TWI827170B - Surface enhanced raman spectroscopy chip and the detection system - Google Patents

Surface enhanced raman spectroscopy chip and the detection system Download PDF

Info

Publication number
TWI827170B
TWI827170B TW111128531A TW111128531A TWI827170B TW I827170 B TWI827170 B TW I827170B TW 111128531 A TW111128531 A TW 111128531A TW 111128531 A TW111128531 A TW 111128531A TW I827170 B TWI827170 B TW I827170B
Authority
TW
Taiwan
Prior art keywords
mercapto
raman spectroscopy
enhanced raman
spectrum image
scattering spectrum
Prior art date
Application number
TW111128531A
Other languages
Chinese (zh)
Other versions
TW202405407A (en
Inventor
林義雄
曾鈺芬
廖育萱
Original Assignee
四方仁禾半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四方仁禾半導體股份有限公司 filed Critical 四方仁禾半導體股份有限公司
Priority to TW111128531A priority Critical patent/TWI827170B/en
Application granted granted Critical
Publication of TWI827170B publication Critical patent/TWI827170B/en
Publication of TW202405407A publication Critical patent/TW202405407A/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a surface-enhanced Raman spectroscopy chip, comprising a substrate and a plurality of wafers disposed on the surface of the substrate to form a wafer array, each wafer has functional groups modified on silver nanoparticles, and each wafer is modified by different functional groups. The surface-enhanced Raman spectroscopy chip can be used as a system for disease prediction or analysis by using breath, including: a breath collection device for collecting sample breath and passing the sample breath through the surface-enhanced Raman spectroscopy chip, a spectrometer detection device for detecting the surface-enhanced Raman spectroscopy chip, obtaining a Raman scattering spectrum image of the sample breath, and storing the Raman scattering spectrum image in a storage device, and a computer inputs the Raman scattering spectrum image of the sample breath into a learning and classification system to obtain a disease detection result.

Description

表面增強型拉曼光譜晶片及其檢測系統Surface-enhanced Raman spectroscopy chip and its detection system

本發明涉及一種晶片以及其檢測系統,特別是一種表面增強型拉曼光譜晶片以及其檢測系統。The invention relates to a wafer and its detection system, in particular to a surface-enhanced Raman spectroscopy wafer and its detection system.

拉曼光譜(Raman Spectroscopy)屬於分子振動(Vibration)光譜的一種,其原理在於使用固定波長的雷射光源激發樣品,當激發光與樣品分子作用時,光子與分子碰撞後產生了能量交換,光子將部分能量傳遞給樣品分子或從樣品分子獲得部分能量,進而改變了光的頻率,這個變化稱之為拉曼位移(Raman shift) ,拉曼位移的多寡不會因為雷射波長而改變,因此可以用來反映分子鍵結與結構。然而,拉曼光譜的訊號非常微弱,且容易受螢光干擾,應用範圍受到許多限制,因此, 表面增強拉曼光譜(surface enhanced Raman spectroscopy, SERS)的出現,使得拉曼光譜技術的運用越來越廣泛。Raman Spectroscopy is a type of molecular vibration (Vibration) spectroscopy. Its principle is to use a fixed wavelength laser light source to excite the sample. When the excitation light interacts with the sample molecules, energy exchange occurs after the photons collide with the molecules. The photons Part of the energy is transferred to or obtained from the sample molecules, thereby changing the frequency of light. This change is called Raman shift. The amount of Raman shift will not change due to the laser wavelength, so Can be used to reflect molecular bonding and structure. However, the signal of Raman spectroscopy is very weak and susceptible to fluorescence interference, and its application range is subject to many limitations. Therefore, the emergence of surface enhanced Raman spectroscopy (SERS) has made the application of Raman spectroscopy technology more and more popular. The more extensive.

表面增強拉曼光譜是藉由吸附在粗糙金屬表面上的分子與金屬表面發生共振作用而增強拉曼散射的現象。相較於拉曼光譜技術,表面增強拉曼光譜具有微量測量以及表面專一性的特性, 近年來被廣泛運用在生醫方面,為一種非侵入性的檢測技術,具有專一性高、高敏感度、快速等優點,可以從分子層面上探測組織細胞內的蛋白、核酸、脂類以及醣類等生物分子的結構,再藉由比對癌症組織與正常組織間的拉曼光譜,可反映出組織病變的特徵光譜,將其運用在早期診斷癌症方面。Surface-enhanced Raman spectroscopy is a phenomenon in which molecules adsorbed on rough metal surfaces resonate with the metal surface to enhance Raman scattering. Compared with Raman spectroscopy technology, surface-enhanced Raman spectroscopy has the characteristics of micro-measurement and surface specificity. It has been widely used in biomedicine in recent years. It is a non-invasive detection technology with high specificity and high sensitivity. , fast and other advantages, it can detect the structure of biomolecules such as proteins, nucleic acids, lipids and sugars in tissue cells at the molecular level, and then by comparing the Raman spectra between cancer tissues and normal tissues, tissue lesions can be reflected Characteristic spectrum and use it in early diagnosis of cancer.

而就現今醫療技術大多以單一疾病檢測為主,然而像是癌症這類疾病有多種疾病所致,若僅對單一疾病標的物進行檢測,患者需耗時進行多項檢查,且無法準確判斷癌症的發展,因此若能發展出可同時檢測多種標的物的系統,便能提高診斷癌症的準確性,且能減少進行多項檢查所耗費的時間。Most of today's medical technologies focus on the detection of a single disease. However, diseases such as cancer are caused by multiple diseases. If only a single disease target is detected, patients need to undergo multiple examinations in a time-consuming manner, and the cause of the cancer cannot be accurately determined. Therefore, if a system that can detect multiple targets simultaneously can be developed, the accuracy of cancer diagnosis can be improved and the time spent on conducting multiple examinations can be reduced.

在本說明書中引用的所有刊物和專利申請案皆透過引用併入本文,並且出於任何及所有目的,每一個別刊物或專利申請案皆明確且個別地指出以透過引用併入本文。在本文與透過引用併入本文的任何刊物或專利申請案之間存在不一致的情況下,以本文為準。All publications and patent applications cited in this specification are hereby incorporated by reference, and each individual publication or patent application is expressly and individually indicated to be incorporated by reference for any and all purposes. In the event of any inconsistency between this document and any publication or patent application incorporated by reference, this document shall control.

本文所用之術語「包括」、「具有」和「包含」具有開放、非限制性的意義。術語「一」和「該」應理解為涵蓋複數及單數。術語「一個或多個」係指「至少一個」,因此可包括單一特徵或混合物/組合特徵。The terms "includes," "has," and "includes" are used herein in an open, non-limiting sense. The terms "a" and "the" shall be understood to cover both the plural and the singular. The term "one or more" means "at least one" and thus may include a single feature or a mixture/combination of features.

發明內容旨在提供本發明的簡化摘要,以令閱讀者對本發明具備基本的理解。此發明內容並非本發明的完整概述,且其用意並非指出本發明實施例的重要或關鍵元件或界定本發明的範圍。This summary is intended to provide a simplified summary of the invention to provide the reader with a basic understanding of the invention. This summary is not an extensive overview of the invention and it is not intended to identify key or critical elements of the embodiments of the invention or to delineate the scope of the invention.

表面增強型拉曼光譜的優勢為靈敏、快速、專一性高,適合應用在醫學檢測方面,且表面增強型拉曼光譜為一非侵入技術,不會破壞樣品,可偵測任何狀態(固態、液態、氣態)的樣品,在診斷疾病方面有良好的應用前景。The advantages of surface-enhanced Raman spectroscopy are that it is sensitive, fast, and highly specific. It is suitable for use in medical detection. Surface-enhanced Raman spectroscopy is a non-invasive technology that does not damage the sample and can detect any state (solid, Liquid, gaseous) samples have good application prospects in diagnosing diseases.

有鑑於此,為解決無法同時檢測多種疾病的問題,本發明提供一種表面增強型拉曼光譜晶片。In view of this, in order to solve the problem of being unable to detect multiple diseases at the same time, the present invention provides a surface-enhanced Raman spectroscopy chip.

本發明係提供一種表面增強型拉曼光譜晶片,包含:一基板,其表面上佈有奈米金屬顆粒;以及n個晶片(n≥1)設置於該基板之表面形成一晶片陣列,該每一晶片具有官能基修飾於該奈米金屬顆粒上,各晶片所修飾之官能基不相同,且該官能基為下列之至少一種或多種:4-巰基吡啶(4-Mercaptopyridine)、4-氨基苯硫酚(4-Aminothiophenol)、4-巰基苯基硼酸(4-Mercaptophenylboronic acid)、4-溴苯硫酚(4-bromothiophenol)、4-巰基苯甲酸 (4-Mercaptobenzoic acid)、2-硫代巴比妥酸(2-Thiobarbituric acid)、2-硫尿嘧啶(2-Thiouracil)、4-硫尿嘧啶(4-Thiouracil)、4-甲基吡啶(4-Methylpyridine)、4-氨基苯基二硫化物(4-Aminophenyl disulfide)、4-(甲硫基)-苯甲醛(4-(Methylthio)-benzaldehyde) 、2-巰基-4-甲基-嘧啶鹽酸鹽(2-Mercapto-4-methyl-pyrimidine hydrochloride) 、2-巰基-1-甲基咪唑(2-Mercapto-1-methylimidazole)、2-巰基噻唑啉(2-Mercapto-thiazoline)、3-氨基-5-巰基-1,2,4-三唑(3-Amino-5-mercapto-1,2,4-triazole)、3-巰基-1,2,4-三唑(3-Mercapto-1,2,4-triazole)、5-巰基-1-甲基四唑(5-Mercapto-1-methyltetrazole)、2-巰基咪唑(2-Mercaptoimidazole)、5,5'-二硫代雙(2-硝基苯甲酸)(5,5'-Dithiobis-(2-nitrobenzoic acid), DTNB)、2-巰基-4-甲基-5-噻唑乙酸(2-Mercapto-4-methyl-5-thiazoleacetic acid) 、4,6-二羥基-2-巰基嘧啶(4,6-Dihydroxy-2-mercaptopyrimidine)、2-巰基-5-甲基苯並咪唑(2-Mercapto-5-methylbenzimidazole)、1-萘硫醇(1-Naphthalenthiol)、2-甲氧基苯硫酚(2-Methoxythiophenol)、2-氨基苯硫酚(2-Aminothiophenel) 、2-巰基苯並噻唑(2-Mercaptobenzothiazole) 、2-巰基苯並噁唑(2-Mercaptobenzoxazole) 、2-巰基-5-硝基苯並咪唑(2-Mercapto-5-nitro-benzimidazole) 、5-氨基-1,3,4-噻二唑-2-硫醇(5-Amino-1,3,4-thiadiazole-2-thiol) 、4-氨基-6-羥基-2-巰基嘧啶一水合物 (4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate) 、2-巰基咪唑 (2-Mercaptoimidazole) 、2-巰基嘧啶(2-Mercaptopyrimidine) 、3-甲氧基苯硫酚(3-Methoxythiophenol) 、4-羥基-2-巰基-6-甲基嘧啶(4-Hydroxy-2-mercapto-6-methylpyrimidine) 或2-巰基-4(3H)-喹唑啉酮(2-Mercapto-4(3H)-quinazolinone。The invention provides a surface-enhanced Raman spectroscopy chip, which includes: a substrate with nanometal particles distributed on the surface; and n chips (n≥1) are arranged on the surface of the substrate to form a chip array, each of which is disposed on the surface of the substrate. A wafer has functional groups modified on the nanometal particles. The functional groups modified by each wafer are different, and the functional groups are at least one or more of the following: 4-Mercaptopyridine, 4-aminobenzene 4-Aminothiophenol, 4-Mercaptophenylboronic acid, 4-bromothiophenol, 4-Mercaptobenzoic acid, 2-thiopa 2-Thiobarbituric acid, 2-Thiouracil, 4-Thiouracil, 4-Methylpyridine, 4-aminophenyl disulfide 4-Aminophenyl disulfide, 4-(Methylthio)-benzaldehyde, 2-Mercapto-4-methyl-pyrimidine hydrochloride pyrimidine hydrochloride), 2-Mercapto-1-methylimidazole, 2-Mercapto-thiazoline, 3-amino-5-mercapto-1,2,4- Triazole (3-Amino-5-mercapto-1,2,4-triazole), 3-mercapto-1,2,4-triazole (3-Mercapto-1,2,4-triazole), 5-mercapto- 1-Methyltetrazole (5-Mercapto-1-methyltetrazole), 2-Mercaptoimidazole (2-Mercaptoimidazole), 5,5'-Dithiobis(2-nitrobenzoic acid) (5,5'-Dithiobis -(2-nitrobenzoic acid, DTNB), 2-Mercapto-4-methyl-5-thiazoleacetic acid, 4,6-dihydroxy-2-mercaptopyrimidine (4,6-Dihydroxy-2-mercaptopyrimidine), 2-Mercapto-5-methylbenzimidazole, 1-Naphthalenthiol, 2-methoxybenzene 2-Methoxythiophenol, 2-Aminothiophenel, 2-Mercaptobenzothiazole, 2-Mercaptobenzoxazole, 2-mercapto-5 -Nitrobenzimidazole (2-Mercapto-5-nitro-benzimidazole), 5-Amino-1,3,4-thiadiazole-2-thiol (5-Amino-1,3,4-thiadiazole-2 -thiol), 4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate (4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate), 2-Mercaptoimidazole (2-Mercaptoimidazole), 2-mercaptopyrimidine (2 -Mercaptopyrimidine), 3-Methoxythiophenol, 4-Hydroxy-2-mercapto-6-methylpyrimidine or 2-mercapto-4 (3H)-Quazolinone (2-Mercapto-4(3H)-quinazolinone.

根據本發明之一實施例,該奈米金屬顆粒為奈米銀顆粒。According to an embodiment of the present invention, the nanometal particles are silver nanoparticles.

根據本發明之一實施例,該奈米銀顆粒之形狀為立方體。According to an embodiment of the present invention, the shape of the silver nanoparticles is cube.

根據本發明之一實施例,該基板為矽基板、不銹鋼、聚偏二氟乙烯、玻璃或是塑料片。According to an embodiment of the present invention, the substrate is a silicon substrate, stainless steel, polyvinylidene fluoride, glass or plastic sheet.

本發明另提供一種利用氣體進行疾病預測或分析之系统,包含:一氣體收集裝置,供收集樣本氣體,並使該樣本氣體經過該表面增強型拉曼光譜晶片;一光譜儀檢測裝置,用以對該表面增強型拉曼光譜晶片進行檢測,獲得該樣本氣體之拉曼散射光譜圖像,並將該拉曼散射光譜圖像儲存於一暫存性或非暫存性儲存裝置;以及一電腦,係經由至少一儲存單元載入並執行一預訓練的學習分類系統,該電腦經由將該樣本氣體的該拉曼散射光譜圖像輸入至該類神經網絡系統以獲得一疾病檢測結果。The present invention also provides a system for disease prediction or analysis using gas, which includes: a gas collection device for collecting sample gas and passing the sample gas through the surface-enhanced Raman spectroscopy chip; a spectrometer detection device for detecting The surface-enhanced Raman spectroscopy chip performs detection, obtains a Raman scattering spectrum image of the sample gas, and stores the Raman scattering spectrum image in a temporary or non-transitory storage device; and a computer, A pre-trained learning classification system is loaded and executed through at least one storage unit, and the computer obtains a disease detection result by inputting the Raman scattering spectrum image of the sample gas into the neural network system.

根據本發明之一實施例,該類神經網絡系統係使用指定疾病的陰性呼出氣體或陽性呼出氣體於該表面增強型拉曼光譜晶片所反映的訓練用拉曼散射光譜圖像訓練各層的權重值。According to an embodiment of the present invention, the neural network system uses the negative exhaled gas or positive exhaled gas of the specified disease to train the weight value of each layer using the training Raman scattering spectrum image reflected by the surface-enhanced Raman spectroscopy chip. .

根據本發明之一實施例,該電腦包含:一儲存資料庫,供儲存該陰性呼出氣體或該陽性呼出氣體於該表面增強型拉曼光譜晶片所反映的該訓練用拉曼散射光譜圖像。According to an embodiment of the present invention, the computer includes: a storage database for storing the training Raman scattering spectrum image reflected by the negative exhaled gas or the positive exhaled gas on the surface-enhanced Raman spectroscopy chip.

根據本發明之一實施例,該學習分類系統係類神經網絡系統,且係依據下述方法進行訓練:該氣體收集裝置接收該陰性呼出氣體或該陽性呼出氣體; 該光譜儀檢測裝置用以對該表面增強型拉曼光譜晶片進行檢測,獲得該陰性呼出氣體或該陽性呼出氣體之該訓練用拉曼散射光譜圖像,並將該訓練用拉曼散射光譜圖像以及對應的陰性資訊或陽性資訊儲存於該暫存性或非暫存性儲存裝置;電腦經由該暫存性或非暫存性儲存裝置獲得該訓練用拉曼散射光譜圖像以及對應的陰性資訊或陽性資訊,並將該訓練用拉曼散射光譜圖像輸入至該類神經網絡系統以獲得一輸出結果,經由該輸出結果以及預期結果的誤差反向傳播以修改該類神經網絡系統該各層的該權重值。According to an embodiment of the present invention, the learning classification system is a neural network-like system and is trained according to the following method: the gas collection device receives the negative exhaled gas or the positive exhaled gas; the spectrometer detection device is used to detect the negative exhaled gas or the positive exhaled gas; The surface-enhanced Raman spectroscopy chip is used for detection, and the training Raman scattering spectrum image of the negative exhaled gas or the positive exhaled gas is obtained, and the training Raman scattering spectrum image and the corresponding negative information or positive information are Stored in the temporary or non-transitory storage device; the computer obtains the training Raman scattering spectrum image and the corresponding negative information or positive information through the temporary or non-transitory storage device, and converts the training The Raman scattering spectrum image is input to the neural network system to obtain an output result, and the weight value of each layer of the neural network system is modified through back propagation of the error of the output result and the expected result.

根據本發明之一實施例,該指定疾病為癌症、荷爾蒙失調、細菌感染或病毒感染。According to an embodiment of the invention, the designated disease is cancer, hormonal imbalance, bacterial infection or viral infection.

根據本發明之一實施例,該指定疾病為肺炎。According to an embodiment of the present invention, the designated disease is pneumonia.

本發明之表面增強型拉曼光譜晶片,相較於先前技術,有如下優勢。The surface-enhanced Raman spectroscopy chip of the present invention has the following advantages compared with the prior art.

(1) 本發明之表面增強型拉曼光譜晶片,該基板上含有多個晶片,且每個晶片所合成之官能基不同,因此可同時檢測多種分析物,提高檢測效率。(1) The surface-enhanced Raman spectroscopy chip of the present invention contains multiple chips on the substrate, and each chip has different functional groups synthesized, so it can detect multiple analytes at the same time and improve detection efficiency.

(2) 該表面增強型拉曼光譜晶片還可應用於利用氣體進行疾病預測或分析之系統,將收集之樣本氣體經過該晶片進行分析,獲得一拉曼散射光譜圖像,再經由電腦將該圖像輸入至學習分類系統進行比對以獲得一疾病檢測結果。使用者僅需對該系統進行吹氣,操作簡單方便,不須繁複的過程即可獲得檢測結果。(2) The surface-enhanced Raman spectroscopy chip can also be used in systems that use gases for disease prediction or analysis. The collected sample gas is analyzed through the chip to obtain a Raman scattering spectrum image, and then the computer is used to analyze the sample gas. The image is input to the learning classification system for comparison to obtain a disease detection result. Users only need to blow air into the system, the operation is simple and convenient, and the test results can be obtained without complicated procedures.

(3)該電腦內的學習分類系統,含有多種疾病的陰性呼出氣體及陽性呼出氣體的資料庫可供比對,例如癌症、荷爾蒙失調、細菌感染、病毒感染或肺炎,能同時進行多項檢測,減少進行各項不同檢測所需耗費的時間,亦能提供疾病的發展情況,提高診斷的準確性。(3) The learning classification system in the computer contains a database of negative breath and positive breath for multiple diseases for comparison, such as cancer, hormonal imbalance, bacterial infection, viral infection or pneumonia, and can perform multiple tests at the same time, It reduces the time required to perform various tests and can also provide information on the development of the disease and improve the accuracy of diagnosis.

根據慣常的作業方式,圖中各種特徵與元件並未依實際比例繪製,其繪製方式是為了以最佳的方式呈現與本發明相關的具體特徵與元件。此外,在不同圖式間,以相同或相似的元件符號指稱相似的元件及部件。In accordance with common practice, the various features and components in the figures are not drawn to actual scale, but are drawn in a manner intended to best present the specific features and components relevant to the present invention. In addition, the same or similar element symbols are used to refer to similar elements and components between different drawings.

