US10128672B2 - Electronic device, and method controlling electronic power supply - Google Patents

Electronic device, and method controlling electronic power supply Download PDF

Info

Publication number
US10128672B2
US10128672B2 US14/684,873 US201514684873A US10128672B2 US 10128672 B2 US10128672 B2 US 10128672B2 US 201514684873 A US201514684873 A US 201514684873A US 10128672 B2 US10128672 B2 US 10128672B2
Authority
US
United States
Prior art keywords
charging
cpu
electric current
type battery
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/684,873
Other versions
US20150222136A1 (en
Inventor
Goro Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009158764A external-priority patent/JP5056805B2/en
Priority claimed from JP2009163596A external-priority patent/JP4816772B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to US14/684,873 priority Critical patent/US10128672B2/en
Publication of US20150222136A1 publication Critical patent/US20150222136A1/en
Priority to US16/159,055 priority patent/US20190044358A1/en
Application granted granted Critical
Publication of US10128672B2 publication Critical patent/US10128672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J7/0052
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • Y02D10/174

Definitions

  • the present application relates to an electronic device, which is driven by a secondary battery (a chargeable battery), and a method controlling an electronic power supply for this electronic device.
  • a secondary battery a chargeable battery
  • Patent Document 1 Japanese Unexamined Patent Application, First Publication No. 2005-173822 (hereinafter referred to as Patent Document 1).
  • the power feeding capacity of a USB is specified as a predetermined rating. Therefore, there is a problem in that an operation, which requires a large amount of electric power exceeding the predetermined rating, cannot be performed appropriately while the secondary battery is being charged via a USB cable. For example, operations such as the driving of a lens barrel cannot be performed appropriately while the secondary battery is being charged via a USB cable.
  • an object of the present invention is to provide an electronic device which appropriately controls the charging operation of a secondary battery, as well as a method for controlling an electronic power supply.
  • another object of the present invention is to provide a technology such that, while a secondary battery is being charged with an electric current at a predetermined rating, an operation which requires a large amount of electric current exceeding this predetermined rating can be executed appropriately.
  • An electric device includes: a connecting unit connected to a connection line supplying an electric power of a predetermined rating and transmitting and receiving an information; a charging unit conducting a charging of a charging battery connected to an own device, by the electric power supplied by the connection line; an electric supplying unit supplying an electric power to a recording medium storing an information; a reading-and-writing unit performing a reading-and-writing operation of the recording medium; and an electronic source controlling unit performing a control of the electric power supplied to the charging unit, when the reading-and-writing unit performs the reading-and-writing operation of the recording medium, according to an access request to the recording medium via the connection line.
  • an operation of charging a secondary battery, which drives an electronic device can be controlled appropriately.
  • a method controlling an electronic power supply is a method of controlling an electronic power supply of an electronic device including a charging unit, a reading-and-writing unit, an electric source controlling unit, and an electric power supplying unit.
  • the charging unit conducts a charging of a charging battery connected to an own device, by an electric power supplied by a connection line supplying an electric power of a predetermined rating and transmitting and receiving an information.
  • the reading-and-writing unit performs a reading-and-writing operation of a recording medium recording an information.
  • the electronic source controlling unit performs a control of the electric power supplied to the charging unit, when the reading-and-writing unit performs the reading-and-writing operation of the recording medium recording the information.
  • the power supplying unit supplies an electric power to the recording medium.
  • the reading-and-writing unit performs a reading-and-writing operation of the recording medium.
  • FIG. 1 is an overall configuration diagram of a digital camera according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart representing an operation controlling a charging of a digital camera according to the above embodiment.
  • FIG. 3A is an overall diagram of a digital camera according to a second embodiment of the present invention.
  • FIG. 3B is an overall diagram of a digital camera according to the above embodiment.
  • FIG. 3C is an overall diagram of a digital camera according to the above embodiment.
  • FIG. 4 is a functional structural diagram of a digital camera according to the above embodiment.
  • FIG. 5 is a flowchart representing an operation while charging a digital camera according to the above embodiment.
  • FIG. 1 is an overall structural diagram of a digital camera according to the present embodiment.
  • a digital camera 100 includes an imaging lens 101 , an image-capturing element 102 , an A/D (Analog/Digital) converter 103 , a CPU (Central Processing Unit) 104 , a monitor 105 , an image processing unit 106 , a buffer memory 107 , a flash ROM (Read Only Memory) 108 , a recording medium I/F (Interface) 109 , a recording medium 110 , a power circuit 111 , a charging type battery 112 , a USB I/F 113 , a bus 114 , and a DCC (Direct Current Cable) 115 .
  • A/D Analog/Digital converter
  • the digital camera 100 communicates with a host device 200 such as a PC or a printer via a USB cable 300 .
  • the digital camera 100 receives a supply of electricity from the host device 200 .
  • the A/D converter 103 converts an image of a subject, which is formed on the image-capturing element 102 through the imaging lens 101 , into a digital signal.
  • the CPU 104 executes a control of a sequence (the order of execution), an analysis of a PTP (Picture Transfer Protocol) command, and a control of the electric power supply.
  • a sequence the order of execution
  • PTP Physical Transfer Protocol
  • the monitor 105 operates as a part of a user interface by displaying letters and image information such as an operation menu of the digital camera 100 and error messages, by displaying a warning, and by displaying information on a condition.
  • the image processing unit 106 receives and displays a live view (real time) image, a confirmation image after photographing, and a photographed image stored in the recording medium 20 .
  • the live view image is obtained by performing a predetermined signal processing on a digital image signal obtained by the A/D converter 103 .
  • the buffer memory 107 stores a temporary data required for input and output.
  • the flash ROM 108 records a firmware specifying a basic sequence for controlling the digital camera 100 .
  • the flash ROM 108 stores a digital image signal created by the A/D converter 103 .
  • the recording medium I/F 109 supplies electric current to the recording medium 110 , and performs a reading-and-writing operation of the recording medium 110 according to a command by the CPU 104 .
  • the recording medium 110 is a memory card which is detachably attached to the digital camera 100 .
  • the recording medium 110 stores a digital image signal created by the A/D converter 103 .
  • the power circuit 111 charges the charging type battery 112 , and supplies electric current to each processing unit of the digital camera 100 .
  • the power circuit 111 monitors the electric voltage between the terminals of the charging type battery 112 , and determines whether the charging has been completed.
  • the power circuit 111 also determines how much battery is remaining.
  • the power circuit 111 controls the amount of electric current that is used to charge the charging type battery 112 .
  • the USB I/F 113 is connected to a USB cable.
  • the USB I/F 113 receives a command and a supply of electric current from the host device 200 .
  • the maximum amount of the supply of electric current is 500 mA.
  • the bus 114 is a common pathway through which a signal is received and transmitted among each processing unit of the digital camera 100 .
  • the DCC 115 is a common pathway through which electric power is supplied to each processing unit of the digital camera 100 .
  • the power circuit 111 of the digital camera 100 charges the charging type battery 112 with an electric current supplied by the USB cable 300 .
  • the power circuit 111 controls the electric current supplied in order to charge the charging type battery 112
  • the recording medium I/F 109 supplies electric current to the recording medium 110
  • the recording medium I/F 109 performs a reading-and-writing operation on the recording medium 110 according to a command by the CPU.
  • the electric circuit controls the electric current supplied for charging the charging type battery 112 .
  • the power circuit 111 supplies electric current to the flash ROM 108 .
  • the CPU 104 performs the reading-and-writing operation of the flash ROM.
  • the charging operation with respect to the charging type battery 112 which drives the digital camera 100 is controlled appropriately.
  • FIG. 2 is a flowchart representing an operation controlling a charging of a digital camera according to the above embodiment.
  • the USB I/F 113 of the digital camera 100 is connected to the host device 200 via the USB cable 300 (step S 1 ). Then, the CPU 104 outputs an instruction to transition to an energy saving mode (step S 2 ). During this energy saving mode, the electric source of the image-capturing element 102 , the A/D converter 103 , the monitor 105 , and the image processing unit 106 is turned off in order to increase the amount of electric current used for the charging operation.
  • the power circuit 111 switches the electric source of the electric current supplied to the digital camera 100 , to an electric current supplied from the host device 200 from the charging type battery 112 via the USB cable 300 (step S 3 ).
  • the CPU 104 determines whether there was an access request from the host device 200 via the USB I/F 113 (step S 4 ).
  • an access request refers to an access request for a reading-and-writing operation of the recording medium 110 or the flash ROM 108 of the digital camera 100 by the PTP command.
  • the access request is outputted when the user operates the host device 200 and accesses the recording medium 110 or the flash ROM 108 of the digital camera 100 via the host device 200 .
  • step S 4 When the CPU 104 determines that there was not any access request from the host device 200 (step S 4 : NO), the CPU 104 rewrites the charging condition information, which is stored in the inner memory and indicates the condition of the charging type battery 112 , to “high-speed charging condition” (step S 5 ).
  • the charging condition information is a value referring to either one of a “high-speed charging condition,” “low-speed charging condition,” or “charging completed condition.”
  • the “high-speed charging condition” is a condition in which an electric current, other than the electric current necessary for the operation of the CPU 104 , is allotted to the charging of the charging type battery 112 .
  • an electric current of 500 mA is supplied from the USB cable 300 , and an electric current of 100 mA is necessary for the operation of the CPU 104 , 400 mA of electric current is allotted to the charging of the charging type battery 112 .
  • the “low-speed charging condition” refers to a condition in which an electric current, other than an electric current necessary for the operation of the CPU 104 and an electric current allotted to the operation of the flash ROM 108 or the recording medium 110 , is allotted to the charging of the charging type battery 112 .
  • an electric current of 500 mA is supplied from the USB cable 300
  • an electric current of 100 mA is necessary for the operation of the CPU 104
  • the maximum value of the electric current of the electric source of the standard of the recording medium 110 is 200 mA
  • an electric current of 200 mA is allotted to the charging of the charging type battery 112 .
  • the “charging completed condition” refers to a condition in which the charging of the charging type battery 112 is completed, and no electric current is allotted to the charging of the charging type battery 112 .
  • the CPU 104 When the CPU 104 has rewritten the charging condition information from “low-speed charging condition” to “high-speed charging condition,” the CPU 104 outputs to the electric current 111 , a signal for changing the supply of the electric current to the charging type battery 112 to a “high-speed charging condition.” On the other hand, when the CPU 104 has rewritten the charging condition information from “high-speed charging condition” to “low-speed charging condition,” the CPU 104 outputs to the power circuit 111 , a signal for changing the supply of the electric current to the charging type battery 112 to a “low-speed charging condition.”
  • the electric current 111 controls the amount of electric current supplied to the charging type battery 112 according to a signal which was inputted and received by the CPU 104 .
  • step S 5 when the CPU 104 rewrites the charging condition information to the “high-speed charging condition,” the CPU 104 determines whether or not the charging of the charging type battery 112 has been completed (step S 6 ).
  • the determination of whether the charging has been completed is conducted by the power circuit 111 outputting a signal notifying the CPU 104 that the charging has been completed when the charging of the charging type battery 112 is complete, and by the CPU 104 determining whether or not such a signal exists.
  • step S 6 NO
  • the routine returns to step S 4 .
  • the CPU 104 determines again whether or not there is an access request by the host device 200 .
  • a procedure conducted when the CPU 104 determines that the charging of the charging type battery 112 has been completed is described later.
