TWM436810U - Cold/heat exchange device of cooling chip with high thermal conductivity coefficient - Google Patents

Cold/heat exchange device of cooling chip with high thermal conductivity coefficient Download PDF

Info

Publication number
TWM436810U
TWM436810U TW101206775U TW101206775U TWM436810U TW M436810 U TWM436810 U TW M436810U TW 101206775 U TW101206775 U TW 101206775U TW 101206775 U TW101206775 U TW 101206775U TW M436810 U TWM436810 U TW M436810U
Authority
TW
Taiwan
Prior art keywords
layer
cold
metal film
heat exchange
aluminum nitride
Prior art date
Application number
TW101206775U
Other languages
Chinese (zh)
Inventor
I-Ming Lin
Original Assignee
I-Ming Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I-Ming Lin filed Critical I-Ming Lin
Priority to TW101206775U priority Critical patent/TWM436810U/en
Publication of TWM436810U publication Critical patent/TWM436810U/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

M436810 ___ 卩。乐06月27日核正㈣ 五、新型說明: ' :一- 【新型所屬之技術領域】 [0001] 本創作係與致冷晶片有關,特別有關於一種具有具有高 導熱係數致冷晶片的溫度傳導裝置。 [先前技術] [0002] 傳統空調裝置需使用冷煤,然,冷煤在製造與回收上會 帶來嚴重的環境污染問題’因此已出現有利用熱電致冷 晶片(Thermoelectric Cooling chip)取代使用冷媒 • 之空調機的想法。 [0003] 由於熱電致冷晶片(以下簡稱致冷晶片)具有體積小無 噪音、不使用冷煤 '無環保公害等優點,故已有不少熱 電致冷晶片的應用實例,故已有不少業者積極研發利用 熱電致冷晶片(Thermoelectric CoolUg Chip)與冷 循環器原理製作可用以取代冷媒的空調機,其主要包含 有熱電致冷晶片、冷循環器、熱散循環設備及溫控器, φ 由熱電致冷晶片產生冷,再透過冷導板經由冷循環器傳 輸至鰭片將冷儲存,再以溫控器設定所需之溫度,透過 風扇將鰭片所儲存之冷吹送,而其致冷晶片所產生之熱 則由散熱循環詨備予以冷卻排除,藉以達到所設定之冷 度。 [0004] 上揭專利係以熱電致冷晶片取代傳統空調機,並利用壓 縮機及冷凝器等所達到的致冷效果,惟,其熱電致冷晶 片的致冷和散熱效果不佳,主要原因係在於熱電致冷晶 片的表面大多是陶瓷所構成,由於陶瓷的導熱係數過低 ’使得熱電致冷晶片所產生的熱無法透過陶究而快速地 10120677#單編號A0101 第3頁/共19頁 1013244840-0 M436810 10Ϊ年.06月27日梭正替^頁 傳導至其他散熱體,致使該熱電致冷晶片的溫度無法降 低至所要求的溫度,令空調裝置的排冷或排熱皆無法達 到所要求的溫度。 [0005] 有鑑於此,本創作人為改善並解決上述之缺失,乃特潛 心研究並配合學理之運用,終於提出一種設計合理且有 效改善上述缺失之本創作。 【新型内容】 [0006] 本創作之一目的,在於提供一種具有高導熱係數致冷晶 片的冷熱交換裝置,以提升冷熱交換裝置的致冷(熱)效 ® 果。 [0007] 為了達成上述之目的,本創作係為一種具有高導熱係數 致冷晶片的冷熱交換裝置,包括具有冷端面及熱端面的 致冷晶片、第一傳導模組及第二傳導模組,致冷晶片包 括第一氮化鋁層及第二氮化鋁層、第一金屬薄膜及第二 金屬薄膜、第一銅箔層及第二銅箔層、以及交互排列的 多數P型半導體及多數N型半導體,第一金屬薄膜披覆在 $ 第一氮化鋁層上,第二金屬薄膜則是彼覆在第二氮化鋁 層上,第一銅结層形成在第一金屬薄膜上,第二銅落層 則是形成在第二金屬薄膜上,P型半導體及N型半導體固 定在第一銅箔層及第二銅箔層之間,其中,第一氮化鋁 層及第二氮化鋁層係對應位在P型半導體及N型半導體的 相對側;第一傳導模組包含貼接在致冷晶片的冷端面上 的第一基座、固定在第一基座的複數第一鰭片、及裝置 在第一鰭片上的第一風扇;第二傳導模組包含貼接在致 冷晶片的熱端面上的第二基座、固定在第二基座的複數 10120677产單麟 A〇101 第4頁/共19頁 1013244840-0 M436810 •ί οϊ年.06月2>日修正_頁 超導管、套接在超導管上的複數第二鰭片、及裝置在第 二鰭片上的第二風扇。 [0008] 相較於習知技術,本創作之致冷晶片係以氮化鋁層板取 代習知的陶瓷板,由於氮化銘的導熱係數遠大於陶瓷的 導熱係數,因此,本創作之致冷晶片可將冷(熱)快速地 傳導至其他傳導物體上,以持續降低致冷晶片的溫度, 並達到所需的致冷溫度,惟,因氮化鋁的密度高,致使 銅箔無法直接成形在氮化銘層上,因此,本創作係先在 氮化鋁的表面形成金屬薄膜(如鈦薄膜),再將銅箔形成 在金屬薄膜上’據此完成具有向導熱係數致冷晶片,此 外,相較於習知需使用大電量的壓縮機等元件的空調裝 置,本創作之冷熱交換裝置僅需提供小量的電力(供致冷 晶片及風扇)即可運作,可節省大量的能源及電費,更符 合環保性及經濟性。 【實施方式】 [0009] 有關本創作之詳細說明及技術内容,配合圖式說明如下 ,然而所附圖式僅提供參考與說明用,並非用來對本創 作加以限制者。 [0010] 請參照第一圖及第二圖,係分別為本創作之冷熱交換裝 置的立體外觀示意圖及立體分解圖;本創作之冷熱交換 裝置1係包括具有冷端面11及熱端面12的一致冷晶片10、 一第一傳導模組20、及一第二傳導模組30。於本實施例 中,該冷熱交換裝置1包括二片致冷晶片10及相對應的二 組第一傳導模組20及第二傳導模組30,實際實施時,該 致冷晶片10、第一傳導模組20及第二傳導模組30的數量 HH20677产單編號A〇101 第5頁/共19頁 1013244840-0 M436810 -. ior年.06月力日核正替&頁 並不限制,其可視實際需求而調整。 [0011] 該第一傳導模組20包含貼接在該致冷晶片1〇的冷端面1 j 上的一第一基座21、固定在該第一基座21的複數第一鰭 片22、及裝置在該些第一鰭片22上的一第一風扇23。 [0012] 該第二傳導模組30包含貼接在該致冷晶片1〇的熱端面12 上的一第二基座31、固定在該第二基座31的複數超導管 32、套接在該些超導管32上的複數第二鰭片33'及裝置 在該些第二鰭片33上的一第二風扇34。 [0013] 該致冷晶片10的結構及其製法更詳細的說明如後^ ® [0014] 請再參照第三圖,係為本創作之致冷晶片的組合剖視圖 ,該致冷晶片10包括一第一氮化鋁層lla及一第二氮化鋁 層lib、一第一金屬薄膜i2a及一第二金屬薄膜12b、一 第一銅箔層13a及一第二銅箔層13b、一第一焊錫層ua 及一第二焊錫層14b、多數p型半導體15a及多數N型半導 體 15b。 [0015]該第一氮化鋁層lla及第二氮化鋁層lib鋁(Aluminium nitride ’ A1N)是一種陶瓷絕緣體’其導熱係數大約在 180〜240W/M. K ’由於氮化鋁的純度高、粒徑小、分佈均 勻,且具有良好的射出成型性能,故相較於一般陶究具 備有較高的傳熱能力。 [0016]該第一金屬薄膜12a係披覆在該第一氮化鋁層1 ia上,該 第二金屬薄膜12b則是披覆在該第二氮化鋁層lib上。較 佳地’該第一金屬薄膜12a及該第二金屬薄膜12b可分別 為一鈦薄膜,藉由該第一金屬薄膜12a及該第二金屬薄膜 10120677#單峨 A0101 第6頁/共19頁 1013244840-0 M436810 [ϊόΐ年:06身27日 12b的設置,可利於將該第一銅箔層13a及第二銅箔層 13b分別形成在密度高的第一金屬薄膜12a及第二金屬薄 膜12b上。 [00Γ7] 該第一銅箔層13a是形成在該第一金屬薄膜12a上,該第 二銅箔層13b則形成在該第二金屬薄膜12b上。實際實施 時’該第一銅箔層13a包含複數間隔排列的第一銅箔導體 131a,該第二銅箔層13b則包含複數間隔排列的第二銅箔 導體131b,且該些第一銅箔導體131a及第二銅箔導體 φ 131b係呈交錯設置。 [0018] 又,交互排列的多數P型半導體15a及多數N型半導體15b 係固定在該第一銅箔層1 3a及該第二銅箔層1 3b(第一焊錫 層14a及第二焊錫層14b)之間。藉由將該第一焊錫層14a 塗佈在該第一銅箔層13a上,該第二焊錫層14b塗佈在該 第二銅箔層13b上’待熔融該第一焊錫層i4a及該第二焊 錫層14b後,該些P型半導體15a及N型半導體15b即結合 在該第一焊錫層14a及該第二焊錫層14b上。據此,該第 ® 一氮化鋁層11a及該第二氮化鋁層lib係對應位在該些?型 半導體15a及該些N型半導體15b的相對側,以作為導接面 而貼接其他傳熱體。 [0019] 請另參照第四圖及第五圖,係分別為本創作之冷熱交換 裝置應用實施的立體分解圖及立體外觀示意圖;本創作 之冷熱交換裝置1實際應用時可更包括前後相互罩合的一 前導風罩40及一後導風罩5〇、及上下相互抵接的一上支 撐座6G及一下支撐座7〇。 [0^20]。 °玄則導風罩40具有對應該第一風扇23的一前入風口 41及 1_δΤ7^·單編號 AG1G1 ^ 7 I / 19 I ηΛ 1013244840-0 M436810 101年.06月27日核正替換頁 對應該些第一鰭片22的一前出風口 42。該後導風罩50具 有對應該第二風扇34的一後入風口 51及對應該些第二鰭 片33的一後出風口52。此外,該上支撐座60係框罩第一 傳導模組20以固定在該前導風罩40上,該下支撐座70框 罩第二傳導模組30以固定在該後導風罩50上。 [0021] 續請參照第六圖,係為本創作之冷熱交換裝置應用實施 時的使用示意圖;本創作之冷熱交換裝置可應用在冷暖 機、冰淇淋機、冷凍櫃或汽車冷氣等設備上,實際實施 時不以此為限。 φ [0022] 本實施例之冷熱交換裝置係用於一冷藏櫃上。使用時, 該第一傳導模組20的第一基座21係貼接該致冷晶片10的 冷端面11而帶走該致冷晶片10的冷,並傳導至該些第一 鰭片22 ;同時,外部冷空氣自該前入風口 41流入該第一 傳導模組20内,經由該第一風扇23的引導而流入該些第 一鰭片22,再將該些第一鰭片22的冷帶走而流入該前出 風口 42 ;據此,持續地帶走該第一傳導模組20的冷(致冷 效果),並利用第一風扇23吹送到前出風口42以流入冷藏 ® 櫃的内部,可使該冷藏櫃的内部達到所要求的冷度。 [0023] 另一方面,該第二傳導模組30的第二基座31係貼接該致 冷晶片10的熱端面12而帶走該致冷晶片10的熱,並傳導 至該些超導管32,經由該些超導管32的傳導而將熱快速 地傳導至該些第二鰭片33,同時,外部冷空氣自該後入 風口 51流入該第二傳導模組30内,經由該第二風扇34的 引導而流入該些第二鰭片33,該第二風扇34所產生的強 制氣流可迅速地帶走該些第二鰭片33的熱,並自該後出 第8頁/共19頁 1013244840-0 1〇1206^單编號 A〇101 M436810 [0024] [0025]M436810 ___ 卩. Le June 27th Nuclear (4) V. New Description: ' :一 - 【New Technology Area】 [0001] This creation is related to cryogenic wafers, especially regarding a temperature of a wafer with high thermal conductivity. Conduction device. [Prior Art] [0002] Conventional air-conditioning units require the use of cold coal. However, cold coal causes serious environmental pollution problems in manufacturing and recycling. Therefore, the use of thermoelectric cooling chips instead of refrigerants has emerged. • The idea of an air conditioner. [0003] Since thermoelectrically cooled wafers (hereinafter referred to as cryogenic wafers) have the advantages of small volume, no noise, no use of cold coal, and no environmental pollution, there are many application examples of thermoelectric cooling chips, so there are many The industry actively develops and uses the thermoelectric cooling chip (Thermoelectric CoolUg Chip) and the cold circulator principle to make an air conditioner that can replace the refrigerant, which mainly includes a thermoelectric cooling chip, a cold circulator, a heat dissipation cycle device and a temperature controller, φ The thermoelectrically cooled wafer is cooled, and then transmitted to the fin through the cold circulator through the cold runner to be cold-storaged, and then the temperature is set by the thermostat, and the cold stored in the fin is blown through the fan. The heat generated by the cold wafer is cooled and removed by the heat-dissipating cycle to achieve the set coldness. [0004] The above patented patent replaces the conventional air conditioner with a thermoelectrically cooled wafer, and utilizes the refrigeration effect achieved by the compressor and the condenser, but the cooling and heat dissipation effects of the thermoelectrically cooled wafer are not good, the main reason The surface of the thermoelectrically cooled wafer is mostly made of ceramics, and the thermal conductivity of the ceramic is too low, so that the heat generated by the thermoelectrically cooled wafer cannot pass through the ceramics quickly. 