US10385908B2 - Conformal clearance fit fastener, fastener system, and method for composite structures - Google Patents

Conformal clearance fit fastener, fastener system, and method for composite structures Download PDF

Info

Publication number
US10385908B2
US10385908B2 US15/087,841 US201615087841A US10385908B2 US 10385908 B2 US10385908 B2 US 10385908B2 US 201615087841 A US201615087841 A US 201615087841A US 10385908 B2 US10385908 B2 US 10385908B2
Authority
US
United States
Prior art keywords
fastener
see
head portion
shaft body
see figs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/087,841
Other versions
US20170284449A1 (en
Inventor
Robert B. Greegor
Quynhgiao N. Le
Brent A. Whiting
John A. Mittleider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Priority to US15/087,841 priority Critical patent/US10385908B2/en
Assigned to THE BOEING COMPANY reassignment THE BOEING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREEGOR, ROBERT B., MITTLEIDER, JOHN A., LE, QUYNHGIAO N., WHITING, BRENT A.
Priority to EP17160039.8A priority patent/EP3225555B1/en
Priority to JP2017052967A priority patent/JP6872942B2/en
Priority to CN201710191190.3A priority patent/CN107269655A/en
Publication of US20170284449A1 publication Critical patent/US20170284449A1/en
Application granted granted Critical
Publication of US10385908B2 publication Critical patent/US10385908B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/02Locking of screws, bolts or nuts in which the locking takes place after screwing down
    • F16B39/021Locking of screws, bolts or nuts in which the locking takes place after screwing down by injecting a settable material after the screwing down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/12Construction or attachment of skin panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/02Lightning protectors; Static dischargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/008Bolts without screw-thread; Pins, including deformable elements; Rivets with sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/001Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed
    • F16B25/0015Screws that cut thread in the body into which they are screwed, e.g. wood screws characterised by the material of the body into which the screw is screwed the material being a soft organic material, e.g. wood or plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B25/00Screws that cut thread in the body into which they are screwed, e.g. wood screws
    • F16B25/10Screws performing an additional function to thread-forming, e.g. drill screws or self-piercing screws
    • F16B25/106Screws performing an additional function to thread-forming, e.g. drill screws or self-piercing screws by means of a self-piercing screw-point, i.e. without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B3/00Key-type connections; Keys
    • F16B3/005Key-type connections; Keys the key being formed by solidification of injected material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/004Sealing; Insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/06Surface treatment of parts furnished with screw-thread, e.g. for preventing seizure or fretting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/041Specially-shaped shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B35/00Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
    • F16B35/04Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws with specially-shaped head or shaft in order to fix the bolt on or in an object
    • F16B35/06Specially-shaped heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • F16B2001/0064
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2200/00Constructional details of connections not covered for in other groups of this subclass
    • F16B2200/93Fastener comprising feature for establishing a good electrical connection, e.g. electrostatic discharge or insulation feature

Definitions

  • the disclosure relates generally to fasteners and fastener systems and methods for composite structures, and more particularly, to conformal clearance fit fasteners and fastener systems and methods that provide electrical contact and conductivity with composite structures, such as carbon fiber reinforced plastic (CFRP) structures, such as for use in aircraft.
  • CFRP carbon fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • CFRP structures may be used in a wide variety of applications, including in the manufacture of aircraft, spacecraft, rotorcraft, watercraft, automobiles, trucks, and other vehicles and structures, due to their high strength-to-weight ratios, corrosion resistance, and other favorable properties.
  • the composite structures, such as CFRP structures are typically made of a composite material comprising a matrix material, such as a resin, reinforced with fiber material, such as carbon fiber.
  • the resin is not generally electrically conductive, in contrast to the fiber material.
  • the current energy from the lightning strike may not dissipate, may remain in the vicinity of the struck fasteners, and may be conducted into the substructure and possibly a fuel tank in the wing, where unwanted discharge or sparking may occur as the result of electrical arching, and/or hot plasma particles ejected from joints due to decomposition of material systems, leading to a potential ignition source.
  • Such known systems and methods include the application of electrically insulating sealants and the use of fastener cap seals to cover metal fasteners in the aircraft composite wing fuel tanks, to contain the discharge in the fastened joint and direct it away from the fuel tank or other aircraft composite structures.
  • such known electrically insulating sealants may be heavy, and such known fastener seal caps may be numerous in number, and both may add weight to the aircraft, which may result in reduced performance and increased fuel consumption, and, in turn, may result in increased fuel costs.
  • such known electrically insulating sealants and fastener seal caps may be time consuming and labor intensive to apply or install and inspect in the aircraft composite wings and fuel tanks, or other aircraft structures, which, in turn, may result in increased manufacturing and inspection time and increased labor costs.
  • known fasteners and fastener systems exist that achieve good electrical contact between composite aircraft structures, such as composite wing skins, and the metal fasteners used to secure such structures, and that reduce the potential for unwanted discharge or sparking in aircraft composite wing fuel tanks.
  • Such known fasteners and fastener systems include the use of interference fit fasteners that employ a corrosion resistant steel (CRES) sleeve through which a tapered titanium bolt is inserted, i.e., sleeved interference fit fasteners. When torque is applied to a collar of the bolt, the sleeve expands, making contact with composite layers of the composite wing skin.
  • CRES corrosion resistant steel
  • any exposed high conductivity carbon fiber tip in drilled holes, in which the fasteners are inserted may be crushed, damaged, or possibly broken. This may limit the overall electrical connection and may also promote micro-cracks in the fastened joints of the composite structure.
  • Example implementations of this disclosure provide an improved fastener, fastener system, and method for composite structures, such as carbon fiber reinforced plastic (CFRP) structures, and CFRP structures attached to metallic structures.
  • CFRP carbon fiber reinforced plastic
  • embodiments of the improved fastener, fastener system, and method may provide significant advantages over known fastener devices, systems, and methods.
  • a fastener comprising an elongated shaft having a first end, a second end, and a shaft body disposed between the first end and the second end.
  • the fastener further comprises a head portion disposed at the first end.
  • the fastener further comprises a threaded portion disposed at the second end.
  • the fastener further comprises at least one inner feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion.
  • the fastener further comprises a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute has a first end extending from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion.
  • the fastener further comprises one or more lateral feed channels formed laterally through the shaft body.
  • Each lateral feed channel connects the inner feed channel to at least two opposing flutes on the outer surface of the shaft body.
  • a fastener system for providing improved electrical contact with a composite structure.
  • the fastener system comprises one or more fasteners configured for installation in one or more corresponding fastener holes formed in the composite structure.
  • Each fastener comprises an elongated shaft having a first end with a head portion, a second end with a threaded portion, and a shaft body disposed between the first end and the second end.
  • Each fastener further comprises at least one inner central feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion.
  • Each fastener further comprises a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute extends from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion.
  • Each fastener further comprises one or more lateral feed channels formed laterally through the shaft body.
  • Each lateral feed channel connects the inner central feed channel to at least two opposing flutes on the outer surface of the shaft body.
  • the fastener system further comprises an injection tool assembly configured for coupling to each of the one or more fasteners installed in the one or more corresponding fastener holes.
  • the fastener system further comprises a conductive fluid injected via the injection tool assembly into each fastener installed in the composite structure.
  • the conductive fluid is transported and deposited via the at least one inner central feed channel, the one or more lateral feed channels, and the plurality of flutes of each fastener, to one or more areas between an outer surface of the fastener and an inner surface of a corresponding fastener hole of the composite structure.
  • the conductive fluid provides electrical contact between carbon fibers of the composite structure and the one or more fasteners installed in the one or more corresponding fastener holes of the composite structure. This results in the fastener system providing electrical contact with the composite structure.
  • a method for providing to a composite structure of an aircraft improved electrical conductivity and dissipation of current energy resulting from lightning strikes to the aircraft comprises the step of installing one or more fasteners into one or more corresponding fastener holes formed in the composite structure.
  • Each fastener comprises an elongated shaft having a first end with a head portion, a second end with a threaded portion, and a shaft body disposed therebetween.
  • Each fastener further comprises at least one inner feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion.
  • Each fastener further comprises a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute extends from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion.
  • Each fastener further comprises one or more lateral feed channels formed laterally through the shaft body.
  • Each lateral feed channel connects the inner feed channel to at least two opposing flutes on the outer surface of the shaft body.
  • the method further comprises the step of torquing the one or more fasteners in place in the one or more corresponding fastener holes.
  • the method further comprises the step of injecting, under pressure, a conductive fluid into the opening in the head portion of each fastener, and through the at least one inner feed channel and the one or more lateral feed channels.
  • the method further comprises the step of depositing the conductive fluid to one or more areas between an outer surface of each fastener and an inner surface of each corresponding fastener hole of the composite structure.
  • the method further comprises the step of curing the composite structure with the one or more fasteners installed in the composite structure.
  • the method further comprises the step of providing electrical contact between carbon fibers of the composite structure and each fastener installed in each corresponding fastener hole, to obtain electrical conductivity and dissipation of current energy, resulting from lightning strikes to the aircraft.
  • FIG. 1A is an illustration of a side perspective view of an exemplary embodiment of a fastener of the disclosure
  • FIG. 1B is an illustration of a cutaway side perspective view of the fastener of FIG. 1A ;
  • FIG. 1C is an illustration of a cross-sectional view of the fastener of FIG. 1A , taken along lines 1 C- 1 C of FIG. 1A ;
  • FIG. 1D is an illustration of a top view of the fastener of FIG. 1A ;
  • FIG. 1E is an illustration of a bottom view of the fastener of FIG. 1A ;
  • FIG. 2A is an illustration of a side perspective view of another exemplary embodiment of a fastener of the disclosure.
  • FIG. 2B is an illustration of a cutaway side perspective view of the fastener of FIG. 2A ;
  • FIG. 2C is an illustration of a cross-sectional view of the fastener of FIG. 2A , taken along lines 2 C- 2 C of FIG. 2A ;
  • FIG. 2D is an illustration of a top view of the fastener of FIG. 2A ;
  • FIG. 2E is an illustration of a bottom view of the fastener of FIG. 2A ;
  • FIG. 3A is an illustration of a side perspective view of yet another exemplary embodiment of a fastener of the disclosure
  • FIG. 3B is an illustration of a cutaway side perspective view of the fastener of FIG. 3A ;
  • FIG. 3C is an illustration of a top view of the fastener of FIG. 3A ;
  • FIG. 3D is an illustration of a bottom view of the fastener of FIG. 3A ;
  • FIGS. 4A-4G are illustrations of cross-sectional views of lateral feed channel configurations that may be used in embodiments of the fastener of the disclosure
  • FIG. 5A is an illustration of a cutaway side perspective view of an embodiment of a fastener system of the disclosure
  • FIG. 5B is an illustration of a side perspective view of the fastener system of FIG. 5A ;
  • FIG. 6 is an illustration of a cutaway side perspective view of another embodiment of a fastener system of the disclosure.
  • FIG. 7A is a schematic diagram of a partial sectional view of an embodiment of a fastener system of the disclosure showing the fastener installed in a composite structure having a corresponding fastener hole with a rough surface and conductive fluid injected into the fastener;
  • FIG. 7B is a schematic diagram of a partial sectional view of the fastener system of FIG. 7A showing the fastener after conductive fluid injection and after cure;
  • FIG. 8 is a flow diagram showing an exemplary embodiment of a method of the disclosure.
  • FIG. 9 is an illustration of a perspective view of an aircraft that may incorporate composite structures having one or more embodiments of a fastener of the disclosure.
  • FIG. 10 is a flow diagram of an aircraft manufacturing and service method.
  • FIG. 11 is a block diagram of an aircraft.
  • FIG. 1A is an illustration of a side perspective view of an exemplary embodiment of the fastener 10 , such as in the form of fastener 10 a , of the disclosure.
  • the fastener 10 (see FIG. 1A ), such as in the form of fastener 10 a (see FIG. 1A ), comprises a conformal clearance fit fastener 12 (see FIG. 1A ) that is sleeveless, i.e., does not require a metal sleeve.
  • FIG. 1B is an illustration of a cutaway side perspective view of the fastener 10 , such as in the form of fastener 10 a , of FIG. 1A .
  • FIG. 1C is an illustration of a cross-sectional view of the fastener 10 , such as in the form of fastener 10 a , of FIG. 1A , taken along lines 1 C- 1 C of FIG. 1A .
  • the fastener 10 such as in the form of fastener 10 a , comprises an elongated shaft 14 having a first end 16 , a second end 18 , and a shaft body 20 disposed between the first end 16 and the second end 18 .
  • the fastener 10 has a head portion 22 disposed at the first end 16 .
  • the head portion 22 (see FIG. 1A ) preferably has a frusto-conical shape 24 (see FIG. 1A ).
  • the head portion 22 may have another suitable shape as well.
  • the head portion 22 has a top end 26 , a bottom end 28 , and a central portion 30 with an outer surface 32 (see also FIG. 1A ) and an interior 34 .
  • FIG. 1D is an illustration of a top view of the fastener 10 , such as in the form of fastener 10 a , of FIG. 1A .
  • FIG. 1D shows the top end 26 of the head portion 22 having a top surface 36 , which is flat or substantially flat.
  • the top end 26 of the head portion 22 has an outer periphery 38 (see also FIG. 1A ) or perimeter and has an opening 40 .
  • the opening 40 is a central opening 40 a (see FIGS. 1A-1D ).
  • the fastener 10 has a threaded portion 42 disposed at the second end 18 of the elongated shaft 14 .
  • the threaded portion 42 has a top end 44 , a bottom end 46 , and a central portion 48 with an outer surface 50 comprised of a plurality of threads 52 .
  • the threaded portion 42 has an interior 54 , which is preferably solid and has no openings or voids.
  • FIG. 1E is an illustration of a bottom view of the fastener 10 , such as in the form of fastener 10 a , of FIG. 1A .
  • FIG. 1E shows the bottom end 46 of the threaded portion 42 having a bottom surface 56 , which is flat or substantially flat.
  • the shaft body 20 of the elongated shaft 14 has a first end 58 integrally joined or connected to the top end 44 of the threaded portion 42 , has a second end 60 integrally joined or connected to the bottom end 28 of the head portion 22 , and has a central portion 62 disposed between the first end 58 and the second end 60 .
  • the shaft body 20 (see FIGS. 1A-1B ) has an outer surface 64 (see FIGS. 1A-1B ) with an outer profile 66 (see FIGS. 1A-1B ).
  • the shaft body 20 may have a substantially straight outer profile 66 a .
  • the shaft body 20 may have a tapered outer profile 66 b .
  • the central portion 62 of the shaft body 20 has an interior 68 .
  • the fastener 10 such as in the form of fastener 10 a , further comprises at least one inner feed channel 70 .
  • the inner feed channel 70 may be in the form of an inner central feed channel 70 a .
  • the inner feed channel 70 such as in the form of inner central feed channel 70 a , has a first end 72 and a second end 74 .
  • the inner feed channel 70 extends at the first end 72 from the opening 40 in the head portion 22 , through the interior 34 of the head portion 22 and through the interior 68 of the shaft body 20 , and terminates at the second end 74 at a location 76 proximal to or near the threaded portion 42 .
  • the inner feed channel 70 extends along a longitudinal central axis 78 of the elongated shaft 14 and preferably has a hollow interior 79 .
  • the fastener 10 such as in the form of fastener 10 a , further comprises a plurality of flutes 80 formed along and circumferentially spaced around the outer surface 64 of the shaft body 20 , and formed along and circumferentially spaced around the outer surface 32 of the head portion 22 .
  • each flute 80 has a first end 82 extending from a first location 84 proximal to the threaded portion 42 , along the outer surface 64 of the shaft body 20 , and radially outward along the outer surface 32 of the head portion 22 .
  • the flutes 80 see FIG.
  • each flute 80 (see FIG. 1A ) runs continuously along the outer surface 64 (see FIG. 1A ) of the shaft body 20 (see FIG. 1A ) and the outer surface 32 (see FIG. 1A ) of the head portion 22 (see FIG. 1A ).
  • each flute 80 may extend radially outward along the outer surface 32 of the head portion 22 and terminate at a second end 86 .
  • the second end 86 comprises a second location 86 a proximal to the outer periphery 38 of the head portion 22 .
  • the second end 86 comprises a periphery opening 86 b at the outer periphery 38 of the head portion 22 .
  • each flute 80 may preferably be formed as a longitudinal groove 87 having a shallow, curved interior surface 88 .
  • the plurality of flutes 80 are preferably circumferentially spaced an equal distance d apart from each other. As further shown in FIG. 1E , the number of flutes 80 is eight (8). However, another suitable number of flutes 80 (see FIGS. 1A, 1E ) may also be formed on the fastener 10 (see FIG. 1A ).
  • the fastener 10 further comprises one or more lateral feed channels 90 or inner cross channels formed laterally through the interior 68 of the shaft body 20 .
  • each lateral feed channel 90 connects the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to at least two opposing flutes 80 on the outer surface 64 of the shaft body 20 .
  • Each lateral feed channel 90 may preferably comprise lateral feed channel portions 91 (see FIG. 1C ), such as two lateral feed channel portions 91 (see FIG. 1C ).
  • the shaft body 20 has at least two sets 90 a , 90 b of the one or more lateral feed channels 90 formed laterally through the shaft body 20 .
  • one set 90 a of lateral feed channels 90 and the other set 90 b of lateral feed channels 90 are spaced apart from each other a suitable distance.
  • the two sets 90 a , 90 b (see FIG. 1C ) of the one or more lateral feed channels 90 are each spaced a different distance from the top end 26 (see FIG. 1C ) of the head portion 22 (see FIG. 1C ).
  • FIG. 1C the shaft body 20 , as shown in FIG. 1C .
  • set 90 a of lateral feed channels 90 may be formed laterally through the shaft body 20 at a first distance 92 a from the top end 26 of the head portion 22
  • set 90 b of lateral feed channels 90 may be formed laterally through the shaft body 20 at a second distance 92 b from the top end 26 of the head portion 22
  • the shaft body 20 (see FIGS. 1B-1C ) may also have more than two sets of the lateral feed channels 90 or may have just one set of lateral feed channels 90 .
  • the lateral feed channel 90 of the set 90 a and the lateral feed channel 90 of the set 90 b preferably each have a first end 94 a that opens into or connects with flute 80 a , preferably each have a second end 94 b that opens into or connects with flute 80 b , which is opposite to flute 80 a , and preferably each have a central interior 95 that intersects or connects with the inner feed channel 70 , such as in the form of inner central feed channel 70 a .
  • the number of lateral feed channels 90 (see FIGS. 1B-1C ) that may be formed in each set may be the same or may be different.
  • Each flute 80 shows openings 96 (see FIG. 1A ) formed by the lateral feed channels 90 (see FIG. 1B ) intersecting with the flutes 80 (see FIG. 1A ).
  • Exemplary lateral feed channel configurations 98 that may be formed in embodiments of the fastener 10 of the disclosure are shown in FIGS. 4A-4G , and are discussed in more detail below.
  • FIG. 2A is an illustration of a side perspective view of the exemplary embodiment of the fastener 10 , such as in the form of fastener 10 b , of the disclosure.
  • the shaft body 20 has a tapered outer profile 66 b , and not all of the flutes 80 have openings 96 formed by the lateral feed channels 90 intersecting with the flutes 80 .
  • the fastener 10 (see FIG. 2A ), such as in the form of fastener 10 b (see FIG. 2A ), comprises a conformal clearance fit fastener 12 (see FIG. 2A ) that is sleeveless.
  • FIG. 2B is an illustration of a cutaway side perspective view of the fastener 10 , such as in the form of fastener 10 b , of FIG. 2A .
  • FIG. 2C is an illustration of a cross-sectional view of the fastener 10 , such as in the form of fastener 10 b , of FIG. 2A , taken along lines 2 C- 2 C of FIG. 2A .
  • the fastener 10 such as in the form of fastener 10 b , comprises the elongated shaft 14 having the first end 16 , the second end 18 , and the shaft body 20 disposed between the first end 16 and the second end 18 .
  • the fastener 10 has the head portion 22 disposed at the first end 16 .
  • the head portion 22 preferably has the frusto-conical shape 24 .
  • the head portion 22 has the top end 26 , the bottom end 28 , and the central portion 30 with the outer surface 32 (see also FIG. 2A ) and the interior 34 .
  • FIG. 2D is an illustration of a top view of the fastener 10 , such as in the form of fastener 10 b , of FIG. 2A .
  • FIG. 2D shows the top end 26 of the head portion 22 having the top surface 36 , which is flat or substantially flat.
  • the top end 26 of the head portion 22 has the outer periphery 38 (see also FIG. 2A ) or perimeter and has the opening 40 .
  • the opening 40 is the central opening 40 a (see FIGS. 2A-2D ).
  • the fastener 10 such as in the form of fastener 10 b , has the threaded portion 42 disposed at the second end 18 of the elongated shaft 14 .
  • the threaded portion 42 has the top end 44 , the bottom end 46 , and the central portion 48 with the outer surface 50 comprised of the plurality of threads 52 .
  • the threaded portion 42 has an interior 54 which is preferably solid and has no openings or voids.
  • FIG. 2E is an illustration of a bottom view of the threaded portion 42 of the fastener 10 , such as in the form of fastener 10 b , of FIG. 2A .
  • FIG. 2E shows the bottom end 46 of the threaded portion 42 having the bottom surface 56 , which is flat or substantially flat.
  • the shaft body 20 of the elongated shaft 14 has the first end 58 integrally joined or connected to the top end 44 of the threaded portion 42 , has the second end 60 integrally joined or connected to the bottom end 28 of the head portion 22 , and has the central portion 62 disposed between the first end 58 and the second end 60 .
  • the shaft body 20 has the outer surface 64 with the outer profile 66 in the form of the tapered outer profile 66 b .
  • the central portion 62 of the shaft body 20 has the interior 68 .
  • the fastener 10 such as in the form of fastener 10 b , further comprises at least one inner feed channel 70 , such as in the form of inner central feed channel 70 a .
  • the inner feed channel 70 such as in the form of inner central feed channel 70 a , has the first end 72 and the second end 74 .
  • FIG. 2B the inner feed channel 70 , such as in the form of inner central feed channel 70 a , has the first end 72 and the second end 74 .
  • the inner feed channel 70 extends at the first end 72 from the opening 40 in the head portion 22 , through the interior 34 of the head portion 22 and through the interior 68 of the shaft body 20 , and terminates at the second end 74 at a location 76 proximal to or near the threaded portion 42 .
  • the inner feed channel 70 extends along the longitudinal central axis 78 of the elongated shaft 14 and preferably has the hollow interior 79 .
  • the fastener 10 such as in the form of fastener 10 b , further comprises the plurality of flutes 80 formed along and circumferentially spaced around the outer surface 64 of the shaft body 20 , and formed along and circumferentially spaced around the outer surface 32 of the head portion 22 .
  • each flute 80 has the first end 82 extending from the first location 84 proximal to the threaded portion 42 , along the outer surface 64 of the shaft body 20 , and radially outward along the outer surface 32 of the head portion 22 .
  • the flutes 80 see FIG.
  • each flute 80 (see FIG. 2A ) runs continuously along the outer surface 64 (see FIG. 2A ) of the shaft body 20 (see FIG. 2A ) and the outer surface 32 (see FIG. 2A ) of the head portion 22 (see FIG. 2A ).
  • each flute 80 may extend radially outward along the outer surface 32 of the head portion 22 and terminate at the second end 86 .
  • the second end 86 comprises the second location 86 a proximal to the outer periphery 38 of the head portion 22 .
  • each flute 80 may preferably be formed as a longitudinal groove 87 having a shallow, curved interior surface 88 .
  • the plurality of flutes 80 are preferably circumferentially spaced an equal distance d apart from each other. As further shown in FIG. 2E , the number of flutes 80 is eight (8). However, another suitable number of flutes 80 (see FIGS. 2A, 2E ) may also be formed on the fastener 10 (see FIG. 2A ).
  • the fastener 10 such as in the form of fastener 10 b , further comprises one or more lateral feed channels 90 formed laterally through the interior 68 of the shaft body 20 .
  • each lateral feed channel 90 connects the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to at least two opposing flutes 80 on the outer surface 64 of the shaft body 20 .
  • Each lateral feed channel 90 may preferably comprise lateral feed channel portions 91 (see FIG. 2C ), such as two lateral feed channel portions 91 (see FIG. 2C ).
  • the shaft body 20 has at least two sets 90 a , 90 b of the one or more lateral feed channels 90 .
  • one set 90 a of lateral feed channels 90 and the other set 90 b of lateral feed channels 90 are spaced apart from each other a suitable distance.
  • each set 90 a , 90 b of the one or more lateral feed channels 90 is spaced a different distance from the top end 26 of the head portion 22 .
  • set 90 a (see FIG. 2B ) of lateral feed channels 90 may be formed laterally through the interior 68 (see FIG. 2B ) of the shaft body 20 (see FIG.
  • the shaft body 20 may also have more than two sets of the lateral feed channels 90 or may have just one set of lateral feed channels 90 .
  • the lateral feed channels 90 of set 90 a and of set 90 b may each have the first end 94 a that opens into or connects with flute 80 a , and may each have the second end 94 b that opens into or connects with flute 80 b , which is opposite to flute 80 a , and preferably have the central interior 95 that intersects or connects with the inner feed channel 70 , such as in the form of inner central feed channel 70 a .
  • the number of lateral feed channels 90 (see FIG. 2B ) that may be formed in each set may be the same or may be different. As shown in FIG.
  • flutes 80 a , 80 b , 80 c each have openings 96 formed by the lateral feed channels 90 (see FIG. 2B ) intersecting with the flutes 80 a , 80 b , 80 c.
  • FIGS. 3A-3D another exemplary embodiment of the fastener 10 , such as in the form of fastener 10 c , is shown.
  • FIG. 3A is an illustration of a side perspective view of the exemplary embodiment of the fastener 10 , such as in the form of fastener 10 c , of the disclosure.
  • the fastener 10 in addition to the inner feed channel 70 , such as in the form of inner central feed channel 70 a , has the plurality of flutes 80 each having a second end 86 comprising a periphery opening 86 b at the outer periphery 38 of the head portion 22 .
  • the periphery openings 86 (see FIG. 3A ) and the plurality of flutes 80 (see FIG. 3A ) function as radial feed channels 89 (see FIGS. 3A, 3D ) in addition to the inner feed channel 70 (see FIG. 3B ), such as in the form of inner central feed channel 70 a (see FIG. 3B ).
  • the fastener 10 (see FIG. 3A ), such as in the form of fastener 10 c (see FIG. 3A ), comprises a conformal clearance fit fastener 12 (see FIG. 3A ) that is sleeveless.
  • FIG. 3B is an illustration of a cutaway side perspective view of the fastener 10 , such as in the form of fastener 10 c , of FIG. 3A .
  • FIG. 3C is an illustration of a top view of the fastener 10 , such as in the form of fastener 10 c , of FIG. 3A .
  • FIG. 3D is an illustration of a bottom view of the fastener 10 , such as in the form of fastener 10 c , of FIG. 3A .
  • the fastener 10 such as in the form of fastener 10 c , comprises the elongated shaft 14 having the first end 16 , the second end 18 , and the shaft body 20 disposed between the first end 16 and the second end 18 .
  • the fastener 10 has the head portion 22 , preferably with the frusto-conical shape 24 , disposed at the first end 16 .
  • the head portion 22 has the top end 26 , the bottom end 28 , and the central portion 30 with the outer surface 32 (see also FIG. 3A ) and the interior 34 .
  • FIG. 3C is an illustration of a top view of the fastener 10 , such as in the form of fastener 10 c , of FIG. 3A .
  • FIG. 3C shows the top end 26 of the head portion 22 having the top surface 36 , which is flat or substantially flat.
  • the top end 26 of the head portion 22 has the outer periphery 38 (see also FIG. 3A ), or perimeter, having the periphery openings 86 b .
  • the top end 26 (see FIGS. 3B-3C ) of the head portion 22 has the opening 40 (see FIGS. 3A-3C ), such as in the form of central opening 40 a (see FIGS. 3A-3C ).
  • the fastener 10 such as in the form of fastener 10 c , has the threaded portion 42 disposed at the second end 18 of the elongated shaft 14 .
  • the threaded portion 42 has the top end 44 , the bottom end 46 , and the central portion 48 with the outer surface 50 comprised of the plurality of threads 52 .
  • the threaded portion 42 has interior 54 , which is preferably solid and has no openings or voids.
  • FIG. 3D is an illustration of a bottom view of the fastener 10 , such as in the form of fastener 10 c , of FIG. 3A .
  • FIG. 3D shows the bottom end 46 of the threaded portion 42 having the bottom surface 56 , which is flat or substantially flat.
  • the shaft body 20 of the elongated shaft 14 has the first end 58 integrally joined or connected to the top end 44 of the threaded portion 42 , has the second end 60 integrally joined or connected to the bottom end 28 of the head portion 22 , and has the central portion 62 disposed between the first end 58 and the second end 60 .
  • the shaft body 20 has the outer surface 64 with the outer profile 66 in the form of the substantially straight outer profile 66 a .
  • the central portion 62 of the shaft body 20 has the interior 68 .
  • the fastener 10 further comprises at least one inner feed channel 70 , such as in the form of inner central feed channel 70 a , having the first end 72 and the second end 74 .
  • the inner feed channel 70 such as in the form of inner central feed channel 70 a , extends at the first end 72 from the opening 40 in the head portion 22 , through the interior 34 of the head portion 22 and through the interior 68 of the shaft body 20 , and terminates at the second end 74 at a location 76 proximal to or near the threaded portion 42 .
  • the inner feed channel 70 such as in the form of inner central feed channel 70 a , extends along the longitudinal central axis 78 of the elongated shaft 14 and preferably has the hollow interior 79 .
  • the fastener 10 such as in the form of fastener 10 c , further comprises the plurality of flutes 80 formed along and circumferentially spaced around the outer surface 64 of the shaft body 20 , and continuously formed along and circumferentially spaced around the outer surface 32 of the head portion 22 .
  • each flute 80 has the first end 82 extending from the first location 84 proximal to the threaded portion 42 , along the outer surface 64 of the shaft body 20 , and radially outward along the outer surface 32 of the head portion 22 .
  • the flutes 80 see FIG.
  • each flute 80 (see FIG. 3A ) runs continuously along the outer surface 64 (see FIG. 3A ) of the shaft body 20 (see FIG. 3A ) and the outer surface 32 (see FIG. 3A ) of the head portion 22 (see FIG. 3A ).
  • each flute 80 may extend radially outward along the outer surface 32 of the head portion 22 and terminate at the second end 86 .
  • the second end 86 comprises the periphery opening 86 b at the outer periphery 38 of the head portion 22 .
  • each flute 80 may preferably be formed as a longitudinal groove 87 having a shallow, curved interior surface 88 .
  • the plurality of flutes 80 are preferably circumferentially spaced an equal distance d apart from each other. As further shown in FIG. 3D , the number of flutes 80 is eight (8). However, another suitable number of flutes 80 (see FIGS. 3A, 3D ) may also be formed on the fastener 10 (see FIG. 3A ).
  • the fastener 10 further comprises one or more lateral feed channels 90 formed laterally through the interior 68 of the shaft body 20 .
  • each lateral feed channel 90 connects the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to at least two opposing flutes 80 on the outer surface 64 of the shaft body 20 .
  • Each lateral feed channel 90 may preferably comprise lateral feed channel portions 91 (see FIG. 3B ), such as two lateral feed channel portions 91 (see FIG. 3B ).
  • the shaft body 20 has at least two sets 90 a , 90 b of the one or more lateral feed channels 90 .
  • one set 90 a of lateral feed channels 90 and the other set 90 b of lateral feed channels 90 are preferably spaced apart from each other a suitable distance.
  • each set 90 a , 90 b (see FIG. 3B ) of the one or more lateral feed channels 90 (see FIG. 3B ) is spaced a different distance from the top end 26 (see FIG. 3B ) of the head portion 22 (see FIG. 3B ).
  • set 90 a (see FIG. 3B ) of lateral feed channels 90 see FIG.
  • the shaft body 20 may also have more than two sets of the lateral feed channels 90 or may have just one set of lateral feed channels 90 .
  • the lateral feed channel 90 of set 90 a and the lateral feed channel 90 of set 90 b preferably each have a first end 94 a that opens into or connects with flute 80 a , preferably each have a second end 94 b that opens into or connects with flute 80 b , which is opposite to flute 80 a , and preferably each have the central interior 95 that intersects or connects with the inner feed channel 70 , such as in the form of inner central feed channel 70 a .
  • the number of lateral feed channels 90 that may be formed in each set may be the same or may be different.
  • each flute 80 shows openings 96 formed by the lateral feed channels 90 (see FIG. 3B ) intersecting with the flutes 80 .
  • the number of flutes 80 (see FIGS. 1A, 2A, 3A ) formed on the fastener 10 (see FIGS. 1A, 2A, 3A ), or chosen in the manufacture of the fastener 10 (see FIGS. 1A, 2A, 3A ), may depend on such factors as the size of the fastener, the dimensions of the flute, the size of the corresponding fastener hole 11 (see FIG. 7A ) that the fastener is inserted into, the type of injection tool assembly 110 (see FIGS. 5A, 6, 7A ) used and the type of injection method used for injecting a conductive fluid 120 (see FIGS.
  • the fastener 10 (see FIGS. 1A, 2A, 3A ) has at least two (2) flutes 80 (see FIGS. 1A, 2A, 3A ), preferably opposed to each other, and more preferably, has more than two (2) flutes 80 .
  • the number of flutes 80 on the fastener 10 is eight (8).
  • another suitable number of flutes 80 may also be formed on the fastener 10 .
  • the number of lateral feed channels 90 (see FIGS. 1B, 2B, 3B ) formed in the fastener 10 (see FIGS. 1A, 2A, 3A ), or chosen in the manufacture of the fastener 10 (see FIGS. 1A, 2A, 3A ), may also depend on such factors as the size of the fastener, the dimensions of the lateral feed channel, the size of the corresponding fastener hole 11 (see FIG. 7A ) that the fastener is inserted into, the type of injection tool assembly 110 (see FIGS. 5A, 6, 7A ) used and the type of injection method used for injecting the conductive fluid 120 (see FIGS.
  • the purpose of the lateral feed channels 90 is to facilitate the flow of the conductive fluid 120 (see FIGS. 5A, 6, 7A ) in longer fasteners.
  • the lateral feed channels 90 may be designed to connect with all of the flutes 80 , or selected flutes 80 , at the various sets or levels depending on the length of the fastener.
  • the fastener 10 has one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B ), and one or more sets or levels of lateral feed channels 90 spaced apart from each other along the shaft body 20 (see FIGS. 1B, 2B, 3B ) of the fastener 10 (see FIGS. 1B, 2B, 3B ).
  • FIGS. 1C, 2B, 3B two (2) sets 90 a , 90 b or levels of lateral feed channels 90 are shown.
  • another suitable number of sets or levels of lateral feed channels 90 may be formed in the fastener 10 .
  • the fastener 10 is a securement item designed to secure two or more items or structures together, and is preferably in the form of a bolt, a screw, a pin, or another suitable like fastener.
  • the fastener 10 (see FIGS. 1A, 2A, 3A ) is preferably constructed of carbon steel, titanium alloy, stainless steel, or another suitable hard metal or metal alloy material.
  • the fastener 10 (see FIGS. 1A, 2A, 3A ) is of a one-piece, unitary, or monolithic configuration or construction.
  • the fastener 10 may also be made or formed of one or more separate pieces or structures, i.e., separate head portion, separate shaft body, and/or separate threaded portion.
  • FIGS. 4A-4G are illustrations of cross-sectional views of various lateral feed channel configurations 98 that may be used in embodiments of the fastener 10 (see FIGS. 1A, 2A, 3A ) of the disclosure.
  • FIG. 4A shows a cross-sectional view of a first lateral feed channel configuration 98 a in the shaft body 20 , having one lateral feed channel 90 that connects the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • FIG. 4A shows a cross-sectional view of a first lateral feed channel configuration 98 a in the shaft body 20 , having one lateral feed channel 90 that connects the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • FIG. 4B shows a cross-sectional view of a second lateral feed channel configuration 98 b in the shaft body 20 , having one lateral feed channel 90 that connects the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • the two opposing flutes 80 (see FIG. 4B ) connected in the second lateral feed channel configuration 98 b (see FIG. 4B ) are different flutes 80 (see FIG. 4B ) than the two opposing flutes 80 (see FIG. 4A ) connected in the first lateral feed channel configuration 98 a (see FIG. 4A ).
  • FIG. 4C shows a cross-sectional view of a third lateral feed channel cross-shaped configuration 98 c in the shaft body 20 , having two lateral feed channels 90 that each connect the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • FIG. 4D shows a cross-sectional view of a fourth lateral feed channel X-shaped configuration 98 d in the shaft body 20 , having two lateral feed channels 90 that each connect the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • the two sets of opposing flutes 80 see FIG.
  • FIG. 4E shows a cross-sectional view of a fifth lateral feed channel configuration 98 e in the shaft body 20 , having three lateral feed channels 90 that each connect the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • FIG. 4F shows a cross-sectional view of a sixth lateral feed channel configuration 98 f in the shaft body 20 , having three lateral feed channels 90 that each connect the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • the three sets of opposing flutes 80 (see FIG. 4F ) connected in the sixth lateral feed channel configuration 98 f (see FIG. 4F ) and the three sets of opposing flutes 80 (see FIG. 4E ) connected in the fifth lateral feed channel configuration 98 e (see FIG. 4E ) differ by one set of opposing flutes 80 .
  • FIG. 4G shows a cross-sectional view of a seventh lateral feed channel configuration 98 g in the shaft body 20 , having four lateral feed channels 90 that each connect the inner feed channel 70 , such as in the form of inner central feed channel 70 a , to two opposing flutes 80 on the shaft body 20 .
  • the various lateral feed channel configurations 98 may each be used in the first set 90 a (see FIGS. 1C, 2B, 3B ) and/or the second set 90 b (see FIGS. 1C, 2B, 3B ), or additional sets of lateral feed channels 90 formed in the shaft body 20 .
  • various combinations of the lateral feed channel configurations 98 see FIGS.
  • 4A-4G may be used in the first set 90 a (see FIGS. 1C, 2B, 3B ) and/or the second set 90 b (see FIGS. 1C, 2B, 3B ), or additional sets of lateral feed channels 90 formed in the shaft body 20 .
  • each of the plurality of flutes 80 (see FIGS. 1E, 2E, and 3D ) be intersected at least once by a lateral feed channel 90 , then a combination of the third lateral feed channel cross-shaped configuration 98 c (see FIG. 4C ) for the first set 90 a or level in the fastener 10 , and the fourth lateral feed channel X-shaped configuration 98 d (see FIG. 4D ) for the second set 90 b or level in the fastener 10 , would be an optional design to use.
  • other combinations of the lateral feed channel configurations 98 could be used.
  • a fastener system 100 (see FIG. 5A, 6 ) including one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6 ), as discussed in detail above, installed in a composite structure 102 (see FIGS. 5A, 6 ), such as a carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6 ) and filled with a conductive fluid 120 (see FIGS. 5A, 6, 7A ).
  • the fastener system 100 (see FIGS. 5A, 6 ) provides electrical contact and electrical conductivity between the one or more fasteners 10 (see FIGS.
  • FIGS. 5A, 6 may provide improved or enhanced electrical contact and improved or enhanced electrical conductivity.
  • CFRP carbon fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • a matrix material 104 such as a resin matrix 104 a (see FIGS. 5A, 6, 7A ) reinforced with a plurality of fibers 105 (see FIGS. 5A, 6, 7A ), such as carbon fibers 105 a (see FIGS. 5, 6, 7A ), or a combination of carbon fibers 105 a and other reinforcing fibers, such as glass fibers, aramid fibers, graphite fibers, aromatic polyamide fiber, fiberglass, aluminum fibers, or other suitable reinforcing fibers.
  • the matrix material 104 see FIGS.
  • thermoset polymer resins such as the resin matrix 104 a (see FIGS. 5A, 6, 7A ) of the CFRP preferably comprises a polymer resin comprising thermoset polymer resins or thermoplastic polymer resins.
  • thermoset polymer resins include epoxy resins, polyester resins, phenolic resins, vinyl ester resins, allyl resins, bismaleimide (BMI) resins, polyurethane (PUR) resins, cyanate ester resins, polyimide resins, or other suitable thermoset polymer resins or resin systems.
  • thermoplastic polymer resins that may be used include polyethylene (PE) resins, vinyl resins, polyproplyene (PP) resins, polyamide resins including nylon resins, polycarbonate resins, polyethylene terephthalate (PET) resins, polyetheretherketone polymer (PEEK) resins, polyetherketoneketone polymer (PEKK) resins, polyethersulfone (PES) resins, polysulfone (PSU) resins, polyphenylene sulfide (PPS) resins, polytetrafluoroethylene (PTFE) resins, or other suitable thermoplastic polymer resins or resin systems.
  • the composite structure 102 may also include one or more metallic structures 103 c (see FIG. 5A ), for example, made out of aluminum or another suitable metal material, and fastened or attached to the composite structure 102 .
  • FIG. 5A is an illustration of a cutaway side perspective view of an embodiment of the fastener system 100 , such as in the form of fastener system 100 a , of the disclosure.
  • FIG. 5B is an illustration of a side perspective view of the fastener system 100 , such as in the form of fastener system 100 a , of FIG. 5A .
  • FIG. 6 is an illustration of a cutaway side perspective view of another embodiment of the fastener system 100 , such as in the form of fastener system 100 b , of the disclosure.
  • the fastener system 100 comprises one or more fasteners 10 configured for installation in one or more corresponding fastener holes 11 formed in the composite structure 102 .
  • FIGS. 5A-5B and 6 show the fastener 10 inserted into the composite structure 102 , such as in the form of the carbon fiber reinforced plastic (GRP) structure 102 a.
  • GRP carbon fiber reinforced plastic
  • the composite structure 102 comprises a first part 103 a and a second part 103 b .
  • the first part 103 a may be constructed of composite material, including the matrix material 104 , such as the resin matrix 104 a , and the plurality of fibers 105 , such as carbon fibers 105 a .
  • the matrix material 104 such as the resin matrix 104 a
  • the plurality of fibers 105 such as the carbon fibers 105 a
  • the plurality of fibers 105 are only schematically represented in FIGS. 5A, 6, and 7A -B.
  • the plurality of fibers 105 see FIGS.
  • the second part 103 b may comprise a metallic structure 103 c (see FIGS. 5A, 6 ) made of a metal material, such as aluminum, or another suitable metal material, and fastened or attached to the first part 103 a (see FIG.
  • the first part 103 a may comprise a metallic structure made of a metal material
  • the second part 103 b may comprise a composite material.
  • the first part 103 a (see FIGS. 5A, 6 ) has an interior opening 106 a (see FIGS. 5A, 6 ) through which the fastener 10 (see FIGS. 5A, 6 ) is inserted
  • the second part 103 b (see FIGS. 5A, 6 ) has an interior opening 106 b (see FIGS. 5A, 6 ) through which the fastener 10 (see FIGS. 5A, 6 ) is also inserted.
  • the fastener 10 (see FIGS. 5A, 6 ) attaches or joins the first part 103 a (see FIGS. 5A-5B, 6 ) to the second part 103 b (see FIGS. 5A-5B, 6 ) to form a composite joint 107 (see FIGS. 5A-5B, 6 ).
  • Each fastener 10 (see FIGS. 5A, 6 ) of the fastener system 100 (see FIGS. 5A, 6 ) comprises, as discussed above, an elongated shaft 14 (see FIGS. 1A, 2A, 3A ) having a first end 16 (see FIGS. 1A, 2A, 3A ) with the head portion 22 (see FIGS. 1A, 2A, 3A, 5A, 6 ), a second end 18 (see FIGS. 1A, 2A, 3A ) with the threaded portion 42 (see FIGS. 1A, 2A, 3A, 5A, 6 ), and the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6 ) disposed therebetween.
  • Each fastener 10 further comprises, as discussed above, at least one inner feed channel 70 , such as in the form of inner central feed channel 70 a (see FIGS. 5A, 6 ), extending from an opening 40 (see FIGS. 5A, 6 ) in the head portion 22 (see FIGS. 5A, 6 ), through the head portion 22 (see FIGS. 5A, 6 ) and the shaft body 20 (see FIGS. 5A, 6 ), along a longitudinal central axis 78 (see FIGS. 1 A, 2 A, 3 A) of the elongated shaft 14 (see FIGS. 1A, 2A, 3A ), and terminating proximal to the threaded portion 42 (see FIGS. 5A, 6 ).
  • at least one inner feed channel 70 such as in the form of inner central feed channel 70 a (see FIGS. 5A, 6 ), extending from an opening 40 (see FIGS. 5A, 6 ) in the head portion 22 (see FIGS. 5A, 6 ), through the head portion 22 (
  • Each fastener 10 further comprises, as discussed above, a plurality of flutes 80 (see FIGS. 1A, 2A, 3A, 5A, 6 ) formed along and circumferentially spaced around the outer surface 64 (see FIGS. 1A, 2A, 3A ) of the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6 ), and continuously formed along and circumferentially spaced around the outer surface 32 (see FIGS. 1A, 2A, 3A ) of the head portion 22 (see FIGS. 1A, 2A, 3A, 5A, 6 ).
  • Each flute 80 see FIGS.
  • FIGS. 1A, 2A, 3A, 5A, 6 extends from a first location 84 (see FIGS. 1A, 2A, 3A ) proximal to the threaded portion 42 (see FIGS. 1A, 2A, 3A, 5A, 6 ), along the outer surface 64 (see FIGS. 1A, 2A, 3A ) of the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6 ), and radially outward along the outer surface 32 (see FIGS. 1A, 2A, 3A ) of the head portion 22 (see FIGS. 1A, 2A, 3A, 5A, 6 ).
  • Each fastener 10 see FIGS.
  • 1A, 2A, 3A, 5A, 6 further comprises, as discussed above, one or more lateral feed channels 90 (see FIGS. 1A, 2A, 3A, 5A, 6 ), or cross channels, formed laterally through the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6 ).
  • Each lateral feed channel 90 (see FIGS. 1A, 2A, 3A, 5A, 6 ) connects the inner feed channel 70 (see FIGS. 1B, 1C, 2B, 2C, 3B, 5A, 6, 7A-7B ), such as in the form of inner central feed channel 70 a (see FIGS.
  • the fastener 10 may be tightened into place within the composite structure 102 with a threaded collar 108 threaded around the threaded portion 42 of the fastener 10 and adjacent the composite structure 102 , such as the second part 103 b of the composite structure 102 .
  • the threaded collar 108 has a first end 109 a that is disposed against the second part 103 b of the composite structure 102 , and has a second end 109 b.
  • the fastener system 100 further comprises an injection tool assembly 110 configured for coupling to each of the one or more fasteners 10 installed in the one or more corresponding fastener holes 11 .
  • the injection tool assembly 110 is coupled to the top surface 36 of the head portion 22 (see FIG. 5A ) of the fastener 10 and is also coupled to a top surface 112 of the first part 103 a of the composite structure 102 .
  • the injection tool assembly 110 (see FIGS. 5A-5B, 6 ) comprises one or more attachment elements 114 (see FIGS. 5A-5B, 6 ), such as in the form of suction cups 114 a (see FIGS.
  • the injection tool assembly 110 comprises two attachment elements 114 , such as in the form of two suction cups 114 a .
  • Each attachment element 114 may be coupled to a vacuum connection portion 116 (see FIGS. 5A-5B, 6 ) for providing air for vacuum suction by the attachment elements 114 (see FIGS. 5A-5B, 6 ), such as in the form of suction cups 114 a (see FIGS. 5A-5B, 6 ).
  • the fastener system 100 further comprises the conductive fluid 120 (see FIGS. 5A, 6, 7A ) injected via the injection tool assembly 110 (see FIGS. 5A, 6 ) into each fastener 10 (see FIGS. 5A, 6 ) installed in the composite structure 102 (see FIGS. 5A, 6 ).
  • the injection tool assembly 110 comprises a vacuum and injection control handle 118 coupled to a vessel 122 that preferably contains the conductive fluid 120 (see FIGS. 5A, 6, 7A ) for injection into the inner feed channel 70 (see FIGS. 5A, 6 ), such as in the form of inner central feed channel 70 a (see FIGS. 5A, 6 ), of the fastener 10 (see FIGS. 5A , 6 ).
  • the vessel 122 (see FIGS. 5A, 6 ) is configured for coupling to the fastener 10 (see FIGS. 5A, 6 ).
  • the conductive fluid 120 (see FIGS. 5A, 6, 7A ) is preferably in the form of a fluid, such as a liquid, having a low viscosity, i.e., a thin liquid that moves quickly with low or little resistance.
  • the low viscosity of the conductive fluid 120 facilitates flow of the conductive fluid 120 (see FIGS. 5A, 6, 7A ) through the inner feed channel 70 (see FIGS. 1B, 2B, 3B ), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B ), and through the one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B ) of the fastener 10 (see FIGS. 1B, 2B, 3B ).
  • the conductive fluid 120 preferably comprises a resin material 121 (see FIG. 7A ), such as a binding resin material or resin system, mixed with, filled with, or containing a conductive material 123 (see FIG. 7A ), such as a conductive additive or filler, that is electrically conductive.
  • the resin material 121 may comprise a polymer resin comprising thermoset polymer resins or thermoplastic polymer resins.
  • thermoset polymer resins that may be used include epoxy resins, polyester resins, phenolic resins, vinyl ester resins, allyl resins, bismaleimide (BMI) resins, polyurethane (PUR) resins, cyanate ester resins, polyimide resins, or other suitable thermoset polymer resins or resin systems.
  • BMI bismaleimide
  • PUR polyurethane
  • thermoplastic polymer resins that may be used include polyethylene (PE) resins, vinyl resins, polyproplyene (PP) resins, polyamide resins including nylon resins, polycarbonate resins, polyethylene terephthalate (PET) resins, polyetheretherketone polymer (PEEK) resins, polyetherketoneketone polymer (PEKK) resins, polyethersulfone (PES) resins, polysulfone (PSU) resins, polyphenylene sulfide (PPS) resins, polytetrafluoroethylene (PTFE) resins, or other suitable thermoplastic polymer resins or resin systems.
  • Exemplary resin materials 121 see FIG. 7A
  • binding resin materials or resin systems, for the conductive fluid 120 (see FIGS. 5A, 6, 7A ) comprise epoxy resins, bismaleimide (BMI) resins, phenolic resins, and cyanate ester resins.
  • the conductive material 123 may comprise, for example, chopped carbon fibers; carbon nanotubes; carbon nanofibers; carbon black; metallic fibers; metallic particles including silver particles, nickel particles, copper particles, and aluminum particles; graphite; graphene; graphene nanofillers; or other suitable conductive materials. Additionally, the conductive material 123 (see FIG. 7A ) may comprise conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS), polyaniline, polypyrrole, polyacetylene, polythiophene, or other suitable conductive polymers.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
  • conductive polymer also referred to as “intrinsically conducting polymer”, means an organic polymer capable of conducting electricity.
  • Exemplary conductive materials 123 (see FIG. 7A ) for the conductive fluid 120 (see FIGS. 5A, 6, 7A ) comprise carbon nanotubes, chopped carbon fibers, silver particles, and the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS).
  • Exemplary conductive fluids 120 comprise an epoxy resin doped with silver particles; a bismaleimide (BMI) resin doped with silver particles; a phenolic resin doped with silver particles; a cyanate ester resin doped with silver particles; an epoxy resin doped with carbon nanotubes; a bismaleimide (BMI) resin doped with carbon nanotubes; a phenolic resin doped with carbon nanotubes; a cyanate ester resin doped with carbon nanotubes; an epoxy resin with chopped carbon fibers; a bismaleimide (BMI) resin with chopped carbon fibers; a phenolic resin with chopped carbon fibers; a cyanate ester resin with chopped carbon fibers; and a resin with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS).
  • BMI bismaleimide
  • PDOT poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
  • doped means mixed with, filled with, or containing, i.e., the resin is mixed with, filled with, or contains conductive material or additives, such as silver particles, carbon nanotubes, or chopped carbon fibers, to provide conductivity, such as electrical conductivity.
  • the resin material 121 (see FIG. 7A ), or resin system, of the conductive fluid 120 (see FIGS. 5A, 6, 7A ) has similar chemical properties, structural properties, and expansion characteristics as the matrix material 104 (see FIGS. 5A, 6, 7A ), such as the resin matrix 104 a (see FIGS. 5A, 6, 7A ) of the composite structure 102 (see FIGS. 5A, 6 ), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6 ).
  • CFRP carbon fiber reinforced plastic
  • the conductive fluid 120 has a conductivity, such as an electrical conductivity, of approximately 1 ⁇ 10 4 S/m (siemens per meter) or greater.
  • conductivity and “electrical conductivity” mean the conductive fluid's or conductive material's ability to conduct an electric current.
  • the conductivity, such as the electrical conductivity, of the conductive fluid 120 approaches the conductivity, such as the electrical conductivity, of the composite material of the composite structure 102 (see FIGS. 5A, 6, 7A ), along the direction of the carbon fibers 105 a (see FIG. 7A ) of the composite material comprising the composite structure 102 (see FIG. 7A ).
  • the conductive fluid 120 is selected so that a coefficient of thermal expansion (CTE) of the conductive fluid 120 (see FIGS. 5A, 6, 7A ) substantially matches or matches a coefficient of thermal expansion (CTE) of the composite structure 102 (see FIGS. 5A, 6, 7A ), such as the CTE of the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6, 7A ), in contact with the conductive fluid 120 (see FIGS. 5A, 6, 7A ).
  • CTE coefficient of thermal expansion
  • CFRP carbon fiber reinforced plastic
  • the “coefficient of thermal expansion (CTE)” means a change in length or volume (e.g., linear thermal expansion in inches) of a material for a unit change in temperature (e.g., per degree Fahrenheit or Celsius), and is used to determine the rate at which a material expands as a function of temperature, and may be used to determine if thermal stress issues may occur.
  • CTE coefficient of thermal expansion
  • Polymeric plastics tend to expand and contract anywhere from six (6) to nine (9) times more than metals, and differences in CTE between adjacent materials may lead to internal stresses and stress concentrations in the polymer, which may cause premature micro-cracking to occur.
  • the conductive fluid 120 see FIGS.
  • 5A, 6, 7A is preferably selected so that the CTE of the conductive fluid 120 (see FIGS. 5A, 6, 7A ) substantially matches or matches the CTE of the composite structure 102 (see FIGS. 5A, 6, 7A ), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6, 7A ), so that internal stress is not generated in the typical ground to altitude temperature variations that are typically experienced in aircraft 200 a (see FIG. 9 ) and that could lead to micro-cracks in fastened composite joints.
  • CFRP carbon fiber reinforced plastic
  • the injection tool assembly 110 further comprises a pressure injector 126 coupled to the vessel 122 and configured to couple to the opening 40 in the head portion 22 of the fastener 10 .
  • the pressure injector 126 (see FIGS. 5A, 6 ) is preferably configured to inject the conductive fluid 120 (see FIGS. 5A, 6 ), under pressure, into the fastener 10 (see FIGS. 5A, 6 ).
  • the vessel 122 is coupled to the pressure injector 126 , which is coupled to a pressurized conductive fluid connection 124 to provide pressure and power for injection of the conductive fluid 120 into the fastener 10 .
  • the pressure injector 126 is coupled to a pressurized conductive fluid connection 124 to provide pressure and power for injection of the conductive fluid 120 into the fastener 10 .
  • the pressure injector 126 preferably comprises a hollow injection tube 128 having a first end 130 a with a first end opening 132 a configured for injection of the conductive fluid 120 into the hollow injection tube 128 , and having a second end 130 b with a second end opening 132 b configured for alignment with and coupling to the opening 40 in the head portion 22 of the fastener 10 and configured for injection of the conductive fluid 120 , under pressure, into the opening 40 of the fastener 10 .
  • the injection tool assembly 110 injects or pumps the conductive fluid 120 into the inner feed channel 70 , such as in the form of inner central feed channel 70 a , of the fastener 10 .
  • the injection tool assembly 110 injects or pumps the conductive fluid 120 into both the inner feed channel 70 , such as in the form of inner central feed channel 70 a , and the radial feed channels 89 formed by the periphery openings 86 b (see FIG. 3A ) at the outer periphery 38 (see FIG. 3A ) of the head portion 22 and the flutes 80 of the fastener 10 .
  • the pressure injector 126 may have one or more seal elements 134 , such as in the form of O-ring pressure seals 134 a , attached at an injection end portion 136 of the pressure injector 126 .
  • the seal elements 134 (see FIGS. 5A, 6 ), such as in the form of O-ring pressure seals 134 a (see FIGS. 5A, 6 ), preferably pressure seal the injection end portion 136 (see FIGS. 5A, 6 ) of the pressure injector 126 (see FIGS. 5A, 6 ) against the top surface 36 (see FIGS. 5A, 6 ) of the head portion 22 (see FIGS. 5A, 6 ) of the fastener 10 (see FIGS. 5A, 6 ).
  • the injection end portion 136 comprises a small diameter injection end portion 136 a configured to cover the opening 40 (see FIG. 5A ) to the inner feed channel 70 (see FIG. 5A ), such as in the form of inner central feed channel 70 a (see FIG. 5A ), of the fastener 10 (see FIG. 5A ).
  • the small diameter injection end portion 136 a (see FIGS. 5A-5B ) preferably has a diameter that is less than, or smaller than, a diameter of the top surface 36 (see FIGS. 5A-5B ) of the head portion 22 (see FIG. 5A ) of the fastener 10 (see FIG. 5A ).
  • the small diameter injection end portion 136 a (see FIGS. 5A-5B ) preferably has an outer periphery 138 a that is less than or smaller than the outer periphery 38 (see FIGS. 5A-5B ) of the top surface 36 (see FIGS. 5A-5B ) of the head portion 22 (see FIG. 5A ).
  • the small diameter injection end portion 136 a of the pressure injector 126 of the injection tool assembly 110 covers only the opening 40 and a small portion surrounding the opening 40 on the top surface 36 (see FIGS. 3C, 5A ) of the head portion 22 of the fastener 10 .
  • the small diameter injection end portion 136 a and does not cover the entire area of the top surface 36 (see FIGS. 3C, 5A ) of the fastener 10 .
  • the injection end portion 136 comprises a large diameter injection end portion 136 b configured to cover the opening 40 to the inner feed channel 70 , such as in the form of inner central feed channel 70 a , and configured to cover the radial feed channels 89 comprising the periphery openings 86 b (see FIG. 3A ) to the flutes 80 (see FIGS. 3A, 6 ).
  • the large diameter injection end portion 136 b (see FIG. 6 ) preferably has a diameter that is larger, or greater than, a diameter of the top surface 36 (see FIGS. 3C, 6 ) of the head portion 22 (see FIG. 6 ) of the fastener 10 (see FIG. 6 ).
  • the large diameter injection end portion 136 b (see FIG. 6 ) preferably has an outer periphery 138 b that is greater than or larger than the outer periphery 38 (see FIGS. 3C, 5B ) of the top surface 36 (see FIGS. 3C, 5B, 6 ) of the head portion 22 (see FIG. 6 ). As shown in FIG. 6 , the large diameter injection end portion 136 b of the pressure injector 126 of the injection tool assembly 110 covers the entire area of the top surface 36 (see also FIGS. 3C, 5B ) of the head portion 22 of the fastener 10 .
  • FIG. 7A is a schematic diagram of a partial sectional view of the fastener 10 to further illustrate the fastener system 100 , such as the fastener system 100 a , of FIG. 5A of the disclosure.
  • FIG. 7A shows the fastener 10 installed in a composite structure 102 , such as a carbon fiber reinforced plastic (CHI)) structure 102 a , having a corresponding fastener hole 11 with a rough surface, and shows the conductive fluid 120 injected into the fastener 10 to fill the area 144 between the fastener 10 and inner surface 142 of the corresponding fastener hole 11 of the composite structure 102 , to provide sufficient electrical conductivity across this fastener-to-composite structure interface.
  • CHI carbon fiber reinforced plastic
  • the corresponding fastener hole 11 (see FIG. 7A ), such as in the form of a discrete through-hole, is preferably formed, such as by drilling or another suitable forming process, into the composite structure 102 (see FIG. 7A ) with a known forming device, such as a drill or other suitable hole forming device.
  • a known forming device such as a drill or other suitable hole forming device.
  • FIG. 7A engages some of the total of the plurality of fibers 105 , such as the carbon fibers 105 a , which are positioned throughout the composite structure 102 (see FIG. 7A ), and may produce exposed tips 105 b (see FIG. 7A ) of the carbon fibers 105 a (see FIG. 7A ) at an inner surface 142 (see FIG. 7A ), which may be rough, of the corresponding fastener hole 11 (see FIG. 7A ) of the composite structure 102 (see FIG. 7A ).
  • FIG. 7A some of the exposed tips 105 b (see FIG. 7A ) of the carbon fibers 105 a (see FIG. 7A ) are schematically shown positioned at and along the inner surface 142 (see FIG. 7A ) of the corresponding fastener hole 11 (see FIG. 7A ).
  • the corresponding fastener hole 11 Before the fastener 10 (see FIG. 7A ) is installed in the corresponding fastener hole 11 (see FIG. 7A ), which has been formed, the corresponding fastener hole 11 (see FIG. 7A ) may be cleaned or prepared, if needed or desired, with a suitable cleaning or preparation device, cleaning or preparation agent, and/or cleaning or preparation method known in the art.
  • the fastener 10 (see FIG. 7A ) is inserted or installed into the corresponding fastener hole 11 (see FIG. 7A ).
  • the fastener 10 (see FIG. 7A ) is preferably torqued or turned to fit in place in the corresponding fastener hole 11 (see FIG. 7A ).
  • a threaded collar 108 may preferably be coupled to the threaded portion 42 of the fastener 10 to help hold the fastener 10 in place within the corresponding fastener hole 11 in the composite structure 102 .
  • the threaded collar 108 has a first end 109 a adjacent the lower end of the composite structure 102 and has a second end 109 b.
  • the conductive fluid 120 is preferably injected or deposited into the fastener 10 (see FIG. 7A ) with the injection tool assembly 110 (see FIG. 7A ).
  • the fastener system 100 such as in the form of fastener system 100 a , comprises the injection tool assembly 110 having a pressure injector 126 coupled to a vessel 122 containing the conductive fluid 120 .
  • the conductive fluid 120 comprises a resin material 121 (see FIG. 7A ) mixed with, containing, or filled with a conductive material 123 (see FIG. 7A ) that is electrically conductive.
  • the injection tool assembly 110 may be provided with pressure and power by the pressurized conductive fluid connection 124 , as shown in FIG. 5A , or another suitable power and pressure source or device.
  • the pressure injector 126 (see FIG. 7A ) and the vessel 122 (see FIG. 7A ) may comprise similar components and a similar construction to the pressure injector 126 (see FIG. 5A ) and the vessel 122 (see FIG. 5A ) shown in FIG. 5A , or may comprise other suitable known pressure injector and vessel components used in known fluid pressure injection processes.
  • FIG. 7A shows arrows indicating one or more flow paths 140 of the conductive fluid 120 into the fastener 10 .
  • the flow path 140 (see FIG. 7A ) of the conductive fluid 120 (see FIG. 7A ) into the fastener 10 (see FIG. 7A ) is first started by injection or insertion of the conductive fluid 120 (see FIG. 7A ) through the opening 40 (see FIG. 7A ) of the head portion 22 (see FIG. 7A ) at the top of the fastener 10 (see FIG. 7A ), and proceeds to flow down into and through the inner feed channel 70 (see FIG. 7A ), such as in the form of inner central feed channel 70 a (see FIG. 7A ).
  • FIG. 7A shows arrows indicating one or more flow paths 140 of the conductive fluid 120 into the fastener 10 . 7A .
  • the flow paths 140 of the conductive fluid 120 then either continue down the inner feed channel 70 , such as in the form of inner central feed channel 70 a , or diverge to the right and left sides through the lateral feed channels 90 , and out to the opposing flutes 80 on the outer surface 64 of the shaft body 20 and extending along the outer surface 32 of the head portion 22 .
  • the conductive fluid 120 is transported and deposited via the at least one inner feed channel 70 , such as in the form of inner central feed channel 70 a , the one or more lateral feed channels 90 , and the plurality of flutes 80 of the fastener 10 , to one or more areas 144 , or gaps, between the outer surface 64 of the fastener 10 and the inner surface 142 of the corresponding fastener hole 11 of the composite structure 102 .
  • the conductive fluid 120 flows to and is deposited in the areas 144 , or gaps, the conductive fluid 120 (see FIG.
  • FIG. 7A conforms to the shape of the areas 144 , or gaps, and functions as a conforming conductive fluid 120 a (see FIG. 7A ). As shown in FIG. 7A , when the conductive fluid 120 is injected into the fastener 10 and the areas 144 , the fastener 10 has a conformal clearance fit 146 within the composite structure 102 .
  • the conductive fluid 120 (see FIGS. 5A, 6, 7A ) preferably flows around the exposed tips 105 b (see FIG. 7A ) of the carbon fibers 105 a (see FIG. 7A ) of the composite material in the corresponding fastener hole 11 (see FIG. 7A ) of the composite structure 102 (see FIG. 7A ), to provide sufficient electrical connection with the composite structure 102 (see FIG. 7A ) without crushing, breaking, or damaging the exposed tips 105 b (see FIG. 7A ) of the carbon fibers 105 a (see FIG. 7A ).
  • the fastener 10 (see FIG. 7A ) with the injected conductive fluid 120 (see FIG. 7A ) is preferably cured.
  • the curing may be performed using a known curing process, such as an autoclave curing process, a vacuum bag curing process, a combination autoclave and vacuum bagging curing process, a compression mold curing process, a resin transfer molding process, a room temperature curing process, or another suitable curing process.
  • the curing may take place at an elevated, effective temperature or effective heat and/or effective pressure for an effective period of time, as required per material specifications to effectively cure a chosen conductive fluid 120 (see FIGS. 5A, 6, 7A ).
  • the conductive fluid 120 see FIGS. 5A, 6, 7A
  • hardens, where deposited, in and around the fastener 10 see FIGS. 5A, 6, 7A ).
  • curing temperature or heat and/or pressure needed depends on the type of conductive fluid 120 (see FIG. 7A ) chosen to be injected into the fastener 10 (see FIG. 7A ), and may thus vary.
  • curing means“curing” means undergoing a full or partial hardening process, with or without heat, and includes precuring or precured resins.
  • the fastener 10 (see FIGS. 1A, 2A, 3A ) comprises a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A ), that when used with the conductive fluid 120 (see FIGS. 5A, 6, 7A ), provides electrical conductivity and good electrical contact with composite joints 107 (see FIGS. 5A, 6 ) of the composite structure 102 (see FIGS. 5A, 6, 7A ), such as aircraft composite structures 102 b (see FIG. 9 ) of the aircraft 200 a (see FIG. 9 ).
  • the conductive fluid 120 (see FIG. 7A ) preferably provides electrical contact, and may provide improved or enhanced electrical contact between carbon fibers 105 a (see FIG.
  • FIG. 7B is a schematic diagram of a partial sectional view of the fastener system 100 , such as in the form of fastener system 100 a , of FIG. 7A .
  • FIG. 7B shows the fastener 10 installed in the composite structure 102 , such as the carbon fiber reinforced plastic (CFRP) structure 102 a , after injection of the conductive fluid 120 into the fastener 10 and into the areas 144 , and after cure.
  • FIG. 7B shows the threaded portion 42 of the fastener 10 with the attached threaded collar 108 having the first end 109 a adjacent the lower end of the composite structure 102 and having the second end 109 b.
  • CFRP carbon fiber reinforced plastic
  • the conductive fluid 120 comprises a cured conforming conductive fluid 120 b filling the areas 144 , or gaps, between the outer surface 64 of the shaft body 20 and the inner surface 142 of the corresponding fastener hole 11 , and between the outer surface 32 of the head portion 22 and the inner surface 142 of the corresponding fastener hole 11 , and filling the inner feed channel 70 , such as in the form of inner central feed channel 70 a , the lateral feed channels 90 , and the plurality of flutes 80 .
  • the fastener 10 after conductive fluid 120 injection and cure, the fastener 10 preferably has or approaches an effective interference fit 148 within the composite structure 102 .
  • the opening 40 (see FIG.
  • FIG. 7B of the fastener 10 (see FIG. 7B ) may be plugged, sealed, or closed with a known plug element (not shown) or other suitable sealing element or device after injection of the conductive fluid 120 (see FIG. 7B ), and either prior to, or after, cure.
  • the net electrical effect of the fastener system 100 is the equivalent of a conformal clearance fit 146 (see FIG. 7A ) that preferably meets or exceeds an effective interference fit 148 (see FIG. 7B ) of an interference fit fastener at a reduced cost.
  • the one or more fasteners 10 each comprise a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A ) that is sleeveless, and that when used with the conductive fluid 120 (see FIGS. 5A, 6, 7A ), provides or approaches an effective interference fit 148 (see FIG. 7B ) with equal or greater electrical conductivity.
  • the conductive fluid 120 (see FIG. 7A ) that is pumped or injected into the areas 144 (see FIG. 7A ), or gaps, creates the conformal clearance fit 146 (see FIG. 7A ) that provides or approaches the effective interference fit 148 (see FIG. 7B ), without crushing, breaking, or damaging the exposed tips 105 b (see FIG. 7 A) of the carbon fibers 105 a (see FIG. 7A ) in the corresponding fastener hole 11 (see FIG. 7A ) of the composite structure 102 (see FIG. 7A ).
  • FIG. 8 in another embodiment there is provided a method 150 for providing to a composite structure 102 (see FIGS. 5A, 6, 7A-7B, 9 ) of an aircraft 200 a (see FIG. 9 ) improved electrical conductivity and dissipation of current energy 218 (see FIG. 9 ) resulting from lightning strikes 220 (see FIG. 9 ) to the aircraft 200 a (see FIG. 9 ).
  • FIG. 8 is a flow diagram showing an exemplary embodiment of the method 150 of the disclosure.
  • the method 150 comprises step 152 of installing one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6, 7A-7B ) into one or more corresponding fastener holes 11 (see FIGS. 5A, 6, 7A ) formed in the composite structure 102 (see FIGS. 5A, 6, 7A, 9 ).
  • each fastener 10 comprises, as discussed above, an elongated shaft 14 (see FIGS. 1A, 2A, 3A ) having a first end 16 (see FIGS. 1A, 2A, 3A ) with a head portion 22 (see FIGS. 1A, 2A, 3A ), a second end 18 (see FIGS. 1A, 2A, 3A ) with a threaded portion 42 (see FIGS. 1A, 2A, 3A ), and a shaft body 20 (see FIGS. 1A, 2A, 3A ) disposed therebetween.
  • the step 152 (see FIG. 8 ) of installing the one or more fasteners 10 may comprise installing the one or more fasteners 10 (see FIGS. 1A, 3A ), each with the shaft body 20 (see FIGS. 1A, 3A ) having a substantially straight outer profile 66 a (see FIGS. 1A, 3A ).
  • the step 152 (see FIG. 8 ) of installing the one or more fasteners 10 may comprise installing the one or more fasteners 10 (see FIG. 2A ), each with the shaft body 20 (see FIG. 2B ) having a tapered outer profile 66 b (see FIG. 2B ).
  • Each fastener 10 further comprises, as discussed above, at least one inner feed channel 70 (see FIG. 1B, 2B, 3B , such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B ), having a first end 72 (see FIGS. 1B, 2B, 3B ) and a second end 74 (see FIGS. 1B, 2B, 3B ).
  • the inner feed channel 70 (see FIGS. 1B, 2B, 3B ), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B ), extends at the first end 72 (see FIGS.
  • Each fastener 10 further comprises, as discussed above, a plurality of flutes 80 (see FIGS. 1A, 2A, 3A ) formed along and circumferentially spaced around the outer surface 64 (see FIGS. 1A, 2A, 3A ) of the shaft body 20 (see FIGS. 1A, 2A, 3A ) and formed along and circumferentially spaced around the outer surface 32 (see FIGS. 1A, 2A, 3A ) of the head portion 22 (see FIGS. 1A, 2A, 3A ). As further shown in FIGS.
  • each flute 80 has the first end 82 extending from a first location 84 proximal to the threaded portion 42 , along the outer surface 64 of the shaft body 20 , and radially outward along the outer surface 32 of the head portion 22 .
  • Each fastener 10 further comprises, as discussed above, one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B ), or cross channels, formed laterally through the shaft body 20 (see FIGS. 1B, 2B, 3B ).
  • Each lateral feed channel 90 (see FIGS. 1B, 2B, 3B ) connects the inner feed channel 70 (see FIGS. 1B, 2B, 3B ), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B ), to at least two opposing flutes 80 , such as flutes 80 a , 80 b (see FIGS. 1B, 2B, 3B ), on the outer surface 64 (see FIGS. 1B, 2B, 3B ) of the shaft body 20 (see FIGS. 1B, 2B, 3B ).
  • the method 150 further comprises step 154 of torquing the one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6, 7A ) in place in the one or more corresponding fastener holes 11 (see FIGS. 5A, 6, 7A ).
  • a threaded collar 108 may preferably be coupled to the threaded portion 42 (see FIG. 7A ) of the fastener 10 (see FIG. 7A ) to help hold the fastener 10 (see FIG. 7A ) in place within the corresponding fastener hole 11 (see FIG. 7A ) in the composite structure 102 (see FIG. 7A ).
  • the method 150 further comprises step 156 of injecting, under pressure, a conductive fluid 120 (see FIGS. 5A, 6A, 7A ) into the opening 40 (see FIG. 7A ) in the head portion 22 (see FIG. 7A ) of the fastener 10 (see FIG. 7A ), and through the at least one inner feed channel 70 (see FIG. 7A ), such as in the form of inner central feed channel 70 a (see FIG. 7A ), and through the one or more lateral feed channels 90 (see FIG. 7A ) out to the plurality of flutes 80 (see FIG. 7A ).
  • the step 156 (see FIG. 8 ) of injecting, under pressure, the conductive fluid 120 preferably comprises using an injection tool assembly 110 (see FIGS. 5A, 6 ) to inject the conductive fluid 120 (see FIGS. 5A, 6 ) into the fastener 10 (see FIGS. 5A, 6 ).
  • the injection tool assembly 110 comprises a vessel 122 containing the conductive fluid 120 .
  • the vessel 122 (see FIGS. 5A, 6 ) is preferably configured for coupling to the fastener 10 (see FIGS. 1A, 2A, 3A, 5A, 6 ). As shown in FIGS.
  • the injection tool assembly 110 further comprises a pressure injector 126 coupled to the vessel 122 , and the pressure injector 126 is preferably configured to couple to the opening 40 in the head portion 22 of the fastener 10 .
  • the vessel 122 (see FIG. 7A ) may also be configured to couple to the opening 40 (see FIG. 7A ).
  • the pressure injector 126 (see FIGS. 5A, 6, 7A ) is preferably configured to inject the conductive fluid 120 (see FIGS. 5A, 6, 7A ), under pressure, into the fastener 10 (see FIGS. 5A, 6, 7A ).
  • the step 156 (see FIG. 8 ) of injecting, under pressure, the conductive fluid 120 further comprises injecting the conductive fluid 120 (see FIGS. 5A, 6, 7A ) comprising a resin material 121 (see FIG. 7A ) mixed with a conductive material 123 (see FIG. 7A ) that is electrically conductive.
  • exemplary resin materials 121 (see FIG. 7A ), or binding resin materials or resin systems, for the conductive fluid 120 (see FIGS. 5A, 6, 7A ) comprise epoxy resins, bismaleimide (BMI) resins, phenolic resins, and cyanate ester resins, and exemplary conductive materials 123 (see FIG.
  • conductive fluid 120 for the conductive fluid 120 (see FIGS. 5A, 6, 7A ) comprise carbon nanotubes, chopped carbon fibers, silver particles, and the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS).
  • exemplary conductive fluids 120 see FIGS.
  • 5A, 6, 7A comprise an epoxy resin doped with silver particles; a bismaleimide (BMI) resin doped with silver particles; a phenolic resin doped with silver particles; a cyanate ester resin doped with silver particles; an epoxy resin doped with carbon nanotubes; a bismaleimide (BMI) resin doped with carbon nanotubes; a phenolic resin doped with carbon nanotubes; a cyanate ester resin doped with carbon nanotubes; an epoxy resin with chopped carbon fibers; a bismaleimide (BMI) resin with chopped carbon fibers; a phenolic resin with chopped carbon fibers; a cyanate ester resin with chopped carbon fibers; and a resin with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS).
  • BMI bismaleimide
  • the step 156 (see FIG. 8 ) of injecting, under pressure, the conductive fluid 120 (see FIGS. 5A, 6, 7A ), further comprises selecting the conductive fluid 120 (see FIGS. 5A, 6, 7A ), so that a coefficient of thermal expansion (CTE) of the conductive fluid 120 (see FIGS. 5A, 6, 7A ) substantially matches a coefficient of thermal expansion (CTE) of the composite structure 102 (see FIGS. 5A, 6, 7A ) in contact with the conductive fluid 120 (see FIGS. 5A, 6, 7A ).
  • the resin material 121 (see FIG. 7A ), or binding resin material or resin system, of the conductive fluid 120 see FIGS.
  • 5A, 6, 7A has similar chemical properties and similar structural properties as the matrix material 104 (see FIGS. 5A, 6, 7A ), such as the resin matrix 104 a (see FIGS. 5A, 6, 7A ) of the composite structure 102 (see FIGS. 5A, 6 ), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6 ).
  • the matrix material 104 see FIGS. 5A, 6, 7A
  • the resin matrix 104 a see FIGS. 5A, 6, 7A
  • CFRP carbon fiber reinforced plastic
  • the step 152 (see FIG. 8 ) of installing the one or more fasteners 10 further comprises installing one or more fasteners 10 each with the plurality of flutes 80 terminating at a second location 86 a (see FIG. 1A ) proximal to the outer periphery 38 (see also FIG. 1A ) of the head portion 22
  • the step 156 (see FIG. 8 ) of injecting, under pressure, the conductive fluid 120 further comprises injecting the conductive fluid 120 through the opening 40 of the fastener 10 , having the plurality of flutes 80 terminating at the second location 86 a (see FIG. 1A ) proximal to the outer periphery 38 (see also FIG. 1A ) of the head portion 22 , and into the inner feed channel 70 (see FIG. 1B ), such as in the form of inner central feed channel 70 a (see FIG. 1B ), of the fastener 10 .
  • the step 152 (see FIG. 8 ) of installing the one or more fasteners 10 comprises installing one or more fasteners 10 each with the plurality of flutes 80 terminating at periphery openings 86 b (see FIG. 3A ) at the outer periphery 38 (see also FIG. 3A ) of the head portion 22 , i.e., radial feed channels 89 (see also FIG. 3A ), and wherein the step 156 (see FIG. 8 ) of injecting, under pressure, the conductive fluid 120 , further comprises injecting the conductive fluid 120 through each periphery openings 86 b (see FIG. 3A ) and along the plurality of flutes 80 .
  • this embodiment also transports the conductive fluid 120 (see FIG. 6 ) through the radial feed channel 89 (see FIGS. 3A, 6 ) formed by the periphery openings 86 b (see FIGS. 3A ) and the plurality of flutes 80 (see FIGS. 3A, 6 ).
  • the method 150 further comprises step 158 of depositing or transporting the conductive fluid 120 (see FIG. 7A ) to one or more areas 144 (see FIG. 7A ) or gaps between an outer surface 64 (see FIG. 7A ) of the fastener 10 (see FIG. 7A ) and an inner surface 142 (see FIG. 7A ) of the corresponding fastener hole 11 (see FIG. 7A ) of the composite structure 102 (see FIG. 7A ).
  • the conductive fluid 120 flows to and is deposited to and in the areas 144
  • the conductive fluid 120 see FIG.
  • the method 150 further comprises step 160 of curing the composite structure 102 (see FIG. 7B ) with the one or more fasteners 10 (see FIG. 7B ) installed in the composite structure 102 (see FIG. 7B ) to obtain a cured conforming conductive fluid 120 b (see FIG. 7B ).
  • the curing step 160 may be performed using a known curing process, such as an autoclave curing process, a vacuum bag curing process, a combination autoclave and vacuum bagging curing process, a compression mold curing process, a resin transfer molding process, a room temperature curing process, or another suitable curing process.
  • the curing may take place at an elevated, effective temperature or effective heat and/or effective pressure for an effective period of time, as required per material specifications to effectively cure a chosen conductive fluid 120 (see FIGS. 5A, 6, 7A ).
  • the curing temperature or heat and/or pressure needed depends on the type of conductive fluid 120 (see FIG. 7A ) chosen to be injected into the fastener 10 (see FIG. 7A ), and may thus vary.
  • the fastener 10 After injection and cure of the conductive fluid 120 (see FIG. 7B ), the fastener 10 (see FIG. 7B ) preferably has an effective interference fit 148 (see FIG. 7B ) within the composite structure 102 (see FIG. 7B ).
  • the method 150 further comprises step 162 of providing electrical contact, and may provide improved or enhanced electrical contact, between carbon fibers 105 a (see FIG. 7A ) of the composite structure 102 (see FIG. 7A ) and the fastener 10 (see FIG. 7A ) installed in the corresponding fastener hole 11 (see FIG. 7A ), to obtain electrical conductivity and dissipation of current energy 218 (see FIG. 9 ), resulting from lightning strikes 220 (see FIG. 9 ) to the aircraft 200 a (see FIG. 9 ).
  • the one or more fasteners 10 each comprise a conformal clearance fit fastener 12 (see FIGS.
  • FIG. 9 is an illustration of a perspective view of an air vehicle 200 , such as an aircraft 200 a , that may incorporate one or more composite structures 102 , such as, for example, one or more aircraft composite structures 102 b , having embodiments of the fasteners 10 (see FIGS. 1A, 2A, 3A ) of the disclosure.
  • the composite structures 102 (see FIG. 9 ) comprise carbon fiber reinforced plastic (CFRP) structures 102 a (see FIGS. 5A, 6, 7A ).
  • CFRP carbon fiber reinforced plastic
  • the aircraft 200 a comprises such components as a fuselage 202 , a nose 204 , a flight deck 206 , wings 208 , one or more propulsion units 210 or engines, and a tail 212 comprising a vertical stabilizer 214 and horizontal stabilizers 216 .
  • the air vehicle 200 such as aircraft 200 a , shown in FIG. 9 is generally representative of a commercial passenger aircraft having one or more composite structures 102
  • the teachings of the disclosed embodiments may be applied to other passenger aircraft.
  • the teachings of the disclosed embodiments may be applied to cargo aircraft, military aircraft, rotorcraft, and other types of aircraft or aerial vehicles, as well as aerospace vehicles, satellites, space launch vehicles, rockets, and other aerospace vehicles.
  • FIG. 10 is a flow diagram of an aircraft manufacturing and service method 300 .
  • FIG. 11 is a block diagram of an aircraft 320 . Referring to FIGS. 10-11 , embodiments of the disclosure may be described in the context of the aircraft manufacturing and service method 300 as shown in FIG. 10 , and the aircraft 320 as shown in FIG. 11 .
  • exemplary aircraft manufacturing and service method 300 may include specification and design 302 of the aircraft 320 (see FIG. 11 ) and material procurement 304 .
  • component and subassembly manufacturing 306 see FIG. 10
  • system integration 308 see FIG. 10
  • the aircraft 320 may go through certification and delivery 310 (see FIG. 10 ) in order to be placed in service 312 (see FIG. 10 ).
  • the aircraft 320 may be scheduled for routine maintenance and service 314 (see FIG. 10 ) which may also include modification, reconfiguration, refurbishment, and other suitable services.
  • Each of the processes of the aircraft manufacturing and service method 300 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer).
  • a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors.
  • a third party may include, without limitation, any number of vendors, subcontractors, and suppliers.
  • An operator may include an airline, leasing company, military entity, service organization, and other suitable operators.
  • the aircraft 320 produced by the exemplary aircraft manufacturing and service method 300 may include an airframe 322 with a plurality of systems 324 and an interior 326 .
  • examples of the plurality of systems 324 may include one or more of a propulsion system 328 , an electrical system 330 , a hydraulic system 332 , and an environmental system 334 . Any number of other systems may be included.
  • an aerospace example is shown, the principles of the disclosure may be applied to other industries, such as the automotive industry.
  • Methods and systems embodied herein may be employed during any one or more of the stages of the aircraft manufacturing and service method 300 (see FIG. 10 ).
  • components or subassemblies corresponding to component and subassembly manufacturing 306 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 320 (see FIG. 11 ) is in service 312 (see FIG. 10 ).
  • one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during component and subassembly manufacturing 306 (see FIG. 10 ) and system integration 308 (see FIG. 10 ), for example, by substantially expediting assembly of or reducing the cost of the aircraft 320 (see FIG. 11 ).
  • apparatus embodiments, method embodiments, or a combination thereof may be utilized while the aircraft 320 (see FIG. 11 ) is in service 312 (see FIG. 10 ), for example and without limitation, to maintenance and service 314 (see FIG. 10 ).
  • Disclosed embodiments of the fastener 10 (see FIGS. 1A, 2A, 3A ), the fastener system 100 (see FIGS. 5A, 6, 7A ), and the method 150 (see FIG. 8 ) provide a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A ) having an inner feed channel 70 (see FIGS. 1B, 2B, 3B ), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B ), one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B ), and a plurality of flutes 80 (see FIGS. 1A, 2A, 3A ), configured to deposit a conductive fluid 120 (see FIGS.
  • the features of the inner feed channel 70 provide flow paths 140 (see FIG. 7B ) for injecting and depositing the conductive fluid 120 (see FIGS.
  • FIGS. 5A, 6, 7A a fastener hole 11
  • a corresponding fastener hole 11 such as a clearance fit hole
  • a composite structure 102 such as a composite structure 102
  • the conductive fluid 120 to achieve enhanced electrical conductivity in the areas 144 (see FIGS. 7A-7B ) between the fastener 10 (see FIGS. 7A-7B ) and the inner surface 142 (see FIGS. 7A-7B ) of the corresponding fastener hole 11 (see FIGS. 7A-7B ) of the composite structure 102 (see FIGS. 7A-7B ), for example, a fastener-to-composite structure interface.
  • fastener 10 see FIGS. 1A, 2A, 3A
  • the fastener system 100 see FIGS. 5A, 6, 7A
  • the method 150 see FIG. 8
  • an inexpensive, fluted, sleeveless, conformal clearance fit fastener 12 see FIGS. 1A, 2A, 3A
  • the easy to install fasteners 10 provide good electrical contact and good electrical conductivity with the composite structures 102 (see FIGS.
  • the fasteners 10 are inserted within, for example, aircraft composite wing skins. This, in turn, may reduce substructure current, may reduce the possibility of discharge or sparking in aircraft fuel tanks, and may reduce the time, labor, and expense to apply electrically insulating sealants and to install fastener cap seals currently employed to ameliorate these unwanted effects.
  • the fastener 10 may provide for a reduced overall weight of an air vehicle 200 (see FIG. 9 ), such as an aircraft 200 a (see FIG. 9 ), by eliminating or minimizing the use of heavy electrically insulating sealants on the fasteners, for example, as used in aircraft fuel tanks, for protection against lightning strikes 220 (see FIG. 9 ), by eliminating or minimizing the use of sleeved fasteners, such as interference fit fasteners with sleeves that may add weight, and by eliminating or minimizing the use of numerous fastener cap seals on fasteners that may add weight.
  • the fastener 10 may reduce the cost of lightning mitigation on composite structures 102 (see FIG. 9 ) of aircraft 200 a (see FIG. 9 ) by employing the less expensive fasteners 10 (see FIGS. 1A, 2A, 3A ) disclosed herein that provide equivalent or better electrical connection to composite structures 102 (see FIGS. 5A, 6, 7A ), such as aircraft composite wing skins.
  • the cost of secondary sealants and fastener cap seals may also be reduced with the disclosed fasteners 10 (see FIGS. 1A, 2A, 3A ) and fastener system 100 (see FIGS. 5A, 6, 7A ).
  • fastener 10 may also facilitate and enhance the reliability of reworked joints 107 (see FIGS. 5A, 6 ), since any damaged fasteners may be removed and replaced with new fasteners 10 (see FIGS. 1A, 2A, 3A ) of the same size and configuration, without the need for re-drilling oversized fastener holes to accommodate interference fit installation of larger diameter fasteners.

Abstract

A fastener includes an elongated shaft having a first end, a second end, and a shaft body, a head portion, and a threaded portion. At least one inner feed channel extends through the head portion and the shaft body and terminates proximal to the threaded portion. The fastener has a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute has a first end and extends from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion. The fastener further has one or more lateral feed channels formed laterally through the shaft body and connecting the inner feed channel to at least two opposing flutes on the outer surface of the shaft body.

Description

BACKGROUND 1) Field of the Disclosure
The disclosure relates generally to fasteners and fastener systems and methods for composite structures, and more particularly, to conformal clearance fit fasteners and fastener systems and methods that provide electrical contact and conductivity with composite structures, such as carbon fiber reinforced plastic (CFRP) structures, such as for use in aircraft.
2) Description of Related Art
Composite structures, such as carbon fiber reinforced plastic (CFRP) structures, may be used in a wide variety of applications, including in the manufacture of aircraft, spacecraft, rotorcraft, watercraft, automobiles, trucks, and other vehicles and structures, due to their high strength-to-weight ratios, corrosion resistance, and other favorable properties. The composite structures, such as CFRP structures, are typically made of a composite material comprising a matrix material, such as a resin, reinforced with fiber material, such as carbon fiber. The resin is not generally electrically conductive, in contrast to the fiber material.
Good electrical contact between composite aircraft wings, fuselage, or other aircraft structures, and metal fasteners, i.e., metal bolts, used to secure parts of such structures together, is important to provide electrical conductivity and static dissipation, such as in the event of a lightning strike or other electromagnetic effects and electrical event, in order for the current energy from the lightning strike to be dissipated and conducted to ground through the surface of the composite structure. If electrical contact between the metal fasteners and such composite aircraft structures, for example, composite wing skins, is inadequate, the current energy from the lightning strike may not dissipate, may remain in the vicinity of the struck fasteners, and may be conducted into the substructure and possibly a fuel tank in the wing, where unwanted discharge or sparking may occur as the result of electrical arching, and/or hot plasma particles ejected from joints due to decomposition of material systems, leading to a potential ignition source.
Known systems and methods exist to prevent or mitigate discharge and effects from lightning strikes in aircraft composite wing fuel tanks and other aircraft composite structures. Such known systems and methods include the application of electrically insulating sealants and the use of fastener cap seals to cover metal fasteners in the aircraft composite wing fuel tanks, to contain the discharge in the fastened joint and direct it away from the fuel tank or other aircraft composite structures.
However, such known electrically insulating sealants may be heavy, and such known fastener seal caps may be numerous in number, and both may add weight to the aircraft, which may result in reduced performance and increased fuel consumption, and, in turn, may result in increased fuel costs. Moreover, such known electrically insulating sealants and fastener seal caps may be time consuming and labor intensive to apply or install and inspect in the aircraft composite wings and fuel tanks, or other aircraft structures, which, in turn, may result in increased manufacturing and inspection time and increased labor costs.
In addition, known fasteners and fastener systems exist that achieve good electrical contact between composite aircraft structures, such as composite wing skins, and the metal fasteners used to secure such structures, and that reduce the potential for unwanted discharge or sparking in aircraft composite wing fuel tanks. Such known fasteners and fastener systems include the use of interference fit fasteners that employ a corrosion resistant steel (CRES) sleeve through which a tapered titanium bolt is inserted, i.e., sleeved interference fit fasteners. When torque is applied to a collar of the bolt, the sleeve expands, making contact with composite layers of the composite wing skin.
However, such sleeved interference fit fasteners may be expensive and difficult to install. Moreover, the CRES sleeves for the interference fit fasteners may add weight to the fastened joints, which may result in increased fuel consumption, and, in turn, may result in increased fuel costs. Further, due to the expansion of the fastener sleeve when torque is applied to the bolt collar, any exposed high conductivity carbon fiber tip in drilled holes, in which the fasteners are inserted, may be crushed, damaged, or possibly broken. This may limit the overall electrical connection and may also promote micro-cracks in the fastened joints of the composite structure.
Accordingly, there is a need in the art for an improved fastener, fastener system, and method that is inexpensive, simple to install and use, weight saving, and reliable, and that provide advantages over known fastener devices, systems and methods.
SUMMARY
Example implementations of this disclosure provide an improved fastener, fastener system, and method for composite structures, such as carbon fiber reinforced plastic (CFRP) structures, and CFRP structures attached to metallic structures. As discussed in the below detailed description, embodiments of the improved fastener, fastener system, and method may provide significant advantages over known fastener devices, systems, and methods.
In one embodiment there is provided a fastener. The fastener comprises an elongated shaft having a first end, a second end, and a shaft body disposed between the first end and the second end. The fastener further comprises a head portion disposed at the first end. The fastener further comprises a threaded portion disposed at the second end.
The fastener further comprises at least one inner feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion. The fastener further comprises a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute has a first end extending from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion.
The fastener further comprises one or more lateral feed channels formed laterally through the shaft body. Each lateral feed channel connects the inner feed channel to at least two opposing flutes on the outer surface of the shaft body.
In another embodiment there is provided a fastener system for providing improved electrical contact with a composite structure. The fastener system comprises one or more fasteners configured for installation in one or more corresponding fastener holes formed in the composite structure.
Each fastener comprises an elongated shaft having a first end with a head portion, a second end with a threaded portion, and a shaft body disposed between the first end and the second end. Each fastener further comprises at least one inner central feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion.
Each fastener further comprises a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute extends from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion.
Each fastener further comprises one or more lateral feed channels formed laterally through the shaft body. Each lateral feed channel connects the inner central feed channel to at least two opposing flutes on the outer surface of the shaft body.
The fastener system further comprises an injection tool assembly configured for coupling to each of the one or more fasteners installed in the one or more corresponding fastener holes. The fastener system further comprises a conductive fluid injected via the injection tool assembly into each fastener installed in the composite structure. The conductive fluid is transported and deposited via the at least one inner central feed channel, the one or more lateral feed channels, and the plurality of flutes of each fastener, to one or more areas between an outer surface of the fastener and an inner surface of a corresponding fastener hole of the composite structure.
The conductive fluid provides electrical contact between carbon fibers of the composite structure and the one or more fasteners installed in the one or more corresponding fastener holes of the composite structure. This results in the fastener system providing electrical contact with the composite structure.
In another embodiment there is provided a method for providing to a composite structure of an aircraft improved electrical conductivity and dissipation of current energy resulting from lightning strikes to the aircraft. The method comprises the step of installing one or more fasteners into one or more corresponding fastener holes formed in the composite structure.
Each fastener comprises an elongated shaft having a first end with a head portion, a second end with a threaded portion, and a shaft body disposed therebetween. Each fastener further comprises at least one inner feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion.
Each fastener further comprises a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion. Each flute extends from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion.
Each fastener further comprises one or more lateral feed channels formed laterally through the shaft body. Each lateral feed channel connects the inner feed channel to at least two opposing flutes on the outer surface of the shaft body.
The method further comprises the step of torquing the one or more fasteners in place in the one or more corresponding fastener holes. The method further comprises the step of injecting, under pressure, a conductive fluid into the opening in the head portion of each fastener, and through the at least one inner feed channel and the one or more lateral feed channels.
The method further comprises the step of depositing the conductive fluid to one or more areas between an outer surface of each fastener and an inner surface of each corresponding fastener hole of the composite structure. The method further comprises the step of curing the composite structure with the one or more fasteners installed in the composite structure.
The method further comprises the step of providing electrical contact between carbon fibers of the composite structure and each fastener installed in each corresponding fastener hole, to obtain electrical conductivity and dissipation of current energy, resulting from lightning strikes to the aircraft.
The features, functions, and advantages that have been discussed can be achieved independently in various embodiments of the disclosure or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure can be better understood with reference to the following detailed description taken in conjunction with the accompanying drawings which illustrate exemplary embodiments, but which are not necessarily drawn to scale, wherein:
FIG. 1A is an illustration of a side perspective view of an exemplary embodiment of a fastener of the disclosure;
FIG. 1B is an illustration of a cutaway side perspective view of the fastener of FIG. 1A;
FIG. 1C is an illustration of a cross-sectional view of the fastener of FIG. 1A, taken along lines 1C-1C of FIG. 1A;
FIG. 1D is an illustration of a top view of the fastener of FIG. 1A;
FIG. 1E is an illustration of a bottom view of the fastener of FIG. 1A;
FIG. 2A is an illustration of a side perspective view of another exemplary embodiment of a fastener of the disclosure;
FIG. 2B is an illustration of a cutaway side perspective view of the fastener of FIG. 2A;
FIG. 2C is an illustration of a cross-sectional view of the fastener of FIG. 2A, taken along lines 2C-2C of FIG. 2A;
FIG. 2D is an illustration of a top view of the fastener of FIG. 2A;
FIG. 2E is an illustration of a bottom view of the fastener of FIG. 2A;
FIG. 3A is an illustration of a side perspective view of yet another exemplary embodiment of a fastener of the disclosure;
FIG. 3B is an illustration of a cutaway side perspective view of the fastener of FIG. 3A;
FIG. 3C is an illustration of a top view of the fastener of FIG. 3A;
FIG. 3D is an illustration of a bottom view of the fastener of FIG. 3A;
FIGS. 4A-4G are illustrations of cross-sectional views of lateral feed channel configurations that may be used in embodiments of the fastener of the disclosure;
FIG. 5A is an illustration of a cutaway side perspective view of an embodiment of a fastener system of the disclosure;
FIG. 5B is an illustration of a side perspective view of the fastener system of FIG. 5A;
FIG. 6 is an illustration of a cutaway side perspective view of another embodiment of a fastener system of the disclosure;
FIG. 7A is a schematic diagram of a partial sectional view of an embodiment of a fastener system of the disclosure showing the fastener installed in a composite structure having a corresponding fastener hole with a rough surface and conductive fluid injected into the fastener;
FIG. 7B is a schematic diagram of a partial sectional view of the fastener system of FIG. 7A showing the fastener after conductive fluid injection and after cure;
FIG. 8 is a flow diagram showing an exemplary embodiment of a method of the disclosure;
FIG. 9 is an illustration of a perspective view of an aircraft that may incorporate composite structures having one or more embodiments of a fastener of the disclosure;
FIG. 10 is a flow diagram of an aircraft manufacturing and service method; and,
FIG. 11 is a block diagram of an aircraft.
Each figure shown in this disclosure shows a variation of an aspect of the embodiments presented, and only differences will be discussed in detail.
DETAILED DESCRIPTION
Disclosed embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all of the disclosed embodiments are shown. Indeed, several different embodiments may be provided and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and fully convey the scope of the disclosure to those skilled in the art.
Now referring to the Figures, in one embodiment there is provided a fastener 10 as shown in FIGS. 1A-1E. FIG. 1A is an illustration of a side perspective view of an exemplary embodiment of the fastener 10, such as in the form of fastener 10 a, of the disclosure. Preferably the fastener 10 (see FIG. 1A), such as in the form of fastener 10 a (see FIG. 1A), comprises a conformal clearance fit fastener 12 (see FIG. 1A) that is sleeveless, i.e., does not require a metal sleeve.
FIG. 1B is an illustration of a cutaway side perspective view of the fastener 10, such as in the form of fastener 10 a, of FIG. 1A. FIG. 1C is an illustration of a cross-sectional view of the fastener 10, such as in the form of fastener 10 a, of FIG. 1A, taken along lines 1C-1C of FIG. 1A.
As shown in FIGS. 1A-1C, the fastener 10, such as in the form of fastener 10 a, comprises an elongated shaft 14 having a first end 16, a second end 18, and a shaft body 20 disposed between the first end 16 and the second end 18. As further shown in FIGS. 1A-1C, the fastener 10, such as in the form of fastener 10 a, has a head portion 22 disposed at the first end 16. The head portion 22 (see FIG. 1A) preferably has a frusto-conical shape 24 (see FIG. 1A). However, the head portion 22 (see FIG. 1A) may have another suitable shape as well. As shown in FIG. 1B, the head portion 22 has a top end 26, a bottom end 28, and a central portion 30 with an outer surface 32 (see also FIG. 1A) and an interior 34.
FIG. 1D is an illustration of a top view of the fastener 10, such as in the form of fastener 10 a, of FIG. 1A. FIG. 1D shows the top end 26 of the head portion 22 having a top surface 36, which is flat or substantially flat. As shown in FIG. 1D, the top end 26 of the head portion 22 has an outer periphery 38 (see also FIG. 1A) or perimeter and has an opening 40. Preferably, the opening 40 (see FIGS. 1A-1D) is a central opening 40 a (see FIGS. 1A-1D).
As shown in FIGS. 1A-1C, the fastener 10, such as in the form of fastener 10 a, has a threaded portion 42 disposed at the second end 18 of the elongated shaft 14. As shown in FIG. 1B, the threaded portion 42 has a top end 44, a bottom end 46, and a central portion 48 with an outer surface 50 comprised of a plurality of threads 52. As shown in FIG. 1B, the threaded portion 42 has an interior 54, which is preferably solid and has no openings or voids.
FIG. 1E is an illustration of a bottom view of the fastener 10, such as in the form of fastener 10 a, of FIG. 1A. FIG. 1E shows the bottom end 46 of the threaded portion 42 having a bottom surface 56, which is flat or substantially flat.
As shown in FIG. 1B, the shaft body 20 of the elongated shaft 14 has a first end 58 integrally joined or connected to the top end 44 of the threaded portion 42, has a second end 60 integrally joined or connected to the bottom end 28 of the head portion 22, and has a central portion 62 disposed between the first end 58 and the second end 60. The shaft body 20 (see FIGS. 1A-1B) has an outer surface 64 (see FIGS. 1A-1B) with an outer profile 66 (see FIGS. 1A-1B). In one embodiment, as shown in FIGS. 1A-1B, the shaft body 20 may have a substantially straight outer profile 66 a. In another embodiment, as shown in FIG. 2A, discussed below, the shaft body 20 may have a tapered outer profile 66 b. As shown in FIG. 1B, the central portion 62 of the shaft body 20 has an interior 68.
As shown in FIGS. 1B-1C, the fastener 10, such as in the form of fastener 10 a, further comprises at least one inner feed channel 70. As shown in FIG. 1B, the inner feed channel 70 may be in the form of an inner central feed channel 70 a. As further shown in FIG. 1B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, has a first end 72 and a second end 74. As further shown in FIG. 1B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, extends at the first end 72 from the opening 40 in the head portion 22, through the interior 34 of the head portion 22 and through the interior 68 of the shaft body 20, and terminates at the second end 74 at a location 76 proximal to or near the threaded portion 42. As further shown in FIG. 1B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, extends along a longitudinal central axis 78 of the elongated shaft 14 and preferably has a hollow interior 79.
As shown in FIGS. 1A-1C, the fastener 10, such as in the form of fastener 10 a, further comprises a plurality of flutes 80 formed along and circumferentially spaced around the outer surface 64 of the shaft body 20, and formed along and circumferentially spaced around the outer surface 32 of the head portion 22. As further shown in FIG. 1A, each flute 80 has a first end 82 extending from a first location 84 proximal to the threaded portion 42, along the outer surface 64 of the shaft body 20, and radially outward along the outer surface 32 of the head portion 22. Preferably, the flutes 80 (see FIG. 1A) are elongated and spaced apart from each other, and preferably each flute 80 (see FIG. 1A) runs continuously along the outer surface 64 (see FIG. 1A) of the shaft body 20 (see FIG. 1A) and the outer surface 32 (see FIG. 1A) of the head portion 22 (see FIG. 1A).
As shown in FIG. 1A, each flute 80 may extend radially outward along the outer surface 32 of the head portion 22 and terminate at a second end 86. In one embodiment, as shown in FIG. 1A, the second end 86 comprises a second location 86 a proximal to the outer periphery 38 of the head portion 22. In another embodiment, as shown in FIG. 3A, discussed below, the second end 86 comprises a periphery opening 86 b at the outer periphery 38 of the head portion 22. As shown in FIG. 1A, each flute 80 may preferably be formed as a longitudinal groove 87 having a shallow, curved interior surface 88.
As shown in FIG. 1E, the plurality of flutes 80 are preferably circumferentially spaced an equal distance d apart from each other. As further shown in FIG. 1E, the number of flutes 80 is eight (8). However, another suitable number of flutes 80 (see FIGS. 1A, 1E) may also be formed on the fastener 10 (see FIG. 1A).
As shown in FIGS. 1B-1C, the fastener 10, such as in the form of fastener 10 a, further comprises one or more lateral feed channels 90 or inner cross channels formed laterally through the interior 68 of the shaft body 20. As shown in FIGS. 1B-1C, each lateral feed channel 90 connects the inner feed channel 70, such as in the form of inner central feed channel 70 a, to at least two opposing flutes 80 on the outer surface 64 of the shaft body 20. Each lateral feed channel 90 (see FIG. 1C) may preferably comprise lateral feed channel portions 91 (see FIG. 1C), such as two lateral feed channel portions 91 (see FIG. 1C).
Preferably, the shaft body 20, as shown in FIG. 1C, has at least two sets 90 a, 90 b of the one or more lateral feed channels 90 formed laterally through the shaft body 20. As shown in FIG. 1C, one set 90 a of lateral feed channels 90 and the other set 90 b of lateral feed channels 90 are spaced apart from each other a suitable distance. Preferably, the two sets 90 a, 90 b (see FIG. 1C) of the one or more lateral feed channels 90 (see FIG. 1C) are each spaced a different distance from the top end 26 (see FIG. 1C) of the head portion 22 (see FIG. 1C). For example, as shown in FIG. 1C, set 90 a of lateral feed channels 90 may be formed laterally through the shaft body 20 at a first distance 92 a from the top end 26 of the head portion 22, and set 90 b of lateral feed channels 90 may be formed laterally through the shaft body 20 at a second distance 92 b from the top end 26 of the head portion 22. The shaft body 20 (see FIGS. 1B-1C) may also have more than two sets of the lateral feed channels 90 or may have just one set of lateral feed channels 90.
As shown in FIG. 1C, the lateral feed channel 90 of the set 90 a and the lateral feed channel 90 of the set 90 b preferably each have a first end 94 a that opens into or connects with flute 80 a, preferably each have a second end 94 b that opens into or connects with flute 80 b, which is opposite to flute 80 a, and preferably each have a central interior 95 that intersects or connects with the inner feed channel 70, such as in the form of inner central feed channel 70 a. For each set of the lateral feed channels 90 (see FIGS. 1B-1C), the number of lateral feed channels 90 (see FIGS. 1B-1C) that may be formed in each set may be the same or may be different. Each flute 80 (see FIG. 1A) shows openings 96 (see FIG. 1A) formed by the lateral feed channels 90 (see FIG. 1B) intersecting with the flutes 80 (see FIG. 1A).
Exemplary lateral feed channel configurations 98 that may be formed in embodiments of the fastener 10 of the disclosure are shown in FIGS. 4A-4G, and are discussed in more detail below.
Now referring to FIGS. 2A-2E, another exemplary embodiment of the fastener 10, such as in the form of fastener 10 b, is shown. FIG. 2A is an illustration of a side perspective view of the exemplary embodiment of the fastener 10, such as in the form of fastener 10 b, of the disclosure. As shown in FIG. 2A, in this embodiment of the fastener 10, such as in the form of fastener 10 b, the shaft body 20 has a tapered outer profile 66 b, and not all of the flutes 80 have openings 96 formed by the lateral feed channels 90 intersecting with the flutes 80. Preferably the fastener 10 (see FIG. 2A), such as in the form of fastener 10 b (see FIG. 2A), comprises a conformal clearance fit fastener 12 (see FIG. 2A) that is sleeveless.
FIG. 2B is an illustration of a cutaway side perspective view of the fastener 10, such as in the form of fastener 10 b, of FIG. 2A. FIG. 2C is an illustration of a cross-sectional view of the fastener 10, such as in the form of fastener 10 b, of FIG. 2A, taken along lines 2C-2C of FIG. 2A.
As shown in FIGS. 2A-2C, the fastener 10, such as in the form of fastener 10 b, comprises the elongated shaft 14 having the first end 16, the second end 18, and the shaft body 20 disposed between the first end 16 and the second end 18. As further shown in FIGS. 2A-2C, the fastener 10, such as in the form of fastener 10 b, has the head portion 22 disposed at the first end 16. As shown in FIG. 2A, the head portion 22 preferably has the frusto-conical shape 24. As shown in FIG. 2B, the head portion 22 has the top end 26, the bottom end 28, and the central portion 30 with the outer surface 32 (see also FIG. 2A) and the interior 34.
FIG. 2D is an illustration of a top view of the fastener 10, such as in the form of fastener 10 b, of FIG. 2A. FIG. 2D shows the top end 26 of the head portion 22 having the top surface 36, which is flat or substantially flat. As shown in FIG. 2D, the top end 26 of the head portion 22 has the outer periphery 38 (see also FIG. 2A) or perimeter and has the opening 40. Preferably, the opening 40 (see FIGS. 2A-2D) is the central opening 40 a (see FIGS. 2A-2D).
As shown in FIGS. 2A-2C, the fastener 10, such as in the form of fastener 10 b, has the threaded portion 42 disposed at the second end 18 of the elongated shaft 14. As shown in FIG. 2B, the threaded portion 42 has the top end 44, the bottom end 46, and the central portion 48 with the outer surface 50 comprised of the plurality of threads 52. As further shown in FIG. 2B, the threaded portion 42 has an interior 54 which is preferably solid and has no openings or voids.
FIG. 2E is an illustration of a bottom view of the threaded portion 42 of the fastener 10, such as in the form of fastener 10 b, of FIG. 2A. FIG. 2E shows the bottom end 46 of the threaded portion 42 having the bottom surface 56, which is flat or substantially flat.
As shown in FIG. 2B, the shaft body 20 of the elongated shaft 14 has the first end 58 integrally joined or connected to the top end 44 of the threaded portion 42, has the second end 60 integrally joined or connected to the bottom end 28 of the head portion 22, and has the central portion 62 disposed between the first end 58 and the second end 60. As shown in FIGS. 2A-2B, the shaft body 20 has the outer surface 64 with the outer profile 66 in the form of the tapered outer profile 66 b. As shown in FIG. 2B, the central portion 62 of the shaft body 20 has the interior 68.
As shown in FIGS. 2B-2C, the fastener 10, such as in the form of fastener 10 b, further comprises at least one inner feed channel 70, such as in the form of inner central feed channel 70 a. As shown in FIG. 2B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, has the first end 72 and the second end 74. As shown in FIG. 2B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, extends at the first end 72 from the opening 40 in the head portion 22, through the interior 34 of the head portion 22 and through the interior 68 of the shaft body 20, and terminates at the second end 74 at a location 76 proximal to or near the threaded portion 42. As further shown in FIG. 2B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, extends along the longitudinal central axis 78 of the elongated shaft 14 and preferably has the hollow interior 79.
As shown in FIGS. 2A-2C, the fastener 10, such as in the form of fastener 10 b, further comprises the plurality of flutes 80 formed along and circumferentially spaced around the outer surface 64 of the shaft body 20, and formed along and circumferentially spaced around the outer surface 32 of the head portion 22. As further shown in FIG. 2A, each flute 80 has the first end 82 extending from the first location 84 proximal to the threaded portion 42, along the outer surface 64 of the shaft body 20, and radially outward along the outer surface 32 of the head portion 22. Preferably, the flutes 80 (see FIG. 2A) are elongated and spaced apart from each other, and preferably each flute 80 (see FIG. 2A) runs continuously along the outer surface 64 (see FIG. 2A) of the shaft body 20 (see FIG. 2A) and the outer surface 32 (see FIG. 2A) of the head portion 22 (see FIG. 2A).
As shown in FIG. 2A, each flute 80 may extend radially outward along the outer surface 32 of the head portion 22 and terminate at the second end 86. As shown in FIG. 2A, the second end 86 comprises the second location 86 a proximal to the outer periphery 38 of the head portion 22. As shown in FIG. 2A, each flute 80 may preferably be formed as a longitudinal groove 87 having a shallow, curved interior surface 88.
As shown in FIG. 2E, the plurality of flutes 80 are preferably circumferentially spaced an equal distance d apart from each other. As further shown in FIG. 2E, the number of flutes 80 is eight (8). However, another suitable number of flutes 80 (see FIGS. 2A, 2E) may also be formed on the fastener 10 (see FIG. 2A).
As shown in FIGS. 2B-2C, the fastener 10, such as in the form of fastener 10 b, further comprises one or more lateral feed channels 90 formed laterally through the interior 68 of the shaft body 20. As shown in FIGS. 2B-2C, each lateral feed channel 90 connects the inner feed channel 70, such as in the form of inner central feed channel 70 a, to at least two opposing flutes 80 on the outer surface 64 of the shaft body 20. Each lateral feed channel 90 (see FIG. 2C) may preferably comprise lateral feed channel portions 91 (see FIG. 2C), such as two lateral feed channel portions 91 (see FIG. 2C).
Preferably, the shaft body 20, as shown in FIG. 2B, has at least two sets 90 a, 90 b of the one or more lateral feed channels 90. As shown in FIG. 2B, one set 90 a of lateral feed channels 90 and the other set 90 b of lateral feed channels 90 are spaced apart from each other a suitable distance. Preferably, each set 90 a, 90 b of the one or more lateral feed channels 90 is spaced a different distance from the top end 26 of the head portion 22. For example, set 90 a (see FIG. 2B) of lateral feed channels 90 (see FIG. 2B) may be formed laterally through the interior 68 (see FIG. 2B) of the shaft body 20 (see FIG. 2B) at a first distance 92 a (see FIG. 1C) from the top end 26 (see FIGS. 1C, 2B) of the head portion 22 (see FIGS. 1C, 2B), and set 90 b (see FIG. 2B) of lateral feed channels 90 (see FIG. 2B) may be formed laterally through the interior 68 (see FIG. 2B) of the shaft body 20 (see FIG. 2B) at a second distance 92 b (see FIG. 1C) from the top end 26 (see FIGS. 1C, 2B) of the head portion 22 (see FIGS. 1C, 2B). The shaft body 20 (see FIG. 2B) may also have more than two sets of the lateral feed channels 90 or may have just one set of lateral feed channels 90.
As shown in FIG. 2B, the lateral feed channels 90 of set 90 a and of set 90 b may each have the first end 94 a that opens into or connects with flute 80 a, and may each have the second end 94 b that opens into or connects with flute 80 b, which is opposite to flute 80 a, and preferably have the central interior 95 that intersects or connects with the inner feed channel 70, such as in the form of inner central feed channel 70 a. For each set of the lateral feed channels 90 (see FIG. 2B), the number of lateral feed channels 90 (see FIG. 2B) that may be formed in each set may be the same or may be different. As shown in FIG. 2A, for example, flutes 80 a, 80 b, 80 c, each have openings 96 formed by the lateral feed channels 90 (see FIG. 2B) intersecting with the flutes 80 a, 80 b, 80 c.
Now referring to FIGS. 3A-3D, another exemplary embodiment of the fastener 10, such as in the form of fastener 10 c, is shown. FIG. 3A is an illustration of a side perspective view of the exemplary embodiment of the fastener 10, such as in the form of fastener 10 c, of the disclosure. In this embodiment, as shown in FIG. 3A, the fastener 10, such as in the form of fastener 10 c, in addition to the inner feed channel 70, such as in the form of inner central feed channel 70 a, has the plurality of flutes 80 each having a second end 86 comprising a periphery opening 86 b at the outer periphery 38 of the head portion 22. Thus, the periphery openings 86 (see FIG. 3A) and the plurality of flutes 80 (see FIG. 3A) function as radial feed channels 89 (see FIGS. 3A, 3D) in addition to the inner feed channel 70 (see FIG. 3B), such as in the form of inner central feed channel 70 a (see FIG. 3B). Preferably the fastener 10 (see FIG. 3A), such as in the form of fastener 10 c (see FIG. 3A), comprises a conformal clearance fit fastener 12 (see FIG. 3A) that is sleeveless.
FIG. 3B is an illustration of a cutaway side perspective view of the fastener 10, such as in the form of fastener 10 c, of FIG. 3A. FIG. 3C is an illustration of a top view of the fastener 10, such as in the form of fastener 10 c, of FIG. 3A. FIG. 3D is an illustration of a bottom view of the fastener 10, such as in the form of fastener 10 c, of FIG. 3A.
As shown in FIGS. 3A-3B, the fastener 10, such as in the form of fastener 10 c, comprises the elongated shaft 14 having the first end 16, the second end 18, and the shaft body 20 disposed between the first end 16 and the second end 18. As shown in FIG. 3A, the fastener 10, such as in the form of fastener 10 c, has the head portion 22, preferably with the frusto-conical shape 24, disposed at the first end 16. As shown in FIG. 3B, the head portion 22 has the top end 26, the bottom end 28, and the central portion 30 with the outer surface 32 (see also FIG. 3A) and the interior 34.
FIG. 3C is an illustration of a top view of the fastener 10, such as in the form of fastener 10 c, of FIG. 3A. FIG. 3C shows the top end 26 of the head portion 22 having the top surface 36, which is flat or substantially flat. As shown in FIG. 3C, the top end 26 of the head portion 22 has the outer periphery 38 (see also FIG. 3A), or perimeter, having the periphery openings 86 b. As shown in FIG. 3C, there are eight (8) periphery openings 86 b that correspond to the eight (8) flutes 80. However, there may be another suitable number of periphery openings 86 b. The top end 26 (see FIGS. 3B-3C) of the head portion 22 (see FIGS. 3A-3B) has the opening 40 (see FIGS. 3A-3C), such as in the form of central opening 40 a (see FIGS. 3A-3C).
As shown in FIGS. 3A-3B, the fastener 10, such as in the form of fastener 10 c, has the threaded portion 42 disposed at the second end 18 of the elongated shaft 14. As shown in FIG. 3B, the threaded portion 42 has the top end 44, the bottom end 46, and the central portion 48 with the outer surface 50 comprised of the plurality of threads 52. As further shown in FIG. 3B, the threaded portion 42 has interior 54, which is preferably solid and has no openings or voids.
FIG. 3D is an illustration of a bottom view of the fastener 10, such as in the form of fastener 10 c, of FIG. 3A. FIG. 3D shows the bottom end 46 of the threaded portion 42 having the bottom surface 56, which is flat or substantially flat.
As shown in FIG. 3B, the shaft body 20 of the elongated shaft 14 has the first end 58 integrally joined or connected to the top end 44 of the threaded portion 42, has the second end 60 integrally joined or connected to the bottom end 28 of the head portion 22, and has the central portion 62 disposed between the first end 58 and the second end 60. As shown in FIGS. 3A-3B, the shaft body 20 has the outer surface 64 with the outer profile 66 in the form of the substantially straight outer profile 66 a. As shown in FIG. 3B, the central portion 62 of the shaft body 20 has the interior 68.
As shown in FIG. 3B, the fastener 10, such as in the form of fastener 10 c, further comprises at least one inner feed channel 70, such as in the form of inner central feed channel 70 a, having the first end 72 and the second end 74. As further shown in FIG. 3B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, extends at the first end 72 from the opening 40 in the head portion 22, through the interior 34 of the head portion 22 and through the interior 68 of the shaft body 20, and terminates at the second end 74 at a location 76 proximal to or near the threaded portion 42. As further shown in FIG. 3B, the inner feed channel 70, such as in the form of inner central feed channel 70 a, extends along the longitudinal central axis 78 of the elongated shaft 14 and preferably has the hollow interior 79.
As shown in FIGS. 3A-3B, the fastener 10, such as in the form of fastener 10 c, further comprises the plurality of flutes 80 formed along and circumferentially spaced around the outer surface 64 of the shaft body 20, and continuously formed along and circumferentially spaced around the outer surface 32 of the head portion 22. As further shown in FIG. 3A, each flute 80 has the first end 82 extending from the first location 84 proximal to the threaded portion 42, along the outer surface 64 of the shaft body 20, and radially outward along the outer surface 32 of the head portion 22. Preferably, the flutes 80 (see FIG. 3A) are elongated and spaced apart from each other, and preferably each flute 80 (see FIG. 3A) runs continuously along the outer surface 64 (see FIG. 3A) of the shaft body 20 (see FIG. 3A) and the outer surface 32 (see FIG. 3A) of the head portion 22 (see FIG. 3A).
As shown in FIG. 3A, each flute 80 may extend radially outward along the outer surface 32 of the head portion 22 and terminate at the second end 86. As shown in FIG. 3A, the second end 86 comprises the periphery opening 86 b at the outer periphery 38 of the head portion 22. As shown in FIG. 3A, each flute 80 may preferably be formed as a longitudinal groove 87 having a shallow, curved interior surface 88.
As shown in FIG. 3D, the plurality of flutes 80 are preferably circumferentially spaced an equal distance d apart from each other. As further shown in FIG. 3D, the number of flutes 80 is eight (8). However, another suitable number of flutes 80 (see FIGS. 3A, 3D) may also be formed on the fastener 10 (see FIG. 3A).
As shown in FIG. 3B, the fastener 10, such as in the form of fastener 10 c, further comprises one or more lateral feed channels 90 formed laterally through the interior 68 of the shaft body 20. As shown in FIG. 3B, each lateral feed channel 90 connects the inner feed channel 70, such as in the form of inner central feed channel 70 a, to at least two opposing flutes 80 on the outer surface 64 of the shaft body 20. Each lateral feed channel 90 (see FIG. 3B) may preferably comprise lateral feed channel portions 91 (see FIG. 3B), such as two lateral feed channel portions 91 (see FIG. 3B).
Preferably, the shaft body 20, as shown in FIG. 3B, has at least two sets 90 a, 90 b of the one or more lateral feed channels 90. As shown in FIG. 3B, one set 90 a of lateral feed channels 90 and the other set 90 b of lateral feed channels 90 are preferably spaced apart from each other a suitable distance. Preferably, each set 90 a, 90 b (see FIG. 3B) of the one or more lateral feed channels 90 (see FIG. 3B) is spaced a different distance from the top end 26 (see FIG. 3B) of the head portion 22 (see FIG. 3B). For example, set 90 a (see FIG. 3B) of lateral feed channels 90 (see FIG. 3B) may be formed laterally through the interior 68 of the shaft body 20 (see FIG. 3B) at a first distance 92 a (see FIG. 1C) from the top end 26 (see FIGS. 1C, 3B) of the head portion 22 (see FIGS. 1C, 3B), and set 90 b (see FIG. 3B) of lateral feed channels 90 (see FIG. 3B) may be formed laterally through the interior 68 (see FIG. 3B) of the shaft body 20 (see FIG. 3B) at a second distance 92 b (see FIG. 1C) from the top end 26 (see FIGS. 1C, 3B) of the head portion 22 (see FIGS. 1C, 3B). The shaft body 20 (see FIG. 3B) may also have more than two sets of the lateral feed channels 90 or may have just one set of lateral feed channels 90.
As shown in FIG. 3B, the lateral feed channel 90 of set 90 a and the lateral feed channel 90 of set 90 b preferably each have a first end 94 a that opens into or connects with flute 80 a, preferably each have a second end 94 b that opens into or connects with flute 80 b, which is opposite to flute 80 a, and preferably each have the central interior 95 that intersects or connects with the inner feed channel 70, such as in the form of inner central feed channel 70 a. For each set of the lateral feed channels 90, the number of lateral feed channels 90 that may be formed in each set may be the same or may be different. As shown in FIG. 3A, each flute 80 shows openings 96 formed by the lateral feed channels 90 (see FIG. 3B) intersecting with the flutes 80.
For the fastener 10 (see FIGS. 1A, 2A, 3A), the number of flutes 80 (see FIGS. 1A, 2A, 3A) formed on the fastener 10 (see FIGS. 1A, 2A, 3A), or chosen in the manufacture of the fastener 10 (see FIGS. 1A, 2A, 3A), may depend on such factors as the size of the fastener, the dimensions of the flute, the size of the corresponding fastener hole 11 (see FIG. 7A) that the fastener is inserted into, the type of injection tool assembly 110 (see FIGS. 5A, 6, 7A) used and the type of injection method used for injecting a conductive fluid 120 (see FIGS. 5A, 6, 7A) into the fastener, the type and viscosity/rheology of the conductive fluid 120 (see FIGS. 5A, 6, 7A) used to inject into the fastener, or other materials or manufacturing factors. Preferably, the fastener 10 (see FIGS. 1A, 2A, 3A) has at least two (2) flutes 80 (see FIGS. 1A, 2A, 3A), preferably opposed to each other, and more preferably, has more than two (2) flutes 80. As shown in FIGS. 1E, 2E, 3D, the number of flutes 80 on the fastener 10 (see FIGS. 1A, 2A, 3A) is eight (8). However, another suitable number of flutes 80 may also be formed on the fastener 10.
For the fastener 10 (see FIGS. 1A, 2A, 3A), the number of lateral feed channels 90 (see FIGS. 1B, 2B, 3B) formed in the fastener 10 (see FIGS. 1A, 2A, 3A), or chosen in the manufacture of the fastener 10 (see FIGS. 1A, 2A, 3A), may also depend on such factors as the size of the fastener, the dimensions of the lateral feed channel, the size of the corresponding fastener hole 11 (see FIG. 7A) that the fastener is inserted into, the type of injection tool assembly 110 (see FIGS. 5A, 6, 7A) used and the type of injection method used for injecting the conductive fluid 120 (see FIGS. 5A, 6, 7A) into the fastener, the type and viscosity/rheology of the conductive fluid 120 (see FIGS. 5A, 6, 7A) used to inject into the fastener, or other materials or manufacturing factors. The purpose of the lateral feed channels 90 (see FIGS. 1B, 2B, 3B), or cross channels, is to facilitate the flow of the conductive fluid 120 (see FIGS. 5A, 6, 7A) in longer fasteners. The lateral feed channels 90 (see FIGS. 1B, 2B, 3B), or cross channels, may be designed to connect with all of the flutes 80, or selected flutes 80, at the various sets or levels depending on the length of the fastener. Preferably, the fastener 10 (see FIGS. 1A, 2A, 3A) has one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B), and one or more sets or levels of lateral feed channels 90 spaced apart from each other along the shaft body 20 (see FIGS. 1B, 2B, 3B) of the fastener 10 (see FIGS. 1B, 2B, 3B). As shown in FIGS. 1C, 2B, 3B, two (2) sets 90 a, 90 b or levels of lateral feed channels 90 are shown. However, another suitable number of sets or levels of lateral feed channels 90 may be formed in the fastener 10.
The fastener 10 (see FIGS. 1A, 2A, 3A) is a securement item designed to secure two or more items or structures together, and is preferably in the form of a bolt, a screw, a pin, or another suitable like fastener. The fastener 10 (see FIGS. 1A, 2A, 3A) is preferably constructed of carbon steel, titanium alloy, stainless steel, or another suitable hard metal or metal alloy material. Preferably, the fastener 10 (see FIGS. 1A, 2A, 3A) is of a one-piece, unitary, or monolithic configuration or construction. However, the fastener 10 may also be made or formed of one or more separate pieces or structures, i.e., separate head portion, separate shaft body, and/or separate threaded portion.
Now referring to FIGS. 4A-4G, FIGS. 4A-4G are illustrations of cross-sectional views of various lateral feed channel configurations 98 that may be used in embodiments of the fastener 10 (see FIGS. 1A, 2A, 3A) of the disclosure. FIG. 4A shows a cross-sectional view of a first lateral feed channel configuration 98 a in the shaft body 20, having one lateral feed channel 90 that connects the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. FIG. 4B shows a cross-sectional view of a second lateral feed channel configuration 98 b in the shaft body 20, having one lateral feed channel 90 that connects the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. The two opposing flutes 80 (see FIG. 4B) connected in the second lateral feed channel configuration 98 b (see FIG. 4B) are different flutes 80 (see FIG. 4B) than the two opposing flutes 80 (see FIG. 4A) connected in the first lateral feed channel configuration 98 a (see FIG. 4A).
FIG. 4C shows a cross-sectional view of a third lateral feed channel cross-shaped configuration 98 c in the shaft body 20, having two lateral feed channels 90 that each connect the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. FIG. 4D shows a cross-sectional view of a fourth lateral feed channel X-shaped configuration 98 d in the shaft body 20, having two lateral feed channels 90 that each connect the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. The two sets of opposing flutes 80 (see FIG. 4D) connected in the fourth lateral feed channel X-shaped configuration 98 d (see FIG. 4D) are different flutes 80 (see FIG. 4D) than the two sets of opposing flutes 80 (see FIG. 4C) connected in the third lateral feed channel cross-shaped configuration 98 c (see FIG. 4C).
FIG. 4E shows a cross-sectional view of a fifth lateral feed channel configuration 98 e in the shaft body 20, having three lateral feed channels 90 that each connect the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. FIG. 4F shows a cross-sectional view of a sixth lateral feed channel configuration 98 f in the shaft body 20, having three lateral feed channels 90 that each connect the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. The three sets of opposing flutes 80 (see FIG. 4F) connected in the sixth lateral feed channel configuration 98 f (see FIG. 4F) and the three sets of opposing flutes 80 (see FIG. 4E) connected in the fifth lateral feed channel configuration 98 e (see FIG. 4E) differ by one set of opposing flutes 80.
FIG. 4G shows a cross-sectional view of a seventh lateral feed channel configuration 98 g in the shaft body 20, having four lateral feed channels 90 that each connect the inner feed channel 70, such as in the form of inner central feed channel 70 a, to two opposing flutes 80 on the shaft body 20. The various lateral feed channel configurations 98 (see FIGS. 4A-4G) may each be used in the first set 90 a (see FIGS. 1C, 2B, 3B) and/or the second set 90 b (see FIGS. 1C, 2B, 3B), or additional sets of lateral feed channels 90 formed in the shaft body 20. In addition, various combinations of the lateral feed channel configurations 98 (see FIGS. 4A-4G) may be used in the first set 90 a (see FIGS. 1C, 2B, 3B) and/or the second set 90 b (see FIGS. 1C, 2B, 3B), or additional sets of lateral feed channels 90 formed in the shaft body 20.
For example, for a fastener 10 (see FIGS. 1A, 1B, 1C) having eight (8) flutes 80 (see FIGS. 1E, 2E, and 3D), if it is desired that each of the plurality of flutes 80 (see FIGS. 1C, 2B, 3B) be intersected at least once by a lateral feed channel 90, then a combination of the third lateral feed channel cross-shaped configuration 98 c (see FIG. 4C) for the first set 90 a or level in the fastener 10, and the fourth lateral feed channel X-shaped configuration 98 d (see FIG. 4D) for the second set 90 b or level in the fastener 10, would be an optional design to use. Alternatively, other combinations of the lateral feed channel configurations 98 (see FIGS. 4A-4G) could be used.
Now referring to FIGS. 5A-5B and FIG. 6, in another embodiment, there is provided a fastener system 100 (see FIG. 5A, 6) including one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6), as discussed in detail above, installed in a composite structure 102 (see FIGS. 5A, 6), such as a carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6) and filled with a conductive fluid 120 (see FIGS. 5A, 6, 7A). The fastener system 100 (see FIGS. 5A, 6) provides electrical contact and electrical conductivity between the one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6) and the composite structure 102 (see FIGS. 5A, 6), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6), may provide improved or enhanced electrical contact and improved or enhanced electrical conductivity.
As used herein, “carbon fiber reinforced plastic (CFRP)” means a composite material made of a matrix material 104 (see FIGS. 5A, 6, 7A), such as a resin matrix 104 a (see FIGS. 5A, 6, 7A) reinforced with a plurality of fibers 105 (see FIGS. 5A, 6, 7A), such as carbon fibers 105 a (see FIGS. 5, 6, 7A), or a combination of carbon fibers 105 a and other reinforcing fibers, such as glass fibers, aramid fibers, graphite fibers, aromatic polyamide fiber, fiberglass, aluminum fibers, or other suitable reinforcing fibers. The matrix material 104 (see FIGS. 5A, 6, 7A), such as the resin matrix 104 a (see FIGS. 5A, 6, 7A) of the CFRP preferably comprises a polymer resin comprising thermoset polymer resins or thermoplastic polymer resins. Exemplary thermoset polymer resins that may be used include epoxy resins, polyester resins, phenolic resins, vinyl ester resins, allyl resins, bismaleimide (BMI) resins, polyurethane (PUR) resins, cyanate ester resins, polyimide resins, or other suitable thermoset polymer resins or resin systems. Exemplary thermoplastic polymer resins that may be used include polyethylene (PE) resins, vinyl resins, polyproplyene (PP) resins, polyamide resins including nylon resins, polycarbonate resins, polyethylene terephthalate (PET) resins, polyetheretherketone polymer (PEEK) resins, polyetherketoneketone polymer (PEKK) resins, polyethersulfone (PES) resins, polysulfone (PSU) resins, polyphenylene sulfide (PPS) resins, polytetrafluoroethylene (PTFE) resins, or other suitable thermoplastic polymer resins or resin systems. The composite structure 102 may also include one or more metallic structures 103 c (see FIG. 5A), for example, made out of aluminum or another suitable metal material, and fastened or attached to the composite structure 102.
FIG. 5A is an illustration of a cutaway side perspective view of an embodiment of the fastener system 100, such as in the form of fastener system 100 a, of the disclosure. FIG. 5B is an illustration of a side perspective view of the fastener system 100, such as in the form of fastener system 100 a, of FIG. 5A. FIG. 6 is an illustration of a cutaway side perspective view of another embodiment of the fastener system 100, such as in the form of fastener system 100 b, of the disclosure.
As shown in FIGS. 5A and 6, the fastener system 100 comprises one or more fasteners 10 configured for installation in one or more corresponding fastener holes 11 formed in the composite structure 102. FIGS. 5A-5B and 6 show the fastener 10 inserted into the composite structure 102, such as in the form of the carbon fiber reinforced plastic (GRP) structure 102 a.
As shown in FIGS. 5A-5B and 6, the composite structure 102 comprises a first part 103 a and a second part 103 b. As shown in FIGS. 5A and 6, the first part 103 a may be constructed of composite material, including the matrix material 104, such as the resin matrix 104 a, and the plurality of fibers 105, such as carbon fibers 105 a. It is noted that the matrix material 104, such as the resin matrix 104 a, and the plurality of fibers 105, such as the carbon fibers 105 a, are only schematically represented in FIGS. 5A, 6, and 7A-B. The plurality of fibers 105 (see FIGS. 5A, 6, 7A-7B) extend through the matrix material 104 (see FIGS. 5A, 6, 7A-7B) and are positioned throughout the composite structure 102 (see FIGS. 5A, 6, 7A-7B), extending in a length direction, a width direction, or a combination of these directions, such as 0, 90,+/−45 degree orientations, and layered in a thickness direction of the composite structure 102. The second part 103 b (see FIGS. 5A, 6) may comprise a metallic structure 103 c (see FIGS. 5A, 6) made of a metal material, such as aluminum, or another suitable metal material, and fastened or attached to the first part 103 a (see FIG. 5A) of the composite structure 102 (see FIG. 5A). Alternatively, the first part 103 a (see FIG. 5A) may comprise a metallic structure made of a metal material, and the second part 103 b (see FIG. 5A) may comprise a composite material.
The first part 103 a (see FIGS. 5A, 6) has an interior opening 106 a (see FIGS. 5A, 6) through which the fastener 10 (see FIGS. 5A, 6) is inserted, and the second part 103 b (see FIGS. 5A, 6) has an interior opening 106 b (see FIGS. 5A, 6) through which the fastener 10 (see FIGS. 5A, 6) is also inserted. The fastener 10 (see FIGS. 5A, 6) attaches or joins the first part 103 a (see FIGS. 5A-5B, 6) to the second part 103 b (see FIGS. 5A-5B, 6) to form a composite joint 107 (see FIGS. 5A-5B, 6).
Each fastener 10 (see FIGS. 5A, 6) of the fastener system 100 (see FIGS. 5A, 6) comprises, as discussed above, an elongated shaft 14 (see FIGS. 1A, 2A, 3A) having a first end 16 (see FIGS. 1A, 2A, 3A) with the head portion 22 (see FIGS. 1A, 2A, 3A, 5A, 6), a second end 18 (see FIGS. 1A, 2A, 3A) with the threaded portion 42 (see FIGS. 1A, 2A, 3A, 5A, 6), and the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6) disposed therebetween. Each fastener 10 (see FIGS. 5A, 6) further comprises, as discussed above, at least one inner feed channel 70, such as in the form of inner central feed channel 70 a (see FIGS. 5A, 6), extending from an opening 40 (see FIGS. 5A, 6) in the head portion 22 (see FIGS. 5A, 6), through the head portion 22 (see FIGS. 5A, 6) and the shaft body 20 (see FIGS. 5A, 6), along a longitudinal central axis 78 (see FIGS. 1A, 2A, 3A) of the elongated shaft 14 (see FIGS. 1A, 2A, 3A), and terminating proximal to the threaded portion 42 (see FIGS. 5A, 6).
Each fastener 10 (see FIGS. 1A, 2A, 3A, 5A, 6) further comprises, as discussed above, a plurality of flutes 80 (see FIGS. 1A, 2A, 3A, 5A, 6) formed along and circumferentially spaced around the outer surface 64 (see FIGS. 1A, 2A, 3A) of the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6), and continuously formed along and circumferentially spaced around the outer surface 32 (see FIGS. 1A, 2A, 3A) of the head portion 22 (see FIGS. 1A, 2A, 3A, 5A, 6). Each flute 80 (see FIGS. 1A, 2A, 3A, 5A, 6) extends from a first location 84 (see FIGS. 1A, 2A, 3A) proximal to the threaded portion 42 (see FIGS. 1A, 2A, 3A, 5A, 6), along the outer surface 64 (see FIGS. 1A, 2A, 3A) of the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6), and radially outward along the outer surface 32 (see FIGS. 1A, 2A, 3A) of the head portion 22 (see FIGS. 1A, 2A, 3A, 5A, 6). Each fastener 10 (see FIGS. 1A, 2A, 3A, 5A, 6) further comprises, as discussed above, one or more lateral feed channels 90 (see FIGS. 1A, 2A, 3A, 5A, 6), or cross channels, formed laterally through the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6). Each lateral feed channel 90 (see FIGS. 1A, 2A, 3A, 5A, 6) connects the inner feed channel 70 (see FIGS. 1B, 1C, 2B, 2C, 3B, 5A, 6, 7A-7B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 1C, 2B, 2C, 3B, 5A, 6, 7A-7B), to at least two opposing flutes 80 (see FIGS. 1A, 2A, 3A, 5A, 6) on the outer surface 64 (see FIGS. 1A, 2A, 3A) of the shaft body 20 (see FIGS. 1A, 2A, 3A, 5A, 6).
As further shown in FIGS. 5A and 6, the fastener 10 may be tightened into place within the composite structure 102 with a threaded collar 108 threaded around the threaded portion 42 of the fastener 10 and adjacent the composite structure 102, such as the second part 103 b of the composite structure 102. As shown in FIG. 5A, the threaded collar 108 has a first end 109 a that is disposed against the second part 103 b of the composite structure 102, and has a second end 109 b.
As shown in FIGS. 5A-5B and 6, the fastener system 100 further comprises an injection tool assembly 110 configured for coupling to each of the one or more fasteners 10 installed in the one or more corresponding fastener holes 11. As shown in FIGS. 5A-5B and 6, the injection tool assembly 110 is coupled to the top surface 36 of the head portion 22 (see FIG. 5A) of the fastener 10 and is also coupled to a top surface 112 of the first part 103 a of the composite structure 102. The injection tool assembly 110 (see FIGS. 5A-5B, 6) comprises one or more attachment elements 114 (see FIGS. 5A-5B, 6), such as in the form of suction cups 114 a (see FIGS. 5A-5B, 6) for attachment to the top surface 112 (see FIGS. 5A-5B, 6). As shown in FIGS. 5A-5B and 6, the injection tool assembly 110 comprises two attachment elements 114, such as in the form of two suction cups 114 a. Each attachment element 114 (see FIGS. 5A-5B, 6) may be coupled to a vacuum connection portion 116 (see FIGS. 5A-5B, 6) for providing air for vacuum suction by the attachment elements 114 (see FIGS. 5A-5B, 6), such as in the form of suction cups 114 a (see FIGS. 5A-5B, 6).
The fastener system 100 (see FIGS. 5A, 6) further comprises the conductive fluid 120 (see FIGS. 5A, 6, 7A) injected via the injection tool assembly 110 (see FIGS. 5A, 6) into each fastener 10 (see FIGS. 5A, 6) installed in the composite structure 102 (see FIGS. 5A, 6). As further shown in FIGS. 5A-5B and 6, the injection tool assembly 110 comprises a vacuum and injection control handle 118 coupled to a vessel 122 that preferably contains the conductive fluid 120 (see FIGS. 5A, 6, 7A) for injection into the inner feed channel 70 (see FIGS. 5A, 6), such as in the form of inner central feed channel 70 a (see FIGS. 5A, 6), of the fastener 10 (see FIGS. 5A, 6). The vessel 122 (see FIGS. 5A, 6) is configured for coupling to the fastener 10 (see FIGS. 5A, 6).
The conductive fluid 120 (see FIGS. 5A, 6, 7A) is preferably in the form of a fluid, such as a liquid, having a low viscosity, i.e., a thin liquid that moves quickly with low or little resistance. The low viscosity of the conductive fluid 120 (see FIGS. 5A, 6, 7A) facilitates flow of the conductive fluid 120 (see FIGS. 5A, 6, 7A) through the inner feed channel 70 (see FIGS. 1B, 2B, 3B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), and through the one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B) of the fastener 10 (see FIGS. 1B, 2B, 3B).
The conductive fluid 120 (see FIGS. 5A, 6, 7A) preferably comprises a resin material 121 (see FIG. 7A), such as a binding resin material or resin system, mixed with, filled with, or containing a conductive material 123 (see FIG. 7A), such as a conductive additive or filler, that is electrically conductive. The resin material 121 (see FIG. 7A) may comprise a polymer resin comprising thermoset polymer resins or thermoplastic polymer resins. Exemplary thermoset polymer resins that may be used include epoxy resins, polyester resins, phenolic resins, vinyl ester resins, allyl resins, bismaleimide (BMI) resins, polyurethane (PUR) resins, cyanate ester resins, polyimide resins, or other suitable thermoset polymer resins or resin systems. Exemplary thermoplastic polymer resins that may be used include polyethylene (PE) resins, vinyl resins, polyproplyene (PP) resins, polyamide resins including nylon resins, polycarbonate resins, polyethylene terephthalate (PET) resins, polyetheretherketone polymer (PEEK) resins, polyetherketoneketone polymer (PEKK) resins, polyethersulfone (PES) resins, polysulfone (PSU) resins, polyphenylene sulfide (PPS) resins, polytetrafluoroethylene (PTFE) resins, or other suitable thermoplastic polymer resins or resin systems. Exemplary resin materials 121 (see FIG. 7A), or binding resin materials or resin systems, for the conductive fluid 120 (see FIGS. 5A, 6, 7A) comprise epoxy resins, bismaleimide (BMI) resins, phenolic resins, and cyanate ester resins.
The conductive material 123 (see FIG. 7A) may comprise, for example, chopped carbon fibers; carbon nanotubes; carbon nanofibers; carbon black; metallic fibers; metallic particles including silver particles, nickel particles, copper particles, and aluminum particles; graphite; graphene; graphene nanofillers; or other suitable conductive materials. Additionally, the conductive material 123 (see FIG. 7A) may comprise conductive polymers, such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS), polyaniline, polypyrrole, polyacetylene, polythiophene, or other suitable conductive polymers. As used herein, “conductive polymer”, also referred to as “intrinsically conducting polymer”, means an organic polymer capable of conducting electricity. Exemplary conductive materials 123 (see FIG. 7A) for the conductive fluid 120 (see FIGS. 5A, 6, 7A) comprise carbon nanotubes, chopped carbon fibers, silver particles, and the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS).
Exemplary conductive fluids 120 (see FIGS. 5A, 6, 7A) comprise an epoxy resin doped with silver particles; a bismaleimide (BMI) resin doped with silver particles; a phenolic resin doped with silver particles; a cyanate ester resin doped with silver particles; an epoxy resin doped with carbon nanotubes; a bismaleimide (BMI) resin doped with carbon nanotubes; a phenolic resin doped with carbon nanotubes; a cyanate ester resin doped with carbon nanotubes; an epoxy resin with chopped carbon fibers; a bismaleimide (BMI) resin with chopped carbon fibers; a phenolic resin with chopped carbon fibers; a cyanate ester resin with chopped carbon fibers; and a resin with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). As used herein, “doped” means mixed with, filled with, or containing, i.e., the resin is mixed with, filled with, or contains conductive material or additives, such as silver particles, carbon nanotubes, or chopped carbon fibers, to provide conductivity, such as electrical conductivity.
Preferably, the resin material 121 (see FIG. 7A), or resin system, of the conductive fluid 120 (see FIGS. 5A, 6, 7A) has similar chemical properties, structural properties, and expansion characteristics as the matrix material 104 (see FIGS. 5A, 6, 7A), such as the resin matrix 104 a (see FIGS. 5A, 6, 7A) of the composite structure 102 (see FIGS. 5A, 6), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6).
Preferably, the conductive fluid 120 (see FIGS. 5A, 6, 7A) has a conductivity, such as an electrical conductivity, of approximately 1×104 S/m (siemens per meter) or greater. As used herein, “conductivity” and “electrical conductivity” mean the conductive fluid's or conductive material's ability to conduct an electric current. Preferably, the conductivity, such as the electrical conductivity, of the conductive fluid 120 (see FIGS. 5A, 6, 7A) approaches the conductivity, such as the electrical conductivity, of the composite material of the composite structure 102 (see FIGS. 5A, 6, 7A), along the direction of the carbon fibers 105 a (see FIG. 7A) of the composite material comprising the composite structure 102 (see FIG. 7A).
Preferably, the conductive fluid 120 (see FIGS. 5A, 6, 7A) is selected so that a coefficient of thermal expansion (CTE) of the conductive fluid 120 (see FIGS. 5A, 6, 7A) substantially matches or matches a coefficient of thermal expansion (CTE) of the composite structure 102 (see FIGS. 5A, 6, 7A), such as the CTE of the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6, 7A), in contact with the conductive fluid 120 (see FIGS. 5A, 6, 7A). As used herein, the “coefficient of thermal expansion (CTE)” means a change in length or volume (e.g., linear thermal expansion in inches) of a material for a unit change in temperature (e.g., per degree Fahrenheit or Celsius), and is used to determine the rate at which a material expands as a function of temperature, and may be used to determine if thermal stress issues may occur. Polymeric plastics tend to expand and contract anywhere from six (6) to nine (9) times more than metals, and differences in CTE between adjacent materials may lead to internal stresses and stress concentrations in the polymer, which may cause premature micro-cracking to occur. Thus, the conductive fluid 120 (see FIGS. 5A, 6, 7A) is preferably selected so that the CTE of the conductive fluid 120 (see FIGS. 5A, 6, 7A) substantially matches or matches the CTE of the composite structure 102 (see FIGS. 5A, 6, 7A), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6, 7A), so that internal stress is not generated in the typical ground to altitude temperature variations that are typically experienced in aircraft 200 a (see FIG. 9) and that could lead to micro-cracks in fastened composite joints.
As shown in FIGS. 5A and 6, the injection tool assembly 110 further comprises a pressure injector 126 coupled to the vessel 122 and configured to couple to the opening 40 in the head portion 22 of the fastener 10. The pressure injector 126 (see FIGS. 5A, 6) is preferably configured to inject the conductive fluid 120 (see FIGS. 5A, 6), under pressure, into the fastener 10 (see FIGS. 5A, 6).
As shown in FIGS. 5A-5B and 6, the vessel 122 is coupled to the pressure injector 126, which is coupled to a pressurized conductive fluid connection 124 to provide pressure and power for injection of the conductive fluid 120 into the fastener 10. As shown in FIGS. 5A and 6, the pressure injector 126 preferably comprises a hollow injection tube 128 having a first end 130 a with a first end opening 132 a configured for injection of the conductive fluid 120 into the hollow injection tube 128, and having a second end 130 b with a second end opening 132 b configured for alignment with and coupling to the opening 40 in the head portion 22 of the fastener 10 and configured for injection of the conductive fluid 120, under pressure, into the opening 40 of the fastener 10.
In one embodiment, as shown in FIG. 5A, the injection tool assembly 110, such as in the form of injection tool assembly 110 a, injects or pumps the conductive fluid 120 into the inner feed channel 70, such as in the form of inner central feed channel 70 a, of the fastener 10. In another embodiment, as shown in FIG. 6, the injection tool assembly 110, such as in the form of injection tool assembly 110 b, injects or pumps the conductive fluid 120 into both the inner feed channel 70, such as in the form of inner central feed channel 70 a, and the radial feed channels 89 formed by the periphery openings 86 b (see FIG. 3A) at the outer periphery 38 (see FIG. 3A) of the head portion 22 and the flutes 80 of the fastener 10.
As further shown in FIGS. 5A and 6, the pressure injector 126 may have one or more seal elements 134, such as in the form of O-ring pressure seals 134 a, attached at an injection end portion 136 of the pressure injector 126. The seal elements 134 (see FIGS. 5A, 6), such as in the form of O-ring pressure seals 134 a (see FIGS. 5A, 6), preferably pressure seal the injection end portion 136 (see FIGS. 5A, 6) of the pressure injector 126 (see FIGS. 5A, 6) against the top surface 36 (see FIGS. 5A, 6) of the head portion 22 (see FIGS. 5A, 6) of the fastener 10 (see FIGS. 5A, 6).
In one embodiment, as shown in FIGS. 5A-5B, the injection end portion 136 comprises a small diameter injection end portion 136 a configured to cover the opening 40 (see FIG. 5A) to the inner feed channel 70 (see FIG. 5A), such as in the form of inner central feed channel 70 a (see FIG. 5A), of the fastener 10 (see FIG. 5A). The small diameter injection end portion 136 a (see FIGS. 5A-5B) preferably has a diameter that is less than, or smaller than, a diameter of the top surface 36 (see FIGS. 5A-5B) of the head portion 22 (see FIG. 5A) of the fastener 10 (see FIG. 5A). The small diameter injection end portion 136 a (see FIGS. 5A-5B) preferably has an outer periphery 138 a that is less than or smaller than the outer periphery 38 (see FIGS. 5A-5B) of the top surface 36 (see FIGS. 5A-5B) of the head portion 22 (see FIG. 5A). As shown in FIG. 5A, the small diameter injection end portion 136 a of the pressure injector 126 of the injection tool assembly 110 covers only the opening 40 and a small portion surrounding the opening 40 on the top surface 36 (see FIGS. 3C, 5A) of the head portion 22 of the fastener 10. As shown in FIGS. 5A-5B, the small diameter injection end portion 136 a and does not cover the entire area of the top surface 36 (see FIGS. 3C, 5A) of the fastener 10.
In another embodiment, as shown in FIG. 6, the injection end portion 136 comprises a large diameter injection end portion 136 b configured to cover the opening 40 to the inner feed channel 70, such as in the form of inner central feed channel 70 a, and configured to cover the radial feed channels 89 comprising the periphery openings 86 b (see FIG. 3A) to the flutes 80 (see FIGS. 3A, 6). The large diameter injection end portion 136 b (see FIG. 6) preferably has a diameter that is larger, or greater than, a diameter of the top surface 36 (see FIGS. 3C, 6) of the head portion 22 (see FIG. 6) of the fastener 10 (see FIG. 6). The large diameter injection end portion 136 b (see FIG. 6) preferably has an outer periphery 138 b that is greater than or larger than the outer periphery 38 (see FIGS. 3C, 5B) of the top surface 36 (see FIGS. 3C, 5B, 6) of the head portion 22 (see FIG. 6). As shown in FIG. 6, the large diameter injection end portion 136 b of the pressure injector 126 of the injection tool assembly 110 covers the entire area of the top surface 36 (see also FIGS. 3C, 5B) of the head portion 22 of the fastener 10.
Now referring to FIG. 7A, FIG. 7A is a schematic diagram of a partial sectional view of the fastener 10 to further illustrate the fastener system 100, such as the fastener system 100 a, of FIG. 5A of the disclosure. FIG. 7A shows the fastener 10 installed in a composite structure 102, such as a carbon fiber reinforced plastic (CHI)) structure 102 a, having a corresponding fastener hole 11 with a rough surface, and shows the conductive fluid 120 injected into the fastener 10 to fill the area 144 between the fastener 10 and inner surface 142 of the corresponding fastener hole 11 of the composite structure 102, to provide sufficient electrical conductivity across this fastener-to-composite structure interface.
Before the fastener 10 (see FIG. 7A) is installed in the corresponding fastener hole 11 (see FIG. 7A), the corresponding fastener hole 11 (see FIG. 7A), such as in the form of a discrete through-hole, is preferably formed, such as by drilling or another suitable forming process, into the composite structure 102 (see FIG. 7A) with a known forming device, such as a drill or other suitable hole forming device. With the formation of the corresponding fastener hole 11 (see FIG. 7A) through the composite structure 102 (see FIG. 7A), the corresponding fastener hole 11 (see FIG. 7A) engages some of the total of the plurality of fibers 105, such as the carbon fibers 105 a, which are positioned throughout the composite structure 102 (see FIG. 7A), and may produce exposed tips 105 b (see FIG. 7A) of the carbon fibers 105 a (see FIG. 7A) at an inner surface 142 (see FIG. 7A), which may be rough, of the corresponding fastener hole 11 (see FIG. 7A) of the composite structure 102 (see FIG. 7A). In FIG. 7A, some of the exposed tips 105 b (see FIG. 7A) of the carbon fibers 105 a (see FIG. 7A) are schematically shown positioned at and along the inner surface 142 (see FIG. 7A) of the corresponding fastener hole 11 (see FIG. 7A).
Before the fastener 10 (see FIG. 7A) is installed in the corresponding fastener hole 11 (see FIG. 7A), which has been formed, the corresponding fastener hole 11 (see FIG. 7A) may be cleaned or prepared, if needed or desired, with a suitable cleaning or preparation device, cleaning or preparation agent, and/or cleaning or preparation method known in the art.
Once the corresponding fastener hole 11 (see FIG. 7A) has been sufficiently cleaned or prepared, the fastener 10 (see FIG. 7A) is inserted or installed into the corresponding fastener hole 11 (see FIG. 7A). The fastener 10 (see FIG. 7A) is preferably torqued or turned to fit in place in the corresponding fastener hole 11 (see FIG. 7A).
As shown in FIG. 7A, a threaded collar 108 may preferably be coupled to the threaded portion 42 of the fastener 10 to help hold the fastener 10 in place within the corresponding fastener hole 11 in the composite structure 102. As further shown in FIG. 7A, the threaded collar 108 has a first end 109 a adjacent the lower end of the composite structure 102 and has a second end 109 b.
After the threaded collar 108 (see FIG. 7A) is coupled or attached to the fastener 10 (see FIG. 7A), and the fastener 10 (see FIG. 7A) is secured in place in the corresponding fastener hole 11 (see FIG. 7A), the conductive fluid 120 (see FIG. 7A) is preferably injected or deposited into the fastener 10 (see FIG. 7A) with the injection tool assembly 110 (see FIG. 7A).
As shown in FIG. 7A, the fastener system 100, such as in the form of fastener system 100 a, comprises the injection tool assembly 110 having a pressure injector 126 coupled to a vessel 122 containing the conductive fluid 120. As discussed above, the conductive fluid 120 (see FIG. 7A) comprises a resin material 121 (see FIG. 7A) mixed with, containing, or filled with a conductive material 123 (see FIG. 7A) that is electrically conductive.
The injection tool assembly 110 (see FIG. 7A) may be provided with pressure and power by the pressurized conductive fluid connection 124, as shown in FIG. 5A, or another suitable power and pressure source or device. The pressure injector 126 (see FIG. 7A) and the vessel 122 (see FIG. 7A) may comprise similar components and a similar construction to the pressure injector 126 (see FIG. 5A) and the vessel 122 (see FIG. 5A) shown in FIG. 5A, or may comprise other suitable known pressure injector and vessel components used in known fluid pressure injection processes.
FIG. 7A shows arrows indicating one or more flow paths 140 of the conductive fluid 120 into the fastener 10. The flow path 140 (see FIG. 7A) of the conductive fluid 120 (see FIG. 7A) into the fastener 10 (see FIG. 7A) is first started by injection or insertion of the conductive fluid 120 (see FIG. 7A) through the opening 40 (see FIG. 7A) of the head portion 22 (see FIG. 7A) at the top of the fastener 10 (see FIG. 7A), and proceeds to flow down into and through the inner feed channel 70 (see FIG. 7A), such as in the form of inner central feed channel 70 a (see FIG. 7A). As shown in FIG. 7A, the flow paths 140 of the conductive fluid 120 then either continue down the inner feed channel 70, such as in the form of inner central feed channel 70 a, or diverge to the right and left sides through the lateral feed channels 90, and out to the opposing flutes 80 on the outer surface 64 of the shaft body 20 and extending along the outer surface 32 of the head portion 22.
As shown in FIG. 7A, the conductive fluid 120 is transported and deposited via the at least one inner feed channel 70, such as in the form of inner central feed channel 70 a, the one or more lateral feed channels 90, and the plurality of flutes 80 of the fastener 10, to one or more areas 144, or gaps, between the outer surface 64 of the fastener 10 and the inner surface 142 of the corresponding fastener hole 11 of the composite structure 102. When the conductive fluid 120 (see FIG. 7A) flows to and is deposited in the areas 144, or gaps, the conductive fluid 120 (see FIG. 7A) conforms to the shape of the areas 144, or gaps, and functions as a conforming conductive fluid 120 a (see FIG. 7A). As shown in FIG. 7A, when the conductive fluid 120 is injected into the fastener 10 and the areas 144, the fastener 10 has a conformal clearance fit 146 within the composite structure 102.
The conductive fluid 120 (see FIGS. 5A, 6, 7A) preferably flows around the exposed tips 105 b (see FIG. 7A) of the carbon fibers 105 a (see FIG. 7A) of the composite material in the corresponding fastener hole 11 (see FIG. 7A) of the composite structure 102 (see FIG. 7A), to provide sufficient electrical connection with the composite structure 102 (see FIG. 7A) without crushing, breaking, or damaging the exposed tips 105 b (see FIG. 7A) of the carbon fibers 105 a (see FIG. 7A).
Once a sufficient amount of the conductive fluid 120 (see FIG. 7A) is injected or inserted into the fastener 10 (see FIG. 7A) and into the areas 144 (see FIG. 7A), or gaps, around the shaft body 20 (see FIG. 7A) and the head portion 22 (see FIG. 7A) of the fastener 10, the fastener 10 (see FIG. 7A) with the injected conductive fluid 120 (see FIG. 7A) is preferably cured. The curing may be performed using a known curing process, such as an autoclave curing process, a vacuum bag curing process, a combination autoclave and vacuum bagging curing process, a compression mold curing process, a resin transfer molding process, a room temperature curing process, or another suitable curing process. The curing may take place at an elevated, effective temperature or effective heat and/or effective pressure for an effective period of time, as required per material specifications to effectively cure a chosen conductive fluid 120 (see FIGS. 5A, 6, 7A). During curing, the conductive fluid 120 (see FIGS. 5A, 6, 7A) hardens, where deposited, in and around the fastener 10 (see FIGS. 5A, 6, 7A). The curing temperature or heat and/or pressure needed depends on the type of conductive fluid 120 (see FIG. 7A) chosen to be injected into the fastener 10 (see FIG. 7A), and may thus vary. As used herein, “curing” means“curing” means undergoing a full or partial hardening process, with or without heat, and includes precuring or precured resins.
The fastener 10 (see FIGS. 1A, 2A, 3A) comprises a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A), that when used with the conductive fluid 120 (see FIGS. 5A, 6, 7A), provides electrical conductivity and good electrical contact with composite joints 107 (see FIGS. 5A, 6) of the composite structure 102 (see FIGS. 5A, 6, 7A), such as aircraft composite structures 102 b (see FIG. 9) of the aircraft 200 a (see FIG. 9). The conductive fluid 120 (see FIG. 7A) preferably provides electrical contact, and may provide improved or enhanced electrical contact between carbon fibers 105 a (see FIG. 7A) of the composite structure 102 (see FIG. 7A) and the fastener 10 (see FIG. 7A) installed in the corresponding fastener hole 11 (see FIG. 7A) of the composite structure 102 (see FIG. 7A). This preferably results in the fastener system 100 (see FIG. 7A) providing electrical contact with the composite structure 102 (see FIG. 7A), and, in turn, preferably provides electrical conductivity, and may provide improved electrical conductivity, and dissipation of current energy 218 (see FIG. 9), which can result from or can be caused by lightning strikes 220 (see FIG. 9) to an aircraft 200 a (see FIG. 9) having the composite structure 102 (see FIGS. 7A, 9), such as an aircraft composite structure 102 b (see FIG. 9).
Now referring to FIG. 7B, FIG. 7B is a schematic diagram of a partial sectional view of the fastener system 100, such as in the form of fastener system 100 a, of FIG. 7A. FIG. 7B shows the fastener 10 installed in the composite structure 102, such as the carbon fiber reinforced plastic (CFRP) structure 102 a, after injection of the conductive fluid 120 into the fastener 10 and into the areas 144, and after cure. FIG. 7B shows the threaded portion 42 of the fastener 10 with the attached threaded collar 108 having the first end 109 a adjacent the lower end of the composite structure 102 and having the second end 109 b.
As shown in FIG. 7B, the conductive fluid 120 comprises a cured conforming conductive fluid 120 b filling the areas 144, or gaps, between the outer surface 64 of the shaft body 20 and the inner surface 142 of the corresponding fastener hole 11, and between the outer surface 32 of the head portion 22 and the inner surface 142 of the corresponding fastener hole 11, and filling the inner feed channel 70, such as in the form of inner central feed channel 70 a, the lateral feed channels 90, and the plurality of flutes 80. As shown in FIG. 7B, after conductive fluid 120 injection and cure, the fastener 10 preferably has or approaches an effective interference fit 148 within the composite structure 102. The opening 40 (see FIG. 7B) of the fastener 10 (see FIG. 7B) may be plugged, sealed, or closed with a known plug element (not shown) or other suitable sealing element or device after injection of the conductive fluid 120 (see FIG. 7B), and either prior to, or after, cure.
The net electrical effect of the fastener system 100 (see FIGS. 5A, 6, 7A) is the equivalent of a conformal clearance fit 146 (see FIG. 7A) that preferably meets or exceeds an effective interference fit 148 (see FIG. 7B) of an interference fit fastener at a reduced cost. Preferably, the one or more fasteners 10 (see FIGS. 1A, 2A, 3A) each comprise a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A) that is sleeveless, and that when used with the conductive fluid 120 (see FIGS. 5A, 6, 7A), provides or approaches an effective interference fit 148 (see FIG. 7B) with equal or greater electrical conductivity. The conductive fluid 120 (see FIG. 7A) that is pumped or injected into the areas 144 (see FIG. 7A), or gaps, creates the conformal clearance fit 146 (see FIG. 7A) that provides or approaches the effective interference fit 148 (see FIG. 7B), without crushing, breaking, or damaging the exposed tips 105 b (see FIG. 7A) of the carbon fibers 105 a (see FIG. 7A) in the corresponding fastener hole 11 (see FIG. 7A) of the composite structure 102 (see FIG. 7A).
Now referring to FIG. 8, in another embodiment there is provided a method 150 for providing to a composite structure 102 (see FIGS. 5A, 6, 7A-7B, 9) of an aircraft 200 a (see FIG. 9) improved electrical conductivity and dissipation of current energy 218 (see FIG. 9) resulting from lightning strikes 220 (see FIG. 9) to the aircraft 200 a (see FIG. 9). FIG. 8 is a flow diagram showing an exemplary embodiment of the method 150 of the disclosure.
As shown in FIG. 8, the method 150 comprises step 152 of installing one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6, 7A-7B) into one or more corresponding fastener holes 11 (see FIGS. 5A, 6, 7A) formed in the composite structure 102 (see FIGS. 5A, 6, 7A, 9).
As discussed in detail above, each fastener 10 (see FIGS. 1A, 2A, 3A) comprises, as discussed above, an elongated shaft 14 (see FIGS. 1A, 2A, 3A) having a first end 16 (see FIGS. 1A, 2A, 3A) with a head portion 22 (see FIGS. 1A, 2A, 3A), a second end 18 (see FIGS. 1A, 2A, 3A) with a threaded portion 42 (see FIGS. 1A, 2A, 3A), and a shaft body 20 (see FIGS. 1A, 2A, 3A) disposed therebetween.
In one embodiment, the step 152 (see FIG. 8) of installing the one or more fasteners 10 (see FIGS. 1A, 3A) may comprise installing the one or more fasteners 10 (see FIGS. 1A, 3A), each with the shaft body 20 (see FIGS. 1A, 3A) having a substantially straight outer profile 66 a (see FIGS. 1A, 3A). In another embodiment, the step 152 (see FIG. 8) of installing the one or more fasteners 10 (see FIG. 2A) may comprise installing the one or more fasteners 10 (see FIG. 2A), each with the shaft body 20 (see FIG. 2B) having a tapered outer profile 66 b (see FIG. 2B).
Each fastener 10 (see FIGS. 1A, 2A, 3A) further comprises, as discussed above, at least one inner feed channel 70 (see FIG. 1B, 2B, 3B, such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), having a first end 72 (see FIGS. 1B, 2B, 3B) and a second end 74 (see FIGS. 1B, 2B, 3B). The inner feed channel 70 (see FIGS. 1B, 2B, 3B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), extends at the first end 72 (see FIGS. 1B, 2B, 3B) from the opening 40 (see FIGS. 1B, 2B, 3B) in the head portion 22 (see FIGS. 1B, 2B, 3B), through the head portion 22 and the shaft body 20 (see FIGS. 1B, 2B, 3B), along the longitudinal central axis 78 (see FIGS. 1B, 2B, 3B) of the elongated shaft 14 (see FIGS. 1B, 2B, 3B), and terminates at the second end 74 (see FIGS. 1B, 2B, 3B) at the location 76 (see FIGS. 1B, 2B, 3B) proximal to or near the threaded portion 42 (see FIGS. 1B, 2B, 3B).
Each fastener 10 (see FIGS. 1A, 2A, 3A) further comprises, as discussed above, a plurality of flutes 80 (see FIGS. 1A, 2A, 3A) formed along and circumferentially spaced around the outer surface 64 (see FIGS. 1A, 2A, 3A) of the shaft body 20 (see FIGS. 1A, 2A, 3A) and formed along and circumferentially spaced around the outer surface 32 (see FIGS. 1A, 2A, 3A) of the head portion 22 (see FIGS. 1A, 2A, 3A). As further shown in FIGS. 1A, 2A, 3A, each flute 80 has the first end 82 extending from a first location 84 proximal to the threaded portion 42, along the outer surface 64 of the shaft body 20, and radially outward along the outer surface 32 of the head portion 22.
Each fastener 10 (see FIGS. 1B, 2B, 3B) further comprises, as discussed above, one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B), or cross channels, formed laterally through the shaft body 20 (see FIGS. 1B, 2B, 3B). Each lateral feed channel 90 (see FIGS. 1B, 2B, 3B) connects the inner feed channel 70 (see FIGS. 1B, 2B, 3B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), to at least two opposing flutes 80, such as flutes 80 a, 80 b (see FIGS. 1B, 2B, 3B), on the outer surface 64 (see FIGS. 1B, 2B, 3B) of the shaft body 20 (see FIGS. 1B, 2B, 3B).
As shown in FIG. 8, the method 150 further comprises step 154 of torquing the one or more fasteners 10 (see FIGS. 1A, 2A, 3A, 5A, 6, 7A) in place in the one or more corresponding fastener holes 11 (see FIGS. 5A, 6, 7A). A threaded collar 108 (see FIG. 7A) may preferably be coupled to the threaded portion 42 (see FIG. 7A) of the fastener 10 (see FIG. 7A) to help hold the fastener 10 (see FIG. 7A) in place within the corresponding fastener hole 11 (see FIG. 7A) in the composite structure 102 (see FIG. 7A).
As shown in FIG. 8, the method 150 further comprises step 156 of injecting, under pressure, a conductive fluid 120 (see FIGS. 5A, 6A, 7A) into the opening 40 (see FIG. 7A) in the head portion 22 (see FIG. 7A) of the fastener 10 (see FIG. 7A), and through the at least one inner feed channel 70 (see FIG. 7A), such as in the form of inner central feed channel 70 a (see FIG. 7A), and through the one or more lateral feed channels 90 (see FIG. 7A) out to the plurality of flutes 80 (see FIG. 7A).
The step 156 (see FIG. 8) of injecting, under pressure, the conductive fluid 120 (see FIGS. 5A, 6) preferably comprises using an injection tool assembly 110 (see FIGS. 5A, 6) to inject the conductive fluid 120 (see FIGS. 5A, 6) into the fastener 10 (see FIGS. 5A, 6). As shown in FIGS. 5A and 6, the injection tool assembly 110 comprises a vessel 122 containing the conductive fluid 120. The vessel 122 (see FIGS. 5A, 6) is preferably configured for coupling to the fastener 10 (see FIGS. 1A, 2A, 3A, 5A, 6). As shown in FIGS. 5A, 6, the injection tool assembly 110 further comprises a pressure injector 126 coupled to the vessel 122, and the pressure injector 126 is preferably configured to couple to the opening 40 in the head portion 22 of the fastener 10. The vessel 122 (see FIG. 7A) may also be configured to couple to the opening 40 (see FIG. 7A). The pressure injector 126 (see FIGS. 5A, 6, 7A) is preferably configured to inject the conductive fluid 120 (see FIGS. 5A, 6, 7A), under pressure, into the fastener 10 (see FIGS. 5A, 6, 7A).
The step 156 (see FIG. 8) of injecting, under pressure, the conductive fluid 120 (see FIGS. 5A, 6, 7A), further comprises injecting the conductive fluid 120 (see FIGS. 5A, 6, 7A) comprising a resin material 121 (see FIG. 7A) mixed with a conductive material 123 (see FIG. 7A) that is electrically conductive. As discussed above, exemplary resin materials 121 (see FIG. 7A), or binding resin materials or resin systems, for the conductive fluid 120 (see FIGS. 5A, 6, 7A) comprise epoxy resins, bismaleimide (BMI) resins, phenolic resins, and cyanate ester resins, and exemplary conductive materials 123 (see FIG. 7A) for the conductive fluid 120 (see FIGS. 5A, 6, 7A) comprise carbon nanotubes, chopped carbon fibers, silver particles, and the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Exemplary conductive fluids 120 (see FIGS. 5A, 6, 7A) comprise an epoxy resin doped with silver particles; a bismaleimide (BMI) resin doped with silver particles; a phenolic resin doped with silver particles; a cyanate ester resin doped with silver particles; an epoxy resin doped with carbon nanotubes; a bismaleimide (BMI) resin doped with carbon nanotubes; a phenolic resin doped with carbon nanotubes; a cyanate ester resin doped with carbon nanotubes; an epoxy resin with chopped carbon fibers; a bismaleimide (BMI) resin with chopped carbon fibers; a phenolic resin with chopped carbon fibers; a cyanate ester resin with chopped carbon fibers; and a resin with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS).
The step 156 (see FIG. 8) of injecting, under pressure, the conductive fluid 120 (see FIGS. 5A, 6, 7A), further comprises selecting the conductive fluid 120 (see FIGS. 5A, 6, 7A), so that a coefficient of thermal expansion (CTE) of the conductive fluid 120 (see FIGS. 5A, 6, 7A) substantially matches a coefficient of thermal expansion (CTE) of the composite structure 102 (see FIGS. 5A, 6, 7A) in contact with the conductive fluid 120 (see FIGS. 5A, 6, 7A). Further, in addition to similar CTEs and expansion characteristics, preferably, the resin material 121 (see FIG. 7A), or binding resin material or resin system, of the conductive fluid 120 (see FIGS. 5A, 6, 7A) has similar chemical properties and similar structural properties as the matrix material 104 (see FIGS. 5A, 6, 7A), such as the resin matrix 104 a (see FIGS. 5A, 6, 7A) of the composite structure 102 (see FIGS. 5A, 6), such as the carbon fiber reinforced plastic (CFRP) structure 102 a (see FIGS. 5A, 6).
In one embodiment, as shown in FIG. 5A, the step 152 (see FIG. 8) of installing the one or more fasteners 10 further comprises installing one or more fasteners 10 each with the plurality of flutes 80 terminating at a second location 86 a (see FIG. 1A) proximal to the outer periphery 38 (see also FIG. 1A) of the head portion 22, and wherein the step 156 (see FIG. 8) of injecting, under pressure, the conductive fluid 120, further comprises injecting the conductive fluid 120 through the opening 40 of the fastener 10, having the plurality of flutes 80 terminating at the second location 86 a (see FIG. 1A) proximal to the outer periphery 38 (see also FIG. 1A) of the head portion 22, and into the inner feed channel 70 (see FIG. 1B), such as in the form of inner central feed channel 70 a (see FIG. 1B), of the fastener 10.
In another embodiment, as shown in FIG. 6, the step 152 (see FIG. 8) of installing the one or more fasteners 10 comprises installing one or more fasteners 10 each with the plurality of flutes 80 terminating at periphery openings 86 b (see FIG. 3A) at the outer periphery 38 (see also FIG. 3A) of the head portion 22, i.e., radial feed channels 89 (see also FIG. 3A), and wherein the step 156 (see FIG. 8) of injecting, under pressure, the conductive fluid 120, further comprises injecting the conductive fluid 120 through each periphery openings 86 b (see FIG. 3A) and along the plurality of flutes 80. Thus, in addition to transporting the conductive fluid 120 (see FIG. 6) through the opening 40 (see FIG. 6) of the fastener 10 (see FIG. 6) and into the inner feed channel 70 (see FIG. 6), such as in the form of inner central feed channel 70 a (see FIG. 6), of the fastener 10 (see FIG. 6), this embodiment also transports the conductive fluid 120 (see FIG. 6) through the radial feed channel 89 (see FIGS. 3A, 6) formed by the periphery openings 86 b (see FIGS. 3A) and the plurality of flutes 80 (see FIGS. 3A, 6).
As shown in FIG. 8, the method 150 further comprises step 158 of depositing or transporting the conductive fluid 120 (see FIG. 7A) to one or more areas 144 (see FIG. 7A) or gaps between an outer surface 64 (see FIG. 7A) of the fastener 10 (see FIG. 7A) and an inner surface 142 (see FIG. 7A) of the corresponding fastener hole 11 (see FIG. 7A) of the composite structure 102 (see FIG. 7A). When the conductive fluid 120 (see FIG. 7A) flows to and is deposited to and in the areas 144, the conductive fluid 120 (see FIG. 7A) conforms to the shape of the areas 144 and functions as a conforming conductive fluid 120 a (see FIG. 7A), and the fastener 10 (see FIG. 7A) has a conformal clearance fit 146 (see FIG. 7A) within the composite structure 102 (see FIG. 7A).
As shown in FIG. 8, the method 150 further comprises step 160 of curing the composite structure 102 (see FIG. 7B) with the one or more fasteners 10 (see FIG. 7B) installed in the composite structure 102 (see FIG. 7B) to obtain a cured conforming conductive fluid 120 b (see FIG. 7B). The curing step 160 (see FIG. 8) may be performed using a known curing process, such as an autoclave curing process, a vacuum bag curing process, a combination autoclave and vacuum bagging curing process, a compression mold curing process, a resin transfer molding process, a room temperature curing process, or another suitable curing process. As discussed above, the curing may take place at an elevated, effective temperature or effective heat and/or effective pressure for an effective period of time, as required per material specifications to effectively cure a chosen conductive fluid 120 (see FIGS. 5A, 6, 7A). The curing temperature or heat and/or pressure needed depends on the type of conductive fluid 120 (see FIG. 7A) chosen to be injected into the fastener 10 (see FIG. 7A), and may thus vary.
After injection and cure of the conductive fluid 120 (see FIG. 7B), the fastener 10 (see FIG. 7B) preferably has an effective interference fit 148 (see FIG. 7B) within the composite structure 102 (see FIG. 7B).
As shown in FIG. 8, the method 150 further comprises step 162 of providing electrical contact, and may provide improved or enhanced electrical contact, between carbon fibers 105 a (see FIG. 7A) of the composite structure 102 (see FIG. 7A) and the fastener 10 (see FIG. 7A) installed in the corresponding fastener hole 11 (see FIG. 7A), to obtain electrical conductivity and dissipation of current energy 218 (see FIG. 9), resulting from lightning strikes 220 (see FIG. 9) to the aircraft 200 a (see FIG. 9). Preferably, the one or more fasteners 10 (see FIGS. 1A, 2A, 3A) each comprise a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A) used with the conductive fluid 120 (see FIGS. 5A, 6, 7A), to obtain an effective interference fit 148 (see FIG. 7B) with an equal or greater electrical conductivity than a standard interference fit fastener.
Now referring to FIG. 9, FIG. 9 is an illustration of a perspective view of an air vehicle 200, such as an aircraft 200 a, that may incorporate one or more composite structures 102, such as, for example, one or more aircraft composite structures 102 b, having embodiments of the fasteners 10 (see FIGS. 1A, 2A, 3A) of the disclosure. Preferably, the composite structures 102 (see FIG. 9) comprise carbon fiber reinforced plastic (CFRP) structures 102 a (see FIGS. 5A, 6, 7A). As shown in FIG. 9, the aircraft 200 a comprises such components as a fuselage 202, a nose 204, a flight deck 206, wings 208, one or more propulsion units 210 or engines, and a tail 212 comprising a vertical stabilizer 214 and horizontal stabilizers 216.
Although the air vehicle 200, such as aircraft 200 a, shown in FIG. 9 is generally representative of a commercial passenger aircraft having one or more composite structures 102, the teachings of the disclosed embodiments may be applied to other passenger aircraft. For example, the teachings of the disclosed embodiments may be applied to cargo aircraft, military aircraft, rotorcraft, and other types of aircraft or aerial vehicles, as well as aerospace vehicles, satellites, space launch vehicles, rockets, and other aerospace vehicles.
Now referring to FIGS. 10-11, FIG. 10 is a flow diagram of an aircraft manufacturing and service method 300. FIG. 11 is a block diagram of an aircraft 320. Referring to FIGS. 10-11, embodiments of the disclosure may be described in the context of the aircraft manufacturing and service method 300 as shown in FIG. 10, and the aircraft 320 as shown in FIG. 11.
As shown in FIG. 10, during pre-production, exemplary aircraft manufacturing and service method 300 may include specification and design 302 of the aircraft 320 (see FIG. 11) and material procurement 304. During manufacturing, component and subassembly manufacturing 306 (see FIG. 10) and system integration 308 (see FIG. 10) of the aircraft 320 (see FIG. 11) takes place. Thereafter, the aircraft 320 (see FIG. 11) may go through certification and delivery 310 (see FIG. 10) in order to be placed in service 312 (see FIG. 10). While in service 312 (see FIG. 10) by a customer, the aircraft 320 (see FIG. 11) may be scheduled for routine maintenance and service 314 (see FIG. 10) which may also include modification, reconfiguration, refurbishment, and other suitable services.
Each of the processes of the aircraft manufacturing and service method 300 (see FIG. 10) may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors. A third party may include, without limitation, any number of vendors, subcontractors, and suppliers. An operator may include an airline, leasing company, military entity, service organization, and other suitable operators.
As shown in FIG. 11, the aircraft 320 produced by the exemplary aircraft manufacturing and service method 300 (see FIG. 10) may include an airframe 322 with a plurality of systems 324 and an interior 326. As further shown in FIG. 11, examples of the plurality of systems 324 may include one or more of a propulsion system 328, an electrical system 330, a hydraulic system 332, and an environmental system 334. Any number of other systems may be included. Although an aerospace example is shown, the principles of the disclosure may be applied to other industries, such as the automotive industry.
Methods and systems embodied herein may be employed during any one or more of the stages of the aircraft manufacturing and service method 300 (see FIG. 10). For example, components or subassemblies corresponding to component and subassembly manufacturing 306 (see FIG. 10) may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 320 (see FIG. 11) is in service 312 (see FIG. 10). Also, one or more apparatus embodiments, method embodiments, or a combination thereof, may be utilized during component and subassembly manufacturing 306 (see FIG. 10) and system integration 308 (see FIG. 10), for example, by substantially expediting assembly of or reducing the cost of the aircraft 320 (see FIG. 11). Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof, may be utilized while the aircraft 320 (see FIG. 11) is in service 312 (see FIG. 10), for example and without limitation, to maintenance and service 314 (see FIG. 10).
Disclosed embodiments of the fastener 10 (see FIGS. 1A, 2A, 3A), the fastener system 100 (see FIGS. 5A, 6, 7A), and the method 150 (see FIG. 8) provide a conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A) having an inner feed channel 70 (see FIGS. 1B, 2B, 3B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B), and a plurality of flutes 80 (see FIGS. 1A, 2A, 3A), configured to deposit a conductive fluid 120 (see FIGS. 5A, 6, 7A) between the fastener 10 and the inner surface 142 (see FIG. 7A) of the corresponding fastener hole 11 (see FIG. 7A). The features of the inner feed channel 70 (see FIGS. 1B, 2B, 3B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), the one or more lateral feed channels 90 (see FIGS. 1B, 2B, 3B), and the plurality of flutes 80 (see FIGS. 1A, 2A, 3A) provide flow paths 140 (see FIG. 7B) for injecting and depositing the conductive fluid 120 (see FIGS. 5A, 6, 7A) in and to the one or more areas 144 (see FIG. 7A), or gaps, and surfaces surrounding the fastener 10 (see FIGS. 5A, 6, 7A), for the purpose of improving the current carrying capacity of the fastener 10 (see FIGS. 5A, 6, 7A), in lieu of sleeved interference fit fasteners and sleeves for interference fit fasteners. The structural characteristics of the novel and nonobvious fastener 10 (see FIGS. 1A, 2A, 3A) allow for the resin material 121 (see FIG. 7A) and conductive material 123 (see FIG. 7A) of the conductive fluid 120 (see FIGS. 5A, 6, 7A) to be inserted or injected within the fastener 10 (see FIGS. 1A, 2A, 3A), as well as the surrounding areas 144 (see FIG. 7A), or gaps, and surfaces around the fastener 10 (see FIG. 7A), to provide additional structural support, as well as conductivity, between the fastener (see FIG. 7A) and the composite structure 102 (see FIG. 7A). The plurality of flutes 80 (see FIGS. 1A, 2A, 3A) and the inner feed channel 70 (see FIGS. 1B, 2B, 3B), such as in the form of inner central feed channel 70 a (see FIGS. 1B, 2B, 3B), allow the fastener 10 (see FIGS. 1A, 2A, 3A) to be easily inserted into a corresponding fastener hole 11 (see FIGS. 5A, 6, 7A), such as a clearance fit hole, in a composite structure 102 (see FIGS. 5A, 6, 7A), and subsequently filled with the conductive fluid 120 (see FIG. 7A) to achieve enhanced electrical conductivity in the areas 144 (see FIGS. 7A-7B) between the fastener 10 (see FIGS. 7A-7B) and the inner surface 142 (see FIGS. 7A-7B) of the corresponding fastener hole 11 (see FIGS. 7A-7B) of the composite structure 102 (see FIGS. 7A-7B), for example, a fastener-to-composite structure interface.
In addition, disclosed embodiments of the fastener 10 (see FIGS. 1A, 2A, 3A), the fastener system 100 (see FIGS. 5A, 6, 7A), and the method 150 (see FIG. 8) provide for an inexpensive, fluted, sleeveless, conformal clearance fit fastener 12 (see FIGS. 1A, 2A, 3A) that is used in conjunction with the conductive fluid 120 (see FIGS. 5A, 6, 7A) to yield the equivalent, or better, electrical conductivity than that of known interference fit fasteners. The easy to install fasteners 10 (see FIGS. 1A, 2A, 3A) provide good electrical contact and good electrical conductivity with the composite structures 102 (see FIGS. 5A, 6, 7A) the fasteners 10 (see FIGS. 1A, 2A, 3A) are inserted within, for example, aircraft composite wing skins. This, in turn, may reduce substructure current, may reduce the possibility of discharge or sparking in aircraft fuel tanks, and may reduce the time, labor, and expense to apply electrically insulating sealants and to install fastener cap seals currently employed to ameliorate these unwanted effects.
Moreover, the fastener 10 (see FIGS. 1A, 2A, 3A), the fastener system 100 (see FIGS. 5A, 6, 7A), and the method 150 (see FIG. 8) may provide for a reduced overall weight of an air vehicle 200 (see FIG. 9), such as an aircraft 200 a (see FIG. 9), by eliminating or minimizing the use of heavy electrically insulating sealants on the fasteners, for example, as used in aircraft fuel tanks, for protection against lightning strikes 220 (see FIG. 9), by eliminating or minimizing the use of sleeved fasteners, such as interference fit fasteners with sleeves that may add weight, and by eliminating or minimizing the use of numerous fastener cap seals on fasteners that may add weight. Further, the fastener 10 (see FIGS. 1A, 2A, 3A), the fastener system 100 (see FIGS. 5A, 6, 7A), and the method 150 (see FIG. 8), may reduce the cost of lightning mitigation on composite structures 102 (see FIG. 9) of aircraft 200 a (see FIG. 9) by employing the less expensive fasteners 10 (see FIGS. 1A, 2A, 3A) disclosed herein that provide equivalent or better electrical connection to composite structures 102 (see FIGS. 5A, 6, 7A), such as aircraft composite wing skins. The cost of secondary sealants and fastener cap seals may also be reduced with the disclosed fasteners 10 (see FIGS. 1A, 2A, 3A) and fastener system 100 (see FIGS. 5A, 6, 7A).
Further, disclosed embodiments of the fastener 10 (see FIGS. 1A, 2A, 3A), the fastener system 100 (see FIGS. 5A, 6, 7A), and the method 150 (see FIG. 8), may also facilitate and enhance the reliability of reworked joints 107 (see FIGS. 5A, 6), since any damaged fasteners may be removed and replaced with new fasteners 10 (see FIGS. 1A, 2A, 3A) of the same size and configuration, without the need for re-drilling oversized fastener holes to accommodate interference fit installation of larger diameter fasteners.
Many modifications and other embodiments of the disclosure will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. The embodiments described herein are meant to be illustrative and are not intended to be limiting or exhaustive. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (20)

What is claimed is:
1. A fastener comprising:
an elongated shaft having a first end, a second end, and a shaft body disposed between the first end and the second end;
a head portion disposed at the first end;
a threaded portion disposed at the second end;
at least one inner feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion;
a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion, each flute having a first end extending from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion; and
one or more lateral feed channels formed laterally through the shaft body, each lateral feed channel connecting the inner feed channel to at least two opposing flutes on the outer surface of the shaft body.
2. The fastener of claim 1 wherein the shaft body has a substantially straight outer profile.
3. The fastener of claim 1 wherein the shaft body has a tapered outer profile.
4. The fastener of claim 1 wherein when the fastener is installed into a corresponding fastener hole, the at least one inner feed channel, the one or more lateral feed channels, and the plurality of flutes are configured to transport and deposit a conductive fluid injected into the fastener, to one or more areas between an outer surface of the fastener and inner surface of the corresponding fastener hole.
5. The fastener of claim 1 wherein the elongated shaft has at least two sets of the one or more lateral feed channels formed laterally through the shaft body, the at least two sets being spaced apart from each other.
6. The fastener of claim 1 wherein each flute extends radially outward along the outer surface of the head portion and terminates at a second end, the second end comprising one of a second location proximal to an outer periphery of the head portion, and a periphery opening at the outer periphery of the head portion.
7. A fastener system for providing improved electrical contact with a composite structure, the fastener system comprising:
one or more fasteners configured for installation in one or more corresponding fastener holes formed in the composite structure, each fastener comprising:
an elongated shaft having a first end with a head portion, a second end with a threaded portion, and a shaft body disposed between the first end and the second end;
at least one inner central feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion;
a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion, each flute extending from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion; and
one or more lateral feed channels formed laterally through the shaft body, each lateral feed channel connecting the inner central feed channel to at least two opposing flutes on the outer surface of the shaft body;
an injection tool assembly configured for coupling to each of the one or more fasteners installed in the one or more corresponding fastener holes; and
a conductive fluid injected via the injection tool assembly into each fastener installed in the composite structure, the conductive fluid transported and deposited via the at least one inner central feed channel, the one or more lateral feed channels, and the plurality of flutes of each fastener, to one or more areas between an outer surface of the fastener and an inner surface of a corresponding fastener hole of the composite structure,
wherein the conductive fluid provides electrical contact between carbon fibers of the composite structure and the one or more fasteners installed in the one or more corresponding fastener holes of the composite structure, resulting in the fastener system providing electrical contact with the composite structure.
8. The system of claim 7 wherein the shaft body has an outer profile, the outer profile comprising one of a substantially straight outer profile, and a tapered outer profile.
9. The system of claim 7 wherein the injection tool assembly comprises a vessel containing the conductive fluid, the vessel configured for coupling to the opening in the head portion of the fastener, and wherein the injection tool assembly further comprises a pressure injector coupled to the vessel and to the opening in the head portion of the fastener, the pressure injector configured to inject the conductive fluid, under pressure, into the fastener.
10. The system of claim 7 wherein the conductive fluid comprises a resin material mixed with a conductive material that is electrically conductive.
11. The system of claim 7 wherein the conductive fluid is selected so that a coefficient of thermal expansion of the conductive fluid substantially matches a coefficient of thermal expansion of the composite structure in contact with the conductive fluid.
12. The system of claim 7 wherein each flute extends radially outward along the outer surface of the head portion and terminates at a second end, the second end comprising one of a second location proximal to an outer periphery of the head portion, and a periphery opening at the outer periphery of the head portion.
13. The system of claim 7 wherein the composite structure comprises an aircraft composite structure, and wherein each of the one or more fasteners comprises a conformal clearance fit fastener, that when used with the conductive fluid, provides electrical contact with composite joints of the aircraft composite structure.
14. A method for providing to a composite structure of an aircraft improved electrical conductivity and dissipation of current energy resulting from lightning strikes to the aircraft, the method comprising the steps of:
installing one or more fasteners into one or more corresponding fastener holes formed in the composite structure, each fastener comprising:
an elongated shaft having a first end with a head portion, a second end with a threaded portion, and a shaft body disposed therebetween;
at least one inner feed channel extending from an opening in the head portion, through the head portion and the shaft body, along a longitudinal central axis of the elongated shaft, and terminating proximal to the threaded portion;
a plurality of flutes formed along and circumferentially spaced around an outer surface of the shaft body and an outer surface of the head portion, each flute extending from a first location proximal to the threaded portion, along the outer surface of the shaft body, and radially outward along the outer surface of the head portion; and
one or more lateral feed channels formed laterally through the shaft body, each lateral feed channel connecting the inner feed channel to at least two opposing flutes on the outer surface of the shaft body;
torquing the one or more fasteners in place in the one or more corresponding fastener holes;
injecting, under pressure, a conductive fluid into the opening in the head portion of each fastener, and through the at least one inner feed channel and through at least one of the one or more lateral feed channels;
depositing the conductive fluid to one or more areas between an outer surface of each fastener and an inner surface of each corresponding fastener hole of the composite structure;
curing the composite structure with the one or more fasteners installed in the composite structure; and
providing electrical contact between carbon fibers of the composite structure and each fastener installed in each corresponding fastener hole, to obtain electrical conductivity and dissipation of current energy, resulting from lightning strikes to the aircraft.
15. The method of claim 14 wherein the installing the one or more fasteners comprises installing the one or more fasteners, each with the shaft body having a substantially straight outer profile.
16. The method of claim 14 wherein the installing the one or more fasteners comprises installing the one or more fasteners, each with the shaft body having a tapered outer profile.
17. The method of claim 14 wherein the installing the one or more fasteners comprises installing one or more fasteners, each with the plurality of flutes each terminating at a periphery opening at an outer periphery of the head portion, and wherein the injecting, under pressure, the conductive fluid further comprises injecting the conductive fluid through each periphery opening and along the plurality of flutes.
18. The method of claim 14 wherein the injecting, under pressure, the conductive fluid comprises using an injection tool assembly to inject the conductive fluid into the fastener, the injection tool assembly comprising a vessel containing the conductive fluid, the vessel configured for coupling to the fastener, and wherein the injection tool assembly further comprises a pressure injector coupled to the vessel and configured to couple to the opening in the head portion of the fastener, the pressure injector configured to inject the conductive fluid, under pressure, into the fastener.
19. The method of claim 14 wherein the injecting, under pressure, the conductive fluid comprises injecting the conductive fluid comprising a resin material mixed with a conductive material that is electrically conductive.
20. The method of claim 14 wherein the injecting, under pressure, the conductive fluid comprises selecting the conductive fluid so that a coefficient of thermal expansion of the conductive fluid substantially matches a coefficient of thermal expansion of the composite structure in contact with the conductive fluid.
US15/087,841 2016-03-31 2016-03-31 Conformal clearance fit fastener, fastener system, and method for composite structures Active 2038-06-06 US10385908B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/087,841 US10385908B2 (en) 2016-03-31 2016-03-31 Conformal clearance fit fastener, fastener system, and method for composite structures
EP17160039.8A EP3225555B1 (en) 2016-03-31 2017-03-09 Conformal clearance fit fastener, fastener system, and method for composite structures
JP2017052967A JP6872942B2 (en) 2016-03-31 2017-03-17 Conformal crevice fitting fasteners, fastener systems, and methods for composite structures
CN201710191190.3A CN107269655A (en) 2016-03-31 2017-03-28 Conformal clearance fit fastener, closure system and method for composite construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/087,841 US10385908B2 (en) 2016-03-31 2016-03-31 Conformal clearance fit fastener, fastener system, and method for composite structures

Publications (2)

Publication Number Publication Date
US20170284449A1 US20170284449A1 (en) 2017-10-05
US10385908B2 true US10385908B2 (en) 2019-08-20

Family

ID=58266432

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/087,841 Active 2038-06-06 US10385908B2 (en) 2016-03-31 2016-03-31 Conformal clearance fit fastener, fastener system, and method for composite structures

Country Status (4)

Country Link
US (1) US10385908B2 (en)
EP (1) EP3225555B1 (en)
JP (1) JP6872942B2 (en)
CN (1) CN107269655A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110514B2 (en) * 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
WO2021183179A1 (en) * 2020-03-12 2021-09-16 United States Gypsum Company Insertion and removal tool for gypsum mixer rotor pin and gypsum mixer with such pin
US11306758B2 (en) * 2018-09-05 2022-04-19 Stryker European Holdings I, Llc Connecting member and connecting method for redirecting flowable material
IT202100021842A1 (en) * 2021-08-12 2023-02-12 Aluvetro S R L FIXING PLUG

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464658B2 (en) * 2012-06-11 2016-10-11 Board Of Trustees Of Michigan State University Hybrid fastener
US10836473B2 (en) * 2017-10-24 2020-11-17 Embraer S.A. Mechanisms, systems and methods to allow step-ajdustment of aerodynamic surfaces
JP7093655B2 (en) * 2018-03-20 2022-06-30 三菱重工業株式会社 Composite material structure and method for manufacturing composite material structure
US11193520B2 (en) * 2018-04-17 2021-12-07 GM Global Technology Operations LLC Fastener assembly for use with one or more workpieces
US11300147B2 (en) 2018-07-03 2022-04-12 Roller Bearing Company Of America, Inc. Sleeves for interference fasteners
US11225989B2 (en) * 2018-09-20 2022-01-18 The Boeing Company Indexing pins and indexing clamps for aligning a first body and a second body of a structure
US10690160B2 (en) 2018-09-20 2020-06-23 The Boeing Company Methods of aligning a first body and a second body of a structure
US10711815B2 (en) 2018-09-20 2020-07-14 The Boeing Company Indexing pins, indexing clamps, and methods of aligning a first body and a second body of a structure
FR3089891B1 (en) * 2018-12-18 2020-11-27 Stelia Aerospace MODULAR DASHBOARD
ES2897445T3 (en) * 2019-06-14 2022-03-01 Safran Landing Systems Uk Ltd Self-lubricating driver bearing
CN112620182B (en) * 2020-12-21 2022-09-02 三明学院 Sheet metal part
CN113565851B (en) * 2021-06-03 2023-05-02 上海达立建筑科技有限公司 Prevent that bolt hole cracks overflow glues and repair seam formula bolt
DE102022203669A1 (en) 2022-04-12 2023-10-12 Volkswagen Aktiengesellschaft Fastening device, screw connection, motor vehicle and method for connecting components
US11851213B1 (en) * 2022-10-14 2023-12-26 The Boeing Company Methods and structural gap filler for one-up assembly

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1273604A (en) 1968-10-12 1972-05-10 Alfons Harke Improvements in or relating to the anchoring of attachment members in walls
DE3545849A1 (en) 1985-12-23 1987-07-02 Gerhard Briem Sealable screw connection
US4755904A (en) * 1986-06-06 1988-07-05 The Boeing Company Lightning protection system for conductive composite material structure
US4860513A (en) * 1988-01-25 1989-08-29 Whitman Robert E Roofing fastener
GB2226801A (en) 1988-12-01 1990-07-11 Atomic Energy Authority Uk Screw fasteners for lightning strike protection of composite structures in aircraft
US4990041A (en) * 1986-07-14 1991-02-05 Emanuel Winston Fastening device
US5143498A (en) * 1990-06-21 1992-09-01 Whitman Robert E Roofing fastening device
US5249899A (en) * 1992-10-28 1993-10-05 Wilson Robert L Head bolt and driver therefore
US5452977A (en) * 1993-10-04 1995-09-26 Terrizzi; A. Scott Fastener system
US5709356A (en) * 1994-04-15 1998-01-20 Aerospatiale Societe Nationale Industrielle Anti-spark structure, in particular for aircraft
US6604899B2 (en) * 2001-08-15 2003-08-12 Frank L. Kubler Sealable fastener with circumferential sealant channel and sealant delivery passageway for delivering sealant into the circumferential sealant channel
US8079794B2 (en) * 2005-04-07 2011-12-20 Hettich-Heinze Gmbh & Co. Kg Connection insert
US8186614B2 (en) * 2009-02-27 2012-05-29 Airbus Operations S.L. Protection against direct lightning strikes in riveted areas of CFRP panels
US8382808B2 (en) * 1999-10-12 2013-02-26 Biedermann Technologies Gmbh & Co. Kg Bone screw
US8439220B2 (en) * 2006-07-11 2013-05-14 Alstom Technology Ltd Cross flange seal for a pressure vessel, especially for a turbomachine casing
US20130259604A1 (en) 2012-03-29 2013-10-03 The Boeing Company Fastener systems that provide eme protection
US8556558B1 (en) * 2006-07-31 2013-10-15 Christopher M. Hunt Fastener for cementitious materials
US20130330145A1 (en) 2012-06-11 2013-12-12 Board Of Trustees Of Michigan State University Hybrid fastener

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1077921B (en) * 1954-09-28 1960-03-17 Karl Erik Georg Wilborg Method for securing mutually engaging, internally and externally threaded parts
US4484132A (en) * 1981-03-09 1984-11-20 Crites Nelson A Crack detecting system
JPH11325019A (en) * 1998-05-19 1999-11-26 Ishihara Akio Synthetic resin screw
DE112008001148A5 (en) * 2007-07-02 2010-08-05 Contitech Ag Strain sensor and sensor arrangement for this purpose
DE102010001144A1 (en) * 2010-01-22 2011-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Mechanical connection component e.g. screw, for monitoring e.g. screw connections in bridge, has wireless interface for wireless detection of information describing mechanical load of component based on electrical property of sensor layer
CN202251313U (en) * 2011-08-25 2012-05-30 凯盛重工有限公司 Locking multi-channel lubricating pin shaft

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1273604A (en) 1968-10-12 1972-05-10 Alfons Harke Improvements in or relating to the anchoring of attachment members in walls
DE3545849A1 (en) 1985-12-23 1987-07-02 Gerhard Briem Sealable screw connection
US4755904A (en) * 1986-06-06 1988-07-05 The Boeing Company Lightning protection system for conductive composite material structure
US4990041A (en) * 1986-07-14 1991-02-05 Emanuel Winston Fastening device
US4860513A (en) * 1988-01-25 1989-08-29 Whitman Robert E Roofing fastener
GB2226801A (en) 1988-12-01 1990-07-11 Atomic Energy Authority Uk Screw fasteners for lightning strike protection of composite structures in aircraft
US5143498A (en) * 1990-06-21 1992-09-01 Whitman Robert E Roofing fastening device
US5249899A (en) * 1992-10-28 1993-10-05 Wilson Robert L Head bolt and driver therefore
US5452977A (en) * 1993-10-04 1995-09-26 Terrizzi; A. Scott Fastener system
US5709356A (en) * 1994-04-15 1998-01-20 Aerospatiale Societe Nationale Industrielle Anti-spark structure, in particular for aircraft
US8382808B2 (en) * 1999-10-12 2013-02-26 Biedermann Technologies Gmbh & Co. Kg Bone screw
US6604899B2 (en) * 2001-08-15 2003-08-12 Frank L. Kubler Sealable fastener with circumferential sealant channel and sealant delivery passageway for delivering sealant into the circumferential sealant channel
US8079794B2 (en) * 2005-04-07 2011-12-20 Hettich-Heinze Gmbh & Co. Kg Connection insert
US8439220B2 (en) * 2006-07-11 2013-05-14 Alstom Technology Ltd Cross flange seal for a pressure vessel, especially for a turbomachine casing
US8556558B1 (en) * 2006-07-31 2013-10-15 Christopher M. Hunt Fastener for cementitious materials
US8186614B2 (en) * 2009-02-27 2012-05-29 Airbus Operations S.L. Protection against direct lightning strikes in riveted areas of CFRP panels
US20130259604A1 (en) 2012-03-29 2013-10-03 The Boeing Company Fastener systems that provide eme protection
US20130330145A1 (en) 2012-06-11 2013-12-12 Board Of Trustees Of Michigan State University Hybrid fastener

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
European Patent Office Extended European Search Report, dated Aug. 3, 2017, for counterpart EP application No. 17160039.8, 12 pages.
Gross et al., "Intermetallic and Composite Metallic Gap Filler", U.S. Appl. No. 14/614,656, filed Feb. 5, 2015, 21 pages.
Nakhjavani et al., "Lightning Damage Resistant Aircraft Skin Fasteners", U.S. Appl. No. 14/684,181, filed Apr. 10, 2015, 22 pages.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110514B2 (en) * 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11306758B2 (en) * 2018-09-05 2022-04-19 Stryker European Holdings I, Llc Connecting member and connecting method for redirecting flowable material
WO2021183179A1 (en) * 2020-03-12 2021-09-16 United States Gypsum Company Insertion and removal tool for gypsum mixer rotor pin and gypsum mixer with such pin
US11344854B2 (en) 2020-03-12 2022-05-31 Knauf Gips Kg Mixer rotor pin with hole
IT202100021842A1 (en) * 2021-08-12 2023-02-12 Aluvetro S R L FIXING PLUG
WO2023017553A1 (en) * 2021-08-12 2023-02-16 Aluvetro S.R.L. Fixing and sealing plug

Also Published As

Publication number Publication date
JP2017185995A (en) 2017-10-12
JP6872942B2 (en) 2021-05-19
CN107269655A (en) 2017-10-20
EP3225555A1 (en) 2017-10-04
EP3225555B1 (en) 2020-09-23
US20170284449A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US10385908B2 (en) Conformal clearance fit fastener, fastener system, and method for composite structures
US10087975B2 (en) Expandable, resin filled fastener, fastener system, and method for composite structures
US9463880B2 (en) Method and system of making composite structures having gap fillers with chopped fiber material
US10343372B2 (en) Composite article having multifunctional properties and method for its manufacture
US10051767B2 (en) Method and apparatus for covering a fastener system
US9140291B2 (en) Apparatus for covering a fastener system
EP2849932B1 (en) Over-molding of load-bearing composite structures
US20090032643A1 (en) Environmentally stable hybrid fabric system for exterior protection of an aircraft
US10329030B2 (en) Conductive radius filler system and method
US9845142B2 (en) Conductive thermoplastic ground plane for use in an aircraft
US20200049282A1 (en) Composite connectors and methods of manufacturing the same
US20200049283A1 (en) Composite connectors and methods of manufacturing the same
US20230160505A1 (en) Composite connectors and methods of manufacturing the same
US10737447B2 (en) Apparatus and method for forming fiber reinforced composite structures
US20140224410A1 (en) Apparatus and method for forming fiber reinforced composite structures
WO2014148963A1 (en) A method for joining a first composite structure to at least a second structure and a mechanical and/or electrical joint
EP3608093B1 (en) Composite connector and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE BOEING COMPANY, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREEGOR, ROBERT B.;LE, QUYNHGIAO N.;WHITING, BRENT A.;AND OTHERS;SIGNING DATES FROM 20160328 TO 20160331;REEL/FRAME:038165/0911

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4