  • step S 4 when a determination is made in step S 4 that there is an access request from the host device 200 (step S 4 : YES), the CPU 104 rewrites the charging condition information, which is stored in the inner memory and indicates the condition of the charging type batter 112 , to “low-speed charging condition” (step S 7 ).
  • the CPU 104 when the CPU 104 has rewritten the charging condition information from “high-speed charging condition” to “low-speed charging condition,” the CPU 104 outputs to the electric current 111 , a signal for changing the supply of the electric current to the charging type battery 112 , to the “low-speed charging condition.”
  • an electric current of 500 mA is supplied from the USB cable 300 , an electric current of 100 mA is necessary for operating the CPU 104 , an electric current of 50 mA is necessary for operating the flash ROM, and an electric current of 200 mA is necessary to operate the recording medium 110 .
  • an electric current of 350 mA is allotted to the charging of the charging type battery 112 .
  • an electric current of 200 mA is allotted to the charging of the charging type battery 112 .
  • step S 7 when the charging condition information is rewritten to the “high-speed charging condition,” the CPU 104 determines whether or not the charging of the charging type battery 112 has been completed (step S 8 ).
  • step S 8 determines that the charging of the charging type battery 112 has not been completed (step S 8 : NO)
  • the CPU 104 executes an access to the flash ROM 108 or the recording medium 110 (step S 9 ).
  • the CPU 104 begins to measure the time that has elapsed from the time at which the access has been completed.
  • the CPU 104 records the information on the measured time to the inner memory.
  • step S 10 the CPU 104 again determines whether or not there is an access request from the host device 200 (step S 10 ).
  • the routine returns to step S 8 . Then, it is determined whether or not the charging has been completed, and the access is executed again.
  • step S 10 when the CPU 104 determines that there was not an access request from the host device 200 (step S 10 : NO), the CPU 104 refers to the timing information stored in the inner memory, and determines whether or not the time elapsed from the time at which the access was completed exceeds one minute (step S 11 ). When the CPU 104 determines that the elapsed time has not reached one minute (step S 11 : NO), the CPU 104 determines whether or not the charging of the charging type battery 112 has been completed (step S 12 ). When the CPU 104 determines that the charging has not been completed (step S 12 : NO), the routine returns to step S 10 . Once again, it is determined whether or not there is an access request from the host device 200 .
  • step S 11 when the CPU 104 determines that one minute has elapsed (step S 11 : YES), the CPU 104 moves the process to step S 5 , and rewrites the charging condition information to “high-speed charging condition.”
  • the CPU 104 changes the amount of electric current supplied to the charging type battery to an amount of electric current corresponding to the “high-speed charging condition.” In this way, the number of times that the condition is transitioned between the “high-speed charging condition” and the “low-speed charging condition” can be reduced.
  • step S 6 determines that the charging has been completed in step S 6 , step S 8 , and step S 12 (step S 6 : YES, step S 8 : YES, step S 12 : YES)
  • the CPU 104 rewrites the charging condition information stored in the inner memory to “charging completed condition” (step S 13 ).
  • the power circuit 111 automatically stops supplying the electric current to the charging type battery 112 .
  • step S 13 it is not necessary for the CPU 104 to output a signal to the electric current 111 for stopping the electric power supply to the charging type battery 112 .
  • the CPU 104 when the CPU 104 rewrites the charging condition information to the “charging completed condition,” the CPU 104 begins to measure the time that has elapsed since the charging condition information was thus rewritten to the “charging completed condition.” At this time, the CPU 104 records the information on the measured time to the inner memory.
  • the CPU 104 When the CPU 104 rewrites the charging condition information to the “charging completed condition,” the CPU 104 waits for the reception of the access request from the host device 200 (step S 14 ). Next, the CPU 104 determines whether or not there was an access request from the host device 200 (step S 15 ). When the CPU 104 determines that there is an access request (step S 15 : YES), the CPU 104 executes an access to the flash ROM 108 or the recording medium 110 (step S 16 ). When the CPU 104 completes the access to the flash ROM 108 or the recording medium 110 , the routine returns to step S 14 . Then, the CPU 104 waits again for a reception of an access request. In addition, when the CPU 104 completes the access to the flash ROM 108 or the recording medium 110 , the CPU 104 deletes the time information recorded in the inner memory. The CPU 104 also records the information on the elapsed time from this time.
  • step S 15 when the CPU 104 determines in step S 15 that there is no access request from the host device 200 (step S 15 : NO), the CPU 104 refers to the time information recorded in the inner memory, and determines whether the time elapsed from the access completion time exceeds 30 minutes (step S 17 ).
  • step S 11 NO
  • the routine returns to step S 14 , and waits again for a reception of an access request.
  • the CPU 104 determines that 30 minutes have elapsed from the access completion time (step S 11 : YES)
  • the CPU 104 turns off the electric source of the digital camera 100 (step S 18 ). As a result, it is possible to reduce the amount of electric current supplied to the host device 200 when there is no access to the digital camera 100 .
  • the CPU 104 made a determination in step S 6 , step S 8 , and step S 12 indicated in the flowchart shown in FIG. 2 whether or not the charging has been completed.
  • the present invention is not limited to this configuration.
  • a similar process may be executed by notifying the CPU 104 of the completion of the charging by cutting in a signal reporting the completion of the charging from the power circuit 111 .
  • the present embodiment of the present invention was applied to a digital camera was used in the above example.
  • the present invention is not limited to this configuration.
  • a similar effect may be achieved by applying the present invention to other electronic devices such as a portable phone or a music player.
  • a case using a USB cable was described as a connecting wire which can supply an electric current of a predetermined rating and can transmit and receive information as well.
  • the present invention is not limited to this configuration. It is possible to use other connection wires which enable the transmission and receiving of information as well as the supply of an electric current of a predetermined rating, such as a LAN (Local Area Network) cable.
  • LAN Local Area Network
  • the power circuit 111 reduced the maximum value of the electric current of the electric source of the standard of the recording medium 110 from the amount of electric power supplied to the charging type battery 112 .
  • the present invention is not limited by this configuration.
  • the electric circuit 11 may reduce the necessary amount of electric current of the recording medium 110 from the amount of electric power supplied to the charging type battery 112 .
  • the electric current 111 may stop the supply of the electric current to the charging type battery 112 .
  • the present embodiment was described regarding a case in which the power circuit 111 controls the amount of electric current supplied to the charging type battery 112 when the recording medium 110 or the flash ROM 108 is accessed.
  • the power circuit 111 may control the amount of electric voltage supplied to the charging type battery 112 .
  • the power circuit 111 may control the amount of electric voltage so that an electric voltage of 0.4V can be allotted for charging the charging type battery 112 .
  • the digital camera 100 includes a computer system in the interior.
  • the operation of the CPU 104 is recorded in the flash ROM 108 in the form of a program.
  • the above process is executed by the computer reading out this program and executing the program.
  • this computer program may be transmitted to a computer via a transmission network, and the computer that has received this transmission may execute this program.
  • the above program may be a program for executing a part of the feature described above.
  • the above program may be a program that realizes the above feature by being executed in combination with another program which is already recorded in the computer system. This type of program is known as a difference file (difference program).
  • FIG. 3A is a frontal perspective view when a lens barrel 2003 is being collapsed.
  • FIG. 3B is a frontal perspective view when a lens barrel 2003 is protruding.
  • FIG. 3C is a back side perspective view.
  • a frontal surface of a camera body 2001 of a digital camera 2100 includes a lens barrel 2003 , an ornamental ring 2004 , a finder object window 2005 , and a strobe window 2006 .
  • An opening-and-closing type lens barrier 2002 is provided on a frontal surface of the lens barrel 2003 .
  • a frontal surface of the ornamental ring 2004 is provided so as to be approximately on the same plane as a frontal surface of a front body of the camera body 2001 .
  • a front-most portion of the lens barrel 2003 is slightly receding from the frontal surface of the ornamental ring 2004 , during a collapsed condition (a condition in which the lens barrel 2003 is stored inside the camera body 2001 ) in which the length in the direction of the optical axis is shorter than a photographing condition.
  • the photographing condition refers to a condition during which a photograph is taken.
  • the lens barrier 2002 is closed, and a lens inside the lens barrel 2003 is protected (see FIG. 3A ).
  • the lens barrier 2002 moves along with the initial driving.
  • the lens barrier 2002 opens until the front-most surface of the lens barrel protrudes to the same plane as the front surface of the ornamental ring 2004 .
  • the lens barrier 2002 closes in combination with a final driving of the lens barrel 2003 when the lens barrel 2003 is driven to a collapsed condition from a position at which a normal photographing is made possible.
  • the upper surface of the camera body 2001 includes a release button 2007 and a power source button 2008 .
  • the back surface of the camera body 2001 includes a monitor 2009 , a finder ocular window 2010 , an operating button 2011 , and a sound reproduction unit (speaker) 2012.
  • FIG. 4 is a functional configuration diagram of the digital camera 2100 .
  • the digital camera 2100 includes a lens barrel 2003 , a monitor 2009 , a strobe 2013 , an imaging lens 2101 , an image-capturing element 2102 , an A/D (Analog/Digital) converter 2103 , a CPU (Central Processing Unit) 2104 , an image processing unit 2106 , a buffer memory 2107 , a flash ROM (Read Only Memory) 2108 , a recording medium I/F (Interface) 2109 , a recording medium 2110 , a power circuit 2111 , a charging type battery 2112 , a USB I/F 2113 , a bus 2114 , a DCC (Direct Current Cable) 2115 , and a barrel driving unit 2116 .
  • a lens barrel 2003 includes a lens barrel 2003 , a monitor 2009 , a strobe 2013 , an imaging lens 2101 , an image-capturing element 2102 , an A/D (Ana
  • the USB I/F 2113 is connected to a USB cable 2300 .
  • the USB I/F 2113 receives a command and a supply of electric current of a predetermined rating (for instance, a maximum of 500 mA) from a host device 2200 such as a PC and a printer.
  • a host device 2200 such as a PC and a printer.
  • the digital camera 2100 communicates with the host device 2200 via the USB cable 2300 .
  • the digital camera 2100 also receives a supply of electric power from the host device 2200 .
  • the bus 2114 is a common pathway through which a signal is received and transmitted among each processing unit of the digital camera 2100 .
  • the DCC 2115 is a common pathway through which electric power is supplied to each processing unit of the digital camera 2100 .
  • the power circuit 2111 charges the charging type battery 2112 with an electric current supplied by the USB cable 2300 .
  • the power circuit 2111 supplies electric current from the charging type battery 2112 to each processing unit of the digital camera 2100 .
  • the power circuit 2111 monitors the electric voltage between the terminals of the charging type battery 2112 , and verifies the amount of charging made to the charging type battery 2112 .
  • the A/D converter 2103 converts an image of the subject, which is formed on the image-capturing element 2102 through the imaging lens 2101 , into a digital signal.
  • the image processing unit 2106 receives and displays a live view (real time) image, a confirmation image after photographing, and a photographed image stored in the recording medium 2110 .
  • the live view image is obtained by performing a predetermined signal processing on a digital image signal obtained by the A/D converter 2103 .
  • the barrel driving unit 2116 includes a motor.
  • the barrel driving unit 2116 changes the condition of the lens barrel 2003 .
  • the barrel driving unit 2116 makes a transition between the photographing condition and the collapsed condition by an electric current exceeding the above predetermined standard and provided from the charging type battery 2112 (hereinafter, referred to as a “electric current for driving the lens barrel” for convenience).
  • the barrel driving unit 2116 includes, for example, a photo interrupter, and determines whether or not the lens barrel 2003 is in a collapsed condition.
  • a certain condition of the digital camera 2100 exists according to the situation of the digital camera 2100 .
  • An example of a certain condition of the digital cameral 2100 when the USB cable 2300 is connected to the USB I/F 2113 is the collapsed condition of the lens barrel 2003 .
  • the barrel driving unit 2116 determines whether or not a predetermined condition of the digital camera 2100 is in a collapsed condition in which the electric current for driving the lens barrel exceeding the predetermined standard is needed.
  • the flash ROM 2108 records a firm ware which specifies the basic controlling sequence of the digital camera 2100 .
  • the flash ROM 2108 records the digital image signal created by the A/D converter 2103 .
  • the recording medium I/F 2109 supplies electric current to the recording medium 2110 , and performs a reading-and-writing operation of the recording medium 2110 according to the command by the CPU 2104 .
  • the recording medium 2110 is a memory car which is detachably attached to the digital camera 2100 . This recording medium 2110 records the digital image signal created by the A/D converter 2103 .
  • the monitor 2009 provides a user interface.
  • the monitor 2009 displays various information to the user by an electric current exceeding the predetermined standard and supplied by the charging type battery 2112 (hereinafter, referred to as an “electric current for display” for convenience).
  • Examples of the displayed information includes an overall operation menu of the digital camera 2100 , an operation menu regarding direct printing, various displays concerning conditions, and error messages.
  • the monitor 2009 receives various inputs from the user.
  • the strobe 2013 charges electric load to a condenser, discharges the charged electric load, and radiates the subject to be photographed.
  • the strobe 2013 charges electric load to the condenser by an electric current exceeding the predetermined standard and provided by the charging type battery 2112 (hereinafter, referred to as an “electric current for charging the strobe” for convenience).
  • the CPU 2104 transmits information regarding the controlling of a sequence (order of execution), an analysis of a PTP (Picture Transfer Protocol), and the controlling of each processing unit such as the monitor 2009 , the strobe 2013 , the power circuit 2111 , the barrel driving unit 2116 , and the like. See solid lined arrow in FIG. 4 .
  • the CPU 2104 controls the charging of the charging type battery 2112 by the power circuit 2111 , as well as the supplying of the necessary electric current to each processing unit from the charging type battery 2112 .
  • the CPU 2104 makes the power circuit 2111 charge the charging type battery 2112 until the power circuit 2111 confirms that the electric current for driving the lens barrel can be supplied. Then, the CPU 2104 makes the power circuit 2111 supply the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 .
  • the CPU 2104 makes the power circuit 2111 recharge the charging type battery 2112 .
  • the flowchart shown in FIG. 5 begins by the USB cable 2300 being inserted to the USB I/F 2113 (step S 2001 ). Incidentally, the other end of the USB cable 2300 is assumed to be connected to the host device 2200 .
  • the CPU 2104 makes the power circuit 2111 charge the charging type battery 2112 by the electric current supplied from the USB cable 2300 (step S 2002 ).
  • the power circuit 2111 follows the command of the CPU 2104 , and switches the electric source of the electric current supplied to each processing unit to an electric current provided from the host device 2200 via the USB cable 2300 (step S 2002 ).
  • step S 2002 the CPU 2104 determines whether or not the lens barrel 2003 has been collapsed into the camera body 2001 (step S 2003 ). In other words, the CPU 2104 determines whether or not the lens barrel 2003 is in a collapsed condition (step S 2003 ). For instance, the CPU 2104 transmits to the barrel driving unit 2116 , a command to determine the condition of the lens barrel 2003 . When the CPU 2104 receives a response from the barrel driving unit 2116 to this command indicating a determination result that the lens barrel 2003 is in a collapsed condition, the CPU 2104 determines that the lens barrel 2003 is already collapsed inside the camera body 2001 . When the CPU 2104 determines that the lens barrel 2003 is already collapsed inside the camera body 2001 (step S 2003 : YES), the routine proceeds to step S 2008 , skipping steps S 2004 through S 2007 .
  • the CPU 1204 determines whether or not the charging type battery 2112 is charged by an amount greater than or equal to a predetermined amount (step S 2004 ). For instance, when the charging type battery 2112 is charged by an amount greater than or equal to a predetermined amount, the power circuit 2111 sends a notification to the CPU 2104 indicating that the charging type battery 2112 is charged by an amount greater than or equal to a predetermined amount. The CPU 2104 determines whether or not the charging type battery 2112 has been charged by an amount greater than or equal to a predetermined amount depending on whether the above notification is received.
  • the predetermined amount which is a criterion for the above determination, is an electric voltage such that the electric current for driving the lens barrel can be supplied in order to transition the lens barrel 2003 from the photographing condition to the collapsed condition.
  • An example of this predetermined amount is 3.4V.
  • step S 2004 the CPU 2104 makes the power circuit 2111 supply the current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 (step S 2005 ).
  • the power circuit 2111 follows the command from the CPU 2104 and switches the power source of the electric current supplied to each processing unit from an electric current supplied by the host device 2200 via the USB cable 2300 to the charging type battery 2112 .
  • the power circuit 2111 supplies the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 (step S 2005 ).
  • the power circuit 2111 stops the charging of the charging type battery 2112 , and begins to supply the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 .
  • the CPU 2104 transmits a command to the barrel driving unit 2116 so that the condition of the lens barrel 2003 is transitioned to the collapsed condition.
  • the barrel driving unit 2116 stores the lens barrel 2003 into the camera body 2001 by the electric current for driving the lens barrel supplied by the charging type battery 2112 .
  • the barrel driving unit 2116 makes the condition of the lens barrel 2003 transition to the collapsed condition (step S 2006 ).
  • the CPU 2104 charges the charging type battery 2112 by the electric current supplied to the power circuit 2111 from the USB cable 2300 (step S 2007 ).
  • the power circuit 2111 follows the command from the CPU 2104 and switches the power source of the electric current supplied to the digital camera 2100 from the charging type battery 2112 to the electric current supplied by the host device 2200 via the USB cable 2300 (step S 2007 ).
  • the power circuit 2111 stops supplying the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 , and begins charging the charging type battery 2112 .
  • step S 2008 the CPU 2104 determines whether or not the charging of the charging type battery 2112 has been completed. For example, when the charging of the charging type battery 2112 has been completed, the power circuit 2111 sends a notification to the CPU 2104 that the charging has been completed. The CPU 2104 determines whether or not the charging of the charging type battery 2112 has been completed, according to whether or not there is the above mentioned notification. When the CPU 2104 determines that the charging of the charging type battery 2112 has not been completed (step S 2008 : NO), the routine returns to step S 2003 , and determines once again whether or not the lens barrel 2003 has been stored inside the camera body 2001 . Meanwhile, when the CPU 2104 determines that the charging of the charging type battery 2112 has been completed (step S 2008 : YES), the processing of the flowchart shown in FIG. 5 is completed.
  • the lens barrel 2003 of which is in a photographing condition the charging type battery 2112 is charged gradually.
  • the lens barrel 2003 transitions from the photographing condition to the collapsed condition according to the electric current supplied by the charging type battery 2112 .
  • step S 2008 of the flowchart shown in FIG. 5 when the CPU 2104 determines that the charging of the charging type battery 2112 has not been completed (step S 2008 : NO), the CPU 2104 may repeat making this determination (step S 2009 ) without returning to step S 2004 until a determination is made that the charging of the charging type battery 2112 has been completed.
  • step S 2003 the barrel driving unit 2116 followed the command from the CPU 2104 and determined whether or not the lens barrel 2003 is in a collapsed condition. Further, the CPU 2104 determined whether or not the lens barrel 2003 is already stored into the camera body 2001 based on the determination result obtained from the barrel driving unit 2116 .
  • the barrel driving unit 2116 may temporarily store the information indicating the condition of the lens barrel 2003 after the transition into the buffer memory 2107 , and the CPU 2104 may refer to the information being temporarily stored and determine whether or not the lens barrel 2003 is already stored inside the camera body 2001 .
  • the predetermined condition of the digital camera 2100 may be a strobe charging completion condition in which the charging of the strobe 2013 has been completed.
  • the electric current for charging the strobe which exceeds a predetermined standard, is necessary as described above.
  • the CPU 2104 determines whether or not the strobe charging completion condition is reached, which is a predetermined condition in which the electric current for charging the strobe is necessary.
  • the electric current for charging the strobe is a necessary amount of electric current exceeding the predetermined standard.
  • the CPU 2104 makes the power circuit 2111 charge the charging type battery 2112 until the power circuit 2111 confirms that an electric current exceeding the predetermined amount can be supplied. Then, the CPU 2104 may make the power circuit 2111 supply the predetermined amount of electric current from the charging type battery 2112 to the strobe 2013 .
  • the amount of electric current supplied from the charging type battery 2112 which has almost completed the charging process may be set as the above predetermined amount.
  • the amount of electric current supplied from the charging type battery 2112 which has almost completed the charging process may be set as the above predetermined amount.
  • the predetermined condition of the digital camera 2100 in a situation in which the USB cable 2300 is connected to the USB I/F 2113 may be a display completion condition, which is a condition in which a predetermined content is displayed according to a demand by the monitor 2009 . Further, in order for the display completion condition is reached, an electric current for display exceeding a predetermined standard is necessary, as described above. In addition, the CPU 2104 determines whether or not the display completion condition is reached.
  • the display completion condition is a predetermined condition in which the electric current for displaying is needed.
  • the electric current for displaying is a necessary amount of electric current exceeding a predetermined standard.
  • the CPU 2104 makes the power circuit 2111 execute the charging process until the power circuit 2111 confirms that the electric current for displaying can be supplied. Then, the CPU 2104 may make the power circuit 2111 supply the electric current for displaying from the charging type battery 2112 to the monitor 2009 .
  • the charging type battery 2112 while the charging type battery 2112 is being charged by an electric current of a predetermined standard via the USB cable 2300 , it is possible to appropriately execute an operation such as the driving of the lens barrel 2003 which requires a large amount of electric current exceeding the predetermined standard, as well as operations such as the charging of the strobe 2013 and the output to the monitor 2009 . Therefore, for example, it is possible to avoid the risk accompanying a situation in which the charging type battery 2112 is charged via the USB cable 2300 while the lens barrel 2003 is in a photographing condition (for instance, the risk that the imaging lens 2101 may be scratched or, the risk that the imaging lens 2101 may become dusty).
  • the strobe 2013 may be charged as well. Therefore, at least when the charging of the charging type battery 2112 has been completed, it is possible to immediately use the strobe 2013 .
  • electric current is supplied to the monitor 2009 . As a result, it is possible to conduct an operation such as direct print via the monitor 2009 .
  • the CPU 2104 controls the electric current was described as an example of an electric power control of the charging of the charging type battery 2112 and a control of the electric power supplied to each processing unit from the charging type battery 2112 .
  • the CPU 2104 may control the electric voltage.
  • the present embodiment of the present invention was applied to a digital camera was used in the above example.
  • the present invention is not limited to this configuration.
  • a similar effect may be achieved by applying the present invention to other electronic devices such as a portable phone or a music player.
  • the power feeding cable according to the present invention is not limited to a USB cable.
  • a connecting wire such as a LAN (Local Area Network) cable, which can supply an electric current of a predetermined standard, may be used.
  • LAN Local Area Network
  • connection wire which can simply supply an electric current of a predetermined standard.
  • the digital camera 2100 includes a computer system in the interior.
  • the operation of the CPU 2104 is recorded in the flash ROM 2108 in the form of a program.
  • the above process is executed by the computer reading out this program and executing the program.
  • this computer program may be transmitted to a computer via a transmission network, and the computer that has received this transmission may execute this program.
  • the above program may be a program for executing a part of the feature described above.
  • the above program may be a program that realizes the above feature by being executed in combination with another program which is already recorded in the computer system. This type of program is known as a difference file (difference program).

Abstract

An electric device including: a connecting unit connected to a connection line supplying an electric power of a predetermined rating and transmitting and receiving an information; a charging unit conducting a charging of a charging battery connected to an own device, by the electric power supplied by the connection line; an electric supplying unit supplying an electric power to a recording medium storing an information; a reading-and-writing unit performing a reading-and-writing operation of the recording medium; and an electronic source controlling unit performing a control of the electric power supplied to the charging unit, when the reading-and-writing unit performs the reading-and-writing operation of the recording medium, according to an access request to the recording medium via the connection line.

Description

This is a Continuation of application Ser. No. 12/828,553 filed Jul. 1, 2010, which claims priority to Japanese Patent Application No. 2009-158764, filed Jul. 3, 2009; and Japanese Patent Application No. 2009-163596, filed Jul. 10, 2009. The disclosures of the prior applications are hereby incorporated by reference herein in their entireties.
BACKGROUND OF THE INVENTION
Field of the Invention
The present application relates to an electronic device, which is driven by a secondary battery (a chargeable battery), and a method controlling an electronic power supply for this electronic device.
Description of the Related Art
Conventionally, a technology is known which charges a secondary battery, which is embedded in an electronic device such as a digital camera, through a USB (Universal Serial Bus) cable. See, for example, Japanese Unexamined Patent Application, First Publication No. 2005-173822 (hereinafter referred to as Patent Document 1).
However, there is a limit on the amount of electric current provided from an external host device via a USB cable. This limit is based on a USB specification. Therefore, depending on the operation mode of digital cameras and the like, there is a problem in that the operation of charging a secondary battery cannot be controlled in an appropriate manner.
In addition, the power feeding capacity of a USB is specified as a predetermined rating. Therefore, there is a problem in that an operation, which requires a large amount of electric power exceeding the predetermined rating, cannot be performed appropriately while the secondary battery is being charged via a USB cable. For example, operations such as the driving of a lens barrel cannot be performed appropriately while the secondary battery is being charged via a USB cable.
SUMMARY OF THE INVENTION
The present invention is made considering the problems described above. Accordingly, an object of the present invention is to provide an electronic device which appropriately controls the charging operation of a secondary battery, as well as a method for controlling an electronic power supply.
In addition, another object of the present invention is to provide a technology such that, while a secondary battery is being charged with an electric current at a predetermined rating, an operation which requires a large amount of electric current exceeding this predetermined rating can be executed appropriately.
An electric device according to an aspect of the present invention includes: a connecting unit connected to a connection line supplying an electric power of a predetermined rating and transmitting and receiving an information; a charging unit conducting a charging of a charging battery connected to an own device, by the electric power supplied by the connection line; an electric supplying unit supplying an electric power to a recording medium storing an information; a reading-and-writing unit performing a reading-and-writing operation of the recording medium; and an electronic source controlling unit performing a control of the electric power supplied to the charging unit, when the reading-and-writing unit performs the reading-and-writing operation of the recording medium, according to an access request to the recording medium via the connection line.
Based on the above electronic device according to an aspect of the present invention, an operation of charging a secondary battery, which drives an electronic device, can be controlled appropriately.
A method controlling an electronic power supply according to an aspect of the present invention is a method of controlling an electronic power supply of an electronic device including a charging unit, a reading-and-writing unit, an electric source controlling unit, and an electric power supplying unit. Here, the charging unit conducts a charging of a charging battery connected to an own device, by an electric power supplied by a connection line supplying an electric power of a predetermined rating and transmitting and receiving an information. In addition, the reading-and-writing unit performs a reading-and-writing operation of a recording medium recording an information. Further, the electronic source controlling unit performs a control of the electric power supplied to the charging unit, when the reading-and-writing unit performs the reading-and-writing operation of the recording medium recording the information. Moreover, the power supplying unit supplies an electric power to the recording medium. In addition, the reading-and-writing unit performs a reading-and-writing operation of the recording medium.
Based on the above method controlling the electronic power supply according to an aspect of the present invention, it is possible to appropriately perform an operation which requires a large amount of electric current exceeding a predetermined rating, while a secondary battery is being charged with an electric current at the predetermined rating.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an overall configuration diagram of a digital camera according to a first embodiment of the present invention.
FIG. 2 is a flowchart representing an operation controlling a charging of a digital camera according to the above embodiment.
FIG. 3A is an overall diagram of a digital camera according to a second embodiment of the present invention.
FIG. 3B is an overall diagram of a digital camera according to the above embodiment.
FIG. 3C is an overall diagram of a digital camera according to the above embodiment.
FIG. 4 is a functional structural diagram of a digital camera according to the above embodiment.
FIG. 5 is a flowchart representing an operation while charging a digital camera according to the above embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereunder, an electronic device and a method controlling an electronic power supply according to an aspect of the present invention are described.
The following explanation aims to provide a detailed explanation in order to facilitate the understanding of the gist of the present invention. Therefore, the following explanation does not limit the present invention in any way, except as specifically noted.
Hereunder, a first embodiment of the present invention is described with reference to the diagrams.
FIG. 1 is an overall structural diagram of a digital camera according to the present embodiment.
A digital camera 100 includes an imaging lens 101, an image-capturing element 102, an A/D (Analog/Digital) converter 103, a CPU (Central Processing Unit) 104, a monitor 105, an image processing unit 106, a buffer memory 107, a flash ROM (Read Only Memory) 108, a recording medium I/F (Interface) 109, a recording medium 110, a power circuit 111, a charging type battery 112, a USB I/F 113, a bus 114, and a DCC (Direct Current Cable) 115.
In addition, the digital camera 100 communicates with a host device 200 such as a PC or a printer via a USB cable 300. In addition, the digital camera 100 receives a supply of electricity from the host device 200.
The A/D converter 103 converts an image of a subject, which is formed on the image-capturing element 102 through the imaging lens 101, into a digital signal.
The CPU 104 executes a control of a sequence (the order of execution), an analysis of a PTP (Picture Transfer Protocol) command, and a control of the electric power supply.
The monitor 105 operates as a part of a user interface by displaying letters and image information such as an operation menu of the digital camera 100 and error messages, by displaying a warning, and by displaying information on a condition.
The image processing unit 106 receives and displays a live view (real time) image, a confirmation image after photographing, and a photographed image stored in the recording medium 20. The live view image is obtained by performing a predetermined signal processing on a digital image signal obtained by the A/D converter 103.
The buffer memory 107 stores a temporary data required for input and output.
The flash ROM 108 records a firmware specifying a basic sequence for controlling the digital camera 100. In addition, the flash ROM 108 stores a digital image signal created by the A/D converter 103.
The recording medium I/F 109 supplies electric current to the recording medium 110, and performs a reading-and-writing operation of the recording medium 110 according to a command by the CPU 104.
The recording medium 110 is a memory card which is detachably attached to the digital camera 100. The recording medium 110 stores a digital image signal created by the A/D converter 103.
The power circuit 111 charges the charging type battery 112, and supplies electric current to each processing unit of the digital camera 100. In addition, the power circuit 111 monitors the electric voltage between the terminals of the charging type battery 112, and determines whether the charging has been completed. The power circuit 111 also determines how much battery is remaining. Furthermore, based on a command from the CPU 104, the power circuit 111 controls the amount of electric current that is used to charge the charging type battery 112.
The USB I/F 113 is connected to a USB cable. The USB I/F 113 receives a command and a supply of electric current from the host device 200. The maximum amount of the supply of electric current is 500 mA.
The bus 114 is a common pathway through which a signal is received and transmitted among each processing unit of the digital camera 100.
The DCC 115 is a common pathway through which electric power is supplied to each processing unit of the digital camera 100.
According to the above configuration, the power circuit 111 of the digital camera 100 charges the charging type battery 112 with an electric current supplied by the USB cable 300. In addition, when the recording medium 110 is read and written based on an access request for information via the USB cable 300, the power circuit 111 controls the electric current supplied in order to charge the charging type battery 112, the recording medium I/F 109 supplies electric current to the recording medium 110, and the recording medium I/F 109 performs a reading-and-writing operation on the recording medium 110 according to a command by the CPU. In addition, when the reading-and-writing operation is performed on the flash ROM 108 based on an access request for information via the USB cable 300, the electric circuit controls the electric current supplied for charging the charging type battery 112. Further, the power circuit 111 supplies electric current to the flash ROM 108. In addition, the CPU 104 performs the reading-and-writing operation of the flash ROM.
According to the configurations described above, the charging operation with respect to the charging type battery 112 which drives the digital camera 100, is controlled appropriately.
Next, an operation controlling a charging of the digital camera 100 is described.
FIG. 2 is a flowchart representing an operation controlling a charging of a digital camera according to the above embodiment.
First, the USB I/F 113 of the digital camera 100 is connected to the host device 200 via the USB cable 300 (step S1). Then, the CPU 104 outputs an instruction to transition to an energy saving mode (step S2). During this energy saving mode, the electric source of the image-capturing element 102, the A/D converter 103, the monitor 105, and the image processing unit 106 is turned off in order to increase the amount of electric current used for the charging operation.
Next, the power circuit 111 switches the electric source of the electric current supplied to the digital camera 100, to an electric current supplied from the host device 200 from the charging type battery 112 via the USB cable 300 (step S3). When the power circuit 111 switches the electric source, the CPU 104 determines whether there was an access request from the host device 200 via the USB I/F 113 (step S4). Here, an access request refers to an access request for a reading-and-writing operation of the recording medium 110 or the flash ROM 108 of the digital camera 100 by the PTP command. Incidentally, the access request is outputted when the user operates the host device 200 and accesses the recording medium 110 or the flash ROM 108 of the digital camera 100 via the host device 200.
When the CPU 104 determines that there was not any access request from the host device 200 (step S4: NO), the CPU 104 rewrites the charging condition information, which is stored in the inner memory and indicates the condition of the charging type battery 112, to “high-speed charging condition” (step S5).
The charging condition information is a value referring to either one of a “high-speed charging condition,” “low-speed charging condition,” or “charging completed condition.” The “high-speed charging condition” is a condition in which an electric current, other than the electric current necessary for the operation of the CPU 104, is allotted to the charging of the charging type battery 112. For example, when an electric current of 500 mA is supplied from the USB cable 300, and an electric current of 100 mA is necessary for the operation of the CPU 104, 400 mA of electric current is allotted to the charging of the charging type battery 112.
Meanwhile, the “low-speed charging condition” refers to a condition in which an electric current, other than an electric current necessary for the operation of the CPU 104 and an electric current allotted to the operation of the flash ROM 108 or the recording medium 110, is allotted to the charging of the charging type battery 112. For example, when an electric current of 500 mA is supplied from the USB cable 300, an electric current of 100 mA is necessary for the operation of the CPU 104, and the maximum value of the electric current of the electric source of the standard of the recording medium 110 is 200 mA, an electric current of 200 mA is allotted to the charging of the charging type battery 112.
Further, the “charging completed condition” refers to a condition in which the charging of the charging type battery 112 is completed, and no electric current is allotted to the charging of the charging type battery 112.
When the CPU 104 has rewritten the charging condition information from “low-speed charging condition” to “high-speed charging condition,” the CPU 104 outputs to the electric current 111, a signal for changing the supply of the electric current to the charging type battery 112 to a “high-speed charging condition.” On the other hand, when the CPU 104 has rewritten the charging condition information from “high-speed charging condition” to “low-speed charging condition,” the CPU 104 outputs to the power circuit 111, a signal for changing the supply of the electric current to the charging type battery 112 to a “low-speed charging condition.” The electric current 111 controls the amount of electric current supplied to the charging type battery 112 according to a signal which was inputted and received by the CPU 104.
In step S5, when the CPU 104 rewrites the charging condition information to the “high-speed charging condition,” the CPU 104 determines whether or not the charging of the charging type battery 112 has been completed (step S6). The determination of whether the charging has been completed is conducted by the power circuit 111 outputting a signal notifying the CPU 104 that the charging has been completed when the charging of the charging type battery 112 is complete, and by the CPU 104 determining whether or not such a signal exists.
When the CPU 104 determines that the charging of the charging type battery 112 has not been completed (step S6: NO), the routine returns to step S4. Here, the CPU 104 determines again whether or not there is an access request by the host device 200. A procedure conducted when the CPU 104 determines that the charging of the charging type battery 112 has been completed (step S6: YES), is described later.
Meanwhile, when a determination is made in step S4 that there is an access request from the host device 200 (step S4: YES), the CPU 104 rewrites the charging condition information, which is stored in the inner memory and indicates the condition of the charging type batter 112, to “low-speed charging condition” (step S7). At this time, when the CPU 104 has rewritten the charging condition information from “high-speed charging condition” to “low-speed charging condition,” the CPU 104 outputs to the electric current 111, a signal for changing the supply of the electric current to the charging type battery 112, to the “low-speed charging condition.”
In addition, it is possible to change the amount of electric current supplied to the charging type battery 112 depending on whether the access request is an access request to the flash ROM 108 or an access request to the recording medium 110. In more detail, the following control may be executed.
