7259552B2 (en) 2002-05-31 2007-08-21 Siemens Power Generation, Inc. Wear monitor for turbo-machine
US6997673B2 (en) 2003-12-11 2006-02-14 Honeywell International, Inc. Gas turbine high temperature turbine blade outer air seal assembly
US7079957B2 (en) 2003-12-30 2006-07-18 General Electric Company Method and system for active tip clearance control in turbines
US7435049B2 (en) 2004-03-30 2008-10-14 General Electric Company Sealing device and method for turbomachinery
US20060042257A1 (en) 2004-08-27 2006-03-02 Pratt & Whitney Canada Corp. Combustor heat shield and method of cooling
US20060067815A1 (en) 2004-09-30 2006-03-30 Farshad Ghasripoor Compliant seal and system and method thereof
US7207769B2 (en) 2004-12-27 2007-04-24 Mitsubishi Heavy Industries, Ltd. Gas turbine
US20060140754A1 (en) 2004-12-27 2006-06-29 Mitsubishi Heavy Industries, Ltd. Gas turbine
US8011883B2 (en) 2004-12-29 2011-09-06 United Technologies Corporation Gas turbine engine blade tip clearance apparatus and method
US7625169B2 (en) 2005-07-02 2009-12-01 Rolls-Royce Plc Variable displacement turbine liner
EP1741880A2 (en) 2005-07-02 2007-01-10 Rolls-Royce plc Variable displacement turbine liner
US20070082530A1 (en) 2005-10-07 2007-04-12 Burd Steven W Gas turbine combustor bulkhead panel
US7704041B2 (en) 2006-04-07 2010-04-27 General Electric Company Variable clearance positive pressure packing ring and carrier arrangement with coil type spring
US7694505B2 (en) 2006-07-31 2010-04-13 General Electric Company Gas turbine engine assembly and method of assembling same
US8162324B2 (en) 2006-08-15 2012-04-24 General Electric Company Compliant plate seal with an annular ring for turbomachinery and methods of assembling the same
US8608427B2 (en) 2006-08-17 2013-12-17 Mtu Aero Engines Gmbh Arrangement for optimising the running clearance for turbomachines
US7748945B2 (en) 2006-12-07 2010-07-06 Jerry Wayne Johnson Floating sealing ring
US20090128166A1 (en) 2007-11-21 2009-05-21 Rolls-Royce Plc Apparatus to measure the clearance between a first component and a second component
US20090208322A1 (en) 2008-02-18 2009-08-20 United Technologies Corp. Gas turbine engine systems and methods involving blade outer air seals
EP2090754A2 (en) 2008-02-18 2009-08-19 United Technologies Corporation Gas turbine engines and methods involving blade outer air seals
WO2009130262A1 (en) 2008-04-23 2009-10-29 Abb Turbo Systems Ag Carrier ring of a conducting device with sealing air channel
US8558538B2 (en) 2008-09-29 2013-10-15 Rosemount Aerospace Inc. Blade tip clearance measurement sensor for gas turbine engines
US20100078893A1 (en) 2008-09-30 2010-04-01 General Electric Company Active retractable seal for turbomachinery and related method
US20100209231A1 (en) 2009-02-16 2010-08-19 Rolls-Royce Plc Combination of mechanical actuator and case cooling apparatus
US8177483B2 (en) 2009-05-22 2012-05-15 General Electric Company Active casing alignment control system and method
US20100303612A1 (en) 2009-05-26 2010-12-02 General Electric Company System and method for clearance control
US20120057958A1 (en) 2009-05-28 2012-03-08 Hermann Klingels Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
US8678742B2 (en) 2009-05-28 2014-03-25 Mtu Aero Engines Gmbh Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
US8475110B2 (en) 2009-07-30 2013-07-02 General Electric Company System and method for online monitoring of corrosion of gas turbine components
US20110044801A1 (en) 2009-08-18 2011-02-24 Pratt & Whitney Canada Corp. Blade outer air seal cooling
US8636464B2 (en) 2009-08-24 2014-01-28 Rolls-Royce Plc Adjustable fan case liner and mounting method
US8721270B2 (en) 2010-05-12 2014-05-13 Siemens Aktiengesellschaft Passage wall section for an annular flow passage of an axial turbomachine with radial gap adjustment
US20130017057A1 (en) 2011-07-15 2013-01-17 Ken Lagueux Blade outer air seal assembly

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Gunston: "Jane's Aero-Engines," Pratt & Whitney/USA, Mar. 2000, JAEng-Issue 7, Copyright 2000 by Jane's Information Group Limited, pp. 510-512.
Gunston: "Jane's Aero-Engines," Pratt & Whitney/USA, Mar. 2000, JAEng—Issue 7, Copyright 2000 by Jane's Information Group Limited, pp. 510-512.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/026117 dated Aug. 28, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2013/026117 completed on May 27, 2013.
Singapore Search Report regarding Singapore Application No. 11201404091V.
Supplementary European Search Report for European Patent Application No. 13749712.9 completed Oct. 5, 2015.
Wikipedia, Acme Thread Form (Year: 2010). *
Wikipedia, Turbofan (Year: 2008). *

Also Published As

Publication number Publication date
US20130209240A1 (en) 2013-08-15
US20160032754A1 (en) 2016-02-04
US9228447B2 (en) 2016-01-05
US10280784B2 (en) 2019-05-07
WO2013123172A1 (en) 2013-08-22
EP2815082B1 (en) 2019-02-13
SG11201404091VA (en) 2014-09-26
EP2815082A1 (en) 2014-12-24
US20190120076A1 (en) 2019-04-25
EP2815082A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
US10822989B2 (en) Adjustable blade outer air seal apparatus
US11092030B2 (en) Adaptive case for a gas turbine engine
US20220364483A1 (en) Gas turbine engine component
US11199102B2 (en) Hydrostatic seal with increased design space
US10655499B2 (en) Flexible preloaded ball bearing assembly
US11674402B2 (en) Hydrostatic seal with non-parallel beams for anti-tipping
US10563672B2 (en) Gas turbine engine compressor
US10746049B2 (en) Gas turbine engine case including bearing compartment
US20160097291A1 (en) Stator assembly for a gas turbine engine
US11585294B2 (en) High bypass ratio engine bypass duct nozzle with controlled nozzle area
US10557371B2 (en) Gas turbine engine variable vane end wall insert
US11629645B2 (en) Hydrostatic seal with extended carrier arm
US9051847B2 (en) Floating segmented seal
US10138748B2 (en) Gas turbine engine components with optimized leading edge geometry
EP3232017B1 (en) Nacelle deflection measurement assembly
EP3708773B1 (en) Gas turbine engine comprising a seal for a rotor stack and corresponding method of sealing a shaft relatively to a rotor disk
US9869195B2 (en) Support assembly for a gas turbine engine
US10815820B2 (en) Integral shear locking bumper for gas turbine engine
US20200056495A1 (en) Gas turbine engine having cantilevered stators
US20200080442A1 (en) Airfoil assembly for a gas turbine engine
US9896956B2 (en) Support assembly for a gas turbine engine
EP3495621B1 (en) Support ring for a gas turbine engine

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403

AS Assignment

Owner name: RTX CORPORATION, CONNECTICUT

Free format text: CHANGE OF NAME;ASSIGNOR:RAYTHEON TECHNOLOGIES CORPORATION;REEL/FRAME:064714/0001

Effective date: 20230714

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4