為了使本發明的敘述更加詳盡與完備,下文針對了本發明的實施態樣與具體實施例提出了說明性的描述,但這並非實施或運用本發明具體實施例的唯一形式。在本說明書及後附之申請專利範圍中,除非上下文另外載明,否則「一」及「該」亦可解釋為複數。此外,在本說明書及後附之申請專利範圍中,除非另外載明,否則「設置於某物之上」可視為直接或間接以貼附或其他形式與某物之表面接觸,該表面之界定應視說明書內容之前後/段落語意以及本說明所屬領域之通常知識予以判斷。In order to make the description of the present invention more detailed and complete, the following provides an illustrative description of the implementation modes and specific embodiments of the present invention, but this is not the only form of implementing or using the specific embodiments of the present invention. In this specification and the appended patent claims, "a" and "the" may also be interpreted as plural unless the context indicates otherwise. In addition, in the scope of this specification and the appended patent application, unless otherwise specified, "disposed on something" can be regarded as directly or indirectly contacting the surface of something through attachment or other forms. The definition of the surface Judgment should be based on the meaning of the content before and after the description/paragraphs and the common knowledge in the field to which this description belongs.

以下內容配合本案圖式係呈現本發明更為具體之實施範例或比較例,其目的僅係用以更清楚地示意本發明之內容,並非用以限定本發明之實施範圍。The following content, combined with the drawings, presents more specific implementation examples or comparative examples of the present invention. The purpose is only to illustrate the content of the present invention more clearly, and is not intended to limit the scope of the present invention.

請一併參照圖1及圖2,為本發明係提供一種表面增強型拉曼光譜晶片之示意圖100,該晶片包含:一基板110,其表面上佈有奈米金屬顆粒111;以及多個晶片設置於該基板之表面形成一晶片陣列120。Please refer to Figure 1 and Figure 2 together to provide a schematic diagram 100 of a surface-enhanced Raman spectroscopy chip according to the present invention. The chip includes: a substrate 110 with nanometal particles 111 distributed on the surface; and a plurality of chips. A chip array 120 is formed on the surface of the substrate.

所述基板之表面晶片陣列,每一晶片具有官能基修飾於該奈米金屬顆粒上,各晶片所修飾之官能基不相同,可用於分析不同化合物。該官能基可為下列之至少一種或多種:4-巰基吡啶(4-Mercaptopyridine)、4-氨基苯硫酚(4-Aminothiophenol)、4-巰基苯基硼酸(4-Mercaptophenylboronic acid)、4-溴苯硫酚(4-bromothiophenol)、4-巰基苯甲酸 (4-Mercaptobenzoic acid)、2-硫代巴比妥酸(2-Thiobarbituric acid)、2-硫尿嘧啶(2-Thiouracil)、4-硫尿嘧啶(4-Thiouracil)、4-甲基吡啶(4-Methylpyridine)、4-氨基苯基二硫化物(4-Aminophenyl disulfide) 、4-(甲硫基)-苯甲醛(4-(Methylthio)-benzaldehyde) 、2-巰基-4-甲基-嘧啶鹽酸鹽(2-Mercapto-4-methyl-pyrimidine hydrochloride) 、2-巰基-1-甲基咪唑(2-Mercapto-1-methylimidazole)、2-巰基噻唑啉(2-Mercapto-thiazoline)、3-氨基-5-巰基-1,2,4-三唑(3-Amino-5-mercapto-1,2,4-triazole)、3-巰基-1,2,4-三唑(3-Mercapto-1,2,4-triazole)、5-巰基-1-甲基四唑(5-Mercapto-1-methyltetrazole)、2-巰基咪唑(2-Mercaptoimidazole)、5,5'-二硫代雙(2-硝基苯甲酸)(5,5'-Dithiobis-(2-nitrobenzoic acid), DTNB)、2-巰基-4-甲基-5-噻唑乙酸(2-Mercapto-4-methyl-5-thiazoleacetic acid) 、4,6-二羥基-2-巰基嘧啶(4,6-Dihydroxy-2-mercaptopyrimidine)、2-巰基-5-甲基苯並咪唑(2-Mercapto-5-methylbenzimidazole)、1-萘硫醇(1-Naphthalenthiol)、2-甲氧基苯硫酚(2-Methoxythiophenol)、2-氨基苯硫酚(2-Aminothiophenel) 、2-巰基苯並噻唑(2-Mercaptobenzothiazole) 、2-巰基苯並噁唑(2-Mercaptobenzoxazole) 、2-巰基-5-硝基苯並咪唑(2-Mercapto-5-nitro-benzimidazole) 、5-氨基-1,3,4-噻二唑-2-硫醇(5-Amino-1,3,4-thiadiazole-2-thiol) 、4-氨基-6-羥基-2-巰基嘧啶一水合物 (4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate) 、2-巰基咪唑 (2-Mercaptoimidazole) 、2-巰基嘧啶(2-Mercaptopyrimidine) 、3-甲氧基苯硫酚(3-Methoxythiophenol) 、4-羥基-2-巰基-6-甲基嘧啶(4-Hydroxy-2-mercapto-6-methylpyrimidine) 或2-巰基-4(3H)-喹唑啉酮(2-Mercapto-4(3H)-quinazolinone,該等官能基可利用其所帶有的S與奈米金屬顆粒鍵結。In the surface chip array of the substrate, each chip has a functional group modified on the nanometal particles. The functional groups modified on each chip are different and can be used to analyze different compounds. The functional group may be at least one or more of the following: 4-Mercaptopyridine, 4-Aminothiophenol, 4-Mercaptophenylboronic acid, 4-bromo 4-bromothiophenol, 4-Mercaptobenzoic acid, 2-Thiobarbituric acid, 2-Thiouracil, 4-thiouracil Uracil (4-Thouracil), 4-Methylpyridine (4-Methylpyridine), 4-Aminophenyl disulfide (4-Aminophenyl disulfide), 4-(Methylthio)-benzaldehyde (4-(Methylthio) -benzaldehyde), 2-Mercapto-4-methyl-pyrimidine hydrochloride, 2-Mercapto-1-methylimidazole, 2 -Mercapto-thiazoline, 3-Amino-5-mercapto-1,2,4-triazole, 3-mercapto- 1,2,4-triazole (3-Mercapto-1,2,4-triazole), 5-Mercapto-1-methyltetrazole (5-Mercapto-1-methyltetrazole), 2-Mercaptoimidazole ), 5,5'-Dithiobis-(2-nitrobenzoic acid, DTNB), 2-mercapto-4-methyl-5-thiazoleacetic acid (2-Mercapto-4-methyl-5-thiazoleacetic acid), 4,6-Dihydroxy-2-mercaptopyrimidine (4,6-Dihydroxy-2-mercaptopyrimidine), 2-mercapto-5-methylbenzimidazole ( 2-Mercapto-5-methylbenzimidazole), 1-Naphthalenthiol, 2-Methoxythiophenol, 2-Aminothiophenel, 2-mercaptobenzene 2-Mercaptobenzothiazole, 2-Mercaptobenzoxazole, 2-Mercapto-5-nitro-benzimidazole, 5-amino-1, 3,4-thiadiazole-2-thiol (5-Amino-1,3,4-thiadiazole-2-thiol), 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate (4-Amino- 6-hydroxy-2-mercaptopyrimidine monohydrate), 2-Mercaptoimidazole, 2-Mercaptopyrimidine, 3-Methoxythiophenol, 4-hydroxy-2- 4-Hydroxy-2-mercapto-6-methylpyrimidine or 2-Mercapto-4(3H)-quinazolinone, these functional groups The S contained therein can be used to bond with nanometal particles.

於一較佳實施態樣中,所述奈米金屬顆粒111可為一奈米金顆粒、一奈米銀顆粒、一奈米鋁顆粒、一奈米鈦顆粒或一奈米銅顆粒。較佳地,該奈米金屬顆粒111為奈米銀顆粒。在較佳實施例中,該奈米金屬顆粒111直徑為10-250nm,例如:15nm、35nm、55nm、85nm、105nm、135nm、150nm、200nm、或250nm。將奈米金屬顆粒111佈於基板110,係因當待測物中的分子吸附在該等奈米金屬顆粒111後,因電磁效應(激發表面電漿的偏極性)以及化學效應(吸附在奈米金屬顆粒之分子,分子與奈米金屬結構接觸,其間的電荷轉移造成,此亦稱為第一層效應)的產生,造成拉曼光譜散射訊號的增強,克服了傳統拉曼檢測之低靈敏度的問題。In a preferred embodiment, the metal nanoparticle 111 can be a gold nanoparticle, a silver nanoparticle, an aluminum nanoparticle, a titanium nanoparticle or a copper nanoparticle. Preferably, the nanometal particles 111 are silver nanoparticles. In a preferred embodiment, the diameter of the nanometal particles 111 is 10-250nm, for example: 15nm, 35nm, 55nm, 85nm, 105nm, 135nm, 150nm, 200nm, or 250nm. The nanometal particles 111 are distributed on the substrate 110 because when the molecules in the object to be measured are adsorbed on the nanometal particles 111, the electromagnetic effect (excitation of the polarity of the surface plasma) and the chemical effect (adsorption on the nanoparticles) The molecules of nano-metal particles are in contact with the nano-metal structure, and the charge transfer therebetween (also known as the first layer effect) results in the enhancement of the Raman spectrum scattering signal, overcoming the low sensitivity of traditional Raman detection. problem.

於一較佳實施態樣中,所述奈米銀顆粒111之形狀可為立方體、圓球、橢圓球、長方體、三角體、十面體。較佳地,該形狀為立方體,如圖2所示。製作該等表面上佈有奈米金屬顆粒111之基板的方法可採用習知方式,該等方法可分為物理性與化學性製備法;物理性的製備法例如但不限於真空蒸鍍(於真空環境下,利用雷射或電子束撞擊或加熱,將被鍍金屬融化使原子蒸發,再碰撞到基材表面使其附著於上)、電化學沉積方式(利用三電極電化學系統,施加電位將被鍍金屬產生接連的氧化還原反應在工作電極上),化學性製備法包含但不限於溶膠-凝膠法(以無機金屬鹽類或金屬純氧化物作為前驅物,經水解、縮和、聚合後形成交連膠體)、化學置換沉積法(即無電極置換法,使用不同金屬之間的氧化還原電位差,進行自身氧化還原反應)等等。在本發明之其中一實施態樣中,具金屬銀顆粒基板製造方式為:將基板(玻璃或塑料片)在乙醇和丙酮中分別進行超聲波清洗,將其吹乾後置於H 2SO 4/H 2O 2=3:1(v/v)中,加熱清洗;接著用超純水清洗基板後,將其吹乾,置於(3-巰丙基)三甲氧基硅烷的甲苯溶液中;再將基板分别用甲苯、丙酮和乙醇清洗乾淨後待用。取硝酸銀溶於去離子水中,同時於硝酸銀溶液中緩慢加入NaOH(10%),再於燒杯中逐滴加入氨水溶液,直至沉澱消失;接著將溶液置於冰水浴中冷卻。向冷卻後的溶液中加入戊二醛溶液,反應10秒後,置於90℃水浴中,並將基板貼壁放置在溶液中反應,使奈米銀顆粒在基板上生長,形成具金屬銀顆粒的基底;隨後立即取出基板,置於預先冷卻的乙二醇中以停止生長;最後進行超聲波20秒,除去非特異性附著的奈米銀顆粒。 In a preferred embodiment, the shape of the silver nanoparticles 111 can be a cube, a sphere, an ellipsoid, a cuboid, a triangle, or a decahedron. Preferably, the shape is a cube, as shown in Figure 2. The method of making the substrates with nanometal particles 111 on the surface can be by conventional methods. These methods can be divided into physical and chemical preparation methods; physical preparation methods such as but not limited to vacuum evaporation (in In a vacuum environment, laser or electron beam impact or heating is used to melt the plated metal, evaporate the atoms, and then collide with the surface of the substrate to adhere to it), electrochemical deposition method (using a three-electrode electrochemical system to apply potential The metal to be plated will produce successive redox reactions on the working electrode). The chemical preparation method includes but is not limited to the sol-gel method (using inorganic metal salts or pure metal oxides as precursors, through hydrolysis, condensation, Cross-linked colloid is formed after polymerization), chemical replacement deposition method (i.e., electrodeless replacement method, using the redox potential difference between different metals to perform its own redox reaction), etc. In one embodiment of the present invention, the manufacturing method of the substrate with metallic silver particles is as follows: the substrate (glass or plastic sheet) is ultrasonically cleaned in ethanol and acetone respectively, dried and then placed in H 2 SO 4 / H 2 O 2 =3:1 (v/v), heat and clean; then clean the substrate with ultrapure water, blow it dry, and place it in a toluene solution of (3-mercaptopropyl)trimethoxysilane; Then clean the substrate with toluene, acetone and ethanol respectively and set aside for use. Dissolve silver nitrate in deionized water, slowly add NaOH (10%) to the silver nitrate solution, and then add ammonia solution drop by drop in the beaker until the precipitate disappears; then place the solution in an ice water bath to cool. Add glutaraldehyde solution to the cooled solution, react for 10 seconds, place it in a 90°C water bath, and place the substrate in the solution to react, so that silver nanoparticles grow on the substrate to form metallic silver particles. The substrate; then immediately take out the substrate and place it in pre-cooled ethylene glycol to stop growth; finally, perform ultrasonic waves for 20 seconds to remove non-specifically attached silver nanoparticles.

所述含有不同官能基修飾於金屬顆粒上之製造方式示例性說明如下:將該金屬顆粒基板浸泡於含有不同官能基之乙醇溶液中,過濾分離後使用乙醇沖洗以除去未反應分子,接著在水蒸氣氣氛下,緩慢蒸發溶劑,進而得到一官能基修飾之晶片。An exemplary manufacturing method for modifying metal particles containing different functional groups is as follows: soak the metal particle substrate in an ethanol solution containing different functional groups, filter and separate, rinse with ethanol to remove unreacted molecules, and then rinse in water Under a steam atmosphere, the solvent is slowly evaporated to obtain a wafer modified with a functional group.

已經知道可以使用不同化合物修飾該奈米金屬顆粒111,該等特徵官能團與奈米金屬顆粒111可以形成穩固的化學鍵,使官能基團易於吸附在奈米金屬顆粒111表面。由於官能團的分子間凡德瓦作用力可以使其在奈米金屬顆粒111表面有序排列,該分子可通過親疏水性,使待測物質所含之化學物質能夠富極在奈米金屬顆粒111表面,且該經官能基吸附的奈米金屬顆粒亦可形成熱點效應(金屬奈米顆粒間隙或連間處之間產生較大的電磁場效應),而能產生相對較大的能量,實現更高靈敏度的SERS檢測。已知可用於修飾奈米金屬顆粒111的化合物包含苯環類硫醇化合物或帶有N原子的雜環類硫醇化合物,種類多樣;但是,在先前技術中,並未發現到如同本案發明人經大量篩選後,所選定的特定種類之官能基,可以應用於區別樣品背後代表的不同疾病、疾病之陽性及/或陰性之概率、疾病之重症度之等級、疾病之深達度(浸潤程度或嚴重程度)等。It is known that different compounds can be used to modify the nanometal particles 111 . These characteristic functional groups can form strong chemical bonds with the nanometal particles 111 , making it easy for the functional groups to be adsorbed on the surface of the nanometal particles 111 . Since the intermolecular Van der Waals force of the functional groups can make them orderly arranged on the surface of the nanometal particles 111, the molecules can be hydrophilic and hydrophobic, so that the chemical substances contained in the substance to be tested can be enriched on the surface of the nanometal particles 111. , and the nanometal particles adsorbed by functional groups can also form a hot spot effect (a large electromagnetic field effect is generated between the gaps or connections between metal nanoparticles), which can generate relatively large energy and achieve higher sensitivity. SERS detection. It is known that the compounds that can be used to modify the nanometal particles 111 include phenyl ring thiol compounds or heterocyclic thiol compounds with N atoms, and there are various types; however, in the prior art, no compound like the inventor of this case has been found. After extensive screening, the selected specific types of functional groups can be used to distinguish different diseases represented by the samples, the probability of positive and/or negative disease, the severity of the disease, and the depth of the disease (degree of infiltration). or severity), etc.

於一較佳實施態樣中,該基板之材質可為矽基板、不銹鋼、聚偏二氟乙烯、玻璃或塑料片。且該基板厚度較佳為1mm以內,例如:0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm或1mm。In a preferred embodiment, the material of the substrate can be a silicon substrate, stainless steel, polyvinylidene fluoride, glass or plastic sheet. And the thickness of the substrate is preferably within 1 mm, such as: 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm or 1mm.

適用於本發明之表面增強型拉曼光譜晶片樣本,其型態包含但不限於氣體、生物體液、胞外囊泡、細胞碎片。以樣品取得的方便性而言,收集樣本型態為氣體為佳。由於個體中呼出的氣體有多達3000多種的揮發性有機物(volatile organic compounds, VOCs),且不同的病症患者,相較於健康者有較大的差異,甚至在不同病症的疾病重症度等級或疾病深達度,其個體呼出氣體中的有機物組成也有所不同;已使用本發明的晶片陣列,測試該經官能基修飾後的晶片,可用於區別個體中所呼出氣體的有機物組成,因此可以藉由檢測使用者呼出之氣體的VOCs含量,得到疾病之陽性及/或陰性之概率、疾病之重症度之等級、疾病之深達度(浸潤程度或嚴重程度)等,從而能於短時間內鑑別出必須另外進行確定診斷之被驗者。Surface-enhanced Raman spectroscopy chip samples suitable for use in the present invention include but are not limited to gases, biological fluids, extracellular vesicles, and cell debris. In terms of convenience in sample acquisition, it is better to collect the sample in the form of gas. Because the breath exhaled by an individual contains more than 3,000 volatile organic compounds (VOCs), and patients with different diseases are significantly different from healthy people, and even the disease severity or severity of different diseases are significantly different. Depending on the depth of the disease, the composition of organic matter in the breath of individuals is also different; the chip array of the present invention has been used to test the chip modified with functional groups, which can be used to distinguish the composition of organic matter in the breath of individuals, so it can be used By detecting the VOCs content of the breath exhaled by the user, the probability of positive and/or negative disease, the severity level of the disease, the depth of the disease (degree of infiltration or severity), etc. can be obtained, thereby enabling identification in a short time. There are subjects who need additional confirmation of diagnosis.

本文中術語「個體」係指哺乳動物及非哺乳動物,其處於可能疾病之風險中。前述哺乳動物包括但不限於:人類、非人靈長類動物、綿羊、狗、鼠類囓齒動物(如:小鼠、大鼠等)、天竺鼠、貓、兔、牛、馬;前述非哺乳動物包括但不限於:禽類、兩棲類動物及爬行類動物。較佳地,該個體是人類。The term "individual" as used herein refers to mammals and non-mammals that are at risk of possible disease. The aforementioned mammals include, but are not limited to: humans, non-human primates, sheep, dogs, murine rodents (such as mice, rats, etc.), guinea pigs, cats, rabbits, cows, and horses; the aforementioned non-mammals Including but not limited to: birds, amphibians and reptiles. Preferably, the individual is a human being.

請一併參照圖3至圖5,本發明另提供一種利用氣體進行疾病預測或分析之系统200,該系統200包含:一氣體收集裝置210(該氣體收集裝置210內設有一表面增強型拉曼光譜晶片,圖中未示)、一光譜儀檢測裝置230、以及一電腦250,使用者H對著該氣體收集裝置210進行吹氣,由該氣體收集裝置210收集該呼出氣體後,於系統200內進行分析。Please refer to Figures 3 to 5 together. The present invention also provides a system 200 for disease prediction or analysis using gas. The system 200 includes: a gas collection device 210 (the gas collection device 210 is equipped with a surface-enhanced Raman Spectrum chip (not shown in the figure), a spectrometer detection device 230, and a computer 250. The user H blows into the gas collection device 210. After the gas collection device 210 collects the exhaled gas, it is collected in the system 200 Perform analysis.

該氣體進行疾病預測或分析之系統200所執行的方法如下述步驟: 1.    由該氣體收集裝置210收集使用者H所呼出之氣體(S310),並使該樣本氣體經過設置於該氣體收集裝置210內所設置之一表面增強型拉曼光譜晶片100(S311); 2.    藉由該光譜儀檢測裝置230對該表面增強型拉曼光譜晶片100進行檢測,以獲得該樣本氣體之拉曼散射光譜圖像(S312),並將該拉曼散射光譜圖像儲存於一暫存性或非暫存性儲存裝置(圖中未示); 3.    由該電腦250將儲存於儲存裝置之拉曼散射光譜圖像至少一儲存單元載入並執行一預訓練的學習分類系統,該電腦經由將該樣本氣體的該拉曼散射光譜圖像輸入至該學習分類系統(S313),與第一預訓練模型進行各層權重值比對後(S314),獲得一疾病之陰性或陽性結果(S315) ,或可獲知疾病之重症度之等級、疾病之深達度(浸潤程度或嚴重程度)。 The method performed by the gas disease prediction or analysis system 200 is as follows: 1. The gas collection device 210 collects the gas exhaled by the user H (S310), and causes the sample gas to pass through a surface-enhanced Raman spectroscopy chip 100 provided in the gas collection device 210 (S311); 2. Detect the surface-enhanced Raman spectrum chip 100 by the spectrometer detection device 230 to obtain the Raman scattering spectrum image of the sample gas (S312), and store the Raman scattering spectrum image in a Temporary or non-transitory storage device (not shown in the figure); 3. The computer 250 loads at least one storage unit of the Raman scattering spectrum image stored in the storage device and executes a pre-trained learning classification system by inputting the Raman scattering spectrum image of the sample gas. To the learning classification system (S313), after comparing the weight values of each layer with the first pre-trained model (S314), a negative or positive result of a disease can be obtained (S315), or the severity level of the disease and the severity of the disease can be obtained. Depth (degree or severity of infiltration).

本文中所述之光譜儀檢測裝置230對該表面增強型拉曼光譜晶片100進行檢測,係包含當氣體經過該表面增強型拉曼光譜晶片100後,該光譜儀檢測裝置230發出一雷射光,雷射光投射於檢測物,當雷射光與檢測物的標的物作用時,光子與標的物分子發生碰撞後產生了能量交換,改變了光的頻率,產生一散射光;該光譜儀檢測裝置接收到該散射光,即為該樣本氣體之拉曼散射光譜圖像。此外,在另一實施例中,該拉曼散射光譜圖像的數據係利用SPSS軟體分析工具中的PCA方法進行計算,其步驟為,計算各波長數據的斜方差矩陣,再計算矩陣的本正值和本正向量,利用T test 分析以獲得最具顯著性差異的PCA分數,最後根據選出的主成分建立相應的分析散點圖,進而獲得一表面增強拉曼光譜分析圖譜。The spectrometer detection device 230 described in this article detects the surface-enhanced Raman spectroscopy chip 100, which includes when the gas passes through the surface-enhanced Raman spectroscopy chip 100, the spectrometer detection device 230 emits a laser light. The laser light Projected on the detection object, when the laser light interacts with the target object of the detection object, energy exchange occurs after the photon collides with the target object molecules, changes the frequency of the light, and generates scattered light; the spectrometer detection device receives the scattered light , which is the Raman scattering spectrum image of the sample gas. In addition, in another embodiment, the data of the Raman scattering spectrum image is calculated using the PCA method in the SPSS software analysis tool. The steps are to calculate the skew variance matrix of each wavelength data, and then calculate the true value of the matrix. value and the original vector, use T test analysis to obtain the PCA score with the most significant difference, and finally establish a corresponding analysis scatter plot based on the selected principal components, and then obtain a surface-enhanced Raman spectroscopy analysis chart.

本文中所述之儲存裝置暫存性或非暫存性儲存裝置,例如但不限於可使用周知之磁帶或卡式磁帶等帶系、包含軟碟、硬碟等磁碟、緊密光碟-ROM(Read Only Memory,唯讀記憶體)/MO(Magneto Optical,磁光碟)/MD(Mini Disc,小型磁碟)/數位影音光碟/緊密光碟-R等光碟之碟系、IC卡、記憶卡、光卡等卡系或遮罩ROM/EPROM(Erasable Programmable Read Only Memory,可抹除可程式化唯讀記憶體)/EEPROM(Electrically Erasable Programmable Read Only Memory,電子可抹除可程式化唯讀記憶體)/快閃ROM等半導體記憶體系等。該儲存裝置暫存性或非暫存性儲存裝置所儲存之拉曼散射光譜圖像結果,可利用有線或無線傳輸至電腦250中;有線傳輸例如USB傳輸,無線傳輸例如藍芽傳輸,但本文中並不限於此等方式。The storage devices described in this article are temporary or non-transitory storage devices, such as but not limited to well-known tape systems such as tapes or cassettes, including floppy disks, hard disks and other magnetic disks, compact optical disks-ROM ( Read Only Memory)/MO (Magneto Optical, magneto-optical disk)/MD (Mini Disc, small disk)/digital audio and video disc/compact disc-R and other optical disc systems, IC cards, memory cards, optical discs card system or mask ROM/EPROM (Erasable Programmable Read Only Memory, erasable programmable read-only memory)/EEPROM (Electrically Erasable Programmable Read Only Memory, electronically erasable programmable read-only memory) /Flash ROM and other semiconductor memory systems, etc. The Raman scattering spectrum image results stored in the storage device's temporary or non-transitory storage device can be transmitted to the computer 250 using wired or wireless transmission; wired transmission such as USB transmission, wireless transmission such as Bluetooth transmission, but in this article are not limited to this method.

本文中,該電腦250包括一輸入部251、一權重分配部252、一學習分類系統253、一輸出部254及一儲存資料庫255。輸入部251,可供輸入受試者之相關的資料(例如但不限於姓名、性別或年齡等)及該受試者拉曼散射光譜圖像;權重分配部252,其對在上述輸入部所輸入之受試者拉曼散射光譜圖像進行光譜強度之權重分配,且可進一步對該權重分配後的光譜進行標準化及正規化;學習分類系統253,其將經權重分配後光譜資料依序輸入該系統中的輸入層,並重複地進行學習分類之加權係數的處理,並利用其學習完成模型,來推斷受試者之疾病分類、疾病之重症度之等級、疾病之深達度(浸潤程度或嚴重程度);一輸出部255,係輸出學習分類系統2536所推斷之疾病的資料,輸出部255也可將受試者被推斷之疾病名稱、疾病重症度等級或疾病深達度之至少一者一起顯示於一顯示器(圖中未示)上;及儲存資料庫256,其儲存藉由上述學習分類系統253學習得到的一學習完成模型。Here, the computer 250 includes an input part 251, a weight allocation part 252, a learning classification system 253, an output part 254 and a storage database 255. The input part 251 is used to input the subject's relevant information (such as but not limited to name, gender or age) and the subject's Raman scattering spectrum image; the weight allocation part 252 is used to input the subject's information in the above input part. The input subject's Raman scattering spectrum image is assigned a weight of spectral intensity, and the spectrum after weight distribution can be further standardized and regularized; the learning classification system 253 inputs the spectral data after weight distribution in sequence. The input layer in the system repeatedly processes the weighted coefficients of the learning classification, and uses its learning to complete the model to infer the subject's disease classification, the severity of the disease, and the depth of the disease (degree of infiltration). or severity); an output unit 255 outputs the data of the disease inferred by the learning classification system 2536. The output unit 255 may also output at least one of the inferred disease name, disease severity level or disease depth of the subject. are displayed together on a display (not shown in the figure); and a storage database 256 stores a learning completion model learned through the above-mentioned learning classification system 253.

於一較佳實施態樣中,所述電腦更包含一儲存資料庫,供儲存該陰性呼出氣體或該陽性呼出氣體於該表面增強型拉曼光譜晶片所反映的該訓練用拉曼散射光譜圖像,用以作為比對使用者之呼出氣體之對照組。In a preferred embodiment, the computer further includes a storage database for storing the training Raman scattering spectrum pattern reflected by the negative exhaled gas or the positive exhaled gas on the surface-enhanced Raman spectroscopy chip. The image is used as a control group to compare the user's exhaled breath.

本文中所稱之學習分類系統,涵蓋例如但不限於:提升樹分類(booster)系統、梯度提升樹分類(gradient classifier) 系統、強梯度提升機分類系統、弱梯度提升機分類系統、回歸樹分類系統、隨機森林(random forest)分類系統、決策樹分類系統、類神經網路分類系統、深度神經網路分類系統(DNN)、遞歸神經網路(RNN)分類系統、長短期記憶模型分類(LSTM) 系統、多層感知分類(MLP) 系統、集成學習分類(ensemble learning) 系統、弱學習分類系統、強學習分類系統、支援向量機(support vector machines)分類系統、監督式學習分類系統或半監督式學習分類系統等。The learning classification system referred to in this article covers, for example, but is not limited to: booster tree classification (booster) system, gradient classifier tree classification (gradient classifier) system, strong gradient boosting machine classification system, weak gradient boosting machine classification system, regression tree classification System, random forest (random forest) classification system, decision tree classification system, neural network-like classification system, deep neural network classification system (DNN), recursive neural network (RNN) classification system, long short-term memory model classification (LSTM) ) system, multi-layer perceptual classification (MLP) system, ensemble learning classification (ensemble learning) system, weak learning classification system, strong learning classification system, support vector machines (support vector machines) classification system, supervised learning classification system or semi-supervised Learn classification systems, etc.

於一較佳實施態樣中,該學習分類系統為類神經網路分類系統,進行深度學習。深度學習為使用由複數層重疊構成之類神經網路,從而根據輸入資料學習高次特徵值。此外,學習完成模型也係類神經網路之一種,即深度學習之模型,在一實施態樣中,其具有疊積(Convolution)層與池化(Pooling)層之複數組、及位於其後段之全結合層與Softmax層。疊積層與池化層之複數組,係當輸入受試者之拉曼散射光譜圖像時,重複地進行疊積與池化,而抽出所被輸入之圖像的特徵量。全結合層係將被抽出的特徵量結合於一個節點上。Softmax層係根據來自全結合層的輸出,輸出各疾病之機率、疾病重症度等級或疾病深達度之至少一者。In a preferred implementation form, the learning classification system is a neural network-like classification system that performs deep learning. Deep learning uses neural networks composed of overlapping complex layers to learn high-order feature values based on input data. In addition, the learning completion model is also a kind of neural network, that is, a deep learning model. In an implementation form, it has a complex array of convolution (Convolution) layer and pooling (Pooling) layer, and is located in the subsequent section. The fully combined layer and Softmax layer. The complex group of stacking layers and pooling layers is to repeatedly perform stacking and pooling when inputting the Raman scattering spectrum image of the subject, and extract the feature quantity of the input image. The fully combined layer system combines the extracted feature quantities at one node. The softmax layer outputs at least one of the probability of each disease, the disease severity level, or the disease depth based on the output from the fully combined layer.

該學習完成模型,係事先使用多數之被驗者的資料進行加權係數分配之學習。具體而言,進行在疊積層使用之過濾器之參數、全結合層之節點之加權之參數的學習。請一併參照圖6,於一較佳實施態樣中,所述學習分類系統為類神經網絡系統,並係使用指定疾病的陰性呼出氣體或陽性呼出氣體於該表面增強型拉曼光譜晶片所反映的訓練用拉曼散射光譜圖像訓練各層的權重值,並依據下述方法進行訓練: 1.    該氣體收集裝置接收該複數個疾病之陰性呼出氣體或該陽性呼出氣體(S410),並使其經過該表面增強型拉曼光譜晶片(S411); 2.    用該光譜儀檢測裝置對該表面增強型拉曼光譜晶片進行檢測,獲得該陰性呼出氣體或該陽性呼出氣體之該訓練用拉曼散射光譜圖像(S412),並將該訓練用拉曼散射光譜圖像以及對應的陰性資訊或陽性資訊儲存於該暫存性或非暫存性儲存裝置; 3.    電腦經由該暫存性或非暫存性儲存裝置獲得該訓練用拉曼散射光譜圖像以及對應的陰性資訊或陽性資訊,並將該訓練用拉曼散射光譜圖像輸入至該類神經網絡系統以獲得一輸出結果(S413),經由該輸出結果以及預期結果的誤差反向傳播以修改該類神經網絡系統該各層的該權重值(S414),將該修改後之各層權重值整合後製作出第一預訓練模型(S415)。 This learning completion model uses the data of a large number of subjects to learn weighted coefficient distribution in advance. Specifically, the parameters of the filter used in the stacked layer and the weighted parameters of the nodes in the fully combined layer are learned. Please refer to Figure 6 as well. In a preferred embodiment, the learning classification system is a neural network-like system, and is generated by using the negative exhaled air or positive exhaled air of the specified disease on the surface-enhanced Raman spectroscopy chip. The reflected training uses Raman scattering spectrum images to train the weight values of each layer, and is trained according to the following method: 1. The gas collection device receives the negative exhaled gas or the positive exhaled gas of the plurality of diseases (S410), and passes it through the surface-enhanced Raman spectroscopy chip (S411); 2. Use the spectrometer detection device to detect the surface-enhanced Raman spectroscopy chip, obtain the training Raman scattering spectrum image of the negative exhaled gas or the positive exhaled gas (S412), and use the training Raman The scattering spectrum image and the corresponding negative information or positive information are stored in the temporary or non-transitory storage device; 3. The computer obtains the training Raman scattering spectrum image and the corresponding negative information or positive information through the temporary or non-transitory storage device, and inputs the training Raman scattering spectrum image to the type of neural network The network system obtains an output result (S413), modifies the weight value of each layer of the neural network system through back propagation of the error of the output result and the expected result (S414), and integrates the modified weight values of each layer. The first pre-trained model is produced (S415).

當多個預訓練模型完成後,即整合為一學習完成模型,並儲存資料庫;本實施例之學習完成模型,係假定作為人工智慧軟體之一部分(程式模組)而使用。本實施形態之學習完成模型,係於具備有CPU及記憶體的電腦中而使用。具體而言,電腦之CPU,係以如下之方式進行動作:根據來自被記憶於記憶體中之學習完成模型的指令,對被輸入至類神經網路之輸入層(最初之疊積層)的輸入資料(拉曼散射光譜圖像)進行疊積及池化,而求得圖像之權重特徵量,且根據學習完成模型之加權係數對所求得的特徵量進行運算,自輸出層(Softmax層)輸出結果(具有各種疾病的機率值、疾病重症度等級或疾病深達度之至少一者) ;另外,雖然在各疾病或健康者之節點輸出有該機率值,但進行學習時,於與教導資料(即被驗者之疾病)所對應的節點上適用「1」,且於其他之節點上適用「0」。When multiple pre-training models are completed, they are integrated into a learning model and stored in a database. The learning model in this embodiment is assumed to be used as a part (program module) of artificial intelligence software. The learning completion model of this embodiment is used in a computer equipped with a CPU and a memory. Specifically, the CPU of the computer operates in the following manner: In accordance with the instructions from the learning completion model memorized in the memory, the input to the input layer (the initial stacked layer) of the neural network is The data (Raman scattering spectrum image) are stacked and pooled to obtain the weighted feature quantity of the image, and the obtained feature quantity is calculated according to the weighted coefficient of the learning completed model, and the output layer (Softmax layer) ) Output results (having at least one of probability values of various diseases, disease severity levels or disease depth); in addition, although the probability value is output at the node of each disease or healthy person, when learning, "1" is applied to the node corresponding to the teaching data (ie, the disease of the subject), and "0" is applied to other nodes.

以上,雖然對本實施形態為電腦250之構成進行了說明,其可為具備有CPU、RAM、ROM、硬碟、顯示器、鍵盤、滑鼠、通信介面等的電腦。此外,在RAM或ROM中預先儲存有具有實現上述之各功能之模組的程式,藉由利用CPU執行該程式,如此般的程式製品也包含於本發明之範疇內。Although the configuration of the computer 250 in this embodiment has been described above, it may be a computer equipped with a CPU, RAM, ROM, hard disk, display, keyboard, mouse, communication interface, etc. In addition, a program having a module that implements each of the above functions is prestored in RAM or ROM, and the program is executed by the CPU. Such program products are also included in the scope of the present invention.

於一較佳實施態樣中,所述指定疾病為癌症(包含但不限於特徵為實體腫瘤的癌症(例如,肺炎、前列腺癌、腎癌、肝癌、胰臟癌、胃癌、乳癌、肺癌、頭頸癌、甲狀腺癌、神經膠母細胞瘤、卡波西氏肉瘤、卡斯特門(Castleman)氏病、子宮平滑肌惡性肉瘤、黑色素瘤等等)、血液學癌症(例如,淋巴癌、白血病,例如急性淋巴性白血病(ALL)、急性骨髓性白血病(AML)或多發性骨髓瘤)以及皮膚癌,例如皮膚性T細胞淋巴癌(CTCL)以及皮膚性B細胞淋巴癌。範例性的CTCL包括賽沙瑞(Sezary)症候群以及蕈狀肉芽腫)、荷爾蒙失調(包含原發性或後發性)、細菌感染(包含但不限於克留氏肺炎桿菌(Klebsiella pneumoniae)、大腸桿菌(Escherichia coli)、陰溝腸桿菌(Enterobacter Cloacae)、綠膿桿菌(Pseudomonas aeruginosa)、洋蔥伯克氏菌(Burkholderia cepacia)及鮑氏不動桿菌(Acinetobacter baumannii)等細菌感染)、病毒感染(包含但不限於小核醣核酸病毒科(Picornaviridae)、正黏液病毒科(Orthomyxoviridae)、黃熱病毒科(Flaviviridae)、冠狀病毒科(Coronaviridae),以及其等之組合;某些具體實施例中,該病毒為腸病毒(enterovirus)、流感病毒(influenza virus)、黃病毒(flavivirus)、冠狀病毒(coronavirus),以及它們的組合),或細菌或病毒感染所引起之肺炎。In a preferred embodiment, the designated disease is cancer (including but not limited to cancer characterized by solid tumors (e.g., pneumonia, prostate cancer, kidney cancer, liver cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, head and neck cancer) carcinoma, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, uterine smooth muscle malignant sarcoma, melanoma, etc.), hematological cancers (e.g., lymphoma, leukemia, e.g. acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), or multiple myeloma) and skin cancers, such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma. Exemplary CTCLs include Sessa Sezary syndrome and mycosis fungoides), hormonal disorders (including primary or secondary), bacterial infections (including but not limited to Klebsiella pneumoniae, Escherichia coli, cloaca) Bacterial infections such as Enterobacter Cloacae, Pseudomonas aeruginosa, Burkholderia cepacia and Acinetobacter baumannii), viral infections (including but not limited to Picornaviridae) (Picornaviridae), Orthomyxoviridae (Orthomyxoviridae), Flaviviridae (Flaviviridae), Coronaviridae (Coronaviridae), and combinations thereof; in some embodiments, the virus is enterovirus, influenza Influenza virus, flavivirus, coronavirus, and combinations thereof), or pneumonia caused by bacterial or viral infection.

以下係針對本發明之其中一實施態樣說明;首先,收集複數個經新冠病毒感染之肺炎患者(陽性個體),以及複數個未經感染之正常個體(陰性個體)之氣體;將該氣體通過本發明之面增強型拉曼光譜晶片,並以光譜儀檢測裝置,用以對該表面增強型拉曼光譜晶片進行檢測,獲得陰性呼出氣體或該陽性呼出氣體之該訓練用拉曼散射光譜圖像,該訓練用拉曼散射光譜圖像輸入至該學習分類系統以獲得一輸出結果,經由該輸出結果以及預期結果的誤差反向傳播以修改該類神經網絡系統該各層的該權重值後,儲存於儲存資料庫;而當有未知是否感染新冠病毒之個體,則可收集該待測個體的氣體,利用本發明之系统獲得其氣體的該拉曼散射光譜圖像,將該圖像輸入至該學習分類系統,由該學習分類系統經運算後得到一個體是否為經感染或未受感染之輸出結果。上述僅為一說明實例,該個體的疾病可依照檢測需求,收集不同疾病之陽性個體或陰性個體(例如但不限於正常個體與糖尿病患者、正常個體與乳癌患者、正常個體與大腸癌患者等等),甚至疾病之陽性個體其病況程度不同分級者(例如零期癌症、第一期癌症、第二期癌症等)而可獲得不同分期的訓練結果,因而可用於後續不同疾病預測或分析。The following is a description of one of the embodiments of the present invention; first, collect the gas from multiple pneumonia patients infected with the new coronavirus (positive individuals) and multiple uninfected normal individuals (negative individuals); pass the gas through The surface-enhanced Raman spectroscopy chip of the present invention uses a spectrometer detection device to detect the surface-enhanced Raman spectroscopy chip to obtain the training Raman scattering spectrum image of the negative exhaled gas or the positive exhaled gas. , the training Raman scattering spectrum image is input to the learning classification system to obtain an output result, and the error of the output result and the expected result is back-propagated to modify the weight value of each layer of the neural network system, and then stored In the storage database; when there is an individual who is unknown to be infected with the new coronavirus, the gas of the individual to be tested can be collected, the system of the present invention is used to obtain the Raman scattering spectrum image of the gas, and the image is input to the The learning classification system is used to obtain an output result of whether an individual is infected or not infected after calculation. The above is just an illustrative example. The disease of the individual can be collected according to the detection requirements. Positive individuals or negative individuals of different diseases (such as but not limited to normal individuals and diabetic patients, normal individuals and breast cancer patients, normal individuals and colorectal cancer patients, etc. ), even disease-positive individuals with different levels of disease (such as stage 0 cancer, stage 1 cancer, stage 2 cancer, etc.) can obtain training results of different stages, and thus can be used for subsequent prediction or analysis of different diseases.

綜上所述,本發明之表面增強型拉曼光譜晶片,該基板上含有多個晶片,且每個晶片所合成之官能基不同,因此可同時檢測多種分析物,提高檢測效率;且於一更佳實施例中,該表面增強型拉曼光譜晶片還可應用於一種利用氣體進行疾病預測或分析之系統,使用者僅需對該系統進行吹氣,操作簡單方便,不須繁複的過程即可獲得檢測結果。To sum up, the surface-enhanced Raman spectroscopy chip of the present invention contains multiple chips on the substrate, and the functional groups synthesized by each chip are different, so it can detect multiple analytes at the same time and improve the detection efficiency; and in one In a better embodiment, the surface-enhanced Raman spectroscopy chip can also be applied to a system that uses gas for disease prediction or analysis. The user only needs to blow air into the system, and the operation is simple and convenient, without complicated processes. Test results are available.

以上已將本發明做一詳細說明,惟以上所述者,僅惟本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。The present invention has been described in detail above. However, the above descriptions are only preferred embodiments of the present invention. They should not be used to limit the scope of the present invention, that is, any equivalent changes made in accordance with the scope of the patent application of the present invention. and modifications should still fall within the scope of the patent of the present invention.

100:表面增強型拉曼光譜晶片 110:基板 120:晶片 111:奈米金屬顆粒 H:使用者 200:系统 210:氣體收集裝置 230:光譜儀檢測裝置 250:電腦 251:輸入部 252:權重分配部 253:學習分類系統 254:輸出部 255:儲存資料庫 S310~S315:步驟 S410~S415:步驟 100:Surface enhanced Raman spectroscopy wafer 110:Substrate 120:Chip 111:Nano metal particles H: User 200:System 210:Gas collection device 230: Spectrometer detection device 250:Computer 251:Input part 252: Weight allocation department 253:Learning Classification Systems 254:Output Department 255:Storage database S310~S315: steps S410~S415: steps

現就參考附圖僅以舉例的方式描述本發明技術的實施,其中:Implementations of the present technology will now be described by way of example only with reference to the accompanying drawings, in which:

圖1係本發明一實施例之表面增強型拉曼晶片示意圖;Figure 1 is a schematic diagram of a surface-enhanced Raman chip according to an embodiment of the present invention;

圖2係本發明一實施例之表面增強型拉曼晶片之奈米銀顆粒基板示意圖。FIG. 2 is a schematic diagram of a silver nanoparticle substrate of a surface-enhanced Raman chip according to an embodiment of the present invention.

圖3係本發明一實施例之表面增強型拉曼晶片分析系統之檢測方式示意圖。FIG. 3 is a schematic diagram of the detection method of the surface-enhanced Raman chip analysis system according to an embodiment of the present invention.

圖4係本發明一實施例之表面增強型拉曼晶片分析系統之檢測流程。Figure 4 is a detection process of a surface-enhanced Raman chip analysis system according to an embodiment of the present invention.

圖5係本發明一實施例之利用氣體進行疾病預測或分析系统之示意圖。Figure 5 is a schematic diagram of a system for disease prediction or analysis using gas according to an embodiment of the present invention.

圖6係本發明一實施例之表面增強型拉曼晶片分析系統之類神經網絡系統訓練流程。Figure 6 shows the training process of a neural network system such as a surface-enhanced Raman chip analysis system according to an embodiment of the present invention.

應當理解,本發明之各方面不限於附圖所示之配置、手段及特性。It should be understood that aspects of the present invention are not limited to the arrangements, means and characteristics shown in the drawings.

without

100:表面增強型拉曼光譜晶片 100:Surface enhanced Raman spectroscopy wafer

110:基板 110:Substrate

120:晶片 120:Chip

Claims (10)

一種表面增強型拉曼光譜晶片,包含: 一基板,其表面上佈有奈米金屬顆粒;以及 n個晶片(n≥1)設置於該基板之表面形成一晶片陣列,該每一晶片具有官能基修飾於該奈米金屬顆粒上,各晶片所修飾之官能基不相同,且該官能基為下列之至少一種或多種:4-巰基吡啶(4-Mercaptopyridine)、4-氨基苯硫酚(4-Aminothiophenol)、4-巰基苯基硼酸(4-Mercaptophenylboronic acid)、4-溴苯硫酚(4-bromothiophenol)、4-巰基苯甲酸 (4-Mercaptobenzoic acid)、2-硫代巴比妥酸(2-Thiobarbituric acid)、2-硫尿嘧啶(2-Thiouracil)、4-硫尿嘧啶(4-Thiouracil)、4-甲基吡啶(4-Methylpyridine)、4-氨基苯基二硫化物(4-Aminophenyl disulfide)、4-(甲硫基)-苯甲醛(4-(Methylthio)-benzaldehyde) 、2-巰基-4-甲基-嘧啶鹽酸鹽(2-Mercapto-4-methyl-pyrimidine hydrochloride) 、2-巰基-1-甲基咪唑(2-Mercapto-1-methylimidazole)、2-巰基噻唑啉(2-Mercapto-thiazoline)、3-氨基-5-巰基-1,2,4-三唑(3-Amino-5-mercapto-1,2,4-triazole)、3-巰基-1,2,4-三唑(3-Mercapto-1,2,4-triazole)、5-巰基-1-甲基四唑(5-Mercapto-1-methyltetrazole)、2-巰基咪唑(2-Mercaptoimidazole)、5,5'-二硫代雙(2-硝基苯甲酸)(5,5'-Dithiobis-(2-nitrobenzoic acid), DTNB)、2-巰基-4-甲基-5-噻唑乙酸(2-Mercapto-4-methyl-5-thiazoleacetic acid) 、4,6-二羥基-2-巰基嘧啶(4,6-Dihydroxy-2-mercaptopyrimidine)、2-巰基-5-甲基苯並咪唑(2-Mercapto-5-methylbenzimidazole)、1-萘硫醇(1-Naphthalenthiol)、2-甲氧基苯硫酚(2-Methoxythiophenol)、2-氨基苯硫酚(2-Aminothiophenel) 、2-巰基苯並噻唑(2-Mercaptobenzothiazole) 、2-巰基苯並噁唑(2-Mercaptobenzoxazole) 、2-巰基-5-硝基苯並咪唑(2-Mercapto-5-nitro-benzimidazole) 、5-氨基-1,3,4-噻二唑-2-硫醇(5-Amino-1,3,4-thiadiazole-2-thiol) 、4-氨基-6-羥基-2-巰基嘧啶一水合物 (4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate) 、2-巰基咪唑 (2-Mercaptoimidazole) 、2-巰基嘧啶(2-Mercaptopyrimidine) 、3-甲氧基苯硫酚(3-Methoxythiophenol) 、4-羥基-2-巰基-6-甲基嘧啶(4-Hydroxy-2-mercapto-6-methylpyrimidine) 或2-巰基-4(3H)-喹唑啉酮(2-Mercapto-4(3H)-quinazolinone。 A surface-enhanced Raman spectroscopy wafer containing: a substrate with nanometal particles distributed on its surface; and n wafers (n≥1) are arranged on the surface of the substrate to form a wafer array. Each wafer has a functional group modified on the nanometal particle. The functional group modified by each wafer is different, and the functional group is At least one or more of the following: 4-Mercaptopyridine, 4-Aminothiophenol, 4-Mercaptophenylboronic acid, 4-bromothiophenol -bromothiophenol), 4-Mercaptobenzoic acid, 2-Thiobarbituric acid, 2-Thiouracil, 4-Thiouracil Thiouracil), 4-Methylpyridine, 4-Aminophenyl disulfide, 4-(Methylthio)-benzaldehyde, 2 -Mercapto-4-methyl-pyrimidine hydrochloride, 2-Mercapto-1-methylimidazole, 2-mercaptothiazoline ( 2-Mercapto-thiazoline), 3-Amino-5-mercapto-1,2,4-triazole (3-Amino-5-mercapto-1,2,4-triazole), 3-mercapto-1,2,4 -Triazole (3-Mercapto-1,2,4-triazole), 5-Mercapto-1-methyltetrazole (5-Mercapto-1-methyltetrazole), 2-Mercaptoimidazole (2-Mercaptoimidazole), 5,5 '-Dithiobis-(2-nitrobenzoic acid) (5,5'-Dithiobis-(2-nitrobenzoic acid), DTNB), 2-mercapto-4-methyl-5-thiazoleacetic acid (2-Mercapto- 4-methyl-5-thiazoleacetic acid), 4,6-Dihydroxy-2-mercaptopyrimidine (4,6-Dihydroxy-2-mercaptopyrimidine), 2-mercapto-5-methylbenzimidazole (2-Mercapto-5 -methylbenzimidazole), 1-Naphthalenthiol, 2-Methoxythiophenol, 2-Aminothiophenel, 2-mercaptobenzothiazole Mercaptobenzothiazole), 2-mercaptobenzoxazole (2-Mercaptobenzoxazole), 2-mercapto-5-nitro-benzimidazole (2-Mercapto-5-nitro-benzimidazole), 5-amino-1,3,4-thi Diazole-2-thiol (5-Amino-1,3,4-thiadiazole-2-thiol), 4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate (4-Amino-6-hydroxy-2 -mercaptopyrimidine monohydrate), 2-Mercaptoimidazole, 2-Mercaptopyrimidine, 3-Methoxythiophenol, 4-hydroxy-2-mercapto-6-methyl 4-Hydroxy-2-mercapto-6-methylpyrimidine or 2-Mercapto-4(3H)-quinazolinone. 如請求項1之表面增強型拉曼光譜晶片,其中該奈米金屬顆粒為奈米銀顆粒。The surface-enhanced Raman spectroscopy chip of claim 1, wherein the nanometal particles are silver nanoparticles. 如請求項2之表面增強型拉曼光譜晶片,其中該奈米銀顆粒之形狀為立方體。The surface-enhanced Raman spectroscopy chip of claim 2, wherein the shape of the silver nanoparticles is cubic. 如請求項1之表面增強型拉曼光譜晶片,其中該基板為矽基板、不銹鋼、聚偏二氟乙烯、玻璃或是塑料片。Such as the surface-enhanced Raman spectroscopy chip of claim 1, wherein the substrate is a silicon substrate, stainless steel, polyvinylidene fluoride, glass or plastic sheet. 一種利用氣體進行疾病預測或分析之系统,包含: 一氣體收集裝置,供收集樣本氣體,並使該樣本氣體經過如請求項1至4中任一項之表面增強型拉曼光譜晶片; 一光譜儀檢測裝置,用以對該表面增強型拉曼光譜晶片進行檢測,獲得該樣本氣體之拉曼散射光譜圖像,並將該拉曼散射光譜圖像儲存於一暫存性或非暫存性儲存裝置;以及 一電腦,係經由至少一儲存單元載入並執行一預訓練的學習分類系統,該電腦經由將該樣本氣體的該拉曼散射光譜圖像輸入至該學習分類系統以獲得一疾病檢測結果。 A system for disease prediction or analysis using gases, including: A gas collection device for collecting sample gas and passing the sample gas through the surface-enhanced Raman spectroscopy chip according to any one of claims 1 to 4; A spectrometer detection device used to detect the surface-enhanced Raman spectroscopy chip, obtain the Raman scattering spectrum image of the sample gas, and store the Raman scattering spectrum image in a temporary or non-temporary storage sexual storage device; and A computer loads and executes a pre-trained learning classification system through at least one storage unit, and the computer obtains a disease detection result by inputting the Raman scattering spectrum image of the sample gas into the learning classification system. 如請求項5之系統,其中,該學習分類系統係使用指定疾病的陰性呼出氣體或陽性呼出氣體於該表面增強型拉曼光譜晶片所反映的訓練用拉曼散射光譜圖像訓練各層的權重值。 The system of claim 5, wherein the learning classification system uses the negative exhaled gas or positive exhaled gas of the specified disease to train the weight value of each layer using the training Raman scattering spectrum image reflected by the surface-enhanced Raman spectroscopy chip. . 如請求項6之系統,其中,該電腦包含:一儲存資料庫,供儲存該陰性呼出氣體或該陽性呼出氣體於該表面增強型拉曼光譜晶片所反映的該訓練用拉曼散射光譜圖像。 For example, the system of claim 6, wherein the computer includes: a storage database for storing the training Raman scattering spectrum image reflected by the negative exhaled gas or the positive exhaled gas on the surface-enhanced Raman spectroscopy chip. . 如請求項7之系統,其中該學習分類系統係類神經網絡系統,且係依據下述方法進行訓練:該氣體收集裝置接收該陰性呼出氣體或該陽性呼出氣體;該光譜儀檢測裝置用以對該表面增強型拉曼光譜晶片進行檢測,獲得該陰性呼出氣體或該陽性呼出氣體之該訓練用拉曼散射光譜圖像,並將該訓練用拉曼散射光譜圖像以及對應的陰性資訊或陽性資訊儲存於該暫存性或非暫存性儲存裝置;電腦經由該暫存性或非暫存性儲存裝置獲得該訓練用拉曼散射光譜圖像以及對應的陰性資訊或陽性資訊,並將該訓練用拉曼散射光譜圖像輸入至該類神經網絡系統以獲得一輸出結果,經由該輸出結果以及預期結果的誤差反向傳播以修改該類神經網絡系統該各層的該權重值。 For example, the system of claim 7, wherein the learning classification system is a neural network system and is trained according to the following method: the gas collection device receives the negative exhaled gas or the positive exhaled gas; the spectrometer detection device is used to detect the negative exhaled gas or the positive exhaled gas. The surface-enhanced Raman spectroscopy chip is used for detection, and the training Raman scattering spectrum image of the negative exhaled gas or the positive exhaled gas is obtained, and the training Raman scattering spectrum image and the corresponding negative information or positive information are Stored in the temporary or non-transitory storage device; the computer obtains the training Raman scattering spectrum image and the corresponding negative information or positive information through the temporary or non-transitory storage device, and converts the training The Raman scattering spectrum image is input to the neural network system to obtain an output result, and the weight value of each layer of the neural network system is modified through back propagation of the error of the output result and the expected result. 如請求項8之系統,其中該指定疾病為癌症、荷爾蒙失調、細菌感染或病毒感染。 For example, the system of claim 8, wherein the specified disease is cancer, hormonal imbalance, bacterial infection or viral infection. 如請求項8之系統,其中該指定疾病為肺炎。 For example, claim the system of item 8, wherein the designated disease is pneumonia.
TW111128531A 2022-07-29 2022-07-29 Surface enhanced raman spectroscopy chip and the detection system TWI827170B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111128531A TWI827170B (en) 2022-07-29 2022-07-29 Surface enhanced raman spectroscopy chip and the detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111128531A TWI827170B (en) 2022-07-29 2022-07-29 Surface enhanced raman spectroscopy chip and the detection system

Publications (2)

Publication Number Publication Date
TWI827170B true TWI827170B (en) 2023-12-21
TW202405407A TW202405407A (en) 2024-02-01

Family

ID=90053345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128531A TWI827170B (en) 2022-07-29 2022-07-29 Surface enhanced raman spectroscopy chip and the detection system

Country Status (1)

Country Link
TW (1) TWI827170B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM373489U (en) * 2009-07-21 2010-02-01 Nat Univ Chung Cheng A temperature-controlled bio-molecular reaction microchip coated with a conductive substrate and equipped with a reaction chamber.
TWI456195B (en) * 2011-01-27 2014-10-11 Univ Nat Cheng Kung Biomedical and micro-nano structure sensing wafer and preparation method thereof
TWI521196B (en) * 2010-12-24 2016-02-11 精工愛普生股份有限公司 Sensor chip and detection device
CN106018379A (en) * 2016-05-16 2016-10-12 华南师范大学 Large-area SERS (surface-enhanced Raman scattering) substrate and preparation method thereof
TWI634329B (en) * 2016-01-05 2018-09-01 財團法人工業技術研究院 Raman detecting chip with thin layer chromatography and method for separating and detecting an analyte
TW202045913A (en) * 2019-06-13 2020-12-16 雲陽科技有限公司 Method for rapid identification of bacteria by portable Raman system which has advantages of requiring no bacterial culture of patient specimens and quickly obtaining identification results in 0-15 minutes
TWM617120U (en) * 2021-06-25 2021-09-11 汎鍶科藝股份有限公司 Surface enhanced raman spectroscopy chip
TWM619099U (en) * 2021-06-25 2021-11-01 汎鍶科藝股份有限公司 Crop pesticide detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM373489U (en) * 2009-07-21 2010-02-01 Nat Univ Chung Cheng A temperature-controlled bio-molecular reaction microchip coated with a conductive substrate and equipped with a reaction chamber.
TWI521196B (en) * 2010-12-24 2016-02-11 精工愛普生股份有限公司 Sensor chip and detection device
TWI456195B (en) * 2011-01-27 2014-10-11 Univ Nat Cheng Kung Biomedical and micro-nano structure sensing wafer and preparation method thereof
TWI634329B (en) * 2016-01-05 2018-09-01 財團法人工業技術研究院 Raman detecting chip with thin layer chromatography and method for separating and detecting an analyte
CN106018379A (en) * 2016-05-16 2016-10-12 华南师范大学 Large-area SERS (surface-enhanced Raman scattering) substrate and preparation method thereof
TW202045913A (en) * 2019-06-13 2020-12-16 雲陽科技有限公司 Method for rapid identification of bacteria by portable Raman system which has advantages of requiring no bacterial culture of patient specimens and quickly obtaining identification results in 0-15 minutes
TWM617120U (en) * 2021-06-25 2021-09-11 汎鍶科藝股份有限公司 Surface enhanced raman spectroscopy chip
TWM619099U (en) * 2021-06-25 2021-11-01 汎鍶科藝股份有限公司 Crop pesticide detection device

Also Published As

Publication number Publication date
TW202405407A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
Kim et al. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting
Pilot et al. A review on surface-enhanced Raman scattering
CN111443072B (en) Raman chip for virus detection, preparation method and virus rapid detection method
CN107051597B (en) The disease detection instrument of improvement
Yang et al. Integrated Urinalysis Devices Based on Interface‐Engineered Field‐Effect Transistor Biosensors Incorporated With Electronic Circuits
CN104471382B (en) Hot comparative determination and reader
US9170192B2 (en) Systems and methods for identifying materials utilizing multivariate analysis techniques
Kim et al. Instrument-free synthesizable fabrication of label-free optical biosensing paper strips for the early detection of infectious keratoconjunctivitides
Soares et al. Detection of a SARS-CoV-2 sequence with genosensors using data analysis based on information visualization and machine learning techniques
Dos Santos et al. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: Principles, progress, and trends
Derruau et al. Vibrational spectroscopy saliva profiling as biometric tool for disease diagnostics: A systematic literature review
Constantinou et al. Label-free sensing with metal nanostructure-based surface-enhanced Raman spectroscopy for cancer diagnosis
Huang et al. Rapid, Label‐free Optical Spectroscopy Platform for Diagnosis of Heparin‐Induced Thrombocytopenia
CN109844092A (en) Novel disease detection instrument and method
Cheng et al. An antibody-free liver cancer screening approach based on nanoplasmonics biosensing chips via spectrum-based deep learning
Chen et al. High-throughput recognition of tumor cells using label-free elemental characteristics based on interpretable deep learning
Otange et al. Estimation of HIV‐1 viral load in plasma of HIV‐1‐infected people based on the associated Raman spectroscopic peaks
TWI827170B (en) Surface enhanced raman spectroscopy chip and the detection system
Messina et al. Hidden Markov model analysis of multichromophore photobleaching
JP2022506011A (en) New devices and methods for disease detection and treatment
Shaikh et al. Raman Spectroscopy for Early Detection of Cervical Cancer, a Global Women’s Health Issue—A Review
Mustafa et al. Cervical Cancer Detection Techniques: A Chronological Review
Zhang et al. Advances of machine learning-assisted small extracellular vesicles detection strategy
Zhou et al. Immunosensing the rheumatoid arthritis biomarker through bifunctional aldehyde-amine linkers on an iron oxide nanoparticle seeded voltammetry sensor
Buhas et al. High-accuracy renal cell carcinoma discrimination through label-free SERS of Blood serum and multivariate analysis