Suppose that an electric current of 500 mA is supplied from the USB cable 300, an electric current of 100 mA is necessary for operating the CPU 104, an electric current of 50 mA is necessary for operating the flash ROM, and an electric current of 200 mA is necessary to operate the recording medium 110. In this case, when the access request is an access request to the flash ROM 108, an electric current of 350 mA is allotted to the charging of the charging type battery 112. On the other hand, when the access request is an access request to the recording medium 110, an electric current of 200 mA is allotted to the charging of the charging type battery 112.
By executing the control described above, it is possible to more appropriately allot the electric current for charging the charging type battery 112.
In step S7, when the charging condition information is rewritten to the “high-speed charging condition,” the CPU 104 determines whether or not the charging of the charging type battery 112 has been completed (step S8). When the CPU 104 determines that the charging of the charging type battery 112 has not been completed (step S8: NO), the CPU 104 executes an access to the flash ROM 108 or the recording medium 110 (step S9). In addition, when the access to the flash ROM 108 or the recording medium 110 has been completed, the CPU 104 begins to measure the time that has elapsed from the time at which the access has been completed. Here, the CPU 104 records the information on the measured time to the inner memory.
When the access to the flash ROM 108 or to the recording medium 110 has been completed, the CPU 104 again determines whether or not there is an access request from the host device 200 (step S10). When the CPU 104 determines that there was an access request from the host device 200 (step S10: YES), the routine returns to step S8. Then, it is determined whether or not the charging has been completed, and the access is executed again.
On the other hand, when the CPU 104 determines that there was not an access request from the host device 200 (step S10: NO), the CPU 104 refers to the timing information stored in the inner memory, and determines whether or not the time elapsed from the time at which the access was completed exceeds one minute (step S11). When the CPU 104 determines that the elapsed time has not reached one minute (step S11: NO), the CPU 104 determines whether or not the charging of the charging type battery 112 has been completed (step S12). When the CPU 104 determines that the charging has not been completed (step S12: NO), the routine returns to step S10. Once again, it is determined whether or not there is an access request from the host device 200.
In addition, in step S11, when the CPU 104 determines that one minute has elapsed (step S11: YES), the CPU 104 moves the process to step S5, and rewrites the charging condition information to “high-speed charging condition.” In other words, when there is no access request within a predetermined amount of time since the access to the flash ROM 108 or the recording medium 110 has been completed, the CPU 104 changes the amount of electric current supplied to the charging type battery to an amount of electric current corresponding to the “high-speed charging condition.” In this way, the number of times that the condition is transitioned between the “high-speed charging condition” and the “low-speed charging condition” can be reduced. In addition, it is possible to mitigate the burden on the charging type battery 112 due to the frequent increase and decrease in the amount of electric current that is supplied.
Furthermore, when the CPU 104 determines that the charging has been completed in step S6, step S8, and step S12 (step S6: YES, step S8: YES, step S12: YES), the CPU 104 rewrites the charging condition information stored in the inner memory to “charging completed condition” (step S13). Incidentally, when it is determined that the charging has been completed, the power circuit 111 automatically stops supplying the electric current to the charging type battery 112. As a result, in step S13, it is not necessary for the CPU 104 to output a signal to the electric current 111 for stopping the electric power supply to the charging type battery 112. In addition, when the CPU 104 rewrites the charging condition information to the “charging completed condition,” the CPU 104 begins to measure the time that has elapsed since the charging condition information was thus rewritten to the “charging completed condition.” At this time, the CPU 104 records the information on the measured time to the inner memory.
When the CPU 104 rewrites the charging condition information to the “charging completed condition,” the CPU 104 waits for the reception of the access request from the host device 200 (step S14). Next, the CPU 104 determines whether or not there was an access request from the host device 200 (step S15). When the CPU 104 determines that there is an access request (step S15: YES), the CPU 104 executes an access to the flash ROM 108 or the recording medium 110 (step S16). When the CPU 104 completes the access to the flash ROM 108 or the recording medium 110, the routine returns to step S14. Then, the CPU 104 waits again for a reception of an access request. In addition, when the CPU 104 completes the access to the flash ROM 108 or the recording medium 110, the CPU 104 deletes the time information recorded in the inner memory. The CPU 104 also records the information on the elapsed time from this time.
On the other hand, when the CPU 104 determines in step S15 that there is no access request from the host device 200 (step S15: NO), the CPU 104 refers to the time information recorded in the inner memory, and determines whether the time elapsed from the access completion time exceeds 30 minutes (step S17).
After the CPU 104 determines that the elapsed time from the access completion time has not reached 30 minutes (step S11: NO), the routine returns to step S14, and waits again for a reception of an access request. On the other hand, when the CPU 104 determines that 30 minutes have elapsed from the access completion time (step S11: YES), the CPU 104 turns off the electric source of the digital camera 100 (step S18). As a result, it is possible to reduce the amount of electric current supplied to the host device 200 when there is no access to the digital camera 100.
In this way, according to the present embodiment, when there is no access request from the host device 200 during the charging of the charging type battery 112, an electric current other than the electric current necessary for operating the CPU 104 is allotted to the charging of the charging type battery 112. Meanwhile, when there is an access request from the host device 200 during the charging of the charging type battery 112, the amount of electric current supplied for the access to the flash ROM 108 or the recording medium 110 is reduced from the amount of electric current supplied to the charging type battery 112. As a result, it is possible to appropriately control the charging operation with respect to the charging type battery 112 which drives the digital camera 100.
Heretofore, the first embodiment of the present invention has been described in detail in reference to the diagrams. The concrete configuration is not limited to the examples described above. Various modifications and the like may be made within the gist of the present invention.
For instance, in the present embodiment, the CPU 104 made a determination in step S6, step S8, and step S12 indicated in the flowchart shown in FIG. 2 whether or not the charging has been completed. However, the present invention is not limited to this configuration. A similar process may be executed by notifying the CPU 104 of the completion of the charging by cutting in a signal reporting the completion of the charging from the power circuit 111.
In addition, an example in which the present embodiment of the present invention was applied to a digital camera was used in the above example. However, the present invention is not limited to this configuration. For instance, a similar effect may be achieved by applying the present invention to other electronic devices such as a portable phone or a music player.
Further, in the present embodiment, a case using a USB cable was described as a connecting wire which can supply an electric current of a predetermined rating and can transmit and receive information as well. However, the present invention is not limited to this configuration. It is possible to use other connection wires which enable the transmission and receiving of information as well as the supply of an electric current of a predetermined rating, such as a LAN (Local Area Network) cable.
In addition, in the present embodiment, an example was described in which, when the charging condition information was rewritten to the “low-speed charging condition” by accessing the recording medium 110, the power circuit 111 reduced the maximum value of the electric current of the electric source of the standard of the recording medium 110 from the amount of electric power supplied to the charging type battery 112. However, the present invention is not limited by this configuration. For example, when the CPU 104 can obtain the necessary amount of electric current of the recording medium 110, the electric circuit 11 may reduce the necessary amount of electric current of the recording medium 110 from the amount of electric power supplied to the charging type battery 112.
In addition, when the charging condition information is rewritten to the “low-speed charging condition,” for example, the electric current 111 may stop the supply of the electric current to the charging type battery 112.
Incidentally, the present embodiment was described regarding a case in which the power circuit 111 controls the amount of electric current supplied to the charging type battery 112 when the recording medium 110 or the flash ROM 108 is accessed.
However, the present invention is not limited to this configuration. The power circuit 111 may control the amount of electric voltage supplied to the charging type battery 112. For example, in further detail, when an electric voltage of 5V is supplied from the USB cable 300, 1V of electric voltage is necessary to operate the CPU 104, and the maximum value of the electric voltage of the electric source of the standard of the recording medium 110 is 3.6V, and when the charging condition information is the “low-speed charging condition,” the power circuit 111 may control the amount of electric voltage so that an electric voltage of 0.4V can be allotted for charging the charging type battery 112.
The digital camera 100 includes a computer system in the interior. In addition, the operation of the CPU 104 is recorded in the flash ROM 108 in the form of a program. The above process is executed by the computer reading out this program and executing the program. In addition, this computer program may be transmitted to a computer via a transmission network, and the computer that has received this transmission may execute this program.
Furthermore, the above program may be a program for executing a part of the feature described above. Moreover, the above program may be a program that realizes the above feature by being executed in combination with another program which is already recorded in the computer system. This type of program is known as a difference file (difference program).
Hereunder, a second embodiment of the present invention is described in detail with reference to the diagrams.
FIG. 3A is a frontal perspective view when a lens barrel 2003 is being collapsed. FIG. 3B is a frontal perspective view when a lens barrel 2003 is protruding. FIG. 3C is a back side perspective view.
As indicated in FIGS. 3A and 3B, a frontal surface of a camera body 2001 of a digital camera 2100 includes a lens barrel 2003, an ornamental ring 2004, a finder object window 2005, and a strobe window 2006. An opening-and-closing type lens barrier 2002 is provided on a frontal surface of the lens barrel 2003. A frontal surface of the ornamental ring 2004 is provided so as to be approximately on the same plane as a frontal surface of a front body of the camera body 2001. A front-most portion of the lens barrel 2003 is slightly receding from the frontal surface of the ornamental ring 2004, during a collapsed condition (a condition in which the lens barrel 2003 is stored inside the camera body 2001) in which the length in the direction of the optical axis is shorter than a photographing condition. The photographing condition refers to a condition during which a photograph is taken. In the collapsed condition, the lens barrier 2002 is closed, and a lens inside the lens barrel 2003 is protected (see FIG. 3A). When the lens barrel 2003 is protruded from the collapsed condition to a position at which a normal photographing is made possible, the lens barrier 2002 moves along with the initial driving. Thus, the lens barrier 2002 opens until the front-most surface of the lens barrel protrudes to the same plane as the front surface of the ornamental ring 2004. In addition, the lens barrier 2002 closes in combination with a final driving of the lens barrel 2003 when the lens barrel 2003 is driven to a collapsed condition from a position at which a normal photographing is made possible. In addition, the upper surface of the camera body 2001 includes a release button 2007 and a power source button 2008. As shown in FIG. 3C, the back surface of the camera body 2001 includes a monitor 2009, a finder ocular window 2010, an operating button 2011, and a sound reproduction unit (speaker) 2012.
FIG. 4 is a functional configuration diagram of the digital camera 2100. The digital camera 2100 includes a lens barrel 2003, a monitor 2009, a strobe 2013, an imaging lens 2101, an image-capturing element 2102, an A/D (Analog/Digital) converter 2103, a CPU (Central Processing Unit) 2104, an image processing unit 2106, a buffer memory 2107, a flash ROM (Read Only Memory) 2108, a recording medium I/F (Interface) 2109, a recording medium 2110, a power circuit 2111, a charging type battery 2112, a USB I/F 2113, a bus 2114, a DCC (Direct Current Cable) 2115, and a barrel driving unit 2116.
The USB I/F 2113 is connected to a USB cable 2300. The USB I/F 2113 receives a command and a supply of electric current of a predetermined rating (for instance, a maximum of 500 mA) from a host device 2200 such as a PC and a printer. In other words, the digital camera 2100 communicates with the host device 2200 via the USB cable 2300. The digital camera 2100 also receives a supply of electric power from the host device 2200. The bus 2114 is a common pathway through which a signal is received and transmitted among each processing unit of the digital camera 2100. The DCC 2115 is a common pathway through which electric power is supplied to each processing unit of the digital camera 2100.
The power circuit 2111 charges the charging type battery 2112 with an electric current supplied by the USB cable 2300. In addition, the power circuit 2111 supplies electric current from the charging type battery 2112 to each processing unit of the digital camera 2100. The power circuit 2111 monitors the electric voltage between the terminals of the charging type battery 2112, and verifies the amount of charging made to the charging type battery 2112.
The A/D converter 2103 converts an image of the subject, which is formed on the image-capturing element 2102 through the imaging lens 2101, into a digital signal. The image processing unit 2106 receives and displays a live view (real time) image, a confirmation image after photographing, and a photographed image stored in the recording medium 2110. The live view image is obtained by performing a predetermined signal processing on a digital image signal obtained by the A/D converter 2103.
The barrel driving unit 2116 includes a motor. The barrel driving unit 2116 changes the condition of the lens barrel 2003. In detail, the barrel driving unit 2116, for instance, makes a transition between the photographing condition and the collapsed condition by an electric current exceeding the above predetermined standard and provided from the charging type battery 2112 (hereinafter, referred to as a “electric current for driving the lens barrel” for convenience). In addition, the barrel driving unit 2116 includes, for example, a photo interrupter, and determines whether or not the lens barrel 2003 is in a collapsed condition.
Incidentally, a certain condition of the digital camera 2100 exists according to the situation of the digital camera 2100. An example of a certain condition of the digital cameral 2100 when the USB cable 2300 is connected to the USB I/F 2113 is the collapsed condition of the lens barrel 2003. In other words, as a result of the condition transitioning from the photographing condition, the barrel driving unit 2116 determines whether or not a predetermined condition of the digital camera 2100 is in a collapsed condition in which the electric current for driving the lens barrel exceeding the predetermined standard is needed.
The flash ROM 2108 records a firm ware which specifies the basic controlling sequence of the digital camera 2100. In addition, the flash ROM 2108 records the digital image signal created by the A/D converter 2103. The recording medium I/F 2109 supplies electric current to the recording medium 2110, and performs a reading-and-writing operation of the recording medium 2110 according to the command by the CPU 2104. The recording medium 2110 is a memory car which is detachably attached to the digital camera 2100. This recording medium 2110 records the digital image signal created by the A/D converter 2103.
The monitor 2009 provides a user interface. For example, the monitor 2009 displays various information to the user by an electric current exceeding the predetermined standard and supplied by the charging type battery 2112 (hereinafter, referred to as an “electric current for display” for convenience). Examples of the displayed information includes an overall operation menu of the digital camera 2100, an operation menu regarding direct printing, various displays concerning conditions, and error messages. In addition, the monitor 2009 receives various inputs from the user.
The strobe 2013 charges electric load to a condenser, discharges the charged electric load, and radiates the subject to be photographed. In more detail, the strobe 2013 charges electric load to the condenser by an electric current exceeding the predetermined standard and provided by the charging type battery 2112 (hereinafter, referred to as an “electric current for charging the strobe” for convenience).
The CPU 2104 transmits information regarding the controlling of a sequence (order of execution), an analysis of a PTP (Picture Transfer Protocol), and the controlling of each processing unit such as the monitor 2009, the strobe 2013, the power circuit 2111, the barrel driving unit 2116, and the like. See solid lined arrow in FIG. 4.
According to the above configuration, the CPU 2104 controls the charging of the charging type battery 2112 by the power circuit 2111, as well as the supplying of the necessary electric current to each processing unit from the charging type battery 2112. In more detail, when the USB cable 2300 is connected to the USB I/F 2113, and it is determined by the barrel driving unit 2116 that the lens barrel 2003 is not in the collapsed condition, which is a predetermined condition, and it is confirmed by the power circuit 2111 that the electric current for driving the lens barrel cannot be supplied by the charging type battery 2112, the CPU 2104 makes the power circuit 2111 charge the charging type battery 2112 until the power circuit 2111 confirms that the electric current for driving the lens barrel can be supplied. Then, the CPU 2104 makes the power circuit 2111 supply the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116.
In addition, when the USB I/F 2113 is connected to the USB cable 2300, and it is determined by the barrel driving unit 2116 that the lens barrel 2003 is in a collapsed condition, which is a predetermined condition, after the electric current for driving the lens barrel is supplied by the electric circuit 2111, the CPU 2104 makes the power circuit 2111 recharge the charging type battery 2112.
Hereinafter, an operation of the digital camera 2100 at the time of charging is described with reference to FIG. 5. The flowchart shown in FIG. 5 begins by the USB cable 2300 being inserted to the USB I/F 2113 (step S2001). Incidentally, the other end of the USB cable 2300 is assumed to be connected to the host device 2200.
The CPU 2104 makes the power circuit 2111 charge the charging type battery 2112 by the electric current supplied from the USB cable 2300 (step S2002). In other words, the power circuit 2111 follows the command of the CPU 2104, and switches the electric source of the electric current supplied to each processing unit to an electric current provided from the host device 2200 via the USB cable 2300 (step S2002).
Subsequent to step S2002, the CPU 2104 determines whether or not the lens barrel 2003 has been collapsed into the camera body 2001 (step S2003). In other words, the CPU 2104 determines whether or not the lens barrel 2003 is in a collapsed condition (step S2003). For instance, the CPU 2104 transmits to the barrel driving unit 2116, a command to determine the condition of the lens barrel 2003. When the CPU 2104 receives a response from the barrel driving unit 2116 to this command indicating a determination result that the lens barrel 2003 is in a collapsed condition, the CPU 2104 determines that the lens barrel 2003 is already collapsed inside the camera body 2001. When the CPU 2104 determines that the lens barrel 2003 is already collapsed inside the camera body 2001 (step S2003: YES), the routine proceeds to step S2008, skipping steps S2004 through S2007.
When the CPU 2104 determines that the lens barrel 2003 is not collapsed into the camera body 2001 (step S2003: NO), the CPU 1204 determines whether or not the charging type battery 2112 is charged by an amount greater than or equal to a predetermined amount (step S2004). For instance, when the charging type battery 2112 is charged by an amount greater than or equal to a predetermined amount, the power circuit 2111 sends a notification to the CPU 2104 indicating that the charging type battery 2112 is charged by an amount greater than or equal to a predetermined amount. The CPU 2104 determines whether or not the charging type battery 2112 has been charged by an amount greater than or equal to a predetermined amount depending on whether the above notification is received. Incidentally, the predetermined amount, which is a criterion for the above determination, is an electric voltage such that the electric current for driving the lens barrel can be supplied in order to transition the lens barrel 2003 from the photographing condition to the collapsed condition. An example of this predetermined amount is 3.4V. When the CPU 2104 determines that the charging type battery 2112 has not bee charged by an amount greater than the predetermined amount (step S2004: NO), the CPU 2104 repeats making this determination (step S2004) until it is determined that the charging type battery 2112 has been charged by an amount greater than or equal to the predetermined amount.
When the CPU 2104 determines that the charging type battery 2112 has been charged by an amount greater than a predetermined amount (step S2004: YES), the CPU 2104 makes the power circuit 2111 supply the current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 (step S2005). In other words, the power circuit 2111 follows the command from the CPU 2104 and switches the power source of the electric current supplied to each processing unit from an electric current supplied by the host device 2200 via the USB cable 2300 to the charging type battery 2112. At the same time, the power circuit 2111 supplies the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116 (step S2005). In other words, the power circuit 2111 stops the charging of the charging type battery 2112, and begins to supply the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116.
Following step S2005, the CPU 2104 transmits a command to the barrel driving unit 2116 so that the condition of the lens barrel 2003 is transitioned to the collapsed condition. When the barrel driving unit 2116 receives this command, the barrel driving unit 2116 stores the lens barrel 2003 into the camera body 2001 by the electric current for driving the lens barrel supplied by the charging type battery 2112. In other words, the barrel driving unit 2116 makes the condition of the lens barrel 2003 transition to the collapsed condition (step S2006).
Following step S2006, the CPU 2104 charges the charging type battery 2112 by the electric current supplied to the power circuit 2111 from the USB cable 2300 (step S2007). IN other words, the power circuit 2111 follows the command from the CPU 2104 and switches the power source of the electric current supplied to the digital camera 2100 from the charging type battery 2112 to the electric current supplied by the host device 2200 via the USB cable 2300 (step S2007). In other words, the power circuit 2111 stops supplying the electric current for driving the lens barrel from the charging type battery 2112 to the barrel driving unit 2116, and begins charging the charging type battery 2112.
Following step S2003 (YES) or step S2007, the CPU 2104 determines whether or not the charging of the charging type battery 2112 has been completed (step S2008). For example, when the charging of the charging type battery 2112 has been completed, the power circuit 2111 sends a notification to the CPU 2104 that the charging has been completed. The CPU 2104 determines whether or not the charging of the charging type battery 2112 has been completed, according to whether or not there is the above mentioned notification. When the CPU 2104 determines that the charging of the charging type battery 2112 has not been completed (step S2008: NO), the routine returns to step S2003, and determines once again whether or not the lens barrel 2003 has been stored inside the camera body 2001. Meanwhile, when the CPU 2104 determines that the charging of the charging type battery 2112 has been completed (step S2008: YES), the processing of the flowchart shown in FIG. 5 is completed.
According to the flowchart shown in FIG. 5, even if the charging type battery 2112 has not been charged at all when the USB cable 2300 is connected to the digital camera 2100, the lens barrel 2003 of which is in a photographing condition, the charging type battery 2112 is charged gradually. When the capacity is reached such that the electric current necessary for driving the lens barrel 2003 can be supplied, the lens barrel 2003 transitions from the photographing condition to the collapsed condition according to the electric current supplied by the charging type battery 2112.
Heretofore, the second embodiment of the present invention has been described in detail in reference to the diagrams. However, the concrete configuration is not limited by the examples described above. Various modifications may be made within the gist of the present invention.
For example, according to the above embodiment, in step S2008 of the flowchart shown in FIG. 5, when the CPU 2104 determines that the charging of the charging type battery 2112 has not been completed (step S2008: NO), the CPU 2104 may repeat making this determination (step S2009) without returning to step S2004 until a determination is made that the charging of the charging type battery 2112 has been completed. In addition, in step S2003, the barrel driving unit 2116 followed the command from the CPU 2104 and determined whether or not the lens barrel 2003 is in a collapsed condition. Further, the CPU 2104 determined whether or not the lens barrel 2003 is already stored into the camera body 2001 based on the determination result obtained from the barrel driving unit 2116. However, for example, the barrel driving unit 2116 may temporarily store the information indicating the condition of the lens barrel 2003 after the transition into the buffer memory 2107, and the CPU 2104 may refer to the information being temporarily stored and determine whether or not the lens barrel 2003 is already stored inside the camera body 2001.
Further, in the above description, it was explained that an example of a predetermined condition of the digital camera 2100 when the USB cable 2300 is connected to the USB I/F 2113 is the collapsed condition. However, under this situation, the predetermined condition of the digital camera 2100 may be a strobe charging completion condition in which the charging of the strobe 2013 has been completed. Incidentally, in order to reach the strobe charging completion condition, the electric current for charging the strobe, which exceeds a predetermined standard, is necessary as described above. In addition, the CPU 2104, for instance, determines whether or not the strobe charging completion condition is reached, which is a predetermined condition in which the electric current for charging the strobe is necessary. As mentioned above, the electric current for charging the strobe is a necessary amount of electric current exceeding the predetermined standard.
In other words, when the predetermined condition of the digital camera 2100 when the USB cable 2300 is connected to the USB I/F 2113, and the strobe charging completion condition, which is a predetermined condition, has not been reached, and it is confirmed by the power circuit 2111 that the charging type battery 2112 cannot supply a predetermined amount of electric current exceeding the amount of electric current for charging the strobe, the CPU 2104 makes the power circuit 2111 charge the charging type battery 2112 until the power circuit 2111 confirms that an electric current exceeding the predetermined amount can be supplied. Then, the CPU 2104 may make the power circuit 2111 supply the predetermined amount of electric current from the charging type battery 2112 to the strobe 2013. Incidentally, the amount of electric current supplied from the charging type battery 2112 which has almost completed the charging process may be set as the above predetermined amount. By lagging the time that the charging is completed, by starting the charging of the strobe 2013 at a later time compared to the chargeable timing of the strobe 2013, it is possible to prevent the influence of the decline of the power of the strobe 2013 due to the self-discharging which begins after the charging is completed.
In addition, the predetermined condition of the digital camera 2100 in a situation in which the USB cable 2300 is connected to the USB I/F 2113 may be a display completion condition, which is a condition in which a predetermined content is displayed according to a demand by the monitor 2009. Further, in order for the display completion condition is reached, an electric current for display exceeding a predetermined standard is necessary, as described above. In addition, the CPU 2104 determines whether or not the display completion condition is reached. The display completion condition is a predetermined condition in which the electric current for displaying is needed. The electric current for displaying is a necessary amount of electric current exceeding a predetermined standard.
In other words, when the predetermined condition of the digital camera 2100 when the USB cable 2300 is connected to the USB I/F 2113, and the predetermined condition of the digital camera 2100 is the display completion condition, the display completion condition is not reached, and it is confirmed by the power circuit 2111 that the charging type battery 2112 cannot supply the electric current for displaying, the CPU 2104 makes the power circuit 2111 execute the charging process until the power circuit 2111 confirms that the electric current for displaying can be supplied. Then, the CPU 2104 may make the power circuit 2111 supply the electric current for displaying from the charging type battery 2112 to the monitor 2009.
According to the above second embodiment, while the charging type battery 2112 is being charged by an electric current of a predetermined standard via the USB cable 2300, it is possible to appropriately execute an operation such as the driving of the lens barrel 2003 which requires a large amount of electric current exceeding the predetermined standard, as well as operations such as the charging of the strobe 2013 and the output to the monitor 2009. Therefore, for example, it is possible to avoid the risk accompanying a situation in which the charging type battery 2112 is charged via the USB cable 2300 while the lens barrel 2003 is in a photographing condition (for instance, the risk that the imaging lens 2101 may be scratched or, the risk that the imaging lens 2101 may become dusty). In addition, when the charging type battery 2112 is being charged via the USB cable 2300, the strobe 2013 may be charged as well. Therefore, at least when the charging of the charging type battery 2112 has been completed, it is possible to immediately use the strobe 2013. In addition, when the charging type battery 2112 is being charged via the USB cable 2300, for instance, electric current is supplied to the monitor 2009. As a result, it is possible to conduct an operation such as direct print via the monitor 2009.
Moreover, according to the above description regarding the present embodiment, an instance in which the CPU 2104 controls the electric current was described as an example of an electric power control of the charging of the charging type battery 2112 and a control of the electric power supplied to each processing unit from the charging type battery 2112. However, the CPU 2104 may control the electric voltage.
In addition, an example in which the present embodiment of the present invention was applied to a digital camera was used in the above example. However, the present invention is not limited to this configuration. For instance, a similar effect may be achieved by applying the present invention to other electronic devices such as a portable phone or a music player.
Further, in the present embodiment, a case using a USB cable as a power feeding cable was described. However, the power feeding cable according to the present invention is not limited to a USB cable. For instance, a connecting wire such as a LAN (Local Area Network) cable, which can supply an electric current of a predetermined standard, may be used. In addition, instead of using a USB cable or a LAN cable which are cables that can transmit and receive information, it is also possible to use a connection wire which can simply supply an electric current of a predetermined standard.
The digital camera 2100 includes a computer system in the interior. In addition, the operation of the CPU 2104 is recorded in the flash ROM 2108 in the form of a program. The above process is executed by the computer reading out this program and executing the program. In addition, this computer program may be transmitted to a computer via a transmission network, and the computer that has received this transmission may execute this program.
Furthermore, the above program may be a program for executing a part of the feature described above. Moreover, the above program may be a program that realizes the above feature by being executed in combination with another program which is already recorded in the computer system. This type of program is known as a difference file (difference program).
While a preferred embodiment of the present invention has been described above, it should be understood that these are exemplary of the invention and are not to be considered as limiting the present invention. Additions, omissions, substitutions, and other modifications can be made without departing from the scope of the present invention. The invention is not to be considered as being limited by the foregoing description, and is only limited by the scope of the appended claims.

Claims (1)

What is claimed is:
1. An electric device comprising:
a connecting unit from which an electric power of a predetermined rating is supplied to the electronic device and via which the electronic device transmits or receives information with a recording medium;
a charging unit;
an electronic source controlling unit performing a control such that:
(i) if the electronic source controlling unit determines that the electric device did not receive an access request for a transmitting or a receiving of the information, a first amount of the electric power is supplied to the charging unit for charging a charging battery in the electronic device; and
(ii) if the electronic source controlling unit determines that the electric device received the access request, a second amount of the electric power is supplied for operation of the transmitting or the receiving of the information and a third amount of the electric power is also supplied to the charging unit for charging the charging battery in the electronic device,
wherein the third amount of the electric power is equal to or less than an amount in which the second amount of the electric power is subtracted from the first amount of the electric power.
US14/684,873 2009-07-03 2015-04-13 Electronic device, and method controlling electronic power supply Active US10128672B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/684,873 US10128672B2 (en) 2009-07-03 2015-04-13 Electronic device, and method controlling electronic power supply
US16/159,055 US20190044358A1 (en) 2009-07-03 2018-10-12 Electronic device, and method controlling electronic power supply

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009158764A JP5056805B2 (en) 2009-07-03 2009-07-03 Electronic device, supply power control method and program
JP2009-158764 2009-07-03
JP2009163596A JP4816772B2 (en) 2009-07-10 2009-07-10 Electronic device, current supply method and program
JP2009-163596 2009-07-10
US12/828,553 US9030166B2 (en) 2009-07-03 2010-07-01 Electronic device, and method controlling electronic power supply
US14/684,873 US10128672B2 (en) 2009-07-03 2015-04-13 Electronic device, and method controlling electronic power supply

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/828,553 Continuation US9030166B2 (en) 2009-07-03 2010-07-01 Electronic device, and method controlling electronic power supply

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/159,055 Division US20190044358A1 (en) 2009-07-03 2018-10-12 Electronic device, and method controlling electronic power supply

Publications (2)

Publication Number Publication Date
US20150222136A1 US20150222136A1 (en) 2015-08-06
US10128672B2 true US10128672B2 (en) 2018-11-13

Family

ID=42634636

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/828,553 Expired - Fee Related US9030166B2 (en) 2009-07-03 2010-07-01 Electronic device, and method controlling electronic power supply
US14/684,873 Active US10128672B2 (en) 2009-07-03 2015-04-13 Electronic device, and method controlling electronic power supply
US16/159,055 Abandoned US20190044358A1 (en) 2009-07-03 2018-10-12 Electronic device, and method controlling electronic power supply

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/828,553 Expired - Fee Related US9030166B2 (en) 2009-07-03 2010-07-01 Electronic device, and method controlling electronic power supply

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/159,055 Abandoned US20190044358A1 (en) 2009-07-03 2018-10-12 Electronic device, and method controlling electronic power supply

Country Status (3)

Country Link
US (3) US9030166B2 (en)
EP (1) EP2275902A3 (en)
CN (1) CN101944753A (en)

Families Citing this family (331)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
CN101944753A (en) * 2009-07-03 2011-01-12 株式会社尼康 Electronic equipment, supply capability control method and electric current supply method
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
CN103186217A (en) * 2011-12-30 2013-07-03 深圳富泰宏精密工业有限公司 Portable electronic device and voltage transforming circuit thereof
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
JP6288913B2 (en) * 2012-12-28 2018-03-07 キヤノン株式会社 Electronic device and program
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6530658B2 (en) * 2014-08-11 2019-06-12 キヤノン株式会社 Imaging device, control method therefor, program, and recording medium
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
TW201626229A (en) * 2015-01-05 2016-07-16 致伸科技股份有限公司 Electrical device with detachable battery
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10547067B2 (en) * 2015-09-19 2020-01-28 Daimler Ag Shutdown and storage method for fuel cell system at below freezing temperatures
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
JP2019121110A (en) * 2017-12-28 2019-07-22 キヤノン株式会社 Electronic apparatus, control method and program
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10763809B2 (en) * 2018-12-27 2020-09-01 Nxp B.V. Voltage detection circuit
JP6754996B1 (en) * 2019-02-15 2020-09-16 パナソニックIpマネジメント株式会社 Imaging device
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260516A (en) 1988-04-12 1989-10-17 Canon Inc Auto power-off device
US5053804A (en) 1987-07-10 1991-10-01 Canon Kabushiki Kaisha Camera having computer
JPH0619593A (en) 1992-07-01 1994-01-28 Ricoh Co Ltd Data device
JPH09261888A (en) 1996-03-22 1997-10-03 Nec Corp Software-notification battery charging method
JPH11191262A (en) 1997-12-25 1999-07-13 Nec Niigata Ltd Power management device and method therefor
JP2000357029A (en) 1999-06-15 2000-12-26 Nec Corp Communication interface device and charging device for portable telephone set
US6191568B1 (en) 1999-01-14 2001-02-20 Franco Poletti Load power reduction control and supply system
JP2001202144A (en) 2000-01-19 2001-07-27 Melco Inc Power supply device, method for controlling power supply and medium recording control program for power supply device
JP2002049444A (en) 2000-08-04 2002-02-15 Sony Corp Information processor
JP2003032910A (en) 2001-07-13 2003-01-31 Mitsubishi Electric Corp Terminal unit
JP2003044179A (en) 2001-08-01 2003-02-14 Canon Inc Device and method for supplying power and device and method for receiving power
US6633932B1 (en) * 1999-09-14 2003-10-14 Texas Instruments Incorporated Method and apparatus for using a universal serial bus to provide power to a portable electronic device
JP2004078740A (en) 2002-08-21 2004-03-11 Fujitsu Ltd Bus power device
JP2004086647A (en) 2002-08-28 2004-03-18 I-O Data Device Inc Information transmission connector and power supply mechanism for the same
JP2004328037A (en) 2003-04-21 2004-11-18 Canon Inc Imaging and image recording apparatus
US20040246341A1 (en) * 2003-06-03 2004-12-09 Samsung Techwin Co., Ltd. Battery charger using USB and digital camera having the same
JP2005012889A (en) 2003-06-18 2005-01-13 Nec Infrontia Corp Usb charging system
US20050114570A1 (en) 2003-11-21 2005-05-26 Chi-Tung Chang Portable data storage device
US20050127879A1 (en) 2003-11-14 2005-06-16 Hideyuki Sato Battery pack, battery protection processing apparatus, and startup control method of the battery protection processing apparatus
JP2005173822A (en) 2003-12-09 2005-06-30 Canon Inc Method and system for information processing, program, and storage medium
US20050144495A1 (en) 2002-08-21 2005-06-30 Fujitsu Limited Bus power device and power-source control method
JP2006115656A (en) 2004-10-18 2006-04-27 Canon Inc Power supply control method of electronic apparatus
JP2006352255A (en) 2005-06-13 2006-12-28 Canon Inc Image input system and its power supply alteration method and program
US20070024239A1 (en) * 2003-08-01 2007-02-01 Pn Telecom.; Ltd Data cable for detecting power source automatically
US7250968B2 (en) * 2002-03-12 2007-07-31 Fujifilm Corporation Information recording device implementing an electronic zoom having a limiting section
US20070188621A1 (en) * 2006-02-16 2007-08-16 Canon Kabushiki Kaisha Image transmission apparatus, image transmission method, program, and storage medium
US20080074501A1 (en) * 2006-09-27 2008-03-27 Canon Kabushiki Kaisha Imaging device and control method therefor, and program for the same
US7499640B2 (en) * 2004-07-09 2009-03-03 Ricoh Company, Ltd. Image-recording apparatus
US20090160404A1 (en) 2007-12-19 2009-06-25 Kabushiki Kaisha Toshiba Information processing apparatus
US7631203B2 (en) 2005-08-31 2009-12-08 Sony Corporation Dedicated power supply apparatus, terminal, power supply system, and power supply method
JP2010015582A (en) 2009-08-19 2010-01-21 Sony Corp Information processing device and method, and recording medium
JP2010206948A (en) 2009-03-04 2010-09-16 Panasonic Corp Information apparatus and charging method of information apparatus
US9030166B2 (en) * 2009-07-03 2015-05-12 Nikon Corporation Electronic device, and method controlling electronic power supply

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173822A (en) 2001-12-07 2003-06-20 Matsushita Electric Ind Co Ltd Charge and discharge system and how to use it

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053804A (en) 1987-07-10 1991-10-01 Canon Kabushiki Kaisha Camera having computer
JPH01260516A (en) 1988-04-12 1989-10-17 Canon Inc Auto power-off device
JPH0619593A (en) 1992-07-01 1994-01-28 Ricoh Co Ltd Data device
JPH09261888A (en) 1996-03-22 1997-10-03 Nec Corp Software-notification battery charging method
JPH11191262A (en) 1997-12-25 1999-07-13 Nec Niigata Ltd Power management device and method therefor
US6191568B1 (en) 1999-01-14 2001-02-20 Franco Poletti Load power reduction control and supply system
JP2000357029A (en) 1999-06-15 2000-12-26 Nec Corp Communication interface device and charging device for portable telephone set
US6633932B1 (en) * 1999-09-14 2003-10-14 Texas Instruments Incorporated Method and apparatus for using a universal serial bus to provide power to a portable electronic device
JP2001202144A (en) 2000-01-19 2001-07-27 Melco Inc Power supply device, method for controlling power supply and medium recording control program for power supply device
JP2002049444A (en) 2000-08-04 2002-02-15 Sony Corp Information processor
JP2003032910A (en) 2001-07-13 2003-01-31 Mitsubishi Electric Corp Terminal unit
JP2003044179A (en) 2001-08-01 2003-02-14 Canon Inc Device and method for supplying power and device and method for receiving power
US7250968B2 (en) * 2002-03-12 2007-07-31 Fujifilm Corporation Information recording device implementing an electronic zoom having a limiting section
US7421594B2 (en) * 2002-08-21 2008-09-02 Fujitsu Limited Bus power device and power-source control method
JP2004078740A (en) 2002-08-21 2004-03-11 Fujitsu Ltd Bus power device
US20050144495A1 (en) 2002-08-21 2005-06-30 Fujitsu Limited Bus power device and power-source control method
JP2004086647A (en) 2002-08-28 2004-03-18 I-O Data Device Inc Information transmission connector and power supply mechanism for the same
JP2004328037A (en) 2003-04-21 2004-11-18 Canon Inc Imaging and image recording apparatus
US20040246341A1 (en) * 2003-06-03 2004-12-09 Samsung Techwin Co., Ltd. Battery charger using USB and digital camera having the same
JP2005012889A (en) 2003-06-18 2005-01-13 Nec Infrontia Corp Usb charging system
US20070024239A1 (en) * 2003-08-01 2007-02-01 Pn Telecom.; Ltd Data cable for detecting power source automatically
US20050127879A1 (en) 2003-11-14 2005-06-16 Hideyuki Sato Battery pack, battery protection processing apparatus, and startup control method of the battery protection processing apparatus
US20050114570A1 (en) 2003-11-21 2005-05-26 Chi-Tung Chang Portable data storage device
JP2005173822A (en) 2003-12-09 2005-06-30 Canon Inc Method and system for information processing, program, and storage medium
US7499640B2 (en) * 2004-07-09 2009-03-03 Ricoh Company, Ltd. Image-recording apparatus
JP2006115656A (en) 2004-10-18 2006-04-27 Canon Inc Power supply control method of electronic apparatus
JP2006352255A (en) 2005-06-13 2006-12-28 Canon Inc Image input system and its power supply alteration method and program
US7631203B2 (en) 2005-08-31 2009-12-08 Sony Corporation Dedicated power supply apparatus, terminal, power supply system, and power supply method
US20070188621A1 (en) * 2006-02-16 2007-08-16 Canon Kabushiki Kaisha Image transmission apparatus, image transmission method, program, and storage medium
US20080074501A1 (en) * 2006-09-27 2008-03-27 Canon Kabushiki Kaisha Imaging device and control method therefor, and program for the same
US20090160404A1 (en) 2007-12-19 2009-06-25 Kabushiki Kaisha Toshiba Information processing apparatus
JP2009151488A (en) 2007-12-19 2009-07-09 Toshiba Corp Information processing apparatus
JP2010206948A (en) 2009-03-04 2010-09-16 Panasonic Corp Information apparatus and charging method of information apparatus
US9030166B2 (en) * 2009-07-03 2015-05-12 Nikon Corporation Electronic device, and method controlling electronic power supply
JP2010015582A (en) 2009-08-19 2010-01-21 Sony Corp Information processing device and method, and recording medium

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action issued in Chinese Patent Application No. 201010221093.2 dated Jan. 30, 2014.
Jan. 10, 2014 Advisory Action issued in U.S. Appl. No. 12/828,553.
Jan. 12, 2015 Notice of Allowance issued in U.S. Appl. No. 12/828,553.
Jun. 10, 2014 Search Report issued in European Patent Application No. 10168084.1.
Jun. 26, 2013 Notification of First Office Action issued in Chinese Application No. 201010221093.2.
Mar. 7, 2014 Office Action issued in U.S. Appl. No. 12/828,553.
Office Action issued in Japanese Patent Application No. 2009-158764 dated Apr. 12, 2011.
Office Action issued in Japanese Patent Application No. 2009-158764 dated Dec. 6, 2011.
Office Action issued in Japanese Patent Application No. 2009-163596 dated Apr. 19, 2011.
Sep. 12, 2013 Final Office Action issued in U.S. Appl. No. 12/828,553.
Sep. 28, 2012 Office Action issued in U.S. Appl. No. 12/828,553.

Also Published As

Publication number Publication date
EP2275902A3 (en) 2014-07-09
US20150222136A1 (en) 2015-08-06
US9030166B2 (en) 2015-05-12
CN101944753A (en) 2011-01-12
US20190044358A1 (en) 2019-02-07
US20110001454A1 (en) 2011-01-06
EP2275902A2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
US20190044358A1 (en) Electronic device, and method controlling electronic power supply
US7819530B2 (en) Auxiliary device equipped with projector for use with an electronic device, and electronic camera system incorporating the auxiliary device
US9563245B2 (en) Electronic device and computer readable medium
JP7256646B2 (en) Electronic device and control method and program for electronic device
US8878497B2 (en) Image processing apparatus
US11189864B2 (en) Electronic device and control method
JP6792389B2 (en) Electronic devices and control methods for electronic devices
JP7305427B2 (en) Electronics
US9013149B2 (en) Electronic apparatus, method for controlling electronic apparatus, computer program, and recording medium
US10691555B2 (en) Electronic Device
JP4816772B2 (en) Electronic device, current supply method and program
JP6854601B2 (en) Electronic devices and control methods for electronic devices
JP2007124378A (en) Synchronous photography indication device, imaging apparatus, and synchronous photographing system
JP2005244633A (en) Cradle
JP2007295401A (en) Imaging apparatus, and control method thereof
JP5436115B2 (en) Imaging apparatus, control method thereof, and program
JP2004193784A (en) Image processor
JP2007214683A (en) Imaging apparatus and charging method thereof
JP2017199392A (en) Electronic apparatus and program
JP2008113377A (en) Photographing apparatus and its control method, and computer program
WO2019198352A1 (en) Electronic device, method for controlling electronic device, and program
EP3618426A1 (en) Recording control apparatus and control method thereof
JP3095793B2 (en) Electronic equipment control device
JP2015037230A (en) Electronic apparatus and program
JP2023091501A (en) Imaging apparatus, control method, and program

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4