US10661502B2 - Foil deposition onto an additive manufactured substrate - Google Patents
Foil deposition onto an additive manufactured substrate Download PDFInfo
- Publication number
- US10661502B2 US10661502B2 US14/962,295 US201514962295A US10661502B2 US 10661502 B2 US10661502 B2 US 10661502B2 US 201514962295 A US201514962295 A US 201514962295A US 10661502 B2 US10661502 B2 US 10661502B2
- Authority
- US
- United States
- Prior art keywords
- foil
- roller
- sheet
- build
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000011888 foil Substances 0.000 title claims abstract description 129
- 239000000654 additive Substances 0.000 title claims abstract description 21
- 230000000996 additive effect Effects 0.000 title claims abstract description 21
- 230000008021 deposition Effects 0.000 title abstract description 4
- 239000000758 substrate Substances 0.000 title description 2
- 239000000843 powder Substances 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 18
- 238000000151 deposition Methods 0.000 claims abstract description 12
- 238000005094 computer simulation Methods 0.000 claims description 9
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 238000011960 computer-aided design Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000110 selective laser sintering Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/147—Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/218—Rollers
Definitions
- Embodiments of the present invention solve the above-mentioned problems and provide a distinct advance in the art of additive manufacturing of a part having two or more dissimilar materials.
- Some embodiments of the invention include a method of additive manufacturing of a part having dissimilar materials.
- the method may include the steps of depositing a layer of build powder onto a build platform, melting selected portions of the layer of build powder, applying a sheet of foil over the layer of build powder, melting selected portions of the sheet of foil onto the layer of build powder, and removing the sheet of foil. These steps may be repeated any plurality of times until the part is completely formed.
- a method of additive manufacturing of dissimilar materials further includes lowering the build platform prior to repeating the step of depositing a layer of build powder onto the build platform.
- the step of applying the sheet of foil over the build powder may include dispensing the foil from a first foil roller and pivoting, translating, and/or telescoping a frame away from the first foil roller.
- the frame may have a second foil roller rotatable thereon and attached to an end of the sheet of foil, such that movement of the frame retractably extends the foil over the build platform.
- the step of removing the sheet of foil may be performed via rotation of the second foil roller, thereby rolling the used portions of the foil onto the second roller.
- an additive manufacturing system for forming a part of dissimilar materials includes a build platform, a recoater, a directed energy source, a foil feed assembly, and a controller.
- the build platform may include a surface for receiving build powder deposited thereon and a build platform actuator to actuate the build platform surface upward and downward.
- the recoater may deposit the build powder onto the build platform surface.
- the directed energy source may melt selected portions of the build powder deposited onto the build platform surface.
- the foil feed assembly may include a first foil roller selectively rotatable to feed foil therefrom, a second foil roller selectively rotatable to receive foil thereon, and a frame to which the second foil roller is rotatably attached.
- the frame may pivot, translate, and/or telescope the second foil roller toward and away from the first foil roller.
- the controller may be programmed for performing the following steps: commanding the recoater to deposit a layer of build powder onto the build platform surface, commanding the energy source to melt selected portions of the layer of build powder based on computer models of the part, commanding the foil feed assembly to apply a sheet of foil over the layer of build powder, commanding the energy source to melt selected portions of the sheet of foil onto the layer of build powder based on computer models of the part, commanding the foil feed assembly to remove the sheet of foil from the layer of build powder, and commanding the build platform actuator to lower the build platform surface.
- the controller may also be programmed to repeat each of the above-listed steps a plurality of times, thereby forming the part of dissimilar materials.
- FIG. 1 is a side view of an additive manufacturing system constructed according to embodiments of the present invention
- FIG. 2 is a perspective view of a recoater, build platform, and foil feed assembly of the additive manufacturing system of FIG. 1 ;
- FIG. 3 is a cross-sectional view of the foil feed assembly of FIG. 2 in a starting, retracted position
- FIG. 4 is a cross-sectional view of the foil feed assembly of FIG. 2 in a pivoted, extended configuration
- FIG. 5 is a flow chart illustrating a method of additive manufacturing a part having dissimilar materials in accordance with embodiments of the present invention.
- references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology.
- references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description.
- a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included.
- the current technology can include a variety of combinations and/or integrations of the embodiments described herein.
- Embodiments of the invention include an additive manufacturing system 10 and a method of additive manufacturing using dissimilar materials.
- the system 10 may comprise one or more hoppers 12 , a build platform 14 , a recoater 16 , overflow bins 18 , a directed energy source 20 , one or more ancillary heaters 22 , a foil feed assembly 24 , and a controller 26 .
- the dissimilar materials may include, for example, build powder 28 , and one or more sheets of foil 30 .
- the build powder 28 may be any additive manufacturing powder known in the art, such as metal, metal alloys, carbon fiber, silicon, plastic, or other such meltable materials in powder form.
- the sheets of foil 30 may include thin sheets of any substantially malleable metal known in the art, such as aluminium, tin, copper, gold, or the like.
- the hoppers 12 may be any size and shape container known in the art and may have any ports, hoses, valves, or dispensing elements for selectively dispensing the build powder 28 from the hoppers into the recoaters 16 .
- the hoppers 12 may include a first hopper and a second hopper between which the recoater 16 may travel, such that the build powder 28 may be provided at both ends of a travel path of the recoater 16 .
- one hopper may be used without departing from the scope of the invention.
- the build platform 14 may comprise a build platform surface, such as a horizontal build plate or base plate, a build platform actuator, and at least one vertical wall surrounding the build platform surface.
- the build platform surface may be vertically movable relative to the vertical walls using built platform actuators, such as electric motors, pumps, circuits, robotic components, mechanical actuation components, hydro-mechanical components, electro-mechanical components, or the like, controlled hydraulically, electrically, or manually via a user and/or the controller 26 .
- the build platform 14 may include a build plate that sits on top of a rectangular, horizontal elevator plate, where four vertical walls enclose the elevator plate.
- the walls may have ledges or wide flanges extending substantially perpendicularly from a top edge thereof, providing a surface on which the build powder 28 may be dispensed and/or at which the recoater may begin its travel path across the build plate.
- the recoater 16 may include any combination of devices known in the art for dispensing and/or spreading the build powder 28 across the surface of the build platform 14 .
- the recoater 16 may include recoating mechanisms having a flexible or a stiff blade, which enables an even and homogeneous build powder 28 layer by movement of the blade.
- the powder 28 may be provided by one of the hoppers 12 , and then the blade may be actuated to pull the powder 28 across the build platform surface and to an opposite side of the build platform.
- the recoater 16 may comprise or be coupled to a recoater actuator configured to actuate the blade or other recoating mechanisms across the build platform.
- the recoater actuator may include electric motors, pumps, circuits, robotic components, mechanical actuation components, hydro-mechanical components, electro-mechanical components, or the like, and may be controlled hydraulically, electrically, or manually to actuate the recoater 16 in the desired direction.
- the overflow bins 18 may be positioned at any location outward of the build platform 14 .
- the overflow bins 18 may be any containers configured and positioned to catch or receive any leftover or unmelted build powder 28 from the recoater 16 , the hoppers 12 , and/or the build platform 14 .
- the overflow bins 18 may detach from other components of the additive manufacturing system 10 and contents thereof may be dumped or otherwise emptied from the overflow bins 18 to the hoppers 12 for reuse.
- the directed energy source 20 may be any kind as is known in the art including but not limited to a laser, electron beam, or other source of directed energy sufficient for selective laser sintering of foils and/or build powders known in the art.
- the energy source 20 may be movably attached to a track such that the energy source 20 may move anywhere in the three-dimensional space above the build platform 14 .
- the energy source 20 may be movable within a two-dimensional plane parallel to and above the build platform 14 .
- the energy source 20 may also be movable such that it can direct its energy in any direction or angle relative to the plane parallel to the build platform 14 .
- the movement, position, and direction of the energy source 20 may be manually controlled or caused by one or more directed energy source actuators, such as electric motors, pumps, circuits, robotic components, mechanical actuation components, hydro-mechanical components, electro-mechanical components, or the like, controlled hydraulically, electrically, or manually via a user and/or the controller 26 .
- directed energy source actuators such as electric motors, pumps, circuits, robotic components, mechanical actuation components, hydro-mechanical components, electro-mechanical components, or the like, controlled hydraulically, electrically, or manually via a user and/or the controller 26 .
- the ancillary heaters 22 may comprise non-directed energy sources configured to substantially uniformly heat the build powder 28 deposited on the build platform 14 .
- the ancillary heaters 22 may heat the build powder 28 close to a melting temperature of the build powder 28 , thus preheating the build powder 28 in preparation thereof for selective melting of the build powder 28 by the directed energy source 20 .
- the foil feed assembly 24 may comprise any device configured to provide one or more of the sheets of foil 30 in a substantially automated manner based on signals received from the controller 26 and/or a user.
- the foil feed assembly 24 may comprise a first foil roller 32 with an associated first stopping mechanism, a second foil roller 34 with an associated second stopping mechanism, and a frame 36 to which the second foil roller 34 is rotatably attached.
- the first foil roller 32 may be selectively rotatable and configured to feed one or more sheets of the foil 30 therefrom.
- the second foil roller 34 may be attachable to an end or a portion of the sheets of foil 30 and may also be selectively rotatable, so as to receive used sheets of the foil 30 thereon after selective melting of the foil 30 by the directed energy source 20 , as later described herein.
- the frame 36 may be configured to pivot, translate, and/or telescope the second foil roller toward and away from the first foil roller.
- the frame 36 may include a shaft 38 pivotable about a pivot point 40 , and a tube 42 .
- the tube 42 may be spring-biased by way of a spring 44 or the like to telescope toward and away from the pivot point 40 as the shaft is pivoted toward and away from the first foil roller 32 .
- the first foil roller 32 may be rotatable about an axis to release the sheet or sheets of foil 30 while the second stopping mechanism prohibits rotation of the second foil roller 34 and while the frame 36 pivots, translates, and/or telescopes in a direction away from the first foil roller 32 , thereby extending the sheet of foil 30 across the build powder 28 on the build platform 14 .
- the second foil roller 34 may be released by the second stopping mechanism and/or actuated to rotate (manually or by way of an actuator in communication with the controller 26 ), thus rolling the used foil 30 thereon while the first stopping mechanism prohibits rotation of the first foil roller 32 .
- the frame 36 may simultaneously or subsequently pivot, translate, and/or telescope in a direction back toward the first foil roller 32 in preparation for extending another portion of the sheet the foil 30 across the build powder 28 on the build platform 14 .
- the second foil roller 34 can serve as both a compaction roller for pressing the foil 30 against the build powder 28 on the build platform 14 and a recovery roller for receiving used (e.g., partially melted) foil 30 thereon.
- the controller 26 may comprise any number of combination of controllers, circuits, integrated circuits, programmable logic devices such as programmable logic controllers (PLC) or motion programmable logic controllers (MPLC), computers, processors, microcontrollers, transmitters, receivers, other electrical and computing devices, and/or residential or external memory for storing data and other information accessed and/or generated by the system 10 .
- the controller 26 may control operational sequences, power, speed, motion, or movement of any of the actuators described herein and/or temperatures of the directed energy source 20 and/or the ancillary heaters 22 .
- the controller 26 may be configured to implement any combination of algorithms, subroutines, computer programs, or code corresponding to method steps and functions described herein.
- the controller 26 and computer programs described herein are merely examples of computer equipment and programs that may be used to implement the present invention and may be replaced with or supplemented with other controllers and computer programs without departing from the scope of the present invention. While certain features are described as residing in the controller 26 , the invention is not so limited, and those features may be implemented elsewhere. For example, databases may be accessed by the controller 36 for retrieving CAD data or other operational data without departing from the scope of the invention.
- the controller 26 may implement the computer programs and/or code segments to perform various method steps described herein.
- the computer programs may comprise an ordered listing of executable instructions for implementing logical functions in the controller 26 .
- the computer programs can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, and execute the instructions.
- a “computer-readable medium” can be any physical medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
- the computer-readable medium can be, for example, but not limited to, an electronic, magnetic, optical, electro-magnetic, infrared, or semi-conductor system, apparatus, or device.
- examples of the computer-readable medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable, programmable, read-only memory (EPROM or Flash memory), a portable compact disk read-only memory (CDROM), an optical fiber, multi-media card (MMC), reduced-size multi-media card (RS MMC), secure digital (SD) cards such as microSD or miniSD, and a subscriber identity module (SIM) card.
- RAM random access memory
- ROM read-only memory
- EPROM or Flash memory erasable, programmable, read-only memory
- CDROM portable compact disk read-only memory
- CDROM compact disk read-only memory
- MMC multi-media card
- RS MMC reduced-size multi-media card
- SD secure digital cards
- SIM subscriber identity module
- the residential or external memory may be integral with the controller 26 , stand alone memory, or a combination of both.
- the memory may include, for example, removable and non removable memory elements such as RAM, ROM, flash, magnetic, optical, USB memory devices, MMC cards, RS MMC cards, SD cards such as microSD or miniSD, SIM cards, and/or other memory elements.
- the system 10 may further comprise electrical and/or communication conduits 46 , electrically and/or communicably coupling provide electrical power to the actuators 20 , the powder hopper 16 , the deposition device 18 , the nozzles or nozzle solenoids, the build platform 14 , and/or the directed energy source 20 .
- the conduits 46 may be configured to provide communication links between the controller 36 and any of the actuators 20 , the powder hopper 16 , the deposition device 18 , the nozzles or nozzle solenoids, the build platform 14 , and the directed energy source 20 .
- a method of additive manufacturing using dissimilar materials may generally include the steps of depositing a layer of the build powder 28 onto the build platform 14 , melting selected portions of the layer of build powder 28 , applying a sheet or portion of a sheet of foil 30 over the layer of build powder 28 , melting selected portions of the foil 30 onto the layer of build powder 28 , and removing the sheet of foil 30 . Next, these steps may each be repeated one or more times, adding layer upon layer until forming a completed part having dissimilar materials.
- the steps of the method 500 may be performed in the order as shown in FIG. 5 , or they may be performed in a different order. Furthermore, some steps may be performed concurrently as opposed to sequentially. In addition, some steps may not be performed.
- the method 500 may include a step of depositing a layer of the build powder 28 onto the build platform 14 , as depicted in block 502 .
- subsequent layers of the build powder 28 added to the part may not be deposited directly on the build plate (i.e., not directly contacting the build plate), but may instead be deposited onto a previous layer of the part being formed on the build plate.
- This depositing step may be accomplished by dispensing a desired amount of build powder 28 from one of the hoppers 12 , and then actuating the recoater 16 , via command signals provided by the controller 26 , to spread the dispensed build powder 28 across the build platform 14 or the build plate thereof.
- the build powder 28 may be dispensed onto the ledges or wide flanges extending substantially perpendicularly from the top edges of the build platform walls, and the recoater 16 may push or pull the build powder 28 across the build plate, with the recoater defining a top boundary of the build powder layer, the walls of the build platform forming side boundaries of the build powder layer, and the build plate (or previously layer of the part being formed) forming a bottom boundary of the build powder layer being deposited in step 502 . Additionally or alternatively, the recoater 16 may have the build powder 28 contained therein and evenly dispensed therefrom as the recoater 16 is actuated across the build plate.
- the method 500 may further include the steps of preheating the build powder 28 with the ancillary heaters 22 to a temperature slightly below a melting temperature of the build powder 28 , as depicted in block 504 , and/or melting selected portions of the layer of build powder 28 , as depicted in block 506 .
- the preheating step may be omitted without departing from the scope of the invention.
- the selected portions of the build powder 28 melted in step 506 may be selected by the controller 26 based on computer models of the part, such as three-dimensional computer aided design (CAD) models and the like.
- CAD computer aided design
- the directed energy source 20 may be actuated and/or turned on and off according to the three-dimensional CAD models or other computer-implemented instructions provided by the controller 26 .
- the method 500 may include a step of applying the sheet of foil 30 over the layer of build powder 28 , as depicted in block 508 .
- this step may include rotating or allowing free rotation of the first foil roller 32 to release the sheet of foil 30 while prohibiting rotation of the second foil roller 34 and simultaneously pivoting, translating, and/or telescoping at least a portion of the frame 36 associated with the second foil roller 34 , such that the second foil roller 34 is moved in a direction away from the first foil roller 32 , thereby extending the sheet of foil 30 across the layer of build powder 28 .
- the frame's shaft 38 may rotate about the pivot point 40 in a direction away from the first foil roller 32 , and the tube 42 may telescope in a direction away from the pivot point 40 in response to release of spring compression as the shaft 38 is pivoted away from the first foil roller 32 .
- the method 500 may then include a step of melting selected portions of the sheet of foil 30 onto the layer of build powder 28 , as depicted in block 510 .
- the selected portions of the sheet of foil 30 in step 510 may be selected by the controller 26 based on computer models of the part, such as CAD models and the like.
- the CAD models or other such computer models may be different for the build powder layers than for the foil pattern being formed thereon, such that the pattern or portion of the part formed by the foil 30 may be embedded within the part or portion of the part being formed by the build powder 28 .
- the method 500 may also comprise a step of removing the sheet of foil 30 extended over the build powder 28 , as depicted in block 512 , or removing what remains of the sheet of foil 30 after the melting step 510 .
- step 512 may include prohibiting rotation of the first foil roller 32 while rotating the second foil roller 34 relative to the frame 36 , thereby retracting the used sheet of foil 30 onto the second foil roller 34 .
- the method step 512 may also include subsequently or simultaneously pivoting, translating, and/or telescoping at least a portion of the frame 36 back toward the first foil roller 32 , to its starting position. This may be performed via an actuation command provided by the controller 26 to pivot the frame 36 back toward the first foil roller 32 .
- the method 500 may include a step of lowering the build platform 14 , as depicted in block 514 .
- This may include the controller 26 commanding the build platform actuator to actuate the build platform or build plate in a downward direction. Additionally or alternatively, the walls surrounding the build plate may be actuated upward and/or the recoater 16 may be actuated upward, such that the additive manufacturing system 10 is in a position to perform formation of another layer of the build powder 28 onto a previously layer of both build powder 28 and selectively melted foil 30 .
- the method 500 may include a step of repeating steps 502 through 514 one or more times, as depicted in block 516 , thereby forming the part of dissimilar materials.
- the part is thus made of sintered powder material and foil deposited material.
- Each subsequent layer may include both the application and melting of the build powder 28 and the foil 30 , or one or more of the layers may omit the foil 30 or the build powder 28 , such that some of the layers of the part formed thereby include only the melted build powder 28 or only the foil 30 .
- the method 500 may be used to allow the creation of parts with embedded sensors, circuits, wires, conductive pathways, or various multi-function printed objects, and advantageously allows for dissimilar plastics and/or metals to be manufactured into a single part while sharing the same energy source (i.e., the directed energy source 20 ).
- the method 500 may also be used for stiffening of printed parts and/or for the manufacturing of electronic devices, motor housing, toys, clothes, etc.
- Other potential uses of the method 500 include creating a thermal gradient with dissimilar metals to create a current galvanic reaction for producing voltage.
- multiple types of foil and/or multiple types of build powder may be used, such that more than two dissimilar materials are included in the final part.
- the method 500 may be used to simultaneously build a plurality of parts, based on the patterns utilized by the directed energy source 20 and the controller 26 .
- the method 500 may be used to simultaneously build some parts with dissimilar materials and some parts without dissimilar materials, which only include, for example, the build powder 28 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims (13)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/962,295 US10661502B2 (en) | 2015-12-08 | 2015-12-08 | Foil deposition onto an additive manufactured substrate |
US16/853,021 US10919216B2 (en) | 2015-12-08 | 2020-04-20 | Foil deposition onto an additive manufactured substrate |
US16/853,078 US10967462B2 (en) | 2015-12-08 | 2020-04-20 | Foil deposition onto an additive manufactured substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/962,295 US10661502B2 (en) | 2015-12-08 | 2015-12-08 | Foil deposition onto an additive manufactured substrate |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/853,021 Continuation US10919216B2 (en) | 2015-12-08 | 2020-04-20 | Foil deposition onto an additive manufactured substrate |
US16/853,078 Continuation-In-Part US10967462B2 (en) | 2015-12-08 | 2020-04-20 | Foil deposition onto an additive manufactured substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170157841A1 US20170157841A1 (en) | 2017-06-08 |
US10661502B2 true US10661502B2 (en) | 2020-05-26 |
Family
ID=58799618
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/962,295 Active 2038-12-03 US10661502B2 (en) | 2015-12-08 | 2015-12-08 | Foil deposition onto an additive manufactured substrate |
US16/853,021 Active US10919216B2 (en) | 2015-12-08 | 2020-04-20 | Foil deposition onto an additive manufactured substrate |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/853,021 Active US10919216B2 (en) | 2015-12-08 | 2020-04-20 | Foil deposition onto an additive manufactured substrate |
Country Status (1)
Country | Link |
---|---|
US (2) | US10661502B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10967462B2 (en) * | 2015-12-08 | 2021-04-06 | Honeywell Federal Manufacturing & Technologies, Llc | Foil deposition onto an additive manufactured substrate |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10245821B2 (en) * | 2015-12-04 | 2019-04-02 | At&T Intellectual Property I, L.P. | Reusable networked 3-D printing |
US11148199B2 (en) * | 2016-07-29 | 2021-10-19 | Tesla, Inc. | Deposition of metal dies for part fabrication |
AT518899B1 (en) * | 2016-08-05 | 2018-02-15 | Metallconcept Gmbh | Apparatus for producing at least one three-dimensional composite body for the construction industry |
EP3535109A4 (en) * | 2016-11-02 | 2020-04-22 | Aurora Labs Limited | 3d printing method and apparatus |
WO2019083493A1 (en) | 2017-10-23 | 2019-05-02 | Hewlett-Packard Development Company, L.P. | Forming a layer of build material |
US11584057B2 (en) | 2018-01-03 | 2023-02-21 | General Electric Company | Systems and methods for additive manufacturing |
US10682812B2 (en) | 2018-01-10 | 2020-06-16 | General Electric Company | Powder spreader and additive manufacturing apparatus thereof |
CN108724705B (en) * | 2018-05-18 | 2020-10-16 | 航天特种材料及工艺技术研究所 | Additive manufacturing device |
US10946480B2 (en) * | 2018-07-02 | 2021-03-16 | The Boeing Company | Foil fusion additive manufacturing system and method |
CN113677460A (en) | 2019-02-11 | 2021-11-19 | 都柏林圣三一学院教务长研究员学者及董事会其他成员 | Product and method for feeding powder into a powder bed 3D printer |
CN114126837A (en) * | 2019-05-23 | 2022-03-01 | 通用电气公司 | Recoating assembly for additive manufacturing system and method of using same |
JP7298347B2 (en) * | 2019-07-04 | 2023-06-27 | セイコーエプソン株式会社 | Three-dimensional object manufacturing equipment |
WO2021221877A1 (en) * | 2020-04-30 | 2021-11-04 | Carbon, Inc. | Film applicator apparatus for additive manufacturing build platforms and related systems |
US11865780B2 (en) | 2021-02-26 | 2024-01-09 | General Electric Company | Accumalator assembly for additive manufacturing |
US11951679B2 (en) | 2021-06-16 | 2024-04-09 | General Electric Company | Additive manufacturing system |
US11731367B2 (en) | 2021-06-23 | 2023-08-22 | General Electric Company | Drive system for additive manufacturing |
US11958250B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11958249B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11826950B2 (en) | 2021-07-09 | 2023-11-28 | General Electric Company | Resin management system for additive manufacturing |
US11813799B2 (en) | 2021-09-01 | 2023-11-14 | General Electric Company | Control systems and methods for additive manufacturing |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4460433A (en) * | 1982-11-04 | 1984-07-17 | Boyd Walter K | Pressure roller for roofing machines |
US5354414A (en) | 1988-10-05 | 1994-10-11 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US5514232A (en) * | 1993-11-24 | 1996-05-07 | Burns; Marshall | Method and apparatus for automatic fabrication of three-dimensional objects |
US5607540A (en) * | 1992-02-20 | 1997-03-04 | Teijin Seiki Co., Ltd. | Photoforming method and apparatus |
US20110106290A1 (en) * | 2009-10-30 | 2011-05-05 | Hoevel Simone | Method of applying multiple materials with selective laser melting on a 3d article |
US20110241947A1 (en) | 2008-10-30 | 2011-10-06 | Mtt Technologies Limited | Additive manufacturing apparatus and method |
US20150273583A1 (en) * | 2014-03-28 | 2015-10-01 | Mitutoyo Corporation | Layer scanning inspection system for use in conjunction with an additive workpiece fabrication system |
US20170341365A1 (en) * | 2013-12-05 | 2017-11-30 | Compagnie Generale Des Etablissements Michelin | Machine and Method for Powder Based Additive Manufacturing |
-
2015
- 2015-12-08 US US14/962,295 patent/US10661502B2/en active Active
-
2020
- 2020-04-20 US US16/853,021 patent/US10919216B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4460433A (en) * | 1982-11-04 | 1984-07-17 | Boyd Walter K | Pressure roller for roofing machines |
US5354414A (en) | 1988-10-05 | 1994-10-11 | Michael Feygin | Apparatus and method for forming an integral object from laminations |
US5607540A (en) * | 1992-02-20 | 1997-03-04 | Teijin Seiki Co., Ltd. | Photoforming method and apparatus |
US5514232A (en) * | 1993-11-24 | 1996-05-07 | Burns; Marshall | Method and apparatus for automatic fabrication of three-dimensional objects |
US20110241947A1 (en) | 2008-10-30 | 2011-10-06 | Mtt Technologies Limited | Additive manufacturing apparatus and method |
US20110106290A1 (en) * | 2009-10-30 | 2011-05-05 | Hoevel Simone | Method of applying multiple materials with selective laser melting on a 3d article |
US20170341365A1 (en) * | 2013-12-05 | 2017-11-30 | Compagnie Generale Des Etablissements Michelin | Machine and Method for Powder Based Additive Manufacturing |
US20150273583A1 (en) * | 2014-03-28 | 2015-10-01 | Mitutoyo Corporation | Layer scanning inspection system for use in conjunction with an additive workpiece fabrication system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10967462B2 (en) * | 2015-12-08 | 2021-04-06 | Honeywell Federal Manufacturing & Technologies, Llc | Foil deposition onto an additive manufactured substrate |
Also Published As
Publication number | Publication date |
---|---|
US10919216B2 (en) | 2021-02-16 |
US20170157841A1 (en) | 2017-06-08 |
US20200247040A1 (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10919216B2 (en) | Foil deposition onto an additive manufactured substrate | |
JP6626149B2 (en) | System and method for additive manufacturing a model | |
TW201945099A (en) | Adaptive 3D printing | |
US9156194B2 (en) | Digital 3D fabrication using multi-layered mold | |
CN108139734A (en) | Print data generation system | |
CN105834419A (en) | Apparatus and method for manufacturing an anti-counterfeit three-dimensional article | |
CN107107492A (en) | Internal structure conductive trace and the making for the three-dimensional interconnection for manufacturing structure | |
US9925723B2 (en) | Additive manufacturing systems and methods | |
US10583647B2 (en) | Method of controlling warping in 3D printing | |
CN103331911B (en) | Rapid three dimensional printing forming equipment and 3D solid thing forming method | |
US10967462B2 (en) | Foil deposition onto an additive manufactured substrate | |
CN110325348B (en) | Preheating three-dimensional (3D) printing mechanism building material | |
US20220097302A1 (en) | Build material dispensing device | |
CN106903878A (en) | Three-dimensional moulding device and 3-dimensional object formation | |
US20230382040A1 (en) | Additive fabrication of sinterable metallic parts via application of directed energy | |
EP3668701A1 (en) | Techniques for producing thermal support structures in additive fabrication and related systems and methods | |
EP3934894B1 (en) | Additive manufacturing system and method | |
WO2016008876A1 (en) | Method and arrangement for the additive manufacture of components | |
EP3512703B1 (en) | Apparatus for producing an object by means of additive manufacturing and method of using the apparatus | |
EP3565709B1 (en) | Recoater movement | |
EP3238864B1 (en) | Apparatus and method for fabricating three-dimensional objects | |
US20210170680A1 (en) | Binder jetting apparatus and methods | |
WO2020153941A1 (en) | Generating barriers in additive manufacturing | |
US11691202B2 (en) | Metal 3D printing systems for using sand as supports | |
US11858203B2 (en) | Device and method for generative manufacturing of an object made up of a plurality of cross sections and three-dimensional object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREEN, NICHOLAS;REEL/FRAME:037237/0881 Effective date: 20151130 Owner name: HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GREEN, NICHOLAS;REEL/FRAME:037237/0881 Effective date: 20151130 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |