TWM544107U - Vertical power MOSFET with planar channel - Google Patents

Vertical power MOSFET with planar channel Download PDF

Info

Publication number
TWM544107U
TWM544107U TW106201271U TW106201271U TWM544107U TW M544107 U TWM544107 U TW M544107U TW 106201271 U TW106201271 U TW 106201271U TW 106201271 U TW106201271 U TW 106201271U TW M544107 U TWM544107 U TW M544107U
Authority
TW
Taiwan
Prior art keywords
layer
transistor
region
gate
vertical
Prior art date
Application number
TW106201271U
Other languages
Chinese (zh)
Inventor
N Darwish Mohamed
Jun Zeng
Shih-Tzung Su
Original Assignee
Maxpower Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxpower Semiconductor Inc filed Critical Maxpower Semiconductor Inc
Priority to TW106201271U priority Critical patent/TWM544107U/en
Publication of TWM544107U publication Critical patent/TWM544107U/en

Links

Description

具有平面通道的垂直功率金氧半導體場效電晶體 Vertical power MOS field effect transistor with planar channel

本創作係關於功率金氧半導體場效電晶體(MOSFET),尤其係關於一種具有平面雙擴散金氧半導體(DMOS)部分和垂直傳導部分的垂直電晶體。 This work is about power MOSFETs, especially for a vertical transistor with a planar double-diffused metal oxide semiconductor (DMOS) portion and a vertical conducting portion.

垂直MOSFET因提供厚的低摻雜物濃度漂移層以在該關斷狀態下達成高崩潰電壓的能力,而普及作為高電壓、高功率電晶體。通常,該MOSFET包括一高度摻雜N型基板;一厚的低摻雜物濃度N型漂移層;一P型主體層,其形成在該漂移層中;一N型源極,其在該主體層之頂端;以及一閘極,其藉由薄閘極氧化物與該通道區隔開。源極電極形成在該頂端表面上,而汲極電極形成在該底面上。當該閘極相對於該源極足夠正值時,介於該N型源極與該N型漂移層之間的P型主體之通道區反轉,以在該源極與汲極之間建立傳導路徑。 Vertical MOSFETs are popular as high voltage, high power transistors due to their ability to provide a thick, low dopant concentration drift layer to achieve high breakdown voltages in this off state. Typically, the MOSFET includes a highly doped N-type substrate; a thick low dopant concentration N-type drift layer; a P-type body layer formed in the drift layer; and an N-type source at the body a top end of the layer; and a gate separated from the channel region by a thin gate oxide. A source electrode is formed on the top end surface, and a drain electrode is formed on the bottom surface. When the gate is sufficiently positive with respect to the source, a channel region of the P-type body between the N-type source and the N-type drift layer is reversed to establish between the source and the drain Conduction path.

在該裝置的關斷狀態下,當該閘極短路至該源極或為負值時,該漂移層空乏,並可在該源極與汲極之間保持高崩潰電壓(例如超過600伏特)。然而,因所需該厚的漂移層低摻雜,而使該導通電阻受到影響。提高該漂移層之摻雜減小該導通電阻,但降低該崩潰電壓。 In the off state of the device, when the gate is shorted to the source or is negative, the drift layer is depleted and a high breakdown voltage (eg, over 600 volts) can be maintained between the source and the drain. . However, the on-resistance is affected by the low doping required for the thick drift layer. Increasing the doping of the drift layer reduces the on-resistance but reduces the breakdown voltage.

圖1是在單體之陣列中的慣用平面垂直DMOS電晶體單體10之剖面圖。平面DMOS電晶體因其相較於溝槽MOSFET的耐用性,而廣泛使用在眾多功率切換應用中。然而,該慣用平面DMOS電晶體具有較高的指定導通電阻(Rsp,specific on-resistance),其為導通電阻與有效面積之乘積。所需為具有減小Rsp和較低輸入電容(Ciss,input capacitances)、輸出電容(Coss,output capacitances)及轉 移電容(Crss,transfer capacitances)或閘極電荷(Qg,gate charge)的DMOS電晶體,以降低該電晶體的傳導和切換損耗。 1 is a cross-sectional view of a conventional planar vertical DMOS transistor cell 10 in an array of cells. Planar DMOS transistors are widely used in many power switching applications due to their durability compared to trench MOSFETs. However, the conventional planar DMOS transistor has a higher specific on-resistance (Rsp), which is the product of the on-resistance and the effective area. Required to have reduced Rsp and lower input capacitances (Ciss, input capacitances), output capacitances (Coss, output capacitances) and DMOS transistors with transfer capacitance (Crss, transfer capacitances) or gate charge (Qg, gate charge) to reduce the conduction and switching losses of the transistor.

在圖1所示該慣用DMOS結構中的重要電阻組件會在沿著反轉通道12和在P-井16區旁邊的接面場效電晶體(JFET)區14的該電壓降時出現。當足夠正值的電壓施加於閘極17時,閘極17反轉通道12。源極電極18透過P+接點區22接觸N++源極區20和P-井16。介電體53隔離閘極17和源極電極18。當閘極17反轉通道12時,在源極區20與低摻雜物密度N--漂移區24之間形成水平電流路徑,然後該電流垂直流經N--漂移區24、N++基板26和汲極電極28。N--漂移區24需要相對較厚以具有高崩潰電壓,但N--漂移區24的低摻雜物密度和厚度提高導通電阻。 The significant resistance component in the conventional DMOS structure shown in Figure 1 will occur at this voltage drop along the inversion channel 12 and the junction field effect transistor (JFET) region 14 beside the P-well 16 region. When a sufficiently positive voltage is applied to the gate 17, the gate 17 reverses the channel 12. Source electrode 18 contacts N++ source region 20 and P-well 16 through P+ junction region 22. The dielectric body 53 isolates the gate 17 and the source electrode 18. When the gate 17 inverts the channel 12, a horizontal current path is formed between the source region 20 and the low dopant density N--drift region 24, and then the current flows vertically through the N--drift region 24, the N++ substrate 26 And the drain electrode 28. The N--drift region 24 needs to be relatively thick to have a high breakdown voltage, but the low dopant density and thickness of the N--drift region 24 increase the on-resistance.

JFET區14限制該電流流動,而使用足夠寬的P-井間距(2Y)以最小化該JFET電阻分量很重要。然而,提高該間距Y導致單體間距和該有效面積增加。因此,這種權衡利弊導致Rsp的改善有限。 JFET region 14 limits this current flow, and it is important to use a sufficiently wide P-well spacing (2Y) to minimize this JFET resistance component. However, increasing the pitch Y results in an increase in the cell pitch and the effective area. Therefore, this trade-off has led to limited improvements in Rsp.

本領域極需具有良好Rsp和相較於圖1較小表面積以提高單體密度的平面、垂直DMOS電晶體。又,該電晶體應具有高崩潰電壓和高切換速度。 There is a great need in the art for planar, vertical DMOS transistors having good Rsp and a relatively small surface area compared to Figure 1 to increase monomer density. Also, the transistor should have a high breakdown voltage and a high switching speed.

所揭示為具有減小Rsp和閘極電荷Qg的全新DMOS電晶體結構,同時具有高崩潰電壓和高切換速度。 It is disclosed as a new DMOS transistor structure with reduced Rsp and gate charge Qg, with high breakdown voltage and high switching speed.

所形成的MOSFET具有用於側向電流流動的平面通道區,以及用於垂直電流流動的垂直傳導路徑。在一個具體實施例中,P-井(本體區)形成在N型層中,其中有比該P-井更深的溝槽形成在該N型層中,產生該N型層之垂直側壁。該N型層比該N型層下方的N型漂移層更高度摻雜。該N型漂移層可以在慣用垂直MOSFET中製作得比該漂移層更薄,同時仍達成相同崩潰電壓。 The resulting MOSFET has a planar channel region for lateral current flow and a vertical conduction path for vertical current flow. In a specific embodiment, a P-well (body region) is formed in the N-type layer, wherein a trench deeper than the P-well is formed in the N-type layer to create a vertical sidewall of the N-type layer. The N-type layer is more highly doped than the N-type drift layer below the N-type layer. The N-type drift layer can be made thinner in the conventional vertical MOSFET than the drift layer while still achieving the same breakdown voltage.

該閘極之第一部分疊置該頂端平面通道區,而該閘極之第二部分垂直延伸至在該N型層之垂直側壁旁邊的溝槽中。 A first portion of the gate overlaps the top planar channel region and a second portion of the gate extends vertically into a trench adjacent the vertical sidewall of the N-type layer.

該MOSFET包括一垂直屏蔽場板,其由傳導材料(例如摻雜多晶矽)形成、填充該溝槽並藉由介電材料(例如氧化物)與該等側壁隔離。該場板比該P-井更深,以透過在該關斷狀態下側向空乏該N型層而在該N型層中提供有效電場縮減。該場板可能連接至該源極、或至該閘極、或為浮接。 The MOSFET includes a vertical shield field plate formed of a conductive material (e.g., doped polysilicon) that fills the trench and is isolated from the sidewalls by a dielectric material such as an oxide. The field plate is deeper than the P-well to provide effective electric field reduction in the N-type layer by laterally depleting the N-type layer in the off state. The field plate may be connected to the source, or to the gate, or to a floating connection.

當該MOSFET為關斷以提高該崩潰電壓時,該閘極之垂直部分和該場板兩者皆有助於側向空乏該N型層。當該MOSFET為接通以減小該導通電阻時,該閘極之垂直部分也沿著在該P-井對面的該等N型層側壁積聚電子。因此,由於該JFET區(介於該P-井與溝槽之間)可以製作得較窄而不會過度約束該電流路徑,故該等單體可能較小型。另外,由於該N型層可以相對較高度摻雜而不會降低該崩潰電壓,故該導通電阻進一步減小。該閘極之垂直部分、該場板、該相對較重摻雜的N型層和縮減厚度的N型漂移層之複合作用,提供提高的崩潰電壓、減小導通電阻和每晶粒較低的成本(由於每單位面積的導通電阻較低,故允許每個晶粒製作得較小型)。該結構因每單位面積的導通電阻較低而允許較高的單體密度(包括條帶(strips)),從而實現每單位面積較大的電流處理能力。 When the MOSFET is turned off to increase the breakdown voltage, both the vertical portion of the gate and the field plate contribute to lateral depletion of the N-type layer. When the MOSFET is turned "on" to reduce the on-resistance, the vertical portion of the gate also accumulates electrons along the sidewalls of the N-type layers opposite the P-well. Thus, since the JFET region (between the P-well and the trench) can be made narrower without unduly constraining the current path, the cells may be smaller. In addition, since the N-type layer can be doped relatively high without lowering the breakdown voltage, the on-resistance is further reduced. The combination of the vertical portion of the gate, the field plate, the relatively heavily doped N-type layer, and the reduced thickness N-type drift layer provides increased breakdown voltage, reduced on-resistance, and lower per-die Cost (since the on-resistance per unit area is low, each die is allowed to be made smaller). This structure allows for higher monomer density (including strips) due to lower on-resistance per unit area, thereby achieving greater current handling capability per unit area.

由於介於該N型層與該汲極電極之間的低摻雜物濃度漂移區可以製作得較薄而不會降低該崩潰電壓,故每單位面積導通電阻(指定導通電阻Ron*面積)低於該慣用垂直功率MOSFET。 Since the low dopant concentration drift region between the N-type layer and the drain electrode can be made thin without reducing the breakdown voltage, the on-resistance per unit area (specified on-resistance Ron* area) is low. This is a conventional vertical power MOSFET.

為加速切換而減小該閘極-汲極電容,該垂直場板可以連接至該源極電極(而非至該閘極),且該水平閘極部分不會延伸至該場板上面。 To reduce switching the gate-drain capacitance, the vertical field plate can be connected to the source electrode (rather than to the gate) and the horizontal gate portion does not extend above the field plate.

在一個具體實施例中,該閘極、該垂直場板和該N型層摻雜及厚度係選擇,使得該N型層在崩潰開始時完全空乏。 In a specific embodiment, the gate, the vertical field plate, and the N-type layer doping and thickness are selected such that the N-type layer is completely depleted at the beginning of the collapse.

在一個應用中,負載耦合於該底部汲極電極與正電壓供應之間,且該電晶體之頂端表面上的源極電極為接地。當該閘極相對於該源極電極足夠正值偏壓時,電流供應給該負載。 In one application, a load is coupled between the bottom drain electrode and a positive voltage supply, and the source electrode on the top surface of the transistor is grounded. When the gate is sufficiently positively biased relative to the source electrode, current is supplied to the load.

若該MOSFET與交流電壓共用,則該MOSFET的PN二極體將在該汲極比該源極更負值時傳導。當該極性反向且該二極體反向偏壓時,在該閘極偏壓至關斷狀態之後、該MOSFET完全關斷之前有必須去除的儲存電荷。由於該N型層中有較高摻雜物程度,故此儲存電荷較快去除,從而實現切換時間加速。換言之,該MOSFET結構在該PN二極體偏壓接通之後縮減該回復時間。 If the MOSFET is shared with an AC voltage, the PN diode of the MOSFET will conduct when the drain is more negative than the source. When the polarity is reversed and the diode is reverse biased, there is a stored charge that must be removed after the gate is biased to the off state and before the MOSFET is completely turned off. Due to the higher dopant level in the N-type layer, the stored charge is removed faster, thereby achieving switching time acceleration. In other words, the MOSFET structure reduces the recovery time after the PN diode bias is turned "on".

絕緣閘極雙極性電晶體(IGBT,Insulated gate bipolar transistor)結構也透過使用P+基板而形成。 An insulated gate bipolar transistor (IGBT) structure is also formed by using a P+ substrate.

說明其他具體實施例。 Other specific embodiments are described.

10‧‧‧單體 10‧‧‧Single

12‧‧‧反轉通道 12‧‧‧Reversal channel

14‧‧‧接面場效電晶體區 14‧‧‧Connected field effect transistor area

16‧‧‧P-井 16‧‧‧P-well

17‧‧‧閘極 17‧‧‧ gate

18‧‧‧源極電極 18‧‧‧Source electrode

20‧‧‧源極區 20‧‧‧ source area

22‧‧‧P+接點區 22‧‧‧P+ junction area

24‧‧‧N--漂移區 24‧‧‧N--drift zone

26‧‧‧N++基板 26‧‧‧N++ substrate

28‧‧‧汲極電極 28‧‧‧汲electrode

30‧‧‧單體 30‧‧‧single

32‧‧‧汲極電極 32‧‧‧汲electrode

34‧‧‧源極電極 34‧‧‧Source electrode

36‧‧‧閘極 36‧‧‧ gate

37‧‧‧P+接點區 37‧‧‧P+ junction area

38‧‧‧P-井區 38‧‧‧P-well area

40‧‧‧N-層 40‧‧‧N-layer

42‧‧‧垂直延伸物 42‧‧‧Vertical extension

44‧‧‧溝槽 44‧‧‧ trench

46‧‧‧源極區 46‧‧‧ source area

48‧‧‧漂移區 48‧‧‧ drift zone

50‧‧‧基板 50‧‧‧Substrate

52‧‧‧場板 52‧‧‧ Field Board

53‧‧‧介電體 53‧‧‧ dielectric

54‧‧‧氧化物層 54‧‧‧Oxide layer

56‧‧‧閘極氧化物 56‧‧‧gate oxide

60‧‧‧P-屏蔽區 60‧‧‧P-shield

61‧‧‧N-頂端層 61‧‧‧N-top layer

64‧‧‧P-縱列 64‧‧‧P-column

64A‧‧‧P-縱列 64A‧‧‧P-column

65‧‧‧N-縱列 65‧‧‧N-column

65A‧‧‧N-電荷平衡縱列 65A‧‧‧N-charge balance column

67‧‧‧P-連接區 67‧‧‧P-connection area

68‧‧‧N-表面區 68‧‧‧N-surface area

70‧‧‧P+區 70‧‧‧P+ District

80‧‧‧基板 80‧‧‧Substrate

81‧‧‧N--緩衝層 81‧‧‧N--buffer layer

82‧‧‧P+區 82‧‧‧P+ District

84‧‧‧N+區 84‧‧‧N+ District

86‧‧‧墊氧化物層 86‧‧‧Mat oxide layer

88‧‧‧N型摻雜物 88‧‧‧N type dopant

90‧‧‧P型摻雜物 90‧‧‧P type dopant

92‧‧‧光阻掩罩 92‧‧‧Photoresist mask

94‧‧‧氧化物硬掩罩 94‧‧‧Oxide hard mask

96‧‧‧氧化物層 96‧‧‧Oxide layer

98‧‧‧光阻掩罩 98‧‧‧Photoresist mask

100‧‧‧磷或砷植入 100‧‧‧Phosphorus or arsenic implants

102‧‧‧P型摻雜物 102‧‧‧P type dopant

104‧‧‧犧牲氧化物層 104‧‧‧Sacrificial oxide layer

106‧‧‧場氧化物層 106‧‧ ‧ field oxide layer

108‧‧‧傳導多晶矽 108‧‧‧ Conductive polysilicon

110‧‧‧多晶矽層 110‧‧‧Polysilicon layer

112‧‧‧光阻掩罩 112‧‧‧Photoresist mask

114‧‧‧P型摻雜物 114‧‧‧P type dopant

116‧‧‧N型摻雜物 116‧‧‧N type dopant

118‧‧‧硼磷矽玻璃層 118‧‧‧Boron phosphate glass layer

120‧‧‧硼 120‧‧‧ Boron

S‧‧‧間距 S‧‧‧ spacing

Y‧‧‧間距 Y‧‧‧ spacing

Xj‧‧‧深度 Xj‧‧ depth

[圖1]是在相同的相連單體之陣列中的慣用平面垂直DMOS電晶體單體之剖面圖。 [Fig. 1] is a cross-sectional view of a conventional planar vertical DMOS transistor cell in an array of identical connected cells.

[圖2A]是根據本創作之一個具體實施例而在並聯所連接相同的相連單體之陣列中單一的垂直DMOS電晶體單體(其可能為條帶之一部分)之剖面圖。 [Fig. 2A] is a cross-sectional view of a single vertical DMOS transistor cell (which may be part of a strip) in an array of identical connected cells connected in parallel, in accordance with an embodiment of the present invention.

[圖2B]例示在該溝槽下方使用P-屏蔽區的DMOS電晶體單體之剖面圖。 [Fig. 2B] A cross-sectional view showing a DMOS transistor unit using a P-shielding region under the trench.

[圖2C]例示使用相對較高度摻雜的P-縱列和N-縱列的DMOS電晶體單體之剖面圖。 2C] A cross-sectional view of a DMOS transistor cell using P-columns and N-columns doped with relatively higher degrees.

[圖2D]例示使用相鄰該P-井的增強N型表面區(N-Surf)的DMOS電晶體單體之剖面圖。 [Fig. 2D] A cross-sectional view showing a DMOS transistor cell using an enhanced N-type surface region (N-Surf) adjacent to the P-well.

[圖2E]例示在該溝槽底部與P-屏蔽區之間使用增強N型區(N-頂端)的DMOS電晶體單體之剖面圖。 [Fig. 2E] A cross-sectional view showing a DMOS transistor unit using an enhanced N-type region (N-top) between the bottom of the trench and the P-shielding region.

[圖2F]例示使用相對較高度摻雜的P-縱列和N-縱列而無P-屏蔽區的DMOS電晶體單體之剖面圖。 [FIG. 2F] A cross-sectional view of a DMOS transistor cell using a relatively high degree doped P-column and N-column without a P-shielding region is illustrated.

[圖3A]例示延伸至該溝槽以改善耐用性並縮減每個單體之大小的P-井的DMOS電晶體單體之剖面圖。 [Fig. 3A] A cross-sectional view of a DMOS transistor unit of a P-well extending to the trench to improve durability and reduce the size of each cell.

[圖3B]例示使用增強N型表面區(N-Surf)的DMOS電晶體單體之剖面圖。 [Fig. 3B] A cross-sectional view showing a DMOS transistor cell using an enhanced N-type surface region (N-Surf).

[圖3C]例示在該溝槽下方使用P-屏蔽區的DMOS電晶體單體之剖面圖。 [Fig. 3C] A cross-sectional view showing a DMOS transistor unit using a P-shielding region under the trench.

[圖3D]例示使用相對較高度摻雜的P-縱列和N-縱列的DMOS電晶體單體之剖面圖。 [Fig. 3D] A cross-sectional view of a DMOS transistor cell using P-columns and N-columns doped with a relatively high degree is exemplified.

[圖3E]例示使用深P+區的DMOS電晶體單體之剖面圖。 [Fig. 3E] A cross-sectional view showing a DMOS transistor unit using a deep P+ region.

[圖3F]例示使用多層P-縱列和N-縱列的DMOS電晶體單體之剖面圖。 [Fig. 3F] A cross-sectional view showing a DMOS transistor unit using a plurality of P-columns and N-columns.

[圖3G]例示在該溝槽底部與P-屏蔽區之間使用增強N型區(N-頂端)的DMOS電晶體單體之剖面圖。 [Fig. 3G] A cross-sectional view showing a DMOS transistor unit using an enhanced N-type region (N-top) between the bottom of the trench and the P-shielding region.

[圖3H]例示使用相對較高度摻雜的P-縱列和N-縱列而無P-屏蔽區的DMOS電晶體單體之剖面圖。 [Fig. 3H] A cross-sectional view showing a DMOS transistor cell using a relatively high degree doped P-column and N-column without a P-shielding region.

[圖4A]例示該閘極未重疊該垂直屏蔽場板以減小閘極-汲極電容的DMOS電晶體單體之剖面圖。 [Fig. 4A] A cross-sectional view showing a DMOS transistor unit in which the gate electrode does not overlap the vertical shield field plate to reduce the gate-drain capacitance.

[圖4B]例示沿著不同剖面連接至該源極金屬的垂直屏蔽場板的DMOS電晶體單體之剖面圖。 [Fig. 4B] A cross-sectional view showing a DMOS transistor unit connected to a vertical shield field plate of the source metal along different sections.

[圖4C]例示在P-井與P-屏蔽區之間使用P型區(P-連接)的DMOS電晶體單體之剖面圖。 [Fig. 4C] A cross-sectional view showing a DMOS transistor unit using a P-type region (P-connection) between a P-well and a P-shielding region.

[圖5A]例示係該閘極之延伸物以減小導通電阻的垂直屏蔽場板的DMOS電晶體單體之剖面圖。 [Fig. 5A] A cross-sectional view showing a DMOS transistor unit of a vertical shield field plate which is an extension of the gate electrode to reduce on-resistance.

[圖5B]例示使用P-縱列和N-縱列的DMOS電晶體單體之剖面圖。 [Fig. 5B] A cross-sectional view showing a DMOS transistor unit using P-columns and N-columns.

[圖6A]例示聯接該溝槽側壁的P-井的DMOS電晶體單體之剖面圖。 [Fig. 6A] A cross-sectional view showing a DMOS transistor unit of a P-well coupled to a sidewall of the trench.

[圖6B]例示使用增強N型表面區的DMOS電晶體單體之剖面圖。 [Fig. 6B] A cross-sectional view showing a DMOS transistor unit using an enhanced N-type surface region.

[圖6C]例示該閘極未重疊該垂直屏蔽場板的DMOS電晶體單體之剖面圖。 [Fig. 6C] A cross-sectional view showing a DMOS transistor unit in which the gate electrode does not overlap the vertical shield field plate.

[圖7A]例示在崩潰開始時在圖2C之電晶體之模擬中的等電位線。 [Fig. 7A] illustrates an equipotential line in the simulation of the transistor of Fig. 2C at the start of the collapse.

[圖7B]例示在崩潰開始時在圖6A之電晶體之模擬中的等電位線。 [Fig. 7B] An equipotential line in the simulation of the transistor of Fig. 6A at the start of the collapse is exemplified.

[圖7C]例示在崩潰開始時在圖2E之電晶體之模擬中的等電位線。 [Fig. 7C] An equipotential line in the simulation of the transistor of Fig. 2E at the start of the collapse is exemplified.

[圖8A]是形成條帶的單體之一部分之俯視圖。 [Fig. 8A] is a plan view of a portion of a monomer forming a strip.

[圖8B]是形成條帶的單一單體之一部分之俯視圖。 [Fig. 8B] is a plan view of a portion of a single monomer forming a strip.

[圖8C]是形成封閉六邊形的單一單體之一部分之俯視圖。 [Fig. 8C] is a plan view of a portion of a single cell forming a closed hexagon.

[圖9A]例示使用P+基板形成IGBT的DMOS電晶體單體之剖面圖。 [Fig. 9A] A cross-sectional view showing a DMOS transistor unit in which an IGBT is formed using a P+ substrate.

[圖9B]例示在基板中的分段P+和N+區以形成IGBT和DMOS電晶體之組合的DMOS電晶體單體之剖面圖。 [Fig. 9B] A cross-sectional view of a DMOS transistor unit exemplifying a segmented P+ and N+ regions in a substrate to form a combination of an IGBT and a DMOS transistor.

[圖9C]類似於圖9B,但是P-井緊鄰該溝槽的DMOS電晶體單體之剖面圖。 [Fig. 9C] A cross-sectional view similar to Fig. 9B, but with the P-well immediately adjacent to the DMOS transistor of the trench.

[圖9D]例示在該溝槽底部與P-屏蔽區之間使用增強N型區(N-頂端層)的DMOS電晶體單體之剖面圖。 [Fig. 9D] A cross-sectional view showing a DMOS transistor unit using an enhanced N-type region (N-tip layer) between the bottom of the trench and the P-shielding region.

[圖9E]例示使用相對較高度摻雜的P-縱列和N-縱列而無P-屏蔽區的DMOS電晶體單體之剖面圖。 [Fig. 9E] A cross-sectional view showing a DMOS transistor cell using a relatively high degree doped P-column and N-column without a P-shielding region.

[圖10A至10W]例示用於形成圖3D之平面垂直DMOS電晶體的各種新穎製造步驟,其中相同單體之陣列並聯連接形成。 [Figs. 10A to 10W] illustrate various novel manufacturing steps for forming the planar vertical DMOS transistor of Fig. 3D in which arrays of the same cells are formed in parallel connection.

在各種所附圖式中,相同或等同的元件以相同編號標示。 In the various figures, the same or equivalent elements are designated by the same reference numerals.

根據本創作之一個具體實施例,圖2A是在並聯所連接相同的相連MOSFET單體之陣列中單一的垂直MOSFET單體30之剖面圖。後述圖8A至圖8C例示該等單體之各種配置,這包括條帶和封閉單體。在該等剖面圖中,該等各種區域皆未按比例繪製以方便例示。圖7A和圖7B之該等模擬圖顯示更準確的相對尺寸。 In accordance with a specific embodiment of the present writing, FIG. 2A is a cross-sectional view of a single vertical MOSFET cell 30 in an array of identical connected MOSFET cells connected in parallel. 8A to 8C, which will be described later, illustrate various configurations of the monomers, including strips and blocking monomers. In the cross-sectional views, the various regions are not drawn to scale for convenience. The simulations of Figures 7A and 7B show a more accurate relative size.

在圖2A中,所示單體30之寬度約為5-15微米。單體30可能具有超過600伏特的崩潰電壓,且在相同的單體之陣列中的單體30之數量決定該電流處理能力,例如20安培。單體之陣列可能為條帶、正方形、六邊形或其他已習知形狀。 In Figure 2A, the illustrated monomer 30 has a width of between about 5 and 15 microns. Monomer 30 may have a breakdown voltage in excess of 600 volts, and the amount of monomer 30 in the same array of monomers determines the current handling capability, such as 20 amps. The array of cells may be strips, squares, hexagons or other known shapes.

在一個一般應用中,負載連接於底部汲極電極32與正電壓供應之間,而頂端源極電極34為接地。當大於該臨界電壓的正電壓施加於傳導閘極36時,P-井區38之頂端表面反轉,而電子沿著緊鄰閘極36之垂直延伸物42的N-層40積聚之該等垂直側壁,以傳播該電流並減小N-層40之導通電阻。P+接點區37在電阻性上連接P-井區38至源極電極34。 In one general application, the load is connected between the bottom drain electrode 32 and the positive voltage supply, while the top source electrode 34 is grounded. When a positive voltage greater than the threshold voltage is applied to the conductive gate 36, the top surface of the P-well region 38 is reversed and the electrons are accumulated along the N-layer 40 of the vertical extension 42 adjacent the gate 36. The sidewalls propagate the current and reduce the on-resistance of the N-layer 40. The P+ contact region 37 is ohmically connected to the P-well region 38 to the source electrode 34.

閘極36之垂直延伸物42可能在P-井區38下方延伸,但在減小該閘極-汲極電容(透過縮減其表面積)與透過延伸垂直延伸物42更深入溝槽44而減小導通電阻之間有權衡利弊。 The vertical extension 42 of the gate 36 may extend below the P-well 38, but is reduced by reducing the gate-dipper capacitance (by reducing its surface area) and deepening the trench 44 through the extended vertical extension 42. There is a trade-off between the on-resistance.

N++源極區46、P-井區38和N-層40頂端表面形成MOSFET單體30之側向DMOS電晶體部分。在該接通狀態下,在源極電極34與汲極電極32之間有經過N++源極區46、P-井區38之反轉通道、N-層40、N--漂移區48和N++基板50的傳導N型通道。 The N++ source region 46, the P-well region 38, and the top surface of the N-layer 40 form a lateral DMOS transistor portion of the MOSFET cell 30. In the on state, there is an inversion channel through the N++ source region 46, the P-well region 38, the N-layer 40, the N--drift region 48, and the N++ between the source electrode 34 and the drain electrode 32. The substrate 50 conducts an N-type channel.

側向DMOS電晶體部分、N-層40之較高摻雜、閘極36之垂直延伸物42和N--漂移區48之縮減厚度之組合,相較於先前技術減小該導通電阻。此結構因垂直場板52(連接至該源極)之作用而相較於先前技術也提高該崩潰電壓,且若該等MOSFET內部PN二極體變成正向偏壓然後反向偏壓,則加速該切換時間。 The combination of the lateral DMOS transistor portion, the higher doping of the N-layer 40, the vertical extension 42 of the gate 36, and the reduced thickness of the N--drift region 48 reduces the on-resistance compared to prior art techniques. This structure also increases the breakdown voltage due to the action of the vertical field plate 52 (connected to the source) compared to the prior art, and if the PN diodes inside the MOSFET become forward biased and then reverse biased, then Accelerate the switching time.

介電體53(例如氧化物)隔離源極電極34。 A dielectric body 53 (e.g., an oxide) isolates the source electrode 34.

溝槽44側壁覆蓋有氧化物層54,且該溝槽填充有形成垂直屏蔽場板52的傳導材料(例如多晶矽)。閘極氧化物56厚度低於閘極36,且沿著閘極36之垂直延伸物42比氧化物層54更薄許多。這部分是由於在N-層40之頂端的電壓電位比接近N-層40之底部更小許多的事實,因此該氧化物接近該頂端可以較薄而不會降低該崩潰電壓。 The sidewalls of trench 44 are covered with an oxide layer 54, and the trench is filled with a conductive material (e.g., polysilicon) that forms vertical shield field plate 52. The gate oxide 56 is less thick than the gate 36 and is substantially thinner along the vertical extension 42 of the gate 36 than the oxide layer 54. This is due in part to the fact that the voltage potential at the top of the N-layer 40 is much smaller than the bottom of the N-layer 40, so that the oxide can be thinner near the tip without reducing the breakdown voltage.

垂直屏蔽場板52與閘極36之垂直延伸物42組合,在該MOSFET為關斷以改善該崩潰電壓時側向空乏N-層40。整個N-層40在崩潰開始時較佳為完全空乏。N--漂移區48在崩潰開始時較佳也為完全空乏。 The vertical shield field plate 52 is combined with the vertical extension 42 of the gate 36 to laterally deplete the N-layer 40 when the MOSFET is turned off to improve the breakdown voltage. The entire N-layer 40 is preferably completely depleted at the beginning of the crash. The N--drift region 48 is preferably also completely depleted at the beginning of the crash.

閘極36之垂直延伸物42之作用(沿著該側壁積聚電子)允許縮減P-井區38至溝槽44間距S,從而實現縮減單體間距和有效面積,同時仍產生較低導通電阻,這導致較低Rsp。間距S可以為,舉例來說,小於P-井接合深度Xj之0.5至0.1。場板52可以電連接至閘極36、或源極電極34、或可以為浮接。連接場板52 至源極電極34提供較低閘極-汲極電容或較低閘極-汲極電荷(Qgd,gate-drain charge),而連接該場板至閘極36由於在閘極36偏壓至正電壓時沿著該等溝槽側壁之較長長度建立電子積聚層,因此產生較低導通電阻。 The function of the vertical extension 42 of the gate 36 (accumulating electrons along the sidewall) allows the P-well 38 to the trench 44 spacing S to be reduced, thereby reducing the cell spacing and effective area while still producing a lower on-resistance, This results in a lower Rsp. Spacing S may be, for example, less than P- well junction depth X j of 0.5 to 0.1. Field plate 52 can be electrically connected to gate 36, or source electrode 34, or can be floating. Connecting the field plate 52 to the source electrode 34 provides a lower gate-drain capacitance or a lower gate-drain charge (Qgd), while the field plate is connected to the gate 36 due to the gate 36. The electron accumulation layer is established along the longer length of the sidewalls of the trenches when biased to a positive voltage, thus producing a lower on-resistance.

溝槽44可能為2-20微米深。溝槽44之寬度(介於相鄰單體之間)可能為1-2微米。P-井區38深度可能約為2.5微米。N-層40和N--漂移區48之厚度基於該所需崩潰電壓決定,並可能使用模擬決定。 The trench 44 may be 2-20 microns deep. The width of the trenches 44 (between adjacent cells) may be 1-2 microns. The P-well 38 depth may be approximately 2.5 microns. The thickness of N-layer 40 and N--drift region 48 is determined based on the desired breakdown voltage and may be determined using simulation.

若單體30為封閉單體(例如六邊形或正方形),則閘極36之垂直延伸物42和垂直場板52圍繞N-層40。若單體30為條帶,則閘極36之垂直延伸物42和垂直場板52沿著N-層40之長度延伸。 If the monomer 30 is a closed monomer (e.g., hexagonal or square), the vertical extension 42 of the gate 36 and the vertical field plate 52 surround the N-layer 40. If the cell 30 is a strip, the vertical extension 42 of the gate 36 and the vertical field plate 52 extend along the length of the N-layer 40.

圖2B顯示類似於圖2A的另一具體實施例,但是自我對準P-屏蔽區60在溝槽44下方。在該關斷狀態下,該裝置反向偏壓且P-屏蔽區60縮減溝槽44下方的電場,由於P-屏蔽區60在崩潰之前完全空乏,故導致較高崩潰電壓。P-屏蔽區60也用來側向空乏N-層40以進一步提高崩潰電壓。P-屏蔽區60可以為浮接,但是要從該關斷狀態切換該裝置接通,起因於介於P-屏蔽區60與N-層40和N--漂移區48之間空乏層的寄生電容必須放電。因此,較佳為經過P-井區38和該晶粒(未顯示)之某些位置上的P型連接區連接P-屏蔽區60至源極電極34。P-屏蔽區60之連接至源極電極34為電流放電該電容提供路徑,並改善在從該關斷至該接通狀態切換該裝置期間的切換延遲。 FIG. 2B shows another embodiment similar to FIG. 2A, but with self-aligned P-shield region 60 below trench 44. In this off state, the device is reverse biased and the P-shield region 60 reduces the electric field below the trench 44, resulting in a higher breakdown voltage due to the complete depletion of the P-shield region 60 prior to collapse. The P-shield region 60 is also used to laterally deplete the N-layer 40 to further increase the breakdown voltage. The P-shielding region 60 may be floating, but switching the device from the off state is caused by a parasitic layer between the P-shielding region 60 and the N-layer 40 and the N--drift region 48. The capacitor must be discharged. Accordingly, it is preferred to connect the P-shielding region 60 to the source electrode 34 via a P-well region 38 and a P-type connection region at certain locations of the die (not shown). The connection of the P-shielding region 60 to the source electrode 34 provides a path for current discharge to the capacitor and improves the switching delay during switching of the device from the turn-off to the turn-on state.

圖2C顯示類似於圖2B的另一具體實施例,但是具有P-電荷平衡縱列之P-縱列64和N-電荷平衡縱列之N-縱列65以減小該Rsp。N-縱列65比N-層40更高度摻雜,因此有助於減小導通電阻。P和N縱列64/65在該裝置為關斷時空乏,且在崩潰開始時較佳為完全空乏。 2C shows another embodiment similar to FIG. 2B, but with a P-column 64 of the P-charge balancing column and an N-column 65 of the N-charge balancing column to reduce the Rsp. The N-column 65 is more highly doped than the N-layer 40, thus helping to reduce the on-resistance. The P and N columns 64/65 are depleted when the device is turned off, and are preferably completely depleted at the beginning of the crash.

圖2D顯示類似於圖2C的另一具體實施例,但是自我對準增強N-表面區68(N-Surf)圍繞P-井區38之邊緣並延伸至該溝槽側壁。N-表面區68具有高於N-層40的摻雜濃度。閘極36之垂直延伸物42在N-表面區68中積聚電子以進一步減小其導通電阻。因此,N-表面區68提供較低導通電阻和較佳電流傳播。較佳為P-屏蔽區60及P-縱列64和N-縱列65在突崩潰開始時完全空乏。 2D shows another embodiment similar to FIG. 2C, but a self-aligned enhanced N-surface region 68 (N-Surf) surrounds the edge of the P-well region 38 and extends to the trench sidewall. The N-surface region 68 has a higher doping concentration than the N-layer 40. The vertical extension 42 of the gate 36 accumulates electrons in the N-surface region 68 to further reduce its on-resistance. Thus, N-surface region 68 provides lower on-resistance and better current propagation. Preferably, the P-shielding zone 60 and the P-column 64 and the N-column 65 are completely depleted at the beginning of the collapse.

圖2E顯示類似於圖2B的另一具體實施例,但是自我對準P-屏蔽區60浮接並藉由N型N-頂端層61與溝槽44隔開。較佳為在N-頂端層61中的摻雜高於N-層40之摻雜而不會大幅降低該崩潰電壓。N-頂端層61在P-屏蔽區60之頂端上導致該等空乏層的電容改善放電,並縮減接通期間的切換延遲。 2E shows another embodiment similar to FIG. 2B, but the self-aligned P-shielding region 60 is floated and separated from the trench 44 by an N-type N-top layer 61. Preferably, the doping in the N-top layer 61 is higher than the doping of the N-layer 40 without substantially reducing the breakdown voltage. The N-top layer 61 causes a capacitance-enhancing discharge of the depletion layers on the top of the P-shielding region 60 and reduces the switching delay during turn-on.

圖2F顯示類似於圖2E的另一具體實施例,但是具有P-縱列64和N-電荷平衡縱列之N-縱列65以減小Rsp。N-縱列65比N-層40更高度摻雜,因此有助於減小導通電阻。P和N縱列64/65在該裝置為關斷時空乏,且在崩潰開始時較佳為完全空乏。P-縱列64由N型區圍繞導致該等空乏層的電容改善放電,並縮減接通期間的切換延遲。 2F shows another embodiment similar to FIG. 2E, but with a P-column 64 and an N-column 65 of N-charge balancing columns to reduce Rsp. The N-column 65 is more highly doped than the N-layer 40, thus helping to reduce the on-resistance. The P and N columns 64/65 are depleted when the device is turned off, and are preferably completely depleted at the beginning of the crash. The P-column 64 is surrounded by an N-type region to cause a capacitor to improve discharge of the depletion layers and to reduce switching delays during turn-on.

圖3A至圖6C顯示類似於圖2A至圖2F的裝置之其他具體實施例,但是P-井區38聯接該溝槽頂端角落以縮減該單體之尺寸並改善耐用性。 Figures 3A-6C show other embodiments of the apparatus similar to Figures 2A-2F, but P-well 38 couples the top end corners of the trench to reduce the size of the unit and improve durability.

在圖3A中,閘極36之水平部分反轉P-井區38之頂端,而閘極36之垂直延伸物42反轉P-井38之側面以建立垂直通道。垂直延伸物42也在緊鄰垂直延伸物42的N-層40中積聚電子。因此,該電流路徑不會被該單體之縮減尺寸約束。垂直延伸物42可以延伸更深入溝槽44以進一步減小導通電阻;然而,該閘極-汲極電容將有增加,從而降低切換速度。 In FIG. 3A, the horizontal portion of the gate 36 reverses the top end of the P-well region 38, and the vertical extension 42 of the gate 36 reverses the side of the P-well 38 to establish a vertical channel. Vertical extensions 42 also accumulate electrons in the N-layer 40 adjacent to the vertical extensions 42. Therefore, the current path is not constrained by the reduced size of the cell. The vertical extension 42 can extend deeper into the trench 44 to further reduce the on-resistance; however, the gate-drain capacitance will increase, thereby reducing the switching speed.

圖3B顯示使用上述N-表面區68以進一步減小導通電阻。 FIG. 3B shows the use of the N-surface region 68 described above to further reduce the on-resistance.

圖3C顯示使用上述P-屏蔽區60以提高崩潰電壓。 Figure 3C shows the use of the P-shielding region 60 described above to increase the breakdown voltage.

圖3D顯示使用上述P-縱列64和N-縱列65以減小導通電阻並提高該崩潰電壓。 FIG. 3D shows the use of P-column 64 and N-column 65 described above to reduce the on-resistance and increase the breakdown voltage.

圖3E顯示類似於圖3D的另一具體實施例,但是深P+區70在比P-井區38更深的源極接點下方。P+區70與源極電極34建立歐姆接點,並電連接P-井區38至源極電極34。P+區70透過高度摻雜並降低該寄生NPN電晶體之增益,有效防止該寄生NPN雙極性電晶體接通。藉由不允許該NPN電晶體接通,沒有高電流經由該NPN電晶體所引起的熱失控,且不會發生災難性二次崩潰。 FIG. 3E shows another embodiment similar to FIG. 3D, but the deep P+ region 70 is below the source junction deeper than the P-well region 38. The P+ region 70 establishes an ohmic junction with the source electrode 34 and electrically connects the P-well region 38 to the source electrode 34. The P+ region 70 is highly doped and reduces the gain of the parasitic NPN transistor, effectively preventing the parasitic NPN bipolar transistor from being turned on. By not allowing the NPN transistor to turn on, there is no thermal runaway caused by the high current through the NPN transistor, and no catastrophic secondary collapse occurs.

圖3F顯示類似於圖3D的另一具體實施例,但是具有多層P-電荷平衡縱列之P-縱列64和N-電荷平衡縱列之N-縱列65、P-電荷平衡縱列之P-縱列64A和N-電荷平衡縱列65A。藉由形成該等P-縱列和N-縱列為多層「薄」層,有較少側向摻雜物傳播,因此該等縱列可以更精確地形成。注意較低P-縱列64A如何因該額外熱預算而比較高P-縱列64更寬。可以形成超過兩層之P-縱列和N-縱列。較佳為P-屏蔽區60、N-縱列65、P-縱列64、N-層40和N-漂移區48在突崩潰開始時完全空乏。 Figure 3F shows another embodiment similar to Figure 3D, but with a P-column 64 of multiple layers of P-charge balanced columns and an N-column 65 of N-charge balanced columns, a P-charge balanced column P-column 64A and N-charge balancing column 65A. By forming the P-columns and N-columns as a plurality of "thin" layers, there is less lateral dopant propagation, so the columns can be formed more accurately. Note how the lower P-column 64A is wider than the higher P-column 64 due to this extra thermal budget. More than two layers of P-columns and N-columns can be formed. Preferably, P-shielding region 60, N-column 65, P-column 64, N-layer 40, and N-drift region 48 are completely depleted at the onset of a collapse.

圖3G顯示類似於圖3C的另一具體實施例,但是具有浮接P-屏蔽區60和N-頂端層61以改善切換速度。 Figure 3G shows another embodiment similar to Figure 3C, but with floating P-shielding regions 60 and N-top layer 61 to improve switching speed.

圖3H顯示類似於圖3D的另一具體實施例,但是使用P-縱列64和N-縱列65而無P-屏蔽區以改善切換速度。 Figure 3H shows another embodiment similar to Figure 3D, but with P-column 64 and N-column 65 without P-shielding regions to improve switching speed.

圖4A顯示類似於圖3C的另一具體實施例,但是具有L形閘極36以最小化閘極36之重疊,以及用於較低閘極-汲極電容的屏蔽場板52以提高切換速度。 4A shows another embodiment similar to FIG. 3C, but with an L-shaped gate 36 to minimize overlap of gates 36, and a shield field plate 52 for lower gate-drain capacitance to increase switching speed. .

圖4B顯示圖4A之具體實施例,但是經由不同的剖面,顯示屏蔽場板52電連接至源極電極34的區域。在其他具體實施例中,屏蔽場板52可能連接至閘極36(從而將提高電容)、或為浮接。 4B shows a particular embodiment of FIG. 4A, but with the different cross-sections showing the area where the shield field plate 52 is electrically connected to the source electrode 34. In other embodiments, the shield field plate 52 may be connected to the gate 36 (thus increasing capacitance) or floating.

圖4C顯示類似於圖2B的另一具體實施例,但是具有將P-屏蔽區60電連接至P-井區38和源極電極34以提高切換速度的P-連接區67。 4C shows another embodiment similar to FIG. 2B, but with a P-connection region 67 that electrically connects the P-shield region 60 to the P-well region 38 and the source electrode 34 to increase the switching speed.

如在該等其他具體實施例中,閘極36之垂直延伸物42可以延伸任何距離至溝槽44中,包括在P-井區38下方。 As in these other embodiments, the vertical extension 42 of the gate 36 can extend any distance into the trench 44, including below the P-well region 38.

圖5A和圖5B顯示屏蔽場板52為閘極36之延伸物的具體實施例。由於該電壓電位接近溝槽44之頂端較小許多,故接近溝槽44之頂端(在P-井區38對面)的氧化物層54厚度可以小於接近該溝槽之底部,因此沒有氧化物層54之崩潰。 5A and 5B show a specific embodiment in which the shield field plate 52 is an extension of the gate 36. Since the voltage potential is much smaller near the top end of the trench 44, the thickness of the oxide layer 54 near the top end of the trench 44 (opposite the P-well region 38) can be less than the bottom of the trench, so there is no oxide layer. The collapse of 54.

圖5B顯示圖5A之具體實施例,但是具有上述P-縱列64和N-縱列65。 Figure 5B shows a particular embodiment of Figure 5A, but with the P-column 64 and N-column 65 described above.

圖6A至圖6C顯示P-井區38聯接溝槽44側壁的其他具體實施例,因此N-層40之表面不會直接在閘極36下方。此裝置具有較長的複合側向和垂直通道,其中該通道之一部分為平面,而另一部分為垂直。閘極36之該等水平和垂直部分係用於反轉該通道區。如此減小該閘極-汲極電容並縮減該單體間距,同時也減小該指定導通電阻。圖6A至圖6C之該等裝置具有較長的通道長度,而不會增加該有效表面積。這些裝置可以具有較淺的接合深度,並能提供較低的通道漏電流和較低的飽和電流,以及較寬的安全操作區域(SOA,Safe operation area)。該較長通道也可能降低該寄生NPN電晶體之增益,以透過防止二次崩潰而改善 該裝置之耐用性。垂直屏蔽場板52可能連接至源極電極34、或至閘極36、或為浮接。 6A-6C show other embodiments of the P-well 38 coupling the sidewalls of the trench 44 such that the surface of the N-layer 40 is not directly below the gate 36. This device has a long composite lateral and vertical channel, wherein one of the channels is partially planar and the other portion is vertical. The horizontal and vertical portions of the gate 36 are used to invert the channel region. This gate-drain capacitance is reduced and the cell pitch is reduced, while also reducing the specified on-resistance. The devices of Figures 6A through 6C have longer channel lengths without increasing the effective surface area. These devices can have shallower junction depths and provide lower channel leakage current and lower saturation current, as well as a wider Safe Operating Area (SOA). The longer channel may also reduce the gain of the parasitic NPN transistor to improve by preventing secondary collapse. The durability of the device. The vertical shield field plate 52 may be connected to the source electrode 34, or to the gate 36, or to be floating.

圖6B顯示使用前述N-表面區68。 Figure 6B shows the use of the aforementioned N-surface region 68.

圖6C顯示閘極36未重疊垂直屏蔽場板52以減小電容,如前述。 Figure 6C shows that the gate 36 does not overlap the vertical shield field plate 52 to reduce capacitance, as previously described.

圖7A例示在該裝置崩潰開始時在關斷狀態下,在圖2C中介於該基板與該裝置之頂端表面之間空乏區中的等電位線。該完整製程流程和最終裝置特性係透過二維製程/裝置模擬而進行模擬。該等N型摻雜物和P型摻雜物之轉變透過對應於P-屏蔽區60和P-縱列64的略圖(outline)而顯示。垂直屏蔽場板52連接至源極電極34。每mm2 4.5Ω之指定導通電阻可以針對645V之崩潰電壓達成。 Figure 7A illustrates the equipotential lines in the depletion region between the substrate and the top surface of the device in Figure 2C in an off state at the beginning of the device collapse. The complete process flow and final device characteristics are simulated by 2D process/device simulation. The transition of the N-type dopants and the P-type dopants is shown by an outline corresponding to the P-shielding region 60 and the P-column 64. The vertical shield field plate 52 is connected to the source electrode 34. The specified on-resistance of 4.5 Ω per mm 2 can be achieved for a breakdown voltage of 645V.

圖7B例示在圖6A中介於該基板與該裝置之頂端表面之間空乏區中的等電位線,其中P-井區38之該等邊緣鄰接該等溝槽側壁。 Figure 7B illustrates equipotential lines in the depletion region between the substrate and the top surface of the device in Figure 6A, wherein the edges of the P-well region 38 abut the trench sidewalls.

圖7C例示具有N-頂端層61(圖2E)在圖2E中介於該基板與該裝置之頂端表面之間空乏區中的等電位線。 Figure 7C illustrates an equipotential line having an N-tip layer 61 (Figure 2E) in the depletion region between the substrate and the top surface of the device in Figure 2E.

圖8A是併入文中所揭示任何該等具體實施例的垂直電晶體之一部分之俯視圖,其中溝槽44、閘極36和該等各種摻雜區(源極區46、P+接點區37等)形成為並聯連接的薄條帶之陣列。由於溝槽44佔用沿著X方向的區域,故對該裝置之單體間距縮減施加限制。為了減輕此限制,溝槽44可以垂直於閘極36布置,如圖8B所示。 Figure 8A is a top plan view of a portion of a vertical transistor incorporating any of the embodiments disclosed herein, wherein trench 44, gate 36 and the various doped regions (source region 46, P+ junction region 37, etc.) ) formed as an array of thin strips connected in parallel. Since the trench 44 occupies a region along the X direction, a limitation is imposed on the cell pitch reduction of the device. To alleviate this limitation, the trenches 44 can be arranged perpendicular to the gate 36 as shown in Figure 8B.

圖8C例示併入文中任何該等具體實施例的單一六邊形封閉單體。相鄰單體共用筆直溝槽44壁面(像是蜂巢)之一,且所有單體皆並聯連接。此外,也設想其他封閉單體設計,例如正方形。 Figure 8C illustrates a single hexagonal closed monomer incorporating any of these specific embodiments herein. Adjacent cells share one of the walls of the straight trench 44 (like a honeycomb) and all of the cells are connected in parallel. In addition, other closed cell designs, such as squares, are also contemplated.

圖9A顯示類似於前述的具體實施例,但是具有P+基板80以形成IGBT結構。此外,也顯示N--緩衝層81。在這樣的情況下,汲極電極32變成陽極或集電極。透過施加臨界電壓於閘極36接通該IGBT而接通該PNP電晶體。IGBT相較於該等非IGBT裝置具有較低導通電阻,但是具有較慢切換速度。任何該等前述裝置皆可以製作成IGBT。 Figure 9A shows a specific embodiment similar to the previous one, but with a P+ substrate 80 to form an IGBT structure. In addition, the N-buffer layer 81 is also shown. In such a case, the drain electrode 32 becomes an anode or a collector. The PNP transistor is turned on by applying a threshold voltage to turn on the IGBT at the gate 36. IGBTs have lower on-resistance than these non-IGBT devices, but have slower switching speeds. Any of the foregoing devices can be fabricated as IGBTs.

圖9B顯示具有P+區82和N+區84以並聯形成IGBT和DMOS電晶體裝置的基板80。切換速度相較於圖9A之IGBT提高。 Figure 9B shows a substrate 80 having a P+ region 82 and an N+ region 84 to form IGBT and DMOS transistor devices in parallel. The switching speed is improved compared to the IGBT of Figure 9A.

圖9C顯示圖9B之結構,但是P-井區38鄰接該溝槽,如前述。 Figure 9C shows the structure of Figure 9B, but P-well 38 abuts the trench as previously described.

圖9D例示使用介於溝槽44底部與P-屏蔽區60之間的增強N型區(N-頂端層61),以改善該IGBT之關斷切換時間。 Figure 9D illustrates the use of an enhanced N-type region (N-top layer 61) between the bottom of trench 44 and P-shielding region 60 to improve the turn-off switching time of the IGBT.

圖9E例示使用相對較高度摻雜的P-縱列64和N-縱列65而無該P-屏蔽區,以減小導通電阻並關斷該IGBT之切換時間。 Figure 9E illustrates the use of a relatively higher degree of doping P-column 64 and N-column 65 without the P-shielding region to reduce the on-resistance and turn off the switching time of the IGBT.

以下在圖10A至圖10W中說明圖3D之裝置之可能製程。類似製程可以用於製造任何該等其他具體實施例。 The possible process of the apparatus of Figure 3D is illustrated below in Figures 10A-10W. A similar process can be used to make any of these other specific embodiments.

在圖10A中,磊晶層(N--漂移區48)生長在N++基板50之頂端上。N--漂移區48可能在生長期間原位摻雜,或可能在約1.5E12cm-2之劑量以N型摻雜物週期性植入。基板50可能具有約5E19cm-3之摻雜物濃度。對具有約600V崩潰電壓的裝置而言,在N--漂移區48中的最終摻雜物密度約為3.5E14cm-3。N--漂移區48可能為30微米厚。 In FIG. 10A, an epitaxial layer (N--drift region 48) is grown on top of the N++ substrate 50. The N--drift region 48 may be doped in situ during growth, or may be implanted periodically with an N-type dopant at a dose of about 1.5E12 cm" 2 . Substrate 50 may have a dopant concentration of about 5E19 cm" 3 . For devices having a breakdown voltage of about 600 V, the final dopant density in the N-drift region 48 is about 3.5E14 cm -3 . The N--drift region 48 may be 30 microns thick.

在圖10B和圖10C中,墊氧化物層86形成且N型摻雜物88(例如磷)植入N--漂移區48,接著(圖10C)為經掩罩的P型摻雜物90植入步驟(例如使用硼) 以形成N-縱列65和P-縱列64。此外,顯示光阻掩罩92。該N型植入劑量可能約為1-2E12cm-2。該P型植入劑量可能約為1E13cm-2In FIGS. 10B and 10C, a pad oxide layer 86 is formed and an N-type dopant 88 (eg, phosphorous) is implanted into the N--drift region 48, followed by (FIG. 10C) a masked P-type dopant 90. The implantation step (e.g., using boron) is to form N-column 65 and P-column 64. In addition, a photoresist mask 92 is displayed. The N-type implant dose may be approximately 1-2E12 cm -2 . The P-type implant dose may be approximately 1E13 cm -2 .

在圖10D中,形成N-層40的第二磊晶層在該光阻和氧化物剝離(stripped)之後生長。N-層40具有約2.3E15cm-3之摻雜物密度,這高於在N--漂移區48中的摻雜物密度。N-層40約為8微米厚。在另一具體實施例中,在N-層40中的摻雜物密度與在N--漂移區48中大致相同。 In FIG. 10D, the second epitaxial layer forming the N-layer 40 is grown after the photoresist and oxide are stripped. The N-layer 40 has a dopant density of about 2.3E15 cm -3 , which is higher than the dopant density in the N--drift region 48. The N-layer 40 is approximately 8 microns thick. In another embodiment, the dopant density in the N-layer 40 is substantially the same as in the N--drift region 48.

在圖10E中,氧化物硬掩罩94形成在N-層40之頂端上。 In FIG. 10E, an oxide hard mask 94 is formed on the top of the N-layer 40.

在圖10F中,額外厚氧化物層96形成。 In Figure 10F, an additional thick oxide layer 96 is formed.

在圖10G中,光阻掩罩98佈局圖樣在氧化物層96上面,且氧化物層96和氧化物硬掩罩94經乾式蝕刻以界定出該溝槽區域。 In FIG. 10G, a photoresist mask 98 is patterned over oxide layer 96, and oxide layer 96 and oxide hard mask 94 are dry etched to define the trench regions.

在該等各種步驟期間,在N-縱列65和P-縱列64中的該等摻雜物鑲嵌入(driven in)並擴散,以形成約4-5微米厚的縱列層,其中在N-縱列65中的N型摻雜物濃度約2E15cm-3,而在P-縱列64中的P型摻雜物濃度約1E16cm-3。在N-縱列65中的摻雜物密度可能大於或小於N-層40。 During the various steps, the dopants in N-column 65 and P-column 64 are driven in and diffused to form a column layer of about 4-5 microns thick, wherein The concentration of the N-type dopant in the N-column 65 is about 2E15 cm -3 , while the concentration of the P-type dopant in the P-column 64 is about 1E16 cm -3 . The dopant density in the N-column 65 may be greater or less than the N-layer 40.

在圖10H中,視需要的N-表面區68使用磷或砷植入100進行植入。圖10I顯示所得到的N-表面區68。 In Figure 10H, the optional N-surface region 68 is implanted using a phosphorus or arsenic implant 100. Figure 10I shows the resulting N-surface region 68.

在圖10J中,執行矽乾式蝕刻以形成溝槽44,且P型摻雜物102(例如硼)在約4E12cm-2之劑量以自我對準方式植入溝槽44,以建立P-屏蔽區60。該溝槽蝕刻在溝槽44下方留下約3-4微米之N-層40。在此步驟,視需要的N型摻雜物(例如砷)在劑量約2E12cm-2以自我對準方式植入溝槽44,以在P-屏蔽區60上面形成N-頂端層。 In FIG. 10J, a dry etch is performed to form trench 44, and a P-type dopant 102 (eg, boron) is implanted into trench 44 in a self-aligned manner at a dose of about 4E12 cm" 2 to establish a P-shielded region. 60. The trench etch leaves an N-layer 40 of about 3-4 microns below the trench 44. At this step, an optional N-type dopant (e.g., arsenic) is implanted into the trench 44 in a self-aligned manner at a dose of about 2E12 cm<2> to form an N-top layer over the P-shielding region 60.

在特別創造性的步驟中,N-表面區68已側向擴散入N-層40,然後經蝕刻以形成溝槽44。因此,N-表面區68與溝槽44自我對準。 In a particularly inventive step, the N-surface region 68 has been laterally diffused into the N-layer 40 and then etched to form the trenches 44. Thus, the N-surface region 68 is self-aligned with the trenches 44.

在圖10K中,犧牲氧化物層104形成,厚度約1000埃。 In FIG. 10K, a sacrificial oxide layer 104 is formed having a thickness of about 1000 angstroms.

在圖10L中,場氧化物(FOX)層106生長或沉積在包括該矽台面表面、該溝槽側壁和該溝槽底部的晶圓表面上。FOX層106之厚度約為6000埃。 In FIG. 10L, a field oxide (FOX) layer 106 is grown or deposited on the surface of the wafer including the mesa surface, the trench sidewalls, and the trench bottom. The FOX layer 106 has a thickness of about 6000 angstroms.

在圖10M中,傳導多晶矽108(多晶矽)沉積在該晶圓上以填充溝槽44,接著如圖10N所示為該多晶矽被回蝕。在溝槽44中的多晶矽形成垂直屏蔽場板52。 In FIG. 10M, a conductive polysilicon 108 (polysilicon) is deposited on the wafer to fill the trench 44, and then the polysilicon is etched back as shown in FIG. 10N. The polysilicon in trench 44 forms a vertical shield field plate 52.

在圖10O中,透過濕式蝕刻或濕式/乾式組合製程,圖10N的場氧化物(FOX)層106從該矽台面表面完全去除,並沿著溝槽44側壁部分去除。將場板52與該溝槽側壁隔開的剩餘FOX層現在標記氧化物層54。 In FIG. 10O, the field oxide (FOX) layer 106 of FIG. 10N is completely removed from the mesa surface by a wet etch or a wet/dry combination process and is removed along the sidewall portions of the trench 44. The remaining FOX layer separating the field plate 52 from the trench sidewalls now marks the oxide layer 54.

在圖10P中,閘極氧化物56隨後生長到約900埃之厚度。 In FIG. 10P, gate oxide 56 is then grown to a thickness of about 900 angstroms.

在圖10Q中,傳導多晶矽層110隨後沉積。 In FIG. 10Q, the conductive polysilicon layer 110 is subsequently deposited.

在圖10R中,多晶矽層110使用光阻掩罩112佈局圖樣,並經蝕刻以形成具有垂直延伸物42的閘極36。 In FIG. 10R, polysilicon layer 110 is patterned using photoresist mask 112 and etched to form gate 36 with vertical extensions 42.

在圖10S中,光阻掩罩112剝離且P型摻雜物114(硼)植入N-層40,以形成與閘極36自我對準的P-井區38。該等摻雜物隨後鑲嵌入。 In FIG. 10S, photoresist mask 112 is stripped and P-type dopant 114 (boron) is implanted into N-layer 40 to form P-well region 38 that is self-aligned with gate 36. The dopants are then embedded.

在圖10T中,N型摻雜物116(砷或磷)植入,以形成與閘極36自我對準的N++源極區46。 In FIG. 10T, an N-type dopant 116 (arsenic or phosphorous) is implanted to form an N++ source region 46 that is self-aligned with the gate 36.

在圖10U和圖10V中,厚襯氧化物和硼磷矽玻璃(BPSG)層118形成以界定出P+接點區37,且硼120植入。 In FIGS. 10U and 10V, a thick liner oxide and a borophosphorus glass (BPSG) layer 118 are formed to define a P+ junction region 37, and boron 120 is implanted.

在圖10W中,該源極金屬例如透過濺鍍鋁銅(AlCu)或鋁矽銅(AlSiCu)而沉積並佈局圖樣以形成源極電極34,並可能約為4微米厚。圖10W與圖3D相同。 In FIG. 10W, the source metal is deposited and patterned, for example, by sputtering aluminum copper (AlCu) or aluminum beryllium copper (AlSiCu) to form source electrode 34, and may be approximately 4 microns thick. Fig. 10W is the same as Fig. 3D.

該背面金屬隨後例如透過濺鍍各自厚度1000、2000和10000埃的鈦(Ti)、鎳(Ni)和銀(Ag)層而沉積以形成汲極電極32。 The back metal is then deposited, for example, by sputtering a layer of titanium (Ti), nickel (Ni), and silver (Ag) each having a thickness of 1000, 2000, and 10,000 angstroms to form a drain electrode 32.

顯示的所有圖式皆未按比例繪製以方便例示。實際的裝置結構尺寸和接合外形將依該所需崩潰電壓、導通電阻、電流要求等而定,與上述圖式所示不同。圖7A和圖7B之該等模擬結果顯示更準確的代表性尺寸。 All figures shown are not drawn to scale for convenience of illustration. The actual device structure size and joint shape will depend on the required breakdown voltage, on-resistance, current requirements, etc., as shown in the above figures. The simulation results of Figures 7A and 7B show a more accurate representative size.

任何該等所揭示特徵皆可以在MOSFET或IGBT中以任何組合結合,以針對特定應用達成該特徵之該等特定效益。 Any of the disclosed features can be combined in any combination in a MOSFET or IGBT to achieve these particular benefits of the feature for a particular application.

儘管本創作之特定具體實施例已顯示及說明,但熟習此項技術者將顯而易見變化例和修飾例可能做到而在其更廣泛態樣中不悖離本創作,因此,所附諸申請專利範圍如落於本創作之真實精神與範疇內,在其範疇內涵蓋所有這樣的變化例和修飾例。 Although specific embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that modifications and modifications may be made without departing from the scope of the invention. The scope is within the true spirit and scope of this creation, and all such variations and modifications are covered within its scope.

30‧‧‧單體 30‧‧‧single

32‧‧‧汲極電極 32‧‧‧汲electrode

34‧‧‧源極電極 34‧‧‧Source electrode

36‧‧‧閘極 36‧‧‧ gate

37‧‧‧P+接點區 37‧‧‧P+ junction area

38‧‧‧P-井區 38‧‧‧P-well area

40‧‧‧N-層 40‧‧‧N-layer

42‧‧‧垂直延伸物 42‧‧‧Vertical extension

44‧‧‧溝槽 44‧‧‧ trench

46‧‧‧源極區 46‧‧‧ source area

48‧‧‧漂移區 48‧‧‧ drift zone

50‧‧‧基板 50‧‧‧Substrate

52‧‧‧場板 52‧‧‧ Field Board

53‧‧‧介電體 53‧‧‧ dielectric

54‧‧‧氧化物層 54‧‧‧Oxide layer

56‧‧‧閘極氧化物 56‧‧‧gate oxide

S‧‧‧間距 S‧‧‧ spacing

Xj‧‧‧深度 Xj‧‧ depth

Claims (21)

一種垂直電晶體,包含:一半導體基板,在其底面上具有一第一電極;在該基板上方一第一導電類型之一第一層,該第一層具有一第一摻雜物濃度;在該第一層上方該第一導電類型之一第二層,該第二層具有高於該第一摻雜物濃度的一第二摻雜物濃度,該第二層具有一頂端表面;一溝槽,其具有聯接該第二層的一垂直側壁;在該第二層之頂端表面上一第二導電類型之一井區,該井區具有一頂端表面;在該井區之頂端表面上該第一導電類型之一第一區,其中介於該第一區與該井區之一邊緣之間的一區域包含一通道,其用於由一閘極反轉;一傳導閘極,其覆蓋該通道以在該閘極偏壓高於一臨界電壓時,在該通道中建立一側向導電路徑,該閘極,其具有面向該垂直側壁並與該側壁隔離的一垂直延伸物;一垂直場板,其面向該第二層之垂直側壁並與該側壁隔離;一第二區,其係為該第一導電類型,圍繞及隔絕該井區並延伸至垂直側壁之該溝槽,該第二區具有高於該第二摻雜物濃度的一摻雜物濃度,其係為減小導通電阻;以及 一第二電極,其電接觸該井區和該第一區,其中當一電壓施加於該第一電極與該第二電極之間且該閘極偏壓高於該臨界電壓時,一側向電流流經該通道且一電流流動於該通道與該基板之間。 A vertical transistor comprising: a semiconductor substrate having a first electrode on a bottom surface thereof; a first layer of a first conductivity type above the substrate, the first layer having a first dopant concentration; a second layer of the first conductivity type above the first layer, the second layer having a second dopant concentration higher than the first dopant concentration, the second layer having a top surface; a trench a groove having a vertical sidewall coupled to the second layer; a well region of a second conductivity type on a top surface of the second layer, the well region having a top surface; the top surface of the well region a first region of a first conductivity type, wherein a region between the first region and an edge of the well region includes a channel for inversion by a gate; a conductive gate covering The channel establishes a lateral conductive path in the channel when the gate bias is above a threshold voltage, the gate having a vertical extension facing the vertical sidewall and isolated from the sidewall; a vertical a field plate facing the vertical sidewall of the second layer and the sidewall a second region, which is of the first conductivity type, surrounds and isolates the well region and extends to the trench of the vertical sidewall, the second region having a doping higher than the concentration of the second dopant Concentration of matter, which is to reduce on-resistance; a second electrode electrically contacting the well region and the first region, wherein a voltage is applied between the first electrode and the second electrode and the gate bias is higher than the threshold voltage A current flows through the channel and a current flows between the channel and the substrate. 如請求項1所述之電晶體,更包含:該第一導電類型之一第三層,其介於該第一層與該第二層之間並位於該通道下方;以及該第二導電類型之一第四層,其在該第三層之相對側上側向鄰接該第三層,在該第三層和第四層中的一摻雜物濃度高於該第一摻雜物濃度。 The transistor of claim 1, further comprising: a third layer of the first conductivity type between the first layer and the second layer and below the channel; and the second conductivity type a fourth layer that laterally adjoins the third layer on opposite sides of the third layer, a dopant concentration in the third layer and the fourth layer being higher than the first dopant concentration. 如請求項2所述之電晶體,更包含該第二導電類型之一第五層,其在該溝槽下方並側向緊鄰該第二層。 The transistor of claim 2, further comprising a fifth layer of the second conductivity type, below the trench and laterally adjacent to the second layer. 如請求項3所述之電晶體,其中該第五層鄰接該第四層。 The transistor of claim 3, wherein the fifth layer is adjacent to the fourth layer. 如請求項3所述之電晶體,其中該第一層與該第四層垂直隔開。 The transistor of claim 3, wherein the first layer is vertically spaced from the fourth layer. 如請求項1所述之電晶體,其中該垂直場板電連接至該第二電極。 The transistor of claim 1, wherein the vertical field plate is electrically connected to the second electrode. 如請求項1所述之電晶體,其中將該閘極具有一垂直延伸物,其係面對該垂直側壁並從該側壁隔絕,以及其中該閘極的垂直延伸物中至少有部分是面對該第二區。 The transistor of claim 1, wherein the gate has a vertical extension that faces and is isolated from the vertical sidewall, and wherein at least a portion of the vertical extension of the gate is facing The second zone. 如請求項1所述之電晶體,其中該垂直場板電連接至該閘極。 The transistor of claim 1, wherein the vertical field plate is electrically connected to the gate. 如請求項1所述之電晶體,其中該垂直場板比該井區更深。 The transistor of claim 1, wherein the vertical field plate is deeper than the well region. 如請求項1所述之電晶體,其中該閘極具有一垂直延伸物,其係面對該垂直側壁並從側壁隔絕,以及其中該閘極的該垂直延伸物在該井區下方延伸。 The transistor of claim 1, wherein the gate has a vertical extension that faces the vertical sidewall and is isolated from the sidewall, and wherein the vertical extension of the gate extends below the well region. 如請求項1所述之電晶體,其中該井區延伸至該第二層之垂直側壁。 The transistor of claim 1, wherein the well region extends to a vertical sidewall of the second layer. 如請求項11所述之電晶體,其中將該閘極具有一垂直延伸物,其係面對該垂直側壁並從該側壁隔絕,以及其中該閘極的垂直延伸物反轉緊鄰該垂直側壁之部分的該井區。 The transistor of claim 11, wherein the gate has a vertical extension that faces and is isolated from the vertical sidewall, and wherein the vertical extension of the gate is reversed adjacent to the vertical sidewall Part of the well area. 如請求項1所述之電晶體,更包含該第二導電類型之一第三區,其在該溝槽下方並側向緊鄰該第二層。 The transistor of claim 1, further comprising a third region of the second conductivity type, below the trench and laterally adjacent to the second layer. 如請求項1所述之電晶體,更包含該第二導電類型之一第二區,其在該在溝槽下方並側向緊鄰該第二層。 The transistor of claim 1, further comprising a second region of the second conductivity type, which is below the trench and laterally adjacent to the second layer. 如請求項1所述之電晶體,其中該基板為該第一導電類型,且其中該電晶體為一金氧半導體場效電晶體(MOSFET)。 The transistor of claim 1, wherein the substrate is of the first conductivity type, and wherein the transistor is a MOS field effect transistor (MOSFET). 如請求項1所述之電晶體,其中該基板為該第二導電類型,且其中該電晶體為一絕緣閘極雙極性電晶體(IGBT)。 The transistor of claim 1, wherein the substrate is of the second conductivity type, and wherein the transistor is an insulated gate bipolar transistor (IGBT). 如請求項1所述之電晶體,其中該垂直場板和該第二層之第二摻雜物濃度配置成增強該第二層之側向空乏,以使該第二層在該電晶體之一崩潰電壓完全空乏。 The transistor of claim 1, wherein the vertical field plate and the second dopant concentration of the second layer are configured to enhance lateral depletion of the second layer such that the second layer is in the transistor A crash voltage is completely depleted. 如請求項1所述之電晶體,更包含:該第一導電類型之一第三層,其介於該第一層與該第二層之間並位於該通道下方;以及該第二導電類型之一第四層,其在該第三層之相對側上側向鄰接該第三層,在該第三層和第四層中的一摻雜物濃度高於該第一摻雜物濃度; 其中該第三層和該第四層形成N型和P型縱列,其中該等N型和P型縱列在該電晶體之一崩潰電壓完全空乏。 The transistor of claim 1, further comprising: a third layer of the first conductivity type between the first layer and the second layer and below the channel; and the second conductivity type a fourth layer that laterally adjoins the third layer on opposite sides of the third layer, a dopant concentration in the third layer and the fourth layer being higher than the first dopant concentration; Wherein the third layer and the fourth layer form an N-type and a P-type column, wherein the N-type and P-type columns are completely depleted in a breakdown voltage of one of the transistors. 如請求項1所述之電晶體,更包含該第二導電類型之一第三層,其在該溝槽下方並側向緊鄰該第二層。 The transistor of claim 1, further comprising a third layer of the second conductivity type, under the trench and laterally adjacent to the second layer. 如請求項1所述之電晶體,更包含:該第二導電類型之一第三區,其在該溝槽下方並側向緊鄰該等二層;以及該第一導電類型之一第四區,其位於該第三區與該溝槽之間並側向緊鄰該第二層,其中該第四區中的一摻雜物濃度係高於該第二層中的該第二摻雜物濃度。 The transistor of claim 1, further comprising: a third region of the second conductivity type, under the trench and laterally adjacent to the two layers; and a fourth region of the first conductivity type Between the third region and the trench and laterally adjacent to the second layer, wherein a dopant concentration in the fourth region is higher than the second dopant concentration in the second layer . 如請求項1所述之電晶體,其中第一層係形成於該基板上的一磊晶層。 The transistor of claim 1, wherein the first layer is formed on an epitaxial layer on the substrate.
TW106201271U 2017-01-24 2017-01-24 Vertical power MOSFET with planar channel TWM544107U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106201271U TWM544107U (en) 2017-01-24 2017-01-24 Vertical power MOSFET with planar channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106201271U TWM544107U (en) 2017-01-24 2017-01-24 Vertical power MOSFET with planar channel

Publications (1)

Publication Number Publication Date
TWM544107U true TWM544107U (en) 2017-06-21

Family

ID=59689448

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106201271U TWM544107U (en) 2017-01-24 2017-01-24 Vertical power MOSFET with planar channel

Country Status (1)

Country Link
TW (1) TWM544107U (en)

Similar Documents

Publication Publication Date Title
US9947779B2 (en) Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage
US9461127B2 (en) Vertical power MOSFET having planar channel and its method of fabrication
US9093522B1 (en) Vertical power MOSFET with planar channel and vertical field plate
US10157983B2 (en) Vertical power MOS-gated device with high dopant concentration N-well below P-well and with floating P-islands
US9842925B2 (en) Insulated gate semiconductor device having a shield electrode structure and method
JP4198469B2 (en) Power device and manufacturing method thereof
US8354711B2 (en) Power MOSFET and its edge termination
KR101296984B1 (en) Charge balance field effect transistor
US6849880B1 (en) Power semiconductor device
US7514743B2 (en) DMOS transistor with floating poly-filled trench for improved performance through 3-D field shaping
US20070126055A1 (en) Trench insulated gate field effect transistor
US20070181939A1 (en) Trench-gate semiconductor devices and the manufacture thereof
CN112382658B (en) Low gate charge device with stepped discrete shield trenches and method of making the same
KR101589904B1 (en) Semiconductor device
WO2018034818A1 (en) Power mosfet having planar channel, vertical current path, and top drain electrode
CN116031303B (en) Super junction device, manufacturing method thereof and electronic device
TWM544107U (en) Vertical power MOSFET with planar channel
KR101701240B1 (en) Semiconductor device
US11682703B2 (en) Method of producing a semiconductor device having spicular-shaped field plate structures and a current spread region
CN207097831U (en) Vertical power mos field effect transistor with planar channeling
CN112864244A (en) Super junction device
KR100763310B1 (en) Power semiconductor device