10120677# Single No. A0101 Page 3 of 19 1013244840-0 M436810 10 years. On June 27th, the shuttle was transferred to other heat sinks, so that the temperature of the thermoelectrically cooled wafer could not be lowered to the required temperature, so that the cooling or heat removal of the air conditioner could not be achieved. The required temperature. [0005] In view of this, in order to improve and solve the above-mentioned shortcomings, the present creator has devoted himself to research and cooperates with the application of the theory, and finally proposes a creation that is reasonable in design and effective in improving the above-mentioned defects. [New Content] [0006] One of the purposes of this creation is to provide a cold and heat exchange device with a high thermal conductivity cooling film to enhance the cooling (heat) effect of the cold heat exchange device. [0007] In order to achieve the above object, the present invention is a cold heat exchange device having a high thermal conductivity refrigerating wafer, comprising a cold chip having a cold end surface and a hot end surface, a first conduction module and a second conduction module. The cooling wafer includes a first aluminum nitride layer and a second aluminum nitride layer, a first metal film and a second metal film, a first copper foil layer and a second copper foil layer, and a plurality of P-type semiconductors and a plurality of alternately arranged An N-type semiconductor, the first metal film is coated on the first aluminum nitride layer, the second metal film is coated on the second aluminum nitride layer, and the first copper layer is formed on the first metal film. The second copper falling layer is formed on the second metal film, and the P-type semiconductor and the N-type semiconductor are fixed between the first copper foil layer and the second copper foil layer, wherein the first aluminum nitride layer and the second nitrogen layer The aluminum layer is correspondingly located on the opposite side of the P-type semiconductor and the N-type semiconductor; the first conductive module includes a first pedestal attached to the cold end surface of the chilled wafer, and a plurality first fixed to the first pedestal Fin, and first fan mounted on the first fin; second pass The guiding module comprises a second base attached to the hot end surface of the cooling chip, and a plurality of 10120677 fixed to the second base. The single cymbal A 〇 101 page 4 / 19 pages 1013244840-0 M436810 • ϊ ϊ ϊ .06月2>Day correction_page superconductor, a plurality of second fins that are sleeved over the supercatheter, and a second fan that is mounted on the second fin. [0008] Compared with the prior art, the cold film of the present invention replaces the conventional ceramic plate with an aluminum nitride layer plate. Since the thermal conductivity of the nitride is much larger than the thermal conductivity of the ceramic, the creation result is The cold wafer can quickly conduct cold (heat) to other conductive objects to continuously reduce the temperature of the cooled wafer and reach the required cooling temperature. However, due to the high density of aluminum nitride, the copper foil cannot be directly used. Formed on the nitriding layer, therefore, the author first forms a metal film (such as titanium film) on the surface of aluminum nitride, and then forms a copper foil on the metal film. In addition, compared with conventional air conditioning units that require components such as large-capacity compressors, the cold-hot heat exchange device of the present invention only needs to provide a small amount of power (for cooling chips and fans) to operate, which can save a lot of energy. And electricity, more environmentally friendly and economical. DETAILED DESCRIPTION OF THE INVENTION [0009] The detailed description and technical contents of the present invention are described below with reference to the drawings, but the drawings are only for reference and description, and are not intended to limit the present invention. [0010] Please refer to the first figure and the second figure, which are respectively a schematic perspective view and an exploded perspective view of the cold heat exchange device of the present invention; the cold heat exchange device 1 of the present invention includes a uniform cold end surface 11 and a hot end surface 12 The cold wafer 10, a first conductive module 20, and a second conductive module 30. In the embodiment, the cold heat exchange device 1 includes two cooling chips 10 and corresponding two sets of first conductive modules 20 and second conductive modules 30. In actual implementation, the cooled wafers 10 and the first Number of Conduction Modules 20 and Second Conduction Modules 30 HH20677 Production Order Number A〇101 Page 5/Total 19 Pages 1013244840-0 M436810 -. ior year.06 month force nuclear replacement & page is not limited, It can be adjusted according to actual needs. [0011] The first conductive module 20 includes a first pedestal 21 attached to the cold end surface 1 j of the chilled wafer 1 , and a plurality of first fins 22 fixed to the first pedestal 21 , And a first fan 23 disposed on the first fins 22. [0012] The second conduction module 30 includes a second pedestal 31 attached to the thermal end surface 12 of the chilled wafer 1 , a plurality of superconducting tubes 32 fixed to the second pedestal 31 , and a socket The plurality of second fins 33' on the superconducting tubes 32 and a second fan 34 disposed on the second fins 33. [0013] The structure of the refrigerating wafer 10 and the manufacturing method thereof are described in more detail. [0014] Referring again to the third drawing, it is a combined sectional view of the cryogenic wafer of the present invention. The refrigerating wafer 10 includes a a first aluminum nitride layer 11a and a second aluminum nitride layer lib, a first metal thin film i2a and a second metal thin film 12b, a first copper foil layer 13a and a second copper foil layer 13b, a first The solder layer ua and a second solder layer 14b, a plurality of p-type semiconductors 15a, and a plurality of N-type semiconductors 15b. [0015] The first aluminum nitride layer 11a and the second aluminum nitride layer lib aluminum (Aluminium nitride 'A1N) are ceramic insulators whose thermal conductivity is approximately 180 to 240 W/M. K ' due to the purity of aluminum nitride High, small particle size, uniform distribution, and good injection molding performance, so it has higher heat transfer capacity than general ceramics. The first metal thin film 12a is coated on the first aluminum nitride layer 1 ia, and the second metal thin film 12b is coated on the second aluminum nitride layer lib. Preferably, the first metal film 12a and the second metal film 12b are respectively a titanium film, and the first metal film 12a and the second metal film 10120677# single A0101 page 6 / 19 pages 1013244840-0 M436810 [Year of the year: 06, the setting of 12b on the 27th, can facilitate the formation of the first copper foil layer 13a and the second copper foil layer 13b in the first metal film 12a and the second metal film 12b having a high density, respectively. on. [00Γ7] The first copper foil layer 13a is formed on the first metal thin film 12a, and the second copper foil layer 13b is formed on the second metal thin film 12b. In actual practice, the first copper foil layer 13a includes a plurality of first copper foil conductors 131a arranged at intervals, and the second copper foil layer 13b includes a plurality of second copper foil conductors 131b arranged at intervals, and the first copper foils The conductor 131a and the second copper foil conductor φ 131b are alternately arranged. [0018] Further, a plurality of P-type semiconductors 15a and a plurality of N-type semiconductors 15b that are alternately arranged are fixed to the first copper foil layer 13a and the second copper foil layer 13b (first solder layer 14a and second solder layer) 14b) between. By coating the first solder layer 14a on the first copper foil layer 13a, the second solder layer 14b is coated on the second copper foil layer 13b to be melted by the first solder layer i4a and the first After the second solder layer 14b, the P-type semiconductor 15a and the N-type semiconductor 15b are bonded to the first solder layer 14a and the second solder layer 14b. Accordingly, the first aluminum nitride layer 11a and the second aluminum nitride layer lib are correspondingly located therein. On the opposite side of the type semiconductor 15a and the N-type semiconductors 15b, other heat transfer bodies are attached as a contact surface. [0019] Please refer to the fourth figure and the fifth figure separately, which are respectively an exploded perspective view and a stereoscopic appearance diagram of the application of the cold heat exchange device of the present invention; the cold heat exchange device 1 of the present invention may further comprise a front and rear cover. A front air hood 40 and a rear air hood 5 are combined, and an upper support seat 6G and a lower support seat 7 are abutted against each other. [0^20]. ° Xuan hood 40 has a front air inlet 41 corresponding to the first fan 23 and 1_δΤ7^·single number AG1G1 ^ 7 I / 19 I ηΛ 1013244840-0 M436810 101. June 27th nuclear replacement page pair A front air outlet 42 of the first fin 22 should be provided. The rear air hood 50 has a rear air inlet 51 corresponding to the second fan 34 and a rear air outlet 52 corresponding to the second fins 33. In addition, the upper support base 60 is framed by the first conductive module 20 for fixing to the front air hood 40, and the lower support base 70 is framed by the second conductive module 30 for being fixed to the rear air hood 50. [0021] Continued to refer to the sixth figure, which is a schematic diagram of the use of the cold heat exchange device of the present invention; the cold heat exchange device of the present invention can be applied to equipment such as a heating and cooling machine, an ice cream machine, a freezer or an automobile air conditioner, and the actual Implementation is not limited to this. φ [0022] The cold heat exchange device of this embodiment is used on a refrigerator. In use, the first pedestal 21 of the first conductive module 20 is attached to the cold end surface 11 of the chilled wafer 10 to take away the cold of the chilled wafer 10 and is conducted to the first fins 22; At the same time, the external cold air flows into the first conductive module 20 from the front air inlet 41, flows into the first fins 22 through the guiding of the first fan 23, and then cools the first fins 22. Carrying away into the front air outlet 42; accordingly, the cold (cooling effect) of the first conductive module 20 is continuously taken away, and is blown to the front air outlet 42 by the first fan 23 to flow into the refrigerating cabinet Internally, the interior of the refrigerator can be brought to the required degree of cold. [0023] On the other hand, the second pedestal 31 of the second conductive module 30 is attached to the hot end surface 12 of the chilled wafer 10 to take away the heat of the chilled wafer 10 and conduct the heat to the superconducting tubes. 32, the heat is quickly transmitted to the second fins 33 through the conduction of the supercatheters 32, and the external cold air flows into the second conduction module 30 from the rear air inlet 51, via the second The fan 34 is guided to flow into the second fins 33, and the forced airflow generated by the second fan 34 can quickly remove the heat of the second fins 33, and the eighth page/total 19 Page 1013244840-0 1〇1206^单单A〇101 M436810 [0025] [0025]

[0026] [0027] [0028] [0029][0029] [0029] [0029]

[0030] [0031] [0032] [0033] 101:年.06月2·7日核正菁換頁 風口 52流出;據此,持續地帶走該第二傳導模組30的熱( 致熱效果),以使該致冷晶片10可持續地產生致冷效果, 繼而達到冷藏櫃的内部達到所要求的冷度。 值得一提的是,該冷熱交換裝置1可依使用需求而串連複 數組致冷晶片10、第一傳導模組20及複數組第二傳導模 組3 0,以達到更佳的致冷(或致熱)效果。 以上所述僅為本創作之較佳實施例,非用以限定本創作 之專利範圍,其他運用本創作之專利精神之等效變化, 均應俱屬本創作之專利範圍。 【圖式簡單說明】 第一圖係本創作之冷熱交換裝置的立體外觀示意圖; 第二圖係本創作之冷熱交換裝置的立體分解圖; 第三圖係本創作之致冷晶片的組合剖視圖; 第四圖係本創作之冷熱交換裝置應用實施的立體分解圖 9 第五圖係本創作之冷熱交換裝置應用實施的立體外觀示 意圖; 第六圖係本創作之冷熱交換裝置應用實施時的使用示意 圖。 【主要元件符號說明】 1冷熱交換裝置 10致冷晶片 丽額^單編號Α〇101 第9頁/共19頁 1013244840-0 M436810 101年06月2·7日核正替換頁 [0034] 11冷端面 [0035] 12熱端面 [0036] 11a第一氮化紹層 [0037] lib第二氮化鋁層 [0038] 12a第一金屬薄膜 [0039] 12b第二金屬薄膜 [0040] 13a第一銅箔層 • [0041] 13b第二銅箔層 [0042] 14a第一焊錫層 [0043] 14b第二焊錫層 [0044] 15aP型半導體 [0045] 15bN型半導體 [0046] 2〇第一傳導模組 1 [0047] 21第一基座 [0048] 22第一鰭片 [0049] 2 3第一風扇 [0050] 30第二傳導模組 [0051] 31第二基座 [0052] 32超導管 [0053] 33第二鰭片 10120677#單编號 A〇101 M436810[0033] [0033] [0033] 101: On June 2, 7th, the nuclear ginseng page vent 52 flows out; accordingly, the heat of the second conduction module 30 is continuously taken away (heating effect) ) so that the cooled wafer 10 can continuously produce a cooling effect, and then the interior of the refrigerator is brought to the required degree of cold. It is worth mentioning that the cold heat exchange device 1 can serially connect the multiple array of the cooled wafer 10, the first conductive module 20 and the second array of the second conductive module 30 according to the needs of use to achieve better refrigeration ( Or heat) effect. The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the patent of the present invention. Other equivalent changes of the patent spirit using the present invention are all within the scope of the patent. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a schematic perspective view of the cold heat exchange device of the present invention; the second drawing is an exploded perspective view of the cold heat exchange device of the present invention; and the third drawing is a combined sectional view of the cold film of the present invention; The fourth figure is a three-dimensional exploded view of the application of the cold heat exchange device of the present invention. The fifth figure is a three-dimensional appearance of the application of the cold heat exchange device of the present invention; the sixth figure is a schematic diagram of the application of the cold heat exchange device of the present invention. . [Description of main component symbols] 1 Cold and heat exchange device 10 Cooling wafer Lie ^ Single number Α〇 101 Page 9 / Total 19 pages 1013244840-0 M436810 June 2, 2007 Nuclear replacement page [0034] 11 cold End face [0035] 12 hot end face [0036] 11a first nitride layer [0037] lib second aluminum nitride layer [0038] 12a first metal film [0039] 12b second metal film [0040] 13a first copper Foil layer • [0041] 13b second copper foil layer [0042] 14a first solder layer [0043] 14b second solder layer [0044] 15aP type semiconductor [0045] 15bN type semiconductor [0046] 2〇 first conduction module 1 [0047] 21 first pedestal [0048] 22 first fin [0049] 2 3 first fan [0050] 30 second conduction module [0051] 31 second pedestal [0052] 32 super catheter [0053 33 second fin 10120677# single number A〇101 M436810

[0054] 3 4第二風扇 [0055] 40前導風罩 [0056] 41前入風口 [0057] 42前出風口 [0058] 50後導風罩 [0059] 51後入風口 [0060] 5 2後出風口 [0061] 60上支撐座 [0062] 70下支撐座 第11頁/共19頁 10Ϊ年.06月2女日修正_頁 1013244840-0[0054] 3 4 second fan [0055] 40 front air hood [0056] 41 front air inlet [0057] 42 front air outlet [0058] 50 rear air hood [0059] 51 rear air inlet [0060] 5 2 after Air outlet [0061] 60 upper support seat [0062] 70 lower support seat page 11 / total 19 pages 10 years. June 2 female day correction _ page 1013244840-0

Claims (1)

M436810 101年.0&月2·7日修正替換頁 六、申請專利範圍: 1 . 一種具有高導熱係數致冷晶片的冷熱交換裝置,包括: 具有冷端面及熱端面的一致冷晶片,包括: 一第一氮化鋁層及一第二氮化鋁層; 一第一金屬薄膜及一第二金屬薄膜,該第一金 屬薄膜披覆在該第一氮化鋁層上,該第二金屬 薄膜則是披覆在該第二氮化鋁層上; 一第一銅fl層及一第二銅猪層,該第一銅層 形成在該第一金屬薄膜上,該第二銅箔層則是形 成在該第二金屬薄膜上;以及 多數P型半導體及多數N型半導體,交互排列 且固定在該第一銅箔層及該第二銅箔層之間,其 中,該第一氮化鋁層及該第二氮化鋁層係對應位 在該些P型半導體及該些N型半導體的相對側; 一第一傳導模組,包含貼接在該致冷晶片的冷端面上的一 第一基座、固定在該第一基座的複數第一鰭片、及裝置在 該些第一鰭片上的一第一風扇;以及 一第二傳導模組,包含貼接在該致冷晶片的熱端面上的一 第二基座、固定在該第二基座的複數超導管、套接在該些 超導管上的複數第二鰭片、及裝置在該些第二鰭片上的一 第二風扇。 2 .如請求項1所述之具有高導熱係數致冷晶片的冷熱交換裝 置,其中該致冷晶片更包括一第一焊錫層及一第二焊錫層 ,該第一焊錫層係塗佈在該第一銅箔層上,該第二焊錫層 係塗佈在該第二銅箔層上,該些P型半導體及N型半導體係 1013244840-0 結合在該第一焊錫層及該第二焊錫層上。 1()12()677#單編號A0101 第12頁/共19頁 M436810 ioi年.06月2>·日修正頁 3 .如請求項1所述之具有高導熱係數致冷晶片的冷熱交換裝。 置,其中該第一金屬薄膜及該第二金屬薄膜係分別為一鈦 薄膜。 4 .如請求項1所述之具有高導熱係數致冷晶片的冷熱交換裝 置,其更包括相互罩合的一前導風罩及一後導風罩,該前 導風罩具有對應該第一風扇的一前入風口及對應該些第一 鰭片的一前出風口,該後導風罩具有對應該第二風扇的一 後入風口及對應該些第二鰭片的一後出風口。 5 .如請求項4所述之具有高導熱係數致冷晶片的冷熱交換裝 置,其更包括一上支撐座及一下支撐座,該上支撐座係框 罩第一傳導模組以固定在該前導風罩上,該下支撐座係框 罩第二傳導模組以固定在該後導風罩上。 10120677#單編號 Α〇101 第13頁/共19頁 1013244840-0M436810 101. 0& month 2·7 revised replacement page VI, the scope of application patent: 1. A cold heat exchange device with a high thermal conductivity cooling chip, comprising: a cold chip with a cold end face and a hot end face, including: a first aluminum nitride layer and a second aluminum nitride layer; a first metal film and a second metal film, the first metal film is coated on the first aluminum nitride layer, the second metal film And coating a second aluminum nitride layer; a first copper layer and a second copper layer, the first copper layer is formed on the first metal film, and the second copper layer is Formed on the second metal film; and a plurality of P-type semiconductors and a plurality of N-type semiconductors are alternately arranged and fixed between the first copper foil layer and the second copper foil layer, wherein the first aluminum nitride layer And the second aluminum nitride layer is located on the opposite side of the P-type semiconductor and the N-type semiconductors; a first conductive module includes a first surface attached to the cold end surface of the cold-formed wafer a pedestal, a plurality of first fins fixed to the first pedestal, and a device a first fan on the first fin; and a second conductive module comprising a second pedestal attached to the hot end surface of the chilled wafer, a plurality of superconducting tubes and sleeves fixed to the second pedestal a plurality of second fins connected to the superconducting tubes and a second fan disposed on the second fins. 2. The cold heat exchange device of claim 1, wherein the refrigerating wafer further comprises a first solder layer and a second solder layer, wherein the first solder layer is coated on the On the first copper foil layer, the second solder layer is coated on the second copper foil layer, and the P-type semiconductor and the N-type semiconductor system 1013244840-0 are bonded to the first solder layer and the second solder layer. on. 1()12()677#单单A0101 Page 12 of 19 M436810 ioi year.06 month 2>·Day revision page 3. Cold heat exchange package with high thermal conductivity finned wafer as described in claim 1 . The first metal film and the second metal film are respectively a titanium film. 4. The cold heat exchange device with a high thermal conductivity refrigerating wafer according to claim 1, further comprising a front air hood and a rear air hood that are respectively covered with each other, the front air hood having a first fan a front air inlet and a front air outlet corresponding to the first fins, the rear air hood having a rear air inlet corresponding to the second fan and a rear air outlet corresponding to the second fins. 5. The cold heat exchange device with a high thermal conductivity refrigerating chip according to claim 4, further comprising an upper support base and a lower support base, the upper support frame being shielded by the first conductive module to be fixed to the lead On the windshield, the lower support frame is framed by the second conductive module to be fixed on the rear air hood. 10120677#单号 Α〇101 Page 13 of 19 1013244840-0
TW101206775U 2012-04-13 2012-04-13 Cold/heat exchange device of cooling chip with high thermal conductivity coefficient TWM436810U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101206775U TWM436810U (en) 2012-04-13 2012-04-13 Cold/heat exchange device of cooling chip with high thermal conductivity coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101206775U TWM436810U (en) 2012-04-13 2012-04-13 Cold/heat exchange device of cooling chip with high thermal conductivity coefficient

Publications (1)

Publication Number Publication Date
TWM436810U true TWM436810U (en) 2012-09-01

Family

ID=47223888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101206775U TWM436810U (en) 2012-04-13 2012-04-13 Cold/heat exchange device of cooling chip with high thermal conductivity coefficient

Country Status (1)

Country Link
TW (1) TWM436810U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714486B (en) * 2020-03-27 2020-12-21 馬思正 High conductivity refrigeration chip
CN113497175A (en) * 2020-04-02 2021-10-12 马思正 High-heat-conduction refrigeration chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714486B (en) * 2020-03-27 2020-12-21 馬思正 High conductivity refrigeration chip
CN113497175A (en) * 2020-04-02 2021-10-12 马思正 High-heat-conduction refrigeration chip
CN113497175B (en) * 2020-04-02 2024-06-18 马思正 High-temperature-conducting refrigerating chip

Similar Documents

Publication Publication Date Title
US7342787B1 (en) Integrated circuit cooling apparatus and method
TW200815968A (en) Phase change heat dissipation device and method
EP3907455A1 (en) Phase change heat radiating device
TWI649528B (en) Diffusion method of small area cold surface and its flat cold plate
CA2620479A1 (en) Heat exchanger for thermoelectric applications
CN102620467A (en) Electronic refrigerating device capable of accumulating cold
CN109478700A (en) Battery module
CN104329870B (en) Cold transferring and heat dissipating modular component, assembling method thereof and semiconductor refrigerator
TWM436810U (en) Cold/heat exchange device of cooling chip with high thermal conductivity coefficient
TWI411390B (en) Devices in series for continuous cooling/ heating
TW201020487A (en) Cold plate and refrigeration system
Yang et al. Performance analysis of multi thermoelectric cooling modules
Anusha et al. CFD analysis of splayed pin fin heat sink using advanced composite materials
CN202562127U (en) Cold-heat exchange device with refrigeration chip with high thermal conductivity
CN214665338U (en) Ultralow temperature semiconductor refrigerating device
CN104930890B (en) Heat exchanger and semi-conductor wine cabinet
CN105633037A (en) Pulsation heat pipe radiating apparatus for cooling chips
CN206058092U (en) A kind of composite efficient cpu heat
TW201342017A (en) High thermal conductivity coefficient of thermoelectric cooling chip and method for making the same and product thereof
CN206531339U (en) A kind of refrigerator
TWI739222B (en) Gas-liquid cooling dual heat dissipation module
CN212324621U (en) Phase change cooling system with compressor compensation
US11246238B2 (en) Heat conductive device and electronic device
TWI251461B (en) Manufacturing method of thermal-electric heat sink and its manufactured products
CN207865755U (en) Power control cabinet semiconductor refrigerating air-conditioning

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees