US10725902B2 - Methods for scheduling read commands and apparatuses using the same - Google Patents
Methods for scheduling read commands and apparatuses using the same Download PDFInfo
- Publication number
- US10725902B2 US10725902B2 US16/031,598 US201816031598A US10725902B2 US 10725902 B2 US10725902 B2 US 10725902B2 US 201816031598 A US201816031598 A US 201816031598A US 10725902 B2 US10725902 B2 US 10725902B2
- Authority
- US
- United States
- Prior art keywords
- mapping table
- physical
- sub
- logical
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000013507 mapping Methods 0.000 claims abstract description 85
- 238000012545 processing Methods 0.000 claims abstract description 36
- 108010001267 Protein Subunits Proteins 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims 2
- 238000012005 ligant binding assay Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 17
- 101000648827 Homo sapiens TPR and ankyrin repeat-containing protein 1 Proteins 0.000 description 4
- 102100028173 TPR and ankyrin repeat-containing protein 1 Human genes 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
- G06F12/0246—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
- G06F12/1009—Address translation using page tables, e.g. page table structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/08—Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
- G06F12/10—Address translation
- G06F12/1027—Address translation using associative or pseudo-associative address translation means, e.g. translation look-aside buffer [TLB]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/65—Details of virtual memory and virtual address translation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/68—Details of translation look-aside buffer [TLB]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/72—Details relating to flash memory management
- G06F2212/7201—Logical to physical mapping or translation of blocks or pages
Definitions
- the present invention relates to flash memory, and in particular to methods for scheduling read commands and apparatuses using the same.
- Flash memory devices typically include NOR flash devices and NAND flash devices.
- NOR flash devices are random access—a host accessing a NOR flash device can provide the device any address on its address pins and immediately retrieve data stored in that address on the device's data pins.
- NAND flash devices are not random access but serial access. It is not possible for NOR to access any random address in the way described above. Instead, the host has to write into the device a sequence of bytes which identifies both the type of command requested (e.g. read, write, erase, etc.) and the address to be used for that command.
- the address identifies a page (the smallest chunk of flash memory that can be written in a single operation) or a block (the smallest chunk of flash memory that can be erased in a single operation), and not a single byte or word.
- the NAND flash device always reads from the memory cells and writes to the memory cells complete pages. After a page of data is read from the array into a buffer inside the device, the host can access the data bytes or words one by one by serially clocking them out using a strobe signal. Reducing manufacturing cost is always the focus, including reducing the storage space of DRAM (Dynamic Random Access Memory). Accordingly, what is needed are methods for scheduling read commands based on a hardware architecture, in which a storage mapping table is not stored in a DRAM, and apparatuses that use these methods.
- An embodiment of the invention introduces a method for scheduling read commands, performed by a processing unit, including at least the following steps.
- Logical read commands are received from a master device via a first access interface, where each logical read command requests to read data of a logical address.
- First physical storage locations of mapping segments associated with the logical addresses are obtained from a high-level mapping table, and a second access interface is directed to read the mapping segments from the first physical storage locations of a storage unit.
- Second physical storage locations associated with the logical addresses are obtained from the mapping segments, and the second access interface is directed to read data from the second physical storage locations of the storage unit.
- the first access interface is directed to clock the data of the logical addresses out to the master device.
- An embodiment of the invention introduces an apparatus for scheduling read commands including at least a first access interface, a second access interface and a processing unit.
- the processing unit coupled to the first access interface, receives logical read commands from the master device via the first access interface, where each logical read command requests to read data of a logical address.
- the processing unit coupled to the second access interface, obtains first physical storage locations of mapping segments associated with the logical addresses from a high-level mapping table and directs the second access interface to read the mapping segments from the first physical storage locations of the storage unit.
- the processing unit obtains second physical storage locations associated with the logical addresses from the mapping segments, directs the second access interface to read data from the second physical storage locations of the storage unit and directs the first access interface to clock the data of the logical addresses out to the master device.
- FIG. 1 is the system architecture of a flash memory according to an embodiment of the invention.
- FIG. 2 shows a schematic diagram depicting a storage unit of a flash memory according to an embodiment of the invention.
- FIG. 3 is a schematic diagram illustrating interfaces to storage units of a flash storage according to an embodiment of the invention.
- FIG. 4 is a schematic diagram depicting connections between one access sub-interface and multiple storage sub-units according to an embodiment of the invention.
- FIG. 5 is a flowchart illustrating a method for scheduling logical read commands, performed by a processing unit, according to an embodiment of the invention.
- FIG. 6 is a schematic diagram of logical read commands according to an embodiment of the invention.
- FIG. 7 is a schematic diagram of a high-level mapping table according to an embodiment of the invention.
- FIG. 8A is a schematic diagram illustrating the physical storage of mapping segments according to an embodiment of the invention.
- FIG. 8B is a schematic diagram illustrating the physical storage of mapping segments and the requested data according to an embodiment of the invention.
- FIGS. 9A and 9B are schematic diagrams of FIFO queues according to an embodiment of the invention.
- FIG. 1 is the system architecture of a flash memory according to an embodiment of the invention.
- the system architecture 10 of the flash memory contains a processing unit 110 being configured to write data into a designated address of a storage unit 180 , and read data from a designated address thereof. Specifically, the processing unit 110 writes data into a designated address of the storage unit 10 through an access interface 170 and reads data from a designated address thereof through the same interface 170 .
- the system architecture 10 uses several electrical signals for coordinating commands and data transfer between the processing unit 110 and the storage unit 180 , including data lines, a clock signal and control lines. The data lines are employed to transfer commands, addresses and data to be written and read.
- the control lines are utilized to issue control signals, such as CE (Chip Enable), ALE (Address Latch Enable), CLE (Command Latch Enable), WE (Write Enable), etc.
- the access interface 170 may communicate with the storage unit 180 using a SDR (Single Data Rate) protocol or a DDR (Double Data Rate) protocol, such as ONFI (open NAND flash interface), DDR toggle, or others.
- the processing unit 110 may communicate with other electronic devices through an access interface 150 using a standard protocol, such as USB (Universal Serial Bus), ATA (Advanced Technology Attachment), SATA (Serial ATA), PCI-E (Peripheral Component Interconnect Express) or others.
- FIG. 2 shows a schematic diagram depicting a storage unit of a flash memory according to an embodiment of the invention.
- a storage unit 180 includes an array 210 composed of M ⁇ N memory cells, and each memory cell may store at least one bit of information.
- the flash memory may be a NAND flash memory, etc.
- a row-decoding unit 220 is used to select appropriate row lines for access.
- a column-decoding unit 230 is employed to select an appropriate number of bytes within the row for output.
- An address unit 240 applies row information to the row-decoding unit 220 defining which of the N rows of the memory cell array 210 is to be selected for reading or writing.
- the column-decoding unit 230 receives address information defining which one or ones of the M columns of the memory cell array 210 are to be selected. Rows may be referred to as wordlines by those skilled in the art, and columns may be referred to as bitlines. Data read from or to be applied to the memory cell array 210 is stored in a data buffer 250 .
- Memory cells may be SLCs (Single-Level Cells), MLCs (Multi-Level Cells) or TLCs (Triple-Level Cells).
- the storage unit 180 may contain multiple storage sub-units and each storage sub-unit may be practiced in a single die and use an access sub-interface to communicate with the processing unit 110 .
- FIG. 3 is a schematic diagram illustrating interfaces to storage units of a flash storage according to an embodiment of the invention.
- the flash memory 10 may contain j+l access sub-interfaces 170 _ 0 to 170 _ j , where the access sub-interfaces may be referred to as channels, and each access sub-interface connects to i+l storage sub-units. That is, i+l storage sub-units may share the same access sub-interface.
- the flash memory 10 has 16 storage sub-units 180 _ 0 _ 0 to 180 _ j _i in total.
- the control unit 110 may direct one of the access sub-interfaces 170 _ 0 to 170 _ j to read data from the designated storage sub-unit.
- Each storage sub-unit has an independent CE control signal. That is, it is required to enable a corresponding CE control signal when attempting to perform data read from a designated storage sub-unit via an associated access sub-interface.
- FIG. 4 is a schematic diagram depicting connections between one access sub-interface and multiple storage sub-units according to an embodiment of the invention.
- the processing unit 110 through the access sub-interface 170 _ 0 , may use independent CE control signals 420 _ 0 _ 0 to 420 _ 0 _ i to select one of the connected storage sub-units 180 _ 0 _ 0 and 180 _ 0 _ i , and then read data from the designated location of the selected storage sub-unit via the shared data line 410 _ 0 .
- a master device 160 may provide an LBA (Logical Block Address) to the processing unit 110 through the access interface 150 to indicate a particular region for data to be read from or written into.
- LBA Logical Block Address
- the access interface 170 distributes data with continuous LBAs across different physical regions of different storage sub-units.
- a mapping table also referred to as an H2F (Host-to-Flash) table, is stored to indicate which location of a storage sub-unit data of each LBA is physically stored in.
- a DRAM may allocate enough space to store the mapping table. However, it consumes some resource of the DRAM and needs a sufficient lead time to store the whole mapping table in the DRAM.
- the H2F table may be divided into a given number of mapping segments, for example, 32 mapping segments, and distributed to store in storage sub-units 180 _ 0 _ 0 to 180 _ j _i.
- Each mapping segment stores information regarding which locations of storage sub-units data of an LBA range is physically stored, where the information is represented by block numbers and page numbers.
- the system architecture 10 of the flash memory further contains a mapping table buffer 130 storing a high-level mapping table, and the high-level mapping table contains multiple records each storing information regarding which location of a storage sub-unit a mapping segment is physically stored, where the information is represented by a block number and a page number.
- the mapping table buffer 130 is non-volatile storage space, in which the stored high-level mapping table will not be lost after powering down.
- the processing unit 110 obtains a physical storage location of a mapping segment associated with the read LBA from the high-level mapping table of the mapping table buffer 130 and stores a command for reading data from the physical storage location in a FIFO (First-In-First-Out) queue 140 , thereby enabling the access interface 170 to read the mapping segment required by the processing unit 110 from the designated physical storage location of the designated storage sub-unit according to the command of the FIFO queue 140 and move the read mapping segment to a data buffer 120 .
- FIFO First-In-First-Out
- the processing unit 110 obtains a physical storage location associated with the read LBA from the mapping segment and stores a command for reading data from the physical storage location in the FIFO queue 140 , thereby enabling the access interface 170 to read the data requested by the master device 160 from the designated physical storage location of the designated storage sub-unit according to the command of the FIFO queue 140 and move the read data to the data buffer 120 .
- a FIFO queue is mapped to one storage sub-unit, which stores commands associated with the storage sub-unit.
- the read command and the read LBA issued by the master device 160 may be referred to as a logical read command and a logical read address, respectively, and the read command and the physical storage location being stored in the FIFO queue 140 may be referred to as a physical read command and a physical read address, respectively.
- the physical read command is moved out from the FIFO queue 140 .
- FIG. 5 is a flowchart illustrating a method for scheduling logical read commands, performed by the processing unit 110 , according to an embodiment of the invention.
- the processing unit 110 After receiving multiple logical read commands with logical read addresses from the master device 160 via the access interface 150 (step S 511 ), the processing unit 110 obtains physical storage locations of mapping segments associated with the logical read addresses from the high-level mapping table of the mapping table buffer 130 (step S 513 ).
- FIG. 6 is a schematic diagram of logical read commands according to an embodiment of the invention.
- the processing unit 110 receives eight logical read commands (LR) 600 _ 0 to 600 _ 7 from the master device 160 via the access interface 150 , which request to read data of LBA 0 , LBA 1 , LBA 100 , LBA 101 , LBA 200 , LBA 201 , LBA 300 and LBA 301 , respectively.
- FIG. 7 is a schematic diagram of a high-level mapping table according to an embodiment of the invention.
- the high-level mapping table 700 may contain k records 700 _ 0 to 700 _ k and each record stores information regarding a physical storage address of a mapping segment Addr(T 1 ), where l is an integer ranging from 0 to k, which is represented by a block number and a page number.
- the record 700 _ 0 records the physical storage location information Addr(T 0 ) of the 0 th mapping segment T 0 ; the record 700 _ 1 records the physical storage location information Addr(T 1 ) of the 1 st mapping segment T 1 , and the rest can be deduced by analogy.
- Each mapping segment stores information regarding physical storage locations of a continuous LBA range.
- the mapping segment T 0 records information regarding the physical storage locations of LBA 0 ⁇ 99 ;
- the mapping segment T 1 records information regarding the physical storage locations of LBA 100 ⁇ 199 , and the rest can be deduced by the analogy.
- FIG. 8A is a schematic diagram illustrating the physical storage of mapping segments according to an embodiment of the invention.
- the access sub-interface 170 _ 0 connects to four storage sub-units 180 _ 0 _ 0 to 180 _ 0 _ 3 .
- the processing unit 110 obtains physical storage locations Addr(T 0 ) to Addr(T 3 ) of the mapping segments T 0 to T 3 associated with the logical read locations 600 _ 0 to 600 _ 7 from the high-level mapping table of the mapping table buffer 130 .
- Exemplary physical storage locations of mapping segments T 0 - to T 3 may be referred to in FIG. 8A .
- the processing unit 110 subsequently stores physical read commands for reading the physical storage locations of the mapping segments in the FIFO queue 140 (step S 515 ).
- FIG. 9A is a schematic diagram of FIFO queues according to an embodiment of the invention.
- the exemplary FIFO queue 140 contains four sub-queues 140 _ 0 to 140 _ 3 associated with storage sub-units 180 _ 0 _ 0 to 180 _ 0 _ 3 and storing physical read commands (PR) for reading mapping segments T 0 to T 3 901 to 904 , respectively.
- the processing unit 110 directs the access interface 170 to read the requisite mapping segments according to the physical read commands of the FIFO queue 140 and stores the mapping segments in the data buffer 120 (step S 517 ). Referring to examples of FIG.
- the processing unit 110 directs the access sub-interface 170 _ 0 to read the mapping segment T 0 from the physical storage location Addr(T 0 ) of the storage sub-unit 180 _ 0 _ 0 according to the physical read command 901 of the sub-queue 140 _ 0 , the mapping segment T 1 from the physical storage location Addr(T 1 ) of the storage sub-unit 180 _ 0 _ 1 according to the physical read command 902 of the sub-queue 140 _ 1 , the mapping segment T 2 from the physical storage location Addr(T 2 ) of the storage sub-unit 180 _ 0 _ 2 according to the physical read command 903 of the sub-queue 140 _ 2 , and the mapping segment T 3 from the physical storage location Addr(T 3 ) of the storage sub-unit 180 _ 0 _ 3 according to the physical read command 904 of the sub-queue 140 _ 3 , and stores the mapping segments T 0 to T 3 in the data buffer 120
- the processing unit 110 After preparing all requisite mapping segments, the processing unit 110 repeatedly performs a loop to obtain physical read locations from the mapping segments according to logical read commands with logical read addresses requested by the master device 160 , and storing the physical read commands for reading data from the physical read locations in the FIFO queue 140 until all logical read commands are processed completely.
- the processing unit 110 obtains a physical storage location associated with a logical read address from a corresponding mapping segment of the data buffer 120 (step S 521 ) and stores a physical read command for reading data from the physical storage location in the FIFO queue 140 (step S 523 ).
- it is determined whether all logical read commands are processed completely step S 531 ).
- FIG. 8B is a schematic diagram illustrating the physical storage of mapping segments and the requested data according to an embodiment of the invention.
- step S 521 the processing unit 110 knows that data of LBA 0 and LBA 1 is respectively stored in the storage sub-units 180 _ 0 _ 0 and 180 _ 0 _ 1 by referring to the mapping segment T 0 ; data of LBA 100 and LBA 101 is respectively stored in the storage sub-units 180 _ 0 _ 0 and 180 _ 0 _ 2 by referring to the mapping segment T 1 ; data of LBA 200 and LBA 201 is respectively stored in the storage sub-units 180 _ 0 _ 1 and 180 _ 0 _ 3 by referring to the mapping segment T 2 ; and data of LBA 300 and LBA 301 is respectively stored in the storage sub-units 180 _ 0 _ 1 and 180 _ 0 _ 3 by referring to the mapping segment T 3 .
- FIG. 9B is a schematic diagram of FIFO queues according to an embodiment of the invention.
- the processing unit 110 stores physical read commands 911 and 912 for reading data of LBA 0 and LBA 1 in the sub-queues 140 _ 0 and 140 _ 1 , respectively; physical read commands 921 and 913 for reading data of LBA 100 and LBA 101 in the sub-queues 140 _ 0 and 140 _ 2 , respectively; physical read commands 922 and 914 for reading data of LBA 200 and LBA 201 in the sub-queues 140 _ 1 and 140 _ 3 , respectively; and physical read commands 923 and 924 for reading data of LBA 300 and LBA 301 in the sub-queues 140 _ 2 and 140 _ 3 , respectively.
- the processing unit 110 may direct the access sub-interface 170 _ 0 to read data requested by the master device 160 from a physical storage location Addr(LBAx) of an associated storage sub-unit according to a physical read command of one of the sub-queues 140 _ 0 to 140 _ 3 , store the read data in the data buffer 120 , and direct the access interface 150 to clock the buffered data out to the master device 160 .
- the processing unit 110 may direct the access sub-interface 170 _ 0 and the access interface 150 to complete the above operations.
- the processing unit 110 may direct the access sub-interface 170 _ 0 to read data from the storage sub-units 180 _ 0 _ 0 to 180 _ 0 _ 3 in series, for example, reading data from the physical storage locations Addr(LBA 0 ), Addr(LBA 1 ), Addr(LBA 101 ) and Addr(LBA 201 ). Subsequently, the processing unit 110 directs the access interface 150 to read data from the data buffer 120 and clock the read data out to the master device 160 according to the order of the logical read commands.
- FIG. 5 includes a number of operations that appear to occur in a specific order, it should be apparent that these processes can include more or fewer operations, which can be executed serially or in parallel (e.g., using parallel processors or a multi-threading environment).
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Memory System (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/031,598 US10725902B2 (en) | 2014-09-05 | 2018-07-10 | Methods for scheduling read commands and apparatuses using the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103130718 | 2014-09-05 | ||
TW103130718A TWI512609B (en) | 2014-09-05 | 2014-09-05 | Methods for scheduling read commands and apparatuses using the same |
TW103130718A | 2014-09-05 | ||
US14/738,481 US9785546B2 (en) | 2014-09-05 | 2015-06-12 | Methods for scheduling read commands and apparatuses using the same |
US15/589,483 US10042756B2 (en) | 2014-09-05 | 2017-05-08 | Methods for scheduling read commands and apparatuses using the same |
US16/031,598 US10725902B2 (en) | 2014-09-05 | 2018-07-10 | Methods for scheduling read commands and apparatuses using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/589,483 Continuation US10042756B2 (en) | 2014-09-05 | 2017-05-08 | Methods for scheduling read commands and apparatuses using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180322044A1 US20180322044A1 (en) | 2018-11-08 |
US10725902B2 true US10725902B2 (en) | 2020-07-28 |
Family
ID=55407820
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/738,481 Active 2035-09-03 US9785546B2 (en) | 2014-09-05 | 2015-06-12 | Methods for scheduling read commands and apparatuses using the same |
US15/589,483 Active US10042756B2 (en) | 2014-09-05 | 2017-05-08 | Methods for scheduling read commands and apparatuses using the same |
US16/031,598 Active US10725902B2 (en) | 2014-09-05 | 2018-07-10 | Methods for scheduling read commands and apparatuses using the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/738,481 Active 2035-09-03 US9785546B2 (en) | 2014-09-05 | 2015-06-12 | Methods for scheduling read commands and apparatuses using the same |
US15/589,483 Active US10042756B2 (en) | 2014-09-05 | 2017-05-08 | Methods for scheduling read commands and apparatuses using the same |
Country Status (3)
Country | Link |
---|---|
US (3) | US9785546B2 (en) |
CN (2) | CN105528299B (en) |
TW (1) | TWI512609B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10222990B2 (en) * | 2015-07-24 | 2019-03-05 | Sandisk Technologies Llc | Optimistic read operation |
CN107918571B (en) * | 2016-10-08 | 2021-04-30 | 上海宝存信息科技有限公司 | Method for testing storage unit and device using same |
CN108959108B (en) | 2017-05-26 | 2021-08-24 | 上海宝存信息科技有限公司 | Solid state disk access method and device using same |
US10623523B2 (en) * | 2018-05-18 | 2020-04-14 | Oracle International Corporation | Distributed communication and task handling to facilitate operations of application system |
CN112214157B (en) * | 2019-07-10 | 2023-11-03 | 慧荣科技股份有限公司 | Device and method for executing host output and input command and storage medium |
CN110428858B (en) * | 2019-07-11 | 2021-09-24 | 清华大学 | Static memory based on device with hysteresis characteristic |
CN111176566B (en) * | 2019-12-25 | 2023-09-19 | 山东方寸微电子科技有限公司 | eMMC read-write control method supporting queue command and storage medium |
CN113849867B (en) * | 2021-08-31 | 2024-02-23 | 浪潮电子信息产业股份有限公司 | Encryption chip |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8984247B1 (en) * | 2012-05-10 | 2015-03-17 | Western Digital Technologies, Inc. | Storing and reconstructing mapping table data in a data storage system |
US20160011790A1 (en) * | 2014-07-14 | 2016-01-14 | Sandisk Technologies Inc. | Systems and methods to enable access to a host memory associated with a unified memory architecture (uma) |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100389867B1 (en) * | 2001-06-04 | 2003-07-04 | 삼성전자주식회사 | Flash memory management method |
US6785793B2 (en) * | 2001-09-27 | 2004-08-31 | Intel Corporation | Method and apparatus for memory access scheduling to reduce memory access latency |
GB0123412D0 (en) * | 2001-09-28 | 2001-11-21 | Memquest Ltd | Memory system sectors |
KR100484147B1 (en) * | 2002-07-26 | 2005-04-18 | 삼성전자주식회사 | Flash memory management method |
TWI240863B (en) * | 2003-09-05 | 2005-10-01 | Megawin Technology Co Ltd | Method for efficiently controlling flash memory read/write |
KR100608606B1 (en) * | 2004-01-28 | 2006-08-03 | 삼성전자주식회사 | Method for adaptive garbage collection and device employing the method |
US7433931B2 (en) * | 2004-11-17 | 2008-10-07 | Raytheon Company | Scheduling in a high-performance computing (HPC) system |
US7337293B2 (en) * | 2005-02-09 | 2008-02-26 | International Business Machines Corporation | Streaming reads for early processing in a cascaded memory subsystem with buffered memory devices |
US7711923B2 (en) * | 2006-06-23 | 2010-05-04 | Microsoft Corporation | Persistent flash memory mapping table |
TWI335517B (en) * | 2006-08-25 | 2011-01-01 | Via Tech Inc | Method of requests access and scheduling and related apparatus thereof |
KR100806343B1 (en) * | 2006-10-19 | 2008-02-27 | 삼성전자주식회사 | Memory system including flash memory and mapping table management method thereof |
US7917702B2 (en) * | 2007-07-10 | 2011-03-29 | Qualcomm Incorporated | Data prefetch throttle |
US20090165008A1 (en) * | 2007-12-19 | 2009-06-25 | Aten International Co., Ltd. | Apparatus and method for scheduling commands from host systems |
CN101533663B (en) * | 2008-03-11 | 2014-07-16 | 深圳市朗科科技股份有限公司 | Method for improving flash memory medium data access speed |
US8055816B2 (en) * | 2009-04-09 | 2011-11-08 | Micron Technology, Inc. | Memory controllers, memory systems, solid state drives and methods for processing a number of commands |
US9170932B1 (en) * | 2012-05-22 | 2015-10-27 | Western Digital Technologies, Inc. | System data storage mechanism providing coherency and segmented data loading |
TWI544334B (en) * | 2012-05-30 | 2016-08-01 | 慧榮科技股份有限公司 | Data storage device and operating method thereof |
-
2014
- 2014-09-05 TW TW103130718A patent/TWI512609B/en active
- 2014-09-29 CN CN201410514010.7A patent/CN105528299B/en active Active
- 2014-09-29 CN CN201810530348.XA patent/CN108733580A/en active Pending
-
2015
- 2015-06-12 US US14/738,481 patent/US9785546B2/en active Active
-
2017
- 2017-05-08 US US15/589,483 patent/US10042756B2/en active Active
-
2018
- 2018-07-10 US US16/031,598 patent/US10725902B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8984247B1 (en) * | 2012-05-10 | 2015-03-17 | Western Digital Technologies, Inc. | Storing and reconstructing mapping table data in a data storage system |
US20160011790A1 (en) * | 2014-07-14 | 2016-01-14 | Sandisk Technologies Inc. | Systems and methods to enable access to a host memory associated with a unified memory architecture (uma) |
Also Published As
Publication number | Publication date |
---|---|
US20180322044A1 (en) | 2018-11-08 |
CN108733580A (en) | 2018-11-02 |
US20160070653A1 (en) | 2016-03-10 |
US10042756B2 (en) | 2018-08-07 |
CN105528299B (en) | 2018-06-29 |
TWI512609B (en) | 2015-12-11 |
US9785546B2 (en) | 2017-10-10 |
US20170242787A1 (en) | 2017-08-24 |
CN105528299A (en) | 2016-04-27 |
TW201610834A (en) | 2016-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10725902B2 (en) | Methods for scheduling read commands and apparatuses using the same | |
US10628319B2 (en) | Methods for caching and reading data to be programmed into a storage unit and apparatuses using the same | |
US8144515B2 (en) | Interleaved flash storage system and method | |
US9846643B2 (en) | Methods for maintaining a storage mapping table and apparatuses using the same | |
US10168951B2 (en) | Methods for accessing data in a circular block mode and apparatuses using the same | |
US11086568B2 (en) | Memory system for writing fractional data into nonvolatile memory | |
US9990280B2 (en) | Methods for reading data from a storage unit of a flash memory and apparatuses using the same | |
US10389380B2 (en) | Efficient data path architecture for flash devices configured to perform multi-pass programming | |
US10776042B2 (en) | Methods for garbage collection and apparatuses using the same | |
US11210226B2 (en) | Data storage device and method for first processing core to determine that second processing core has completed loading portion of logical-to-physical mapping table thereof | |
US9971546B2 (en) | Methods for scheduling read and write commands and apparatuses using the same | |
US20130111287A1 (en) | Memory storage device, memory controller thereof, and data transmission method thereof | |
CN111796759B (en) | Computer readable storage medium and method for fragment data reading on multiple planes | |
US20180275915A1 (en) | Methods for regular and garbage-collection data access and apparatuses using the same | |
US20210011725A1 (en) | Memory controller and memory system including the same | |
US10776280B1 (en) | Data storage device and method for updating logical-to-physical mapping table | |
US10466938B2 (en) | Non-volatile memory system using a plurality of mapping units and operating method thereof | |
US9852068B2 (en) | Method and apparatus for flash memory storage mapping table maintenance via DRAM transfer | |
US10338843B2 (en) | Methods for moving data internally and apparatuses using the same | |
US20180203813A1 (en) | Methods for processing return entities associated with multiple requests in single interrupt service routine thread and apparatuses using the same | |
US10394486B2 (en) | Methods for garbage collection in a flash memory and apparatuses using the same | |
US10387076B2 (en) | Methods for scheduling data-programming tasks and apparatuses using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SILICON MOTION, INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHEN, YANG-CHIH;REEL/FRAME:046308/0921 Effective date: 20150608 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |