TWI818755B - 轉子鐵芯、轉子及旋轉電機 - Google Patents

轉子鐵芯、轉子及旋轉電機 Download PDF

Info

Publication number
TWI818755B
TWI818755B TW111137556A TW111137556A TWI818755B TW I818755 B TWI818755 B TW I818755B TW 111137556 A TW111137556 A TW 111137556A TW 111137556 A TW111137556 A TW 111137556A TW I818755 B TWI818755 B TW I818755B
Authority
TW
Taiwan
Prior art keywords
magnet
rotor core
rotor
open end
magnetic
Prior art date
Application number
TW111137556A
Other languages
English (en)
Other versions
TW202322520A (zh
Inventor
本間
Original Assignee
日商日本製鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本製鐵股份有限公司 filed Critical 日商日本製鐵股份有限公司
Publication of TW202322520A publication Critical patent/TW202322520A/zh
Application granted granted Critical
Publication of TWI818755B publication Critical patent/TWI818755B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

在轉子鐵芯剖面中,開放端部前方側角落部(1131a、1131c)的位置是位於比基準位置(831a,831b)更靠轉子鐵芯(811)的旋轉方向的後方側。

Description

轉子鐵芯、轉子及旋轉電機
本發明是有關於一種轉子鐵芯、轉子及旋轉電機。本案依據已於2021年11月15日於日本提出申請的日本特願2021-185697號主張優先權,並在此援引該等的全部內容。
在IPMSM(Interior Permanent Magnet Synchronous Motor,內嵌式永磁同步馬達)等永久磁鐵埋入型的旋轉電機中,是在轉子鐵芯內埋入永久磁鐵,並且在永久磁鐵的附近形成磁障(flux barrier)。磁障是為了控制旋轉電機內的磁通的流動而形成。藉由磁障可以提升旋轉電機的特性。在專利文獻1中記載在設置永久磁鐵的磁鐵孔中設置有磁障。該磁障是分別設置在比永久磁鐵更外周側與內周側。又,在專利文獻1中記載有使外周側的磁障在轉子鐵芯的外周側中開放。又,在專利文獻1中記載有:內周側的磁障的曲率是以可減輕內周側的磁障之間的磁鐵間橋接部的應力之方式來決定。 先前技術文獻 專利文獻
[專利文獻1] 日本專利特開2019-57984號公報
發明欲解決之課題
然而,在專利文獻1所記載的技術中,只是從抑制磁通透過轉子鐵芯的外周面之短路的觀點,來決定外周側的磁障的構成。因此,無法充分地提升轉子的轉矩。
本發明是有鑒於如以上的問題點而完成的發明,目的在於使轉子的轉矩增加。 用以解決課題之手段
本發明的轉子鐵芯是具備軟磁性體部的轉子鐵芯,前述軟磁性體部是使用軟磁性材料而形成,且每1極具有至少一個磁鐵孔,前述磁鐵孔相對於設置在該磁鐵孔的永久磁鐵,在左右方向的兩側具有成為前方側磁障的空間及成為後方側磁障的空間,前述左右方向是和該永久磁鐵的磁化方向以及平行於成為旋轉中心的旋轉軸線的方向相垂直,在成為前述前方側磁障的空間及成為前述後方側磁障的空間當中,至少一個成為磁障的空間具有在前述轉子鐵芯的外周面上開放的開放端部,在相對於前述旋轉軸線而垂直的剖面中,設置在轉子的相同的極的至少一個前述開放端部的開放端部前方側角落部的位置,是位於比基準位置更靠前述轉子鐵芯的旋轉方向的後方側,前述基準位置是對具有該開放端部的前述磁鐵孔的基準位置,在前述剖面中,前述開放端部前方側角落部是在設置於轉子的相同的極的至少一個前述開放端部之前述轉子鐵芯的圓周方向上的2個角落部當中,在前述轉子鐵芯的旋轉方向上的前方側的角落部,在前述剖面中,對具有前述開放端部的前述磁鐵孔的基準位置是通過永久磁鐵基準端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置,前述永久磁鐵基準端部是設置在該磁鐵孔的前述永久磁鐵當中,位在最接近於該開放端部的位置的前述永久磁鐵的端部的一個,在前述剖面中,位在最接近於前述開放端部的位置的前述永久磁鐵的前述永久磁鐵基準端部,是在該永久磁鐵的端部當中,位於從通過包含該永久磁鐵的一個極的區域的前述圓周方向上的中心位置與前述旋轉軸線的直線起算的前述圓周方向上的距離最遠的位置之端部,從通過包含位在最接近於前述開放端部的位置的前述永久磁鐵的一個極的區域的前述圓周方向上的中心位置、與前述旋轉軸的直線起算的前述圓周方向上的距離,是在前述轉子鐵芯的旋轉方向上的前方側及後方側當中在該開放端部所存在之側決定的距離。 本發明的轉子具備:前述轉子鐵芯、及設置於前述轉子鐵芯的複數個永久磁鐵。 本發明的旋轉電機具備前述轉子及前述定子。
用以實施發明之形態
以下,一邊參照圖式,一邊說明本發明的一個實施形態。 另外,長度、位置、大小、間隔等之比較對象為相同的情形,除了比較對象為嚴格地相同的情形之外,也包含在不脫離發明的主旨的範圍內比較對象不同之情形。例如,比較對象為相同的情形,也包含比較對象在設計時所決定的公差範圍內不同之情形。又,在各圖中,x-y-z座標是顯示各圖中的方向關係。在x-y-z座標中,在白圓圈(○)之中附有黑圓圈(●)的記號是表示從紙面的內側朝向近前側之方向為正向的箭頭線的記號。又,在各圖中,為了方便標記,當有複數個相同構成要素的情況下,會省略該複數個構成要素當中的一部分的構成要素之符號的圖示。又,在以下,會因應於需要,使用在該複數個構成要素當中已附加有符號的構成要素,來進行該複數個構成要素的說明。
(原委) 本發明的發明人在日本專利特開2021-114099號公報中,已提出了以IPMSM的轉子鐵芯為首之設計各種鐵芯的形狀的手法。於是,本發明的發明人已使用了該手法來探尋了有助於提升轉矩的形狀來作為轉子鐵芯的形狀。後述之本發明的實施形態是依據其結果而完成的實施形態。以下針對其結果進行說明,並且說明導出後述的本發明的實施形態之原委。
在日本專利特開2021-114099號公報的說明書所記載的手法中,必須設定設計對象要素的基本形狀。在本欄中,例示將圖1所示的IPMSM100所具備的轉子110中的磁障113a~113b、114a~114b的形狀作為設計對象要素的基本形狀之情況。因此,首先,說明圖1所示的IPMSM100。
在圖1中,例示IPMSM100的極數為8極的情況。在圖1中,顯示為「1極」的兩箭頭線的範圍是構成IPMSM100的1極的部分。另外,在IPMSM100的極數為n極的情況下,IPMSM100具有n次對稱的旋轉對稱性的關係,前述旋轉對稱性是大致以IPMSM100的旋轉軸線0為旋轉對稱軸之旋轉對稱性。n為2以上的整數,在圖1所示的例子中n為8(n=8)。圖1顯示將垂直地切斷於IPMSM100的旋轉軸線0而成的剖面分成4等分的4個區域之一,並且顯示IPMSM100的區域當中構成轉子110的2個極的區域。這4個區域大致具有以IPMSM100的旋轉軸線0為旋轉對稱軸的4(=8極÷2)次對稱的關係。從而,在圖1中,以IPMSM100中心線為旋轉軸線0而使圖1所示的區域以90°逐次旋轉,藉此可得到在垂直地切斷於IPMSM100的旋轉軸線0的情況下之IPMSM100的剖面整體的構成。
如圖1所示,IPMSM100具備轉子110與定子120。 定子120具備定子鐵芯121與未圖示的定子線圈,定子120是使旋轉磁場產生。另外,在圖1中省略定子120所具備的定子線圈的圖示。然而,未圖示的定子線圈是配置在定子鐵芯121的各狹槽122(如前述,為了方便標記,在圖1中僅對一個狹槽附加符號)。
轉子110是以IPMSM100的旋轉軸線0為旋轉軸線來旋轉。在本欄中,例示轉子110往圖1中位於「旋轉方向」旁邊的箭頭線的方向(朝向紙面為逆時針方向)旋轉的情況。另外,轉子110的旋轉軸線0與IPMSM100的旋轉軸線0是一致的。 轉子110具備轉子鐵芯111與位於每1極的複數個永久磁鐵(在圖1所示的例子中為2個永久磁鐵112a~112b)。轉子鐵芯111是使用軟磁性材料而構成。
在此,例示在每1極有複數個永久磁鐵112設置於轉子鐵芯111的情況。從而,在轉子鐵芯111中,沿著平行於轉子鐵芯111的旋轉軸線0的方向,在每1極形成有複數個磁鐵孔(在以下的說明中,因應於需要而將平行於旋轉軸線0的方向稱為z軸方向)。該磁鐵孔是貫穿z軸方向的貫穿孔。複數個永久磁鐵112a~112b是分別插入至形成在轉子鐵芯111的前述磁鐵孔,藉此被設置(埋設)在轉子鐵芯111內。如前述,在圖1中顯示在IPMSM100的區域當中構成轉子110的2個極的區域。在圖1中,每1極埋設有2個永久磁鐵112a~112b。從而,在轉子鐵芯111中合計共埋設有16個永久磁鐵。此外,如前述,在圖1中,為了方便標記,僅對構成轉子110的1極的部分附加符號,並且省略構成轉子110的其他7極的部分的符號。
在形成於轉子鐵芯111的前述磁鐵孔中,未存在有永久磁鐵112a~112b的空間便會成為磁障113a~113b、114a~114b。磁障113a~113b、114a~114b是磁通不會通過的區域、或者是和該磁障113a~113b、114a~114b的周圍區域相較之下,磁通較不容易通過的區域。在此,例示磁障113a~113b、114a~114b中不存在有有形物的情況(亦即,例示磁障113a~113b、114a~114b為空隙部(空氣的區域)的情況)。但是,即使在磁障113a~113b、114a~114b中設置非磁性體,仍可得到和後述的圖4A~圖7B所示的結果同樣的結果。
在以下的說明中,因應於需要,將對於IPMSM100(轉子110)的旋轉軸線0垂直地切斷後的轉子110的剖面稱為轉子剖面。圖2是顯示圖1所示的IPMSM100的1個極的轉子剖面的圖。另外,在圖2中,為了避免各符號所指的位置不明確,會省略顯示剖面的陰影線。
在圖2中,磁通是從永久磁鐵112a~112b的磁極面201a~201b、201c~201d進出。又,在圖2中,正交於磁極面201a~201b、201c~201d的方向為永久磁鐵112a~112b的磁化方向Dm。在以下的說明中,在轉子剖面中,在永久磁鐵112a~112b的中心,將相對於永久磁鐵112的磁化方向Dm而往左右兩側的方向,因應於需要而稱為左右方向Ds。左右方向Ds是和永久磁鐵112的磁化方向Dm、及與IPMSM100的旋轉軸線0平行的方向相垂直的方向。磁障113a~113b、114a~114b是形成在永久磁鐵112a~112b的左右方向Ds的兩側。
在以下的說明中,在磁障113a~113b、114a~114b當中,因應於需要,將位於比永久磁鐵112a~112b更靠近左右方向Ds的外周側的磁障稱為外周側磁障113a~113b。又,在磁障113a~113b、114a~114b當中,因應於需要,將位於比永久磁鐵112a~112b更靠近左右方向Ds的內周側的磁障稱為磁鐵間磁障114a~114b。
橋接部116a~116b是在圓周方向上連結轉子鐵芯111的軟磁性材料的區域之(狹窄的)區域。所謂圓周方向是指繞著轉子110(轉子鐵芯111)的外周面115的方向(相對於轉子110(轉子鐵芯111)的旋轉方向而平行的方向及反向平行的方向)。橋接部117a是在IPMSM100的半徑方向上連結轉子鐵芯111的軟磁性材料的區域之(狹窄的)區域。在以下的說明中,在橋接部116a~116b、117a當中,因應於需要,將位於比永久磁鐵112a~112b更靠近左右方向Ds的外周側(IPMSM100的半徑方向的外周側)的橋接部116a~116b,稱為外周側橋接部。又,在橋接部116a~116b、117a當中,因應於需要,將位於比永久磁鐵112a~112b更靠近左右方向Ds的內周側(IPMSM100的半徑方向的內周側)的橋接部117a,稱為磁鐵間橋接部117a。在圖2所示的例子中,外周側橋接部116a~116b是位於外周側磁障113a~113b與轉子鐵芯111的外周面115之間的軟磁性材料的區域。又,磁鐵間橋接部117a是位於磁鐵間磁障114a~114b之間的軟磁性材料的區域。
橋接部116a~116b、117a是用於抑制從永久磁鐵112a~112b流出的磁通返回到該永久磁鐵112之情形。在橋接部116a~116b、117a中,垂直於磁通的行進方向之剖面的面積是比其他區域更小。從而,橋接部116a~116b、117a的磁阻是比構成轉子鐵芯111的軟磁性材料的其他區域的磁阻更大。據此,可以藉由設置橋接部116a~116b、117a,抑制從永久磁鐵112a、112b流出的磁通返回到該永久磁鐵112的情形。橋接部116a~116b、117a是為了確保轉子鐵芯111的機械強度而存在。因通過橋接部116a~116b、117a的磁通會回流至永久磁鐵112a~112b,因此幾乎不會有助於轉子110的轉矩,這是本發明所屬技術領域中具有通常知識者到目前為止所具有的技術常識。在以下的說明中,因應於需要,將從永久磁鐵的一邊的磁極面流出,且通過橋接部而返回(回流)至該永久磁通的另一邊的磁極面的磁通稱為回流磁通。
本發明的發明人是用日本專利特開2021-114099號公報的說明書所記載的手法來設計轉子鐵芯111的形狀。此時,將圖1及圖2所示的磁障113a~113b、114a~114b作為設計對象要素(從基本形狀變更形狀的要素)。又,將永久磁鐵112設為設計對象要素以外之預定的鐵芯的要素(不變更形狀的要素)。又,將永久磁鐵112的殘留磁通密度設為0.4T。此外,永久磁鐵112的殘留磁通密度是根據例如永久磁鐵112的規格來事先決定。又,將流動於未圖示的定子線圈的激磁電流,設為峰值為20A且頻率為50Hz的三相交流電流。又,將前進角設為30°。又,忽視因轉子110伴隨於轉子110的旋轉而受到的離心力而在轉子鐵芯111產生的應力,並且將轉子110的平均轉矩的值為最大之條件,設為最佳化問題的演算法中的最佳化條件。亦即,圖3所示的形狀是容許在轉子鐵芯111產生的應力變得過大時的最佳形狀。從而,圖3所示的形狀是只要能滿足最佳化條件,則不考慮轉子鐵芯111的形狀是否為可以實現的形狀之形狀。在以下的說明中,為了和像這樣地設計的形狀的IPMSM作出區別,因應於需要,將圖1所示的IPMSM100稱為基本形狀的IPMSM100。圖3是顯示從基本形狀的IPMSM100以日本專利特開2021-114099號公報的說明書所記載的手法,來最佳化成使轉子110的平均轉矩的值成為最大之IPMSM100的構成的一例的圖。在以下的說明中,因應於需要,將圖3所示的IPMSM100稱為最佳形狀的IPMSM100。以下,針對本發明的發明人從最佳形狀的IPMSM100得到圖3所示的IPMSM100的知識見解來進行說明。
((第1知識見解)) 如前述,圖3所示的最佳形狀是容許在轉子鐵芯111產生的應力變得過大時的形狀。外周側橋接部116a~116b是由軟磁性材料所構成。從而,由於空氣的導磁率比外周側橋接部116a~116b更小,因此空氣的磁阻會比外周側橋接部116a~116b更大。據此,在圖3所示的最佳形狀的IPMSM100中,是以圖1及圖2所示的外周側磁障113a~113b(的一部分)到達轉子鐵芯111的外周面115而往外部開放(連通)的方式,形成外周側磁障113c~113d。換言之,在轉子鐵芯111(軟磁性體部)的外周面115上,藉由外周側磁障113c~113d而形成有開放端部。該開放端部的長邊方向是平行於z軸方向的方向,該開放端部的短邊方向為圓周方向,該開放端部是連通於外部。此外,開放端部是開放的端部,並不是實際存在的面而是虛擬面。在圖2所示的基本形狀的IPMSM100中,存在有外周側橋接部116a~116b。從而,外周側磁障113a~113b不會到達外周面115,而是封閉的。在這一點上,圖2與圖3是不同的。另一方面,在圖3所示的最佳形狀的IPMSM100中,外周側磁障113c~113d是到達轉子鐵芯111的外周面115而開放。由此可說,通過圖1及圖2所示的外周側橋接部116a~116b的磁通大部分是回流磁通。
藉由圖3所示的外周側磁障113c~113d可減少回流磁通。除此之外,本發明的發明人還著眼於以下情形:如圖3所示,外周側磁障113c~113d的開放端部310c~310d會往轉子鐵芯111的旋轉方向的後方側(旋轉方向的相反側)偏離。而且,本發明的發明人考慮到外周側磁障113d~113d或許可發揮目前為止的技術常識可知悉的回流磁通減少以外的作用。
於是,本發明的發明人在圖3所示的最佳形狀的IPMSM100中的電磁場解析之結果(磁通密度向量)當中,確認到外周側磁障113c~113d附近的結果。另外,在圖3中,r、θ分別表示極座標(圓座標)中的向徑、偏角。在圖3中,在對於轉子鐵芯111的旋轉軸線0垂直地切斷後的轉子鐵芯111的剖面中,將旋轉軸線0的位置設為極座標的原點0。又,從原點0朝向外側的方向是向徑方向(IPMSM100的半徑方向)的正向,朝向紙面而逆時針的方向(旋轉方向)為偏角的正向。另外,外側是指轉子鐵芯811的外周面818存在之側。
圖4A~圖4B是說明最佳形狀的IPMSM100中的電磁場解析之第1結果的圖。圖4A是顯示最佳形狀的IPMSM100中的磁通密度向量的一例的圖。圖4B是說明最佳形狀的IPMSM100中的磁通當中,轉子鐵芯111的外周面115附近的磁通流動的概略情形的一例的圖。在圖4A中,以具有對應於其大小的濃度的箭頭線來表現磁通密度向量。然而,在圖4A中,為了方便標記,不會明確地表示磁通密度向量的特徵。於是,為了方便說明,在圖4B中顯示最佳形狀的IPMSM100中的磁通當中,對說明而言必要的磁通流動的概略情形。在圖4B中,永久磁鐵112a~112b內所示的「N」及「S」是顯示轉子110的磁極(N極及S極)。從而,永久磁鐵112a、112b的磁極面201a、201c為N極的磁極面,磁極面201b、201d為S極的磁極面。
又,在圖4B中,定子鐵芯121的芯齒123a~123d內所示的箭頭線是顯示在轉子110及定子120的位置關係為圖4A及圖4B所示的位置關係時的時刻,產生於定子鐵芯121的芯齒123a~123d的磁通。具體而言,定子鐵芯121的芯齒123a~123b內所示的箭頭線是顯示在定子鐵芯121的芯齒123a~123b中,產生有從IPMSM100的旋轉軸線0沿著IPMSM100的半徑方向朝向外側的方向的磁通。另一方面,定子鐵芯121的芯齒123c~123d內所示的箭頭線是顯示在定子鐵芯121的芯齒123c~123d中,產生有沿著IPMSM100的半徑方向朝向IPMSM100之旋轉軸線0的方向的磁通。又,箭頭線的數量表示定子鐵芯121的芯齒123c~123d中的磁通量(磁通密度)之相對大小關係。此外,箭頭線的數量越多表示磁通量越大(磁通密度變高)。然而,磁通量(磁通密度)之比並不一定和箭頭線數量之比一致。又,轉子110的轉矩的瞬間值是在轉子110旋轉1圈的期間中變化。轉子110及定子120的位置關係為圖4A及圖4B所示的位置關係時的時刻,是轉子110的轉矩的瞬間值為最大的時刻。
又,在圖4B中,從轉子110(轉子鐵芯111)朝向定子120(定子鐵芯121)延伸的箭頭線是顯示從轉子110(轉子鐵芯111)朝向定子120(定子鐵芯121)流動的磁通的方向。又,從定子120(定子鐵芯121)朝向轉子110(轉子鐵芯111)延伸的箭頭線是顯示從定子120(定子鐵芯121)朝向轉子110(轉子鐵芯111)流動的磁通的方向。在圖4B中,為了方便標記,這些箭頭線所表示的磁通φ1、φ2、φ3都是以1條箭頭線來表示。然而,磁通φ1、φ2、φ3的磁通量並不一定相同。
圖4A~圖4B所示的結果是轉子鐵芯111往朝向紙面而為逆時針方向旋轉的情況下的結果。從而,在相同的極的2個永久磁鐵112a~112b當中,位於旋轉方向的前方側(旋轉方向側)的永久磁鐵為永久磁鐵112a,位於後方側的永久磁鐵為永久磁鐵112b(參照圖4B中附加在「前方側」及「後方側」旁邊的箭頭線)。在以下的說明中,因應於需要而將位於旋轉方向的前方側的永久磁鐵112a稱為前方側的永久磁鐵112a。又,因應於需要而將位於旋轉後方的後方側的永久磁鐵112b稱為後方側的永久磁鐵112b。
藉由外周側磁障113c,可減少從前方側的永久磁鐵112a的一邊的磁極面(例如N極)經由圖2所示的外周側橋接部116a而回流至另一邊的磁極面(例如S極)的回流磁通。同樣地,藉由外周側磁障113b,可減少從後方側的永久磁鐵112b的一邊的磁極面(例如N極)經由圖2所示的外周側橋接部116b而回流至另一邊的磁極面(例如S極)的回流磁通。
另外,轉子110的轉矩是和轉子110(轉子鐵芯111)及定子120(定子鐵芯121)之間的空隙(gap)G中的磁通密度向量的向徑方向(IPMSM100的半徑方向)成分B r及圓周方向成分B θ的內積成比例。在以下的說明中,因應於需要,將向徑方向(IPMSM100的半徑方向)成分稱為半徑方向成分。從而,當如圖3所示地決定極座標系統的情況下,從轉子110朝向定子120的方向的磁通密度向量的半徑方向成分B r及圓周方向成分B θ都是正的,且當該磁通密度向量的方向是相對於IPMSM100的半徑方向而大幅傾斜的方向的情況下,轉子110的轉矩會變大。
在圖4B中,從轉子鐵芯111的外周面115的區域當中比外周側磁障113c更靠IPMSM100的旋轉方向的後方側的區域,朝向定子鐵芯121的芯齒123a的磁通φ1是相對於IPMSM100的半徑方向而大幅傾斜。可考慮到的是,這是因為外周側磁障113c的開放端部310c往轉子鐵芯111的旋轉方向的後方側(旋轉方向的相反側)偏離。
由以上的內容,本發明的發明人得到了以下第1知識見解:使外周側磁障113的開放端部310往轉子鐵芯111的旋轉方向的後方側(旋轉方向的相反側)偏離,藉此可以加大轉子110的轉矩。在以下的說明中,因應於需要,將從轉子鐵芯111的外周面115的區域當中比外周側磁障113c更靠IPMSM100的旋轉方向的後方側的區域朝向定子鐵芯121的芯齒123a的磁通φ1,稱為外周側磁障113c的後方側的磁通φ1。
另外,在圖4B中,外周側磁障113c的後方側的磁通φ1與相反方向的磁通都會有助於轉子110的轉矩增大。這是因為磁通密度向量的半徑方向成分B r及圓周方向成分B θ都是負的。
((第2知識見解)) 又,本發明的發明人著眼於以下情形:在圖3所示的最佳形狀的IPMSM100中,在不同於外周側磁障113c~113d的位置上形成有凹陷部118a、119a。於是,本發明的發明人在圖3所示的最佳形狀的IPMSM100中的電磁場解析的結果(磁通密度向量)當中,確認了凹陷部118a、119a附近的結果。
當如圖3所示地決定極座標系統的情況下,從定子120朝向轉子110的磁通密度向量的半徑方向成分B r及圓周方向成分B θ都是負的,且當該磁通密度向量的方向是相對於IPMSM100的半徑方向而大幅傾斜的方向的情況下,轉子110的轉矩會變大。
又,如前述,圖4A所示的電磁場解析的結果是流動於未圖示的定子線圈的激磁電流為三相交流電流的情況的結果。從而,在IPMSM100中會產生旋轉磁場。轉子鐵芯110(轉子鐵芯111)的旋轉週期與在定子鐵芯121(芯齒123)產生的旋轉磁場的旋轉週期是相同的。從而,即使轉子鐵芯111旋轉,轉子鐵芯111與旋轉磁場的位置關係仍不會改變。另外,在本案中所使用的激磁電流並不限定於三相交流電流。
據此,在圖4B中,即使轉子鐵芯111旋轉,凹陷部118a仍然會和高磁通密度的芯齒123a、123c(箭頭線的數量為2條的芯齒123a、123c)相向。從定子鐵芯121的芯齒123c朝向轉子鐵芯111的外周面115的區域當中比凹陷部118a更靠IPMSM100的旋轉方向的後方側的區域的磁通φ2,是相對於IPMSM100的半徑方向而傾斜,且由該磁通φ2所致的磁通密度向量的半徑方向成分B r及圓周方向成分B θ都是負的。
從而,從定子鐵芯121的芯齒123c朝向轉子鐵芯111的外周面115的區域當中比凹陷部118a更靠IPMSM100的旋轉方向的後方側的區域的磁通φ2會有助於轉子110的轉矩增大。在以下的說明中,因應於需要,將從定子鐵芯121的芯齒123c朝向轉子鐵芯111的外周面115的區域當中比凹陷部118a更靠IPMSM100的旋轉方向的後方側的區域的磁通φ2,稱為凹陷部118a的後方側的磁通φ2。
另一方面,從定子鐵芯121的芯齒123c朝向轉子鐵芯111的外周面115的區域當中比凹陷部118a更靠IPMSM100的旋轉方向的前方側的區域的磁通φ3,是相對於IPMSM100的半徑方向而傾斜,且由該磁通φ3所致的磁通密度向量的半徑方向成分B r、圓周方向成分B θ分別是負的、正的。從而,從定子鐵芯121的芯齒123c朝向轉子鐵芯111的外周面115的區域當中比凹陷部118a更靠IPMSM100的旋轉方向的前方側的區域的磁通φ3不會有助於轉子110的轉矩增大。在以下的說明中,因應於需要,將從定子鐵芯121的芯齒123c朝向轉子鐵芯111的外周面115的區域當中比凹陷部118a更靠IPMSM100的旋轉方向的前方側的區域的磁通φ3,稱為凹陷部118a的前方側的磁通φ3。
據此,若將凹陷部118a的大小及位置決定成使凹陷部118a的後方側的磁通φ2比凹陷部118a的前方側的磁通φ3更大,就可以加大轉子110的轉矩。
另一方面,在圖4B中,即使轉子鐵芯111旋轉,凹陷部119a仍然會和低磁通密度的芯齒123a、123b(箭頭線的數量為2條的芯齒123a、123b)相向。從而,凹陷部119a不會比凹陷部118a更有助於轉子110的轉矩增大。又,若凹陷部的數量變多,則會有轉子110(轉子鐵芯111)的機械強度降低的疑慮。
由以上的內容,本發明的發明人得到了以下第2知識見解:在轉子鐵芯111的外周面115的區域當中,在和比最低磁通密度更高的磁通密度的芯齒123a、123b相向的位置上設置凹陷部118a,藉此即可以加大轉子110的轉矩。
另外,在定子鐵芯121的芯齒123a~123d當中,可由例如如圖4A所例示的電磁場解析的結果,來特定出哪一個芯齒是最低的磁通密度的芯齒。
又,在圖4B中,和凹陷部118a的後方側的磁通φ2同樣地,凹陷部118a的後方側的磁通φ2的相反方向的磁通也會有助於轉子110的轉矩增大。這是因為磁通密度向量的半徑方向成分B r及圓周方向成分B θ都是正的。又,和凹陷部118a的前方側的磁通φ3同樣地,凹陷部118a的前方側的磁通φ3的相反方向的磁通也不會有助於轉子110的轉矩增大。這是因為磁通密度向量的半徑方向成分B r、圓周方向成分B θ分別是負的、正的。
((第3知識見解)) 在圖1及圖2中,磁鐵間橋接部117是由軟磁性材料所構成。從而,空氣的磁導率會比磁鐵間橋接部117更小。從而,空氣的磁阻會比磁鐵間橋接部117更大。據此,若包含圖1及圖2所示的磁鐵間橋接部117a的全部磁極間橋接部都是磁障(空隙部),則構成磁鐵間橋接部的磁性體材料的區域可置換為空隙部。藉由此置換,該區域的導磁率會變小。從而,該區域的磁阻會增大。據此,可考慮到的是,根據前述技術常識,可降低回流磁通。由此情形,本發明的發明人預想到不僅是圖1及圖2所示的外周側橋接部116a~116b,磁鐵間橋接部117a也成為磁障(空隙部)。然而,在圖3所示的最佳形狀的IPMSM100中是和此預想不同的結果。然而,在圖3所示的最佳形狀的IPMSM100中,如磁鐵間磁障114c~114d所示,圖1及圖2所示的磁鐵間磁障114a~114b並不相連。亦即,在圖3所示的最佳形狀的IPMSM100中,如磁鐵間橋接部117b所示,圖1及圖2所示的磁鐵間橋接部117a的一部份會留下來。像這樣,圖3所示的最佳形狀的IPMSM100是和前述預想不同的形狀。
又,在圖1及圖2中,和磁鐵間橋接部117a相較之下,外周側橋接部116a~116b是位於更接近於定子120的位置。從而,通過外周側橋接部116a~116b的磁通會變得比通過磁鐵間橋接部117a的磁通更容易朝向定子120側。據此,可考慮到的是,通過周側橋接部116a~116b的磁通是比通過磁鐵間橋接部117a的磁通更不容易變成回流磁通。由此可考慮到的是,和外周側磁障113a~113b到達轉子鐵芯111的外周面115的作法相較之下,磁鐵間磁障114a~114b彼此相連接的作法可以增加朝向定子120側的磁通。然而,如前述,圖3所示的最佳形狀的IPMSM100是顯示和此相反的結果的形狀。
於是,本發明的發明人在圖3所示的最佳形狀的IPMSM100中的電磁場解析的結果(磁通密度向量)當中,確認了永久磁鐵112a~112b附近的結果。 圖5A~圖5B是說明最佳形狀的IPMSM100中的電磁場解析之第2結果的圖。圖5A是顯示最佳形狀的IPMSM100中的磁通密度向量的一例的圖,且是和圖4A相同。圖5B是說明在最佳形狀的IPMSM100中的磁通當中,永久磁鐵112a~112b附近的磁通流動的概略情形的一例的圖。
圖5B的標記方法與圖4B的標記方法是相同的。在圖5B中顯示從永久磁鐵112a~112b流出的磁通的方向。從永久磁鐵112a~112b延伸的箭頭線具有與定子鐵芯121的芯齒123c~123d內所示的箭頭線同樣的意思。亦即,從永久磁鐵112a~112b延伸的箭頭線的數量是表示從永久磁鐵112a~112b流出的磁通量(磁通密度)的相對大小關係。另外,從永久磁鐵112a~112b延伸的箭頭線的長度和磁通的大小並無關係。
在圖5B中,從前方側的永久磁鐵112a流出的磁通,大部分並不是朝向永久磁鐵112a~112b之間的磁鐵間橋接部117b(在圖2所示的磁鐵間橋接部117a當中未置換為磁障的區域),而是朝向定子120側(參照磁通φ11)。另一方面,在從後方側的永久磁鐵112b流出的磁通中,除了朝向定子120側的磁通(參照磁通φ12)之外,還有通過永久磁鐵112a~112b之間的磁鐵間橋接部的磁通(參照磁通φ13、φ14)。然而,從後方側的永久磁鐵112b流出並通過永久磁鐵112a~112b之間的橋接部的磁通,不會返回到後方側的永久磁鐵112b,而是通過前方側的永久磁鐵112a(參照磁通φ13)、或通過比前方側的永久磁鐵112a更靠IPMSM100的內周側的區域而朝向定子120(參照磁通φ14)。
像這樣,在永久磁鐵112a~112b之間設置有磁鐵間磁障114c~114d的情況下,在通過永久磁鐵112a~112b之間的磁鐵間橋接部的磁通之中,存在有不會成為回流磁通而是有助於轉子110的轉矩的磁通φ13、φ14。從而,藉由設置磁鐵間橋接部117a,可以產生有助於轉子110的轉矩的磁通(參照圖5B所示的磁通φ13)。又,藉由使外周側橋接部116a~116b到達外周面115並使其開放,可以減少回流磁通並且增加朝向定子120側的磁通(參照圖5B所示的磁通φ11)。亦即,本發明的發明人得到了以下第3知識見解:藉由積極地設置磁鐵間橋接部117a的作法、以及使外周側磁障113a~113b擴大至轉子鐵芯111的外周面115並使其開放,即可以在不分割轉子鐵芯111的情形下加大IPMSM100的轉矩。
另外,在此是例示垂直於z軸方向(旋轉軸線的延伸方向)的方向上的轉子110的剖面(x-y剖面),在z軸方向的任一位置上都相同的情況。然而,並不一定要設成像這樣。例如,亦可對轉子鐵芯111施行所謂的偏斜(skew)。具體而言,偏斜是使複數個軟磁性體塊體以z軸為軸往相同方向旋轉預定角度的狀態下在z軸方向上疊合而實現。如此一來,在各軟磁性體塊體中設置永久磁鐵。從而,例如,必須要有各軟磁性體塊體的磁鐵孔的數量與軟磁性體塊體的數量之乘積數量的永久磁鐵。藉由施行像這樣的偏斜,可以抑制旋轉電機的振動。
在此,軟磁性塊體例如是藉由將具有相同大小及形狀的複數個軟磁性體板,以該等軟磁性體板的輪廓(內緣及外緣)一致的方式來疊合而製造。各軟磁性體塊體所使用的軟磁性體板的形狀及大小亦可相同亦可不同。但是,在疊合複數個軟磁性體塊體時,要使各軟磁性體塊體的外緣一致。又,預定角度在各軟磁性體塊體中可相同亦可不同。又,亦可不使用板狀的軟磁性材料來構成軟磁性體塊體。
((第4知識見解)) 此外,本發明的發明人考慮到當永久磁鐵112a~112b的殘留磁通密度較低時,則永久磁鐵112a~112b產生的磁通量會變小(磁通密度會變低),因此磁通會變得難以回流。於是,對圖1所示的基本形狀的IPMSM100執行電磁場解析,前述電磁場解析是將永久磁鐵112a~112b的殘留磁通密度設為0.4T、1.0T的各個情況下的電磁場解析。圖6A~圖6B是顯示當永久磁鐵112a~112b的殘留磁通密度為0.4T的情況下之基本形狀的IPMSM100中的電磁場解析的結果之一例的圖。圖7A~圖7B是顯示當永久磁鐵112a~112b的殘留磁通密度為1.0T的情況下之基本形狀的IPMSM100中的電磁場解析的結果之一例的圖。此外,在圖4A~圖7B中,永久磁鐵112a~112b的殘留磁通密度及轉子鐵芯111的形狀以外的條件是相同的。
圖6A、圖7A是分別顯示當永久磁鐵112a~112b的殘留磁通密度為0.4T、1.0T的情況下之基本形狀的IPMSM100中的磁通密度向量的一例的圖。圖6B、圖7B是分別說明當永久磁鐵112a~112b的殘留磁通密度為0.4T、1.0T的情況下之基本形狀的IPMSM100中的磁通流動的概略情形的一例的圖。和圖4B及圖5B同樣地,為了方便說明,圖6B及圖7B是顯示在基本形狀的IPMSM100中的磁束當中,對說明而言必要的磁通流動的概略情形。此外,圖6B及圖7B中的箭頭線的意思和圖5B中的箭頭線的意思是相同的。
在圖6B中,當永久磁鐵112a~112b的殘留磁通密度為0.4T時,則從永久磁鐵112a~112b流出的磁通的大部分為通過外周側橋接部116a~116b的回流磁通(參照磁通φ25、φ26)。此情形是對應於可得到下述結果的情形:在圖3所示的最佳形狀的IPMSM100中,圖1及圖2所示的外周側磁障113a~113b(的一部分)會到達轉子鐵芯111的外周面115而開放。又,在圖6B中,通過磁鐵間橋接部117a的磁通大部分是和圖5B所示的磁通φ13~φ14同樣地,為不會成為回流磁通的磁通(參照圖5B所示的磁通φ13~φ14與圖6B所示的磁通φ23~φ24)。
另一方面,在圖7B中,當永久磁鐵112a~112b的殘留磁通密度為1.0T時,從永久磁鐵112a、112b流出且通過磁鐵間橋接部117a的磁通大部分會成為回流磁通(參照磁通φ33、φ34)。在圖7A所示的結果中,在通過磁鐵間橋接部117a的磁通中,回流磁通是佔優勢的。由此可知,當永久磁鐵112a~112b的殘留磁通密度較高時,圖5B及圖6B所示的不會成為回流磁通的磁通φ13~φ14、φ23~φ24會變少。另外,在圖7B中也是和圖6B同樣地存在有從永久磁鐵112a~112b流出,且通過外周側橋接部116a~116b的回流磁通(參照磁通φ35、φ36)。又,在圖7B中也是和圖6B同樣地存在有從永久磁鐵112a~112b朝向定子120側的磁通(參照磁通φ31、φ32)。
如以上,本發明的發明人得到了以下第4知識見解:若使用殘留磁通密度低的永久磁鐵112a~112b,則在通過磁鐵間橋接部117a的磁通中,會包含有較多不會成為回流磁通而有助於轉子110的轉矩之磁通。由此可考慮到的是,若永久磁鐵112a~112b的殘留磁通密度以外的條件相同,則和使用殘留磁通密度高的永久磁鐵112a~112b的情況相較之下,當使用殘留磁通密度低的永久磁鐵112a~112b的情況下,設置磁鐵間橋接部117a所帶來的轉子110的轉矩的改善效果會較大。從而,藉由將殘留磁通密度低的永久磁鐵112a~112b設置於轉子鐵芯111,即可以加大轉子110的轉矩的改善效果。據此,即使不使用例如含有稀土的永久磁鐵,仍然可以提升轉子110的轉矩。例如,即使使用肥粒鐵磁鐵等來作為未含有稀土的永久磁鐵,仍然可以提升轉子110的轉矩。 以下說明的本發明的實施形態是因以上的原委而完成的實施形態。
此外,如前述,在本欄中例示了轉子110往圖1中位於「旋轉方向」旁邊的箭頭線的方向(朝向紙面為逆時針方向)旋轉的情況。然而,本欄中的說明並不會因轉子110旋轉的方向而改變。另外,當轉子110往圖1所示的該箭頭線的方向的相反方向旋轉的情況下,在本欄的說明中,前方側、後方側的永久磁鐵112分別為永久磁鐵112b、112a。又,定子鐵芯121的芯齒123a~123d中的磁通方向及磁通量(磁通密度)的大小關係是置換成圖4A~圖7B所示的內容。亦即,在圖4B、圖5B、圖6B及圖7B中,定子鐵芯121的芯齒123a~123d內所示之朝向外側的箭頭線、朝向內側的箭頭線是分別朝向內側、外側。又,在圖4B、圖5B、圖6B、及圖7B中,2條、1條箭頭線會分別變為1條、2條箭頭線。
(實施形態) 以下,說明本發明的一個實施形態。在本實施形態中例示旋轉電機為內轉子型的IPMSM的情況。圖8是顯示IPMSM800的構成的一例的圖。圖8是對於IPMSM800(轉子810)的旋轉軸線0)垂直地切斷後的IPMSM800的剖面圖。和圖1同樣地,在圖8中,顯示為「1極」的兩箭頭線的範圍是構成IPMSM800的1極的部分。在本實施形態中是例示IPMSM800為8極的情況。然而,IPMSM800的極數並不限定於8極。如前述,在IPMSM800的極數為n極的情況下,IPMSM800具有n次對稱的旋轉對稱性的關係,前述旋轉對稱性是大致以IPMSM800的旋轉軸線0為旋轉對稱軸之旋轉對稱性。n為2以上的整數,在圖8所示的例子中n為8(n=8)。
在圖8中,IPMSM800具備轉子810與定子120。定子120與圖1所示的定子120是相同的。從而,在此是附加和圖1所附加的符號相同的符號,並省略針對定子120的詳細說明。IPMSM800例如具備如以下方式決定的定子120(未圖示的定子線圈及定子鐵芯121)。定子鐵芯121例如是由寬度固定的軛部、及24個芯齒部所構成。軛部的寬度及芯齒部的長度是IPMSM800的半徑方向的長度。軛部的形狀例如為圓環狀。24個芯齒部是例如在軛部的內周面等間隔地設置。軛部的寬度例如是定子120的內徑與外徑的差的一半。芯齒部的長度例如是定子120的內徑與外徑的差的0.4倍。在芯齒部的前端(旋轉軸線0側的端)形成有突起部。突起部是形成為往圓周方向的兩側突出。該突起部的圓周方向的長度與寬度例如是芯齒部的長度的0.3倍。但是,只要定子120的構成是一般採用作為IPMSM的定子的構成的話,則前述知識見解不會因定子120的構成而改變。
在本實施形態中例示在定子120所具備的未圖示的定子線圈中流動的激磁電流為三相交流電流的情況。從而,在定子鐵芯121(芯齒123)會產生和三相交流電流的頻率相因應的週期的旋轉磁場。此外,如前述,在圖8中也是和圖1同樣地,僅對構成轉子810的1極的部分附加符號,並且省略構成轉子810的其他7極的部分的符號。
轉子810是以IPMSM800的旋轉軸線0為旋轉軸線來旋轉。轉子810只會朝向圖8的紙面而往逆時針方向及順時針方向當中的其中一個方向旋轉。在本實施形態中是例示轉子810朝向圖8的紙面而往逆時針方向旋轉的情況(參照圖8中附加在「旋轉方向」的旁邊的箭頭線)。圖9是顯示轉子810的構成(轉子剖面)的一例的圖。在以下的說明中,因應於需要將轉子810的旋轉方向簡稱為旋轉方向。此外,如前述,在圖9中也是和圖8同樣地,僅對構成轉子810的1極的部分附加符號,並且省略構成轉子810的其他7極的部分的符號。
在圖8及圖9中例示以下情況:在本實施形態中,轉子810具備轉子鐵芯811、及位於每1極的複數個永久磁鐵812a~812b。具體而言,在本實施形態中,例示轉子810具備轉子鐵芯811、及位於每1極的2個永久磁鐵812a~812b的情況。轉子鐵芯811是使用軟磁性材料而構成。轉子鐵芯811是利用例如沿著轉子810的旋轉軸線0積層而得的複數片電磁鋼板來製作。但是,轉子鐵芯811並不一定要使用積層的複數個電磁鋼板來製作。轉子鐵芯811亦可為例如壓粉磁芯、非晶質鐵芯、及奈米結晶鐵芯。此外,當轉子鐵芯811為壓粉磁芯、非晶質鐵芯、奈米結晶鐵芯的情況下,構成轉子鐵芯811的軟磁性材料分別是使用經絕緣被覆的軟磁性粒子、非晶質合金、奈米結晶合金來製作。
圖10是顯示轉子鐵芯811的構成的一例的圖。在圖10中也是和圖8及圖9同樣地,是對於轉子鐵芯811的旋轉軸線0垂直地切斷後的轉子鐵芯811的剖面圖。在以下的說明中,因應於需要,將對於轉子鐵芯811的旋轉軸線0垂直地切斷後的轉子鐵芯811的剖面稱為轉子鐵芯剖面。另外,轉子鐵芯811的旋轉軸線0、IPMSM800的旋轉軸線0、及轉子810的旋轉軸線0是一致的。又,如前述,在圖10中也是和圖8及圖9同樣地,僅對構成轉子鐵芯811的1極的部分附加符號,並且省略構成轉子鐵芯811的其他7極的部分的符號。
如圖10所示,在本實施形態中,例示在轉子鐵芯811中在每1極製作有複數個磁鐵孔817a~817b的情況。具體而言,在本實施形態中,例示在轉子鐵芯811中在每1極製作有2個磁鐵孔817a~817b的情況。又,在本實施形態中例示複數個磁鐵孔817a~817b是在z軸方向上貫穿的貫穿孔之情況。在圖8~圖10中,複數個永久磁鐵812a、812b是分別插入至形成在轉子鐵芯811的磁鐵孔817a、817b,藉此被設置(埋設)在轉子鐵芯811內。像這樣,在本實施形態中,轉子鐵芯811在每1極具備複數個磁鐵孔817a~817b,來作為設置永久磁鐵812a~812b的磁鐵孔。從而,在圖10所示的例子中,磁鐵孔817a是在設置於相同的極的複數個磁鐵孔當中,在旋轉方向上的前方側的磁鐵孔。又,在圖10所示的例子中,磁鐵孔817b是轉子810(轉子鐵芯811)的旋轉方向上的後方側的磁鐵孔。在以下的說明中,因應於需要,將轉子810(轉子鐵芯811)的旋轉方向上的前方側的磁鐵孔817a稱為前方側磁鐵孔817a。又,在以下的說明中,因應於需要,將轉子810(轉子鐵芯811)的旋轉方向上的後方側的磁鐵孔817b稱為後方側磁鐵孔817b。
又,在轉子鐵芯811中,製作有未設置永久磁鐵812a~812b的孔816。孔816是在z軸方向上貫穿的貫穿孔,並且供設置未圖示的軸桿等。另外,孔816、磁鐵孔817a~817b以外的孔亦可製作在轉子鐵芯811中。這些孔亦可設置有永久磁鐵812a~812b,亦可未設置有永久磁鐵812a~812b。
在圖9中,在本實施形態中,例示磁通從永久磁鐵812a~812b的磁極面901a~901d進出的情況。正交於磁極面901a~901d的方向是永久磁鐵812a~812b的磁化方向Dm。如圖9所示,永久磁鐵812a~812b的磁化方向Dm是顯示為橫切永久磁鐵812a~812b的兩箭頭線的方向。在圖8~圖10中,設置永久磁鐵812a~812b的磁鐵孔817a~817b是被製作為:設置在磁鐵孔817a~817b的永久磁鐵812a~812b的磁極面901a~901d會相對於轉子鐵芯811的外周面818而傾斜。如圖8~圖10所示,在本實施形態中例示將磁鐵孔817a~817b製作成如以下的情況:使設置在磁鐵孔817a~817b的永久磁鐵812a~812b的圓周方向的間隔,越接近於轉子鐵芯811的外周面818則越寬。像這樣,在本實施形態中例示永久磁鐵812a~812b被配置為所謂的V字形的情況。
如(原委)欄的((第4知識見解))的欄所說明,從減少永久磁鐵812a~812b所造成的回流磁通的觀點來看,在能夠發揮作為IPMSM800中的永久磁鐵的功能的範圍內,永久磁鐵812a~812b的殘留磁通密度越低則越理想。又,發揮作為IPMSM800中的永久磁鐵的功能,是指藉由永久磁鐵所產生的磁通的至少一部分到達定子120,而成為有助於轉子的轉矩的磁通。當永久磁鐵812a~812b的常溫下的殘留磁通密度大於0.4T時,由於永久磁鐵812a~812b產生的磁通量變多,因此通過磁鐵間橋接部821a的磁通所包含的回流磁通會變多。因此,由不會成為回流磁通的磁通(參照圖5B所示的磁通φ13、φ14)所帶來的轉子810的轉矩增大效果會減少。此外,當永久磁鐵812a~812b的常溫下的殘留磁通密度大於0.8T時,則如上述的轉子810的轉矩增大效果的減少會變得顯著。又,當永久磁鐵812a~812b的常溫下的殘留磁通密度大於0.4T時,則會有需要使用含有稀土的永久磁鐵812a~812b的情況。又,當永久磁鐵812a~812b的常溫下的殘留磁通密度大於0.8T時,則會有需要使用含有大量稀土的永久磁鐵812a~812b的情況。
從以上觀點來看,永久磁鐵812a~812b的常溫下的殘留磁通密度為0.8T以下較為理想,0.4T以下則更為理想。並且,永久磁鐵812a~812b所包含的稀土較少較為理想,在永久磁鐵812a~812b中未含有稀土則更為理想。但是,只要能夠發揮作為IPMSM中的永久磁鐵的功能,永久磁鐵812a~812b的常溫下的殘留磁通密度亦可不在前述範圍內。
在圖9中,磁障813a~813b、814a~814b是在圖10所示的要設置永久磁鐵812a~812b的磁鐵孔817a~817b當中,不存在有永久磁鐵812a~812b的空間。在磁障813a~813b、814a~814b中不存在有有形物。亦即,磁障813a~813b、814a~814b為空隙部(空氣的區域)。磁障813a~813b、814a~814b是磁通不會通過的區域、或者是和該磁障813a~813b、814a~814b的周圍區域相較之下,磁通較不容易通過的區域。如以上,在本實施形態中是例示在磁障813a~813b、814a~814b中不存在有有形物的情況。然而,並不一定要設成像這樣。例如,亦可在圖10所示的要設置永久磁鐵812a~812b的磁鐵孔817a~817b當中,將非磁性體設置在不存在有永久磁鐵812a~812b的空間,來構成磁障813a~813b、814a~814b。
在圖9中,位於比永久磁鐵812a~812b更靠左右方向Ds上的外周側的磁障813a~813b是外周側磁障。在轉子剖面中,外周側磁障813a~813b是到達轉子810(轉子鐵芯811)的外周面818而開放。另一方面,位於比永久磁鐵812a~812b更靠左右方向Ds上的內周側的磁障814a~814b是磁鐵間磁障。磁鐵間磁障814a~814b是除了z軸方向的端部以外都不開放。此外,外周側是指轉子鐵芯811的外周面818側,內周側是指轉子鐵芯811的內周面819側。
如前述,永久磁鐵812a是位於比永久磁鐵812b更前方側的前方側永久磁鐵812a,永久磁鐵812b是後方側永久磁鐵812b。位於比前方側永久磁鐵812a更外周側的外周側磁障813a是位於比該前方側永久磁鐵812a更靠旋轉方向上的前方側。另一方面,位於比後方側永久磁鐵812b更外周側的外周側磁障813b是位於比該後方側永久磁鐵812b更靠旋轉方向上的後方側。
又,如圖10所示,在轉子鐵芯811的外周面818製作有凹陷部815a。凹陷部815a是製作在和芯齒123a、123b具有間隔而相向的位置上,前述芯齒123a、123b是在定子鐵芯121的芯齒123當中和磁通密度最低的芯齒123b、123d不同的芯齒,前述定子鐵芯121是設置在和轉子鐵芯811的外周面818具有間隔而相向的位置上。如(原委)欄所說明,轉子鐵芯811的旋轉週期與在定子鐵芯121(芯齒123)產生的旋轉磁場的旋轉週期是相同的。從而,即使轉子鐵芯811旋轉,位於和凹陷部815a相向的位置的芯齒123的磁通密度仍然是相同的。在本實施形態中,例示在每1極製作有1個凹陷部815a的情況。然而,每1極的凹陷部815的數量亦可為2個以上。設置在和凹陷部815a具有間隔而相向的位置之定子鐵芯121的芯齒123a、123c的磁通密度較高較為理想,為最高的磁通密度則更為理想。這是因為可以加大轉子810的轉矩。
圖11A是放大圖10所示的轉子鐵芯811的一部分來顯示的圖(顯示轉子鐵芯剖面的圖)。圖11B及圖11C是相對於圖11A的變形例。一邊參照圖10及圖11A~圖11C,一邊詳細說明本實施形態的轉子鐵芯811的構成的一例。另外,在圖11A~圖11C中,為了避免各符號所指的位置不明確,會省略顯示剖面的陰影線的圖示。 在圖10中,在轉子鐵芯811所佔的區域當中,軟磁性材料的區域(孔816、磁鐵孔817a~817b以外的區域)為軟磁性體部820。如圖10及圖11A所示,在轉子鐵芯剖面中,設置永久磁鐵812a~812b的磁鐵孔817a~817b具有第1端部1111a~1111b、第2端部1112a~1112b、第3端部1113a~1113b、及第4端部1114a~1114b。以下說明第1端部1111a~1111b、第2端部1112a~1112b、第3端部1113a~1113b、及第4端部1114a~1114b的一例。
首先,針對第1端部1111a~1111b進行說明。第1端部1111a~1111b是位於磁鐵孔817a~817b所具有的成為外周側磁障813a~813b的空間之最外周側的端部。在轉子鐵芯剖面中,第1端部1111a~1111b是在轉子鐵芯811的外周面818的位置開放的開放端部。由此,在以下的說明中,有時也會將第1端部1111稱為開放端部1011。在以下的說明中,在轉子鐵芯剖面中,會因應於需要而將屈曲或彎曲的部分稱為角落部。但是,在轉子鐵芯811的外周面818當中和開放端部不同的區域(從旋轉軸線0起算的距離為轉子810的半徑的長度即圓弧的區域)並不是角落部。
在轉子鐵芯剖面中,當磁鐵孔817a~817b的屈曲的部分為角落部的情況下,該角落部的位置是該屈曲的位置。在轉子鐵芯剖面中,當磁鐵孔817a~817b的彎曲的部分為角落部的情況下,該角落部的位置是該彎曲的部分(具有曲率的部分)的代表點的位置。這些的詳細內容將參照後述的圖11A~圖11C來說明。在圖11A所示的例子中,在轉子鐵芯剖面中,第1端部1111a~1111b是在一個磁鐵孔817a~817b的12個角落部當中,從位於轉子鐵芯811的外周面818(最外周側)的位置的2個角落部1131a~1131b、1131c~1131d的其中一者到另一者之沿著圓周方向的區域。此外,所謂圓周方向是指繞著轉子810(轉子鐵芯811)的外周面818的方向(相對於轉子810(轉子鐵芯811)的旋轉方向而平行的方向及反向平行的方向)。
若第1端部1111a~1111b的圓周方向的長度L1過短,則第1端部1111a~1111b中的磁阻會變得過小。其結果,由於在圓周方向上跨越磁鐵孔817a~817b的磁通會變多,因此會有回流磁通變多的疑慮。另一方面,若第1端部1111a~1111b的圓周方向的長度L1過長,則由於外側部822a~822h會變小,因此會有有助於轉子810的轉矩的磁通變少的疑慮。第1端部1111a~1111b的圓周方向的長度L1是從像這樣的觀點來適當決定。第1端部1111a~1111b的圓周方向的長度L1例如只要從永久磁鐵812a~812b的磁化方向Dm的長度L2的0.1倍以上且1.0倍以下的範圍內決定即可。另外,在本實施形態中例示永久磁鐵812a~812b的磁化方向Dm的長度為固定的情況。然而,永久磁鐵812a~812b的磁化方向Dm的長度亦可並非固定。當永久磁鐵812a~812b的磁化方向Dm的長度並非固定的情況下,只要將永久磁鐵812a~812b的磁化方向Dm的長度L2的代表值(例如平均值)設為永久磁鐵812a~812b的磁化方向Dm的長度,來決定第1端部1111a~1111b的圓周方向的長度L1即可。
又,轉子鐵芯剖面中的磁鐵孔817a~817b的其他區域的長度也是和第1端部1111a~1111b的圓周方向的長度L1同樣地,從回流磁通的抑制與磁路及強度的確保的觀點來決定。例如,轉子鐵芯剖面中的磁鐵孔817a~817b的相互相向的2個端部間的長度的最小值,只要從例如永久磁鐵812a~812b的磁化方向Dm的長度的0.1倍以上且1.0倍以下的範圍內來決定即可。
如(原委)欄的((第1知識見解))欄所說明,將外周側磁障813a~813b的開放端部即第1端部1111a~1111b往轉子鐵芯811的旋轉方向的後方側(旋轉方向的相反側)偏移,藉此可使轉子810的轉矩增大。為了設置成像這樣,在本實施形態中,如圖11A所示,在轉子鐵芯剖面中,開放端部即第1端部1111a、1111b的開放端部前方側角落部1131a、1131c的位置是在比基準位置831a、831b更靠轉子鐵芯811的旋轉方向的後方側,前述基準位置831a、831b是對具有該開放端部即第1端部1111a、1111b的磁鐵孔817a、817b之基準位置。在轉子鐵芯剖面中,第1端部1111a、1111b的開放端部前方側角落部1131a、1131c是在第1端部1111a、1111b的角落部當中為轉子鐵芯811的旋轉方向上的前方側的角落部。
在此,如圖11A所示,在轉子鐵芯剖面中,基準位置831a、831b是位於通過永久磁鐵基準端部841a、841b與旋轉軸線0的直線1172、1174與轉子鐵芯811的外周面818的交點的位置,前述基準位置831a、831b是對具有開放端部即第1端部1111a、1111b的磁鐵孔817a、817b的基準位置,前述永久磁鐵基準端部841a、841b是設置在該磁鐵孔817a、817b的永久磁鐵812a、812b的端部的一個。具有開放端部即第1端部1111a、1111b的磁鐵孔817a、817b的永久磁鐵基準端部841a、841b是在設置在該磁鐵孔817a、817b的永久磁鐵812a、812b的端部當中,位於最接近於各個開放端部(第1端部1111a或1111b)的位置的一個永久磁鐵812a或812b所具有的端部。在轉子鐵芯剖面中,具有開放端部即第1端部1111a、1111b的磁鐵孔817a、817b的永久磁鐵基準端部841a、841b,是在位於最接近於該開放端部的位置的一個永久磁鐵812a或812b的端部當中,位於從直線1177起算的圓周方向上的距離最遠的位置之端部,前述直線1177是通過包含該永久磁鐵812a或812b的(轉子的)一個極(磁極)的區域(在圖3中以虛線包圍的區域)的圓周方向上的中心位置與旋轉軸線0(原點0)之直線。在此,從直線1177起算的圓周方向上的距離,是在轉子鐵芯811的旋轉方向上的前方側及後方側當中在該開放端部所存在之側決定的距離。如圖11A所示,具有開放端部即第1端部1111a的磁鐵孔817a的永久磁鐵基準端部841a是在永久磁鐵812a的端部當中,在比直線1177更靠第1端部1111a側的前方側,位於從直線1177起算的圓周方向上的距離最遠的位置之端部。又,具有開放端部即第1端部1111b的磁鐵孔817b的永久磁鐵基準端部841b是在永久磁鐵812b的端部當中,在比直線1177更靠第1端部1111b側的後方側,位於從直線1177起算的圓周方向上的距離最遠的位置之端部。
另外,在圖11A中,雖然為了方便標記而顯示複數個旋轉軸線0,但如圖8~圖10所示,實際的旋轉軸線0為1個(圖11A所示的旋轉軸線0是在一個位置上重疊)。此情形在後述的圖11B及圖11C中也是相同的。在本實施形態中,磁鐵孔817a、817b是分別相對於直線1177而位於轉子鐵芯811的旋轉方向上的前方側、後方側。從而,永久磁鐵基準端部841a、841b是相對於直線1177而分別只存在於轉子鐵芯811的旋轉方向上的前方側、後方側的其中一者。相對於此,例如,假設磁鐵孔817a~817b是配置成跨越直線1177,且形成在設置於該磁鐵孔817a~817b的永久磁鐵812a~812b的左右方向Ds的兩側的外周側磁障113a~113b、114a~114b之雙方是在轉子鐵芯811的外周面818中具有開放端部。在此情況下,在轉子鐵芯剖面中,永久磁鐵基準端部841a、841b是相對於直線1177而分別存在於轉子鐵芯811的旋轉方向上的前方側及後方側。
在圖11A~圖11C所示的例子中,轉子的一個極的區域的圓周方向上的中心位置例如是連結永久磁鐵基準端部841a與841b的虛擬直線的中點位置。將通過此中心位置與旋轉軸線0(原點0)的直線設為直線1177。
在以下的說明中,因應於需要,將開放端部前方側角落部1131a、1131c分別稱為前方側開放端部前方側角落部、後方側開放端部前方側角落部。又,在以下的說明中,因應於需要,將前方側磁鐵孔817a的開放端部1111a、後方側磁鐵孔817b的開放端部1111b分別稱為前方側開放端部1111a、後方側開放端部1111b。
前方側開放端部前方側角落部1131a是在轉子鐵芯811的圓周方向上的2個角落部1131a~1131b當中,在轉子鐵芯811的旋轉方向的前方側的角落部1131a,前述2個角落部1131a~1131b是前方側開放端部1111a的角落部,前述前方側開放端部1111a是前方側磁鐵孔817a所具有的成為外周側磁障的空間1123a的開放端部。
後方側開放端部前方側角落部1131c是在轉子鐵芯811的圓周方向上的2個角落部1131c~1131d當中,在轉子鐵芯811的旋轉方向的前方側的角落部1131c,前述2個角落部1131c~1131d是後方側開放端部111b的角落部,前述後方側開放端部111b是後方側磁鐵孔817b所具有的成為外周側磁障的空間1123b的開放端部。
又,在轉子鐵芯剖面中,永久磁鐵基準端部841a~841b具有前方側永久磁鐵端部841a與後方側永久磁鐵端部841b。前方側永久磁鐵端部841a是在設置於前方側磁鐵孔817a的永久磁鐵812a~812b的端部當中,在旋轉方向的最前方側的位置之端部。後方側永久磁鐵端部841b是在設置於後方側磁鐵孔817b的永久磁鐵812b的端部當中,在旋轉方向的最後方側的位置之端部。
又,在轉子鐵芯剖面中,基準位置831a~831b具有前方側基準位置831a。基準位置831a~831b是通過前方側永久磁鐵端部841a與旋轉軸線0的直線1172、與轉子鐵芯811的外周面818的交點的位置。
又,在轉子鐵芯剖面中,基準位置831a~831b具有後方側基準位置831b。後方側基準位置831b是通過後方側永久磁鐵端部841b與旋轉軸線0的直線1174、與轉子鐵芯811的外周面818的交點的位置。
在此,從使轉子810的轉矩確實地提升的觀點來看,較理想的是如以下地來決定開放端部前方側角落部(前方側開放端部前方側角落部1131a及後方側開放端部前方側角落部1131c)的位置。 將設置在和轉子鐵芯811的外周面818具有間隔而相向的位置之定子鐵芯121的狹槽數(個)設為N slot。又,將從基準位置831a~831b起算之繞著旋轉軸線0的角度即基準位置移動角度θa(rad)設為2π/N slot。在圖8所示的例子中,由於定子鐵芯121的狹槽數(個)N slot為24個,因此基準位置移動角度θa為2π/24(rad)=15(°)。
在轉子鐵芯剖面中,直線1171、1172所形成的角度θf較理想的是設為θa/24以上且15θa/24以下,更理想的是設為θa/3±θa/24的範圍內。在轉子鐵芯剖面中,直線1171是通過前方側開放端部前方側角落部1131a與旋轉軸線0的直線。在轉子鐵芯剖面中,方側開放端部前方側角落部1131a是在開放端部前方側角落部1131a、1131c當中,位於比相同的極中的圓周方向的中心更靠旋轉方向的前方側的角落部。在轉子鐵芯剖面中,直線1172是通過對於磁鐵孔817a的基準位置831a與旋轉軸線0的直線,前述磁鐵孔817a具有以該前方側開放端部前方側角落部1131a為角落部的一個的開放端部1111a。在以下的說明中,因應於需要,將此角度θf稱為前方側的外周側磁障移動角度θf。
又,在轉子鐵芯剖面中,直線1173、1174所形成的角度θb較理想的是設為θa/24以上且θa/8以下,更理想的是設為θa/12±θa/24的範圍內。在轉子鐵芯剖面中,直線1173是通過後方側開放端部前方側角落部1131c與旋轉軸線0的直線。後方側開放端部前方側角落部1131c是在開放端部前方側角落部1131a、1131c當中,位於比相同的極中的圓周方向的中心更靠旋轉方向的後方側之角落部。在轉子鐵芯剖面中,直線1174是通過對於磁鐵孔817b的基準位置831b與旋轉軸線0的直線,前述磁鐵孔817b具有以該後方側開放端部前方側角落部1131c為角落部的一個的開放端部1111b。在以下的說明中,因應於需要,將此角度θb稱為後方側的外周側磁障的移動角度θb。
又,如(原委)欄的((第2知識見解))欄所說明,在轉子鐵芯811的外周面818的區域當中,在和比最低的磁通密度更高的磁通密度的芯齒123a、123b相向的位置上設置凹陷部815a,藉此使轉子810的轉矩增大。為了更加提高增大轉子810的轉矩的效果,凹陷部815a的全部區域較理想的是和該磁通密度的芯齒123a、123b相向。然而,凹陷部815a的一部分的區域和該磁通密度的芯齒123a、123b相向亦可。又,從確實地提升轉子810的轉矩的觀點來看,較理想的是將凹陷部815a決定為如以下。
如圖11A所示,在轉子鐵芯剖面中,將從後方側基準位置831b起算之繞著旋轉軸線0的角度即基準位置移動角度θa(rad)設為2π/N slot。在轉子鐵芯剖面中,後方側基準位置831b是通過後方側永久磁鐵端部841b與旋轉軸線0的直線1174、與轉子鐵芯811的外周面818的交點的位置。後方側永久磁鐵端部841b是在設置於相同的極的永久磁鐵812a~812b的端部當中位於圓周方向的最後方側之端部。如前述,在圖8所示的例子中,定子鐵芯121的狹槽數(個)N slot為24個。從而,基準位置移動角度θa為2π/24(rad)=15(°)。
首先,在轉子鐵芯剖面中,較理想的是將直線1175、1173所形成的角度設為θa。在轉子鐵芯剖面中,直線1175是通過凹陷部後方側角落部1161a與旋轉軸線0的直線。在轉子鐵芯剖面中,凹陷部後方側角落部1161a是凹陷部815a的開放端部1151a中的2個角落部1161a~1161b當中,位於旋轉方向的後方側的角落部。在轉子鐵芯剖面中,直線1173是通過後方側開放端部前方側角落部1131c與旋轉軸線0的直線。後方側開放端部前方側角落部1131c是在和設置該凹陷部815a的極相同的極中,位於比該凹陷部815a更靠旋轉方向的後方側。
又,在轉子鐵芯剖面中,直線1176、1175所形成的角度θc較理想的是設為θa/8以上且25θa/24θa以下,更理想的是設為3θa/4±θa/12的範圍內。在轉子鐵芯剖面中,直線1176是通過凹陷部前方側角落部1161b與旋轉軸線0的直線。在轉子鐵芯剖面中,凹陷部前方側角落部1161b是凹陷部815a的開放端部1151a中的2個角落部1161a~1161b當中,在旋轉方向的前方側的角落部。在轉子鐵芯剖面中,直線1175是通過凹陷部後方側角落部1161a與旋轉軸線0的直線。在以下的說明中,因應於需要而將此角度θc稱為凹陷部開口角度θc。
又,凹陷部815a的深度的最大值Cd,較理想的是設為轉子鐵芯811的直徑的0.01倍以上且0.1以下的範圍內,較理想的是設為轉子鐵芯811的直徑的0.04倍以上且0.07倍以下的範圍內。在以下的說明中,因應於需要而將凹陷部815a的深度的最大值Cd稱為凹陷部深度最大值Cd。
又,凹陷部815a的形狀並沒有限定。在圖11A中例示凹陷部815a的平面形狀(轉子鐵芯剖面的形狀)為四角形的情況,前述四角形具有以通過凹陷部815a的重心位置與轉子鐵芯811的旋轉軸線0的直線為對稱軸的線對稱的關係。然而,凹陷部815a的平面形狀亦可為不具有對稱性的形狀。又,凹陷部815a的平面形狀亦可為三角形,亦可為五角形以上的多角形。又,凹陷部815a的角落部亦可具有曲率。
接著,說明第2端部1112a~1112b。第2端部1112a~1112b是位於磁鐵孔817a~817b的左右方向Ds上的內周側之端部。第2端部1112a~1112b是和磁鐵間磁障814a~814b的端部一致並且被封閉。亦即,磁鐵孔817a~817b具有下述形狀:在設置有永久磁鐵812a~812b的狀態下,在永久磁鐵812a~812b與第2端部1112a~1112b之間,形成有沿著旋轉軸線0延伸的磁障的空間。
在圖11A所示的例子中,在轉子鐵芯剖面中,第2端部1112a~1112b是在設置永久磁鐵812a~812b的磁鐵孔817a~817b之從2個角落部1132a~1132b、1132c~1132d的其中一者到另一者之沿著磁鐵孔817a~817b的輪廓的區域。構成第2端部1112a~1112b的角落部1132a~1132b、1132c~1132d是由IPMSM800的設計人員決定成使磁鐵孔817a~817b將磁鐵間橋接部821夾在其間而相互相向。在圖11A所示的例子中,在轉子鐵芯剖面中,在第2端部1112a~1112b包含直線的兩端的位置,前述直線是以最短的距離來將夾著磁鐵間橋接部821而相向的2個磁鐵孔817a~817b各自的第2端部1112a~1112b彼此連結。
在圖11A所示的例子中,當轉子810(轉子鐵芯811)旋轉時應力最集中的軟磁性材料的區域是包含在第2端部1112a~1112b之間。在圖11A所示的例子中,以最短距離來連結前述第2端部1112a~1112b彼此的直線是連結角落部1132a、1132c的直線1141a。在圖11A所示的例子中,磁鐵間橋接部821a例如是由連結2個角落部1132a、1132c的直線1141a、與連結2個角落部1132b、1132d的直線1141b所包圍的軟磁性材料的區域來決定。
另外,在圖11A中,例示2個磁鐵孔817a~817b之間的區域全部都是軟磁性材料的區域之情況。從而,以最短距離將2個磁鐵孔817a~817b各自的第2端部1112a~1112b彼此連結的直線1141a,與將各個第2端部1112a~1112b彼此以和軟磁性材料的區域重疊的長度成為最短之方式畫出的直線相同。另一方面,在2個磁鐵孔817a~817b之間的區域形成有磁障的情況下,不一定會形成為像這樣。這是因為會有以最短距離將2個磁鐵孔817a~817b各自的第2端部1112a~1112b彼此連結的直線和磁障重疊的情況。如前述,當轉子810(轉子鐵芯811)旋轉時應力最集中的軟磁性材料的區域是包含在第2端部1112a~1112b之間。又,將各個第2端部1112a~1112b彼此以和軟磁性材料的區域重疊的長度成為最短的方式畫出的直線的兩端位置會包含在第2端部。若設為像這樣,則無論在各個第2端部1112a~1112b之間的區域是否有磁障,當轉子810(轉子鐵芯811)旋轉時都可以使應力最集中的軟磁性材料的區域包含在第2端部1112a~1112b之間。
圖11B是顯示轉子鐵芯811的構成(轉子鐵芯剖面)的第1變形例的圖。 在圖11B所示的例子中,例如,由連結2個角落部1132e、1132h的直線1141c、與連結2個角落部1132g、1132j的直線1141d所包圍的軟磁性材料的區域,是被決定為磁鐵間橋接部821i的區域。在此情況下,第2端部1112c、1112d是從設置永久磁鐵812a、812b的磁鐵孔817c、817d的2個角落部1132e及1132g、1132h及1132j的一者到另一者之沿著磁鐵孔817c~817d的輪廓的區域。
又,在圖11B中,亦可不設為如以上,例如,將由連結2個角落部1132e、1132h的直線1141c、與連結2個角落部1132f、1132i的直線1141e所包圍的軟磁性材料的區域決定為磁鐵間橋接部的區域。在此情況下,第2端部1112c、1112d是從設置永久磁鐵812a、812b的磁鐵孔817c、817d的2個角落部1132e及1132f、1132h及1132i的一者到另一者之沿著磁鐵孔817的輪廓的區域。又,第2端部1112亦可為從設置永久磁鐵812a、812b的磁鐵孔817c、817d的2個角落部1132f及1132g、1132i及1132j的一者到另一者之沿著磁鐵孔817c、817d的輪廓的區域。
此外,在圖11B所示的例子中,以和構成軟磁性體部820的軟磁性材料重疊的長度成為最短距離的方式畫出的直線的兩端位置為角落部1132f、1132i的位置。從而,在第2端部1112c~1112d包含角落部1132f、1132i的位置。
在圖11A及圖11B所示的例子中,例示了在轉子鐵芯剖面中,決定第2端部1112的2個角落部1132不具有曲率的情況。圖11C是顯示轉子鐵芯811的構成(轉子鐵芯剖面)的第2變形例的圖。在圖11C中是例示以下情況:相對於圖11A,將第2端部1112a~1112b的角落部1132a~1132d變更為具有曲率的角落部1132k~1132n。
當角落部1132k~1132n具有曲率的情況下,角落部1132k~1132n的位置是具有該曲率的區域的代表點的位置。角落部的代表點例如是以磁鐵間橋接部的大小為最大的方式來選擇。在像這樣的情況下,在圖11C所示的例子中,顯示角落部1132k~1132n的黑圓圈(●)的位置為角落部1132k~1132n的代表點的位置。將像這樣決定的角落部1132k~1132n的代表點的位置當作角落部1132k~1132n的位置。另外,角落部的代表點不一定要以磁鐵間橋接部的大小為最大的方式來選擇。例如,亦可將形成角落部的區域的中心位置選擇作為角落部的代表點。在圖11C所示的例子中,第2端部1112e、1112f是設置永久磁鐵812a、812b的磁鐵孔817e、817f的2個角落部1132k~1132l、1132m~1132n的一者到另一者之沿著磁鐵孔817e、817f的輪廓的區域。或者,以磁鐵間橋接部的大小為最小的方式來選擇角落部的代表點亦可。
此外,在圖11C所示的例子中,以和構成軟磁性體部820的軟磁性材料重疊的長度成為最短距離的方式畫出的直線的兩端位置為直線1141h的兩端位置。從而,在第2端部1112e~1112f包含直線1141h的兩端的位置。
又,當第1端部1111的角落部具有曲率的情況下,只要將具有該曲率的區域的代表點設為第1端部1111的角落部的位置即可。第1端部1111的角落部的代表點例如是以第1端部1111的大小為最寬的方式,而設定在轉子鐵芯811的外周面818的位置上。但是,並不一定要設成像這樣。例如,亦可將具有該曲率的區域的中心位置設為第1端部1111的角落部的代表點。
回到圖11A的說明,針對第3端部1113a~1113b進行說明。第3端部1113a~1113b是在永久磁鐵812a~812b的磁化方向Dm上位於外周側的端部。在永久磁鐵812a~812b的磁化方向Dm上,外周側是接近於轉子鐵芯811的外周面818之側。在圖11A所示的例子中,第3端部1113a、1113b是在從角落部1131b、1131c到角落部1132a、1132c之沿著磁鐵孔817a、817b的輪廓的區域,前述角落部1131b、1131c是在決定第1端部1111a、1111b的2個角落部1131a~1131b、1131c~1131d當中位於內側的角落部,前述角落部1132a、1132c是在決定第2端部1112a、1112b的2個角落部1132a~1132b、1132c~1132d當中,在永久磁鐵812a、812b的磁化方向Dm上位於外周側的角落部。內側是接近轉子的一個極的區域的圓周方向上的中心位置之側。在圖11B所示的例子中,第3端部1113c、1113d例如是在從決定第1端部1111的角落部1131b、1131c到決定第2端部1112的角落部1132e、1132h之沿著磁鐵孔817c、817d的輪廓的區域。在圖11C所示的例子中,第3端部1113e、1113f是在從決定第1端部1111的角落部1131b、1131c到決定第2端部1112的角落部1132k、1132m之沿著磁鐵孔817e、817f的輪廓的區域。
回到圖11A的說明,針對第4端部1114a~1114b進行說明。第4端部1114a~1114b是在永久磁鐵812a、812b的磁化方向Dm上位於內周側的端部。在圖11A所示的例子中,第4端部1114a、1114b是在從角落部1131a、1131d到角落部1132b、1132d之沿著磁鐵孔817a、817b的輪廓的區域,前述角落部1131a、1131d是在決定第1端部1111a、1111b的2個角落部1131a~1131b、1131c~1131d當中位於外側的角落部,前述角落部1132b、1132d是在決定第2端部11112a、1112b的2個角落部1132a~1132b、1132c~1132d當中,在永久磁鐵812a、812b的磁化方向Dm上位於內周側的角落部。外側是接近轉子的一個極的區域的圓周方向上的一端之側。在圖11B所示的例子中,第4端部1114c、1114d例如是在從決定第1端部1011的角落部1131a、1131d到決定第2端部1112c,1112d的角落部1132g、1132j之沿著磁鐵孔817c、817d的輪廓的區域。在圖11C所示的例子中,第4端部1114e、1114f是在從決定第1端部1111的角落部1131a、1131d到決定第2端部1112的角落部1132l、1132n之沿著磁鐵孔817e、817f的輪廓的區域。
在圖11A~圖11C中,設置永久磁鐵812a~812b的2個磁鐵孔817a~817b、817d~817e、817f~817g具有設置永久磁鐵812a~812b的空間1121a~1121b。又,設置永久磁鐵812a~812b的2個磁鐵孔817a~817b、817d~817e、817f~817g在設置永久磁鐵的空間1121a~1121b與第2端部1112a~1112b、1112c~1112d、1112e~1112f之間,具有成為磁鐵間磁障的空間1122a~1122b、1122c~1122d、1122e~1122f。又,設置永久磁鐵812a~812b的2個磁鐵孔817a~817b、817d~817e、817f~817g在設置永久磁鐵的空間1121a~1121b與第1端部1111a~1111b之間,具有成為圖8所示的外周側磁障813a~813b的空間1123a~1123b、1123c~1123d、1123e~1123f。
在以下的說明中,因應於需要,將設置永久磁鐵812a~812b的空間1121a~1121b、成為磁鐵間磁障的空間1122a~1122b、1122c~1122d、1122e~1122f、成為外周側磁障的空間1123a~1123b、1123c~1123d、1123e~1123f分別稱為磁鐵設置空間1121a~1122b、磁鐵間磁障空間1122a~1122b、1122c~1122d、1122e~1122f、外周側磁障空間1123a~1123b、1123c~1123d、1123e~1123f。針對磁鐵設置空間1121a~1122b、磁鐵間磁障空間1122~1122b、1122c~1122d、1122e~1122f、外周側磁障空間1123a~1123b、1123c~1123d、1123e~1123f進行說明。
在前方側磁鐵孔817a中,外周側磁障空間1123a是成為前方側磁障的空間之一例。在後方側磁鐵孔817b中,外周側磁障空間1123b是成為後方側磁障的空間之一例。又,在前方側磁鐵孔817a中,磁鐵間磁障空間1122a是成為後方側磁障的空間之一例。在後方側磁鐵孔817b中,磁鐵間磁障空間1122b是成為前方側磁障的空間之一例。亦即,在前方側磁鐵孔817a及後方側磁鐵孔817b中,成為前方側磁障的空間(外周側磁障空間1123a、磁鐵間磁障空間1122b)是比成為後方側磁障的空間(磁鐵間磁障空間1122a、外周側磁障空間1123b)更位於旋轉方向的前方側。
更具體而言,前方側磁鐵孔817a所具有的外周側磁障空間1123a是位於比前方側磁鐵孔817a所具有的磁鐵間磁障空間1122a更靠旋轉方向的前方側,且比前方側磁鐵孔817a所具有的磁鐵間磁障空間1122a更靠轉子鐵芯811的外周側。又,後方側磁鐵孔817b所具有的外周側磁障空間1123b是位於比後方側磁鐵孔817b所具有的磁鐵間磁障空間1122b更靠旋轉方向的後方側,且比後方側磁鐵孔817b所具有的磁鐵間磁障空間1122b更靠轉子鐵芯811的外周側。又,前方側磁鐵孔817a所具有的外周側磁障空間1123a與後方側磁鐵孔817b所具有的外周側磁障空間1123b具有開放端部即第1端部1111a~1111b。像這樣,較理想的是,外周側磁障空間1123a、1123b之雙方都具有開放端部(第1端部1111a~1111b)。然而,亦可僅有外周側磁障空間1123a、1123b的其中一者具有開放端部(第1端部1111)。
在圖11A~圖11C所示的轉子鐵芯剖面中,磁鐵設置空間1121a~1121b之沿著永久磁鐵812a~812b的磁化方向Dm的方向即寬度方向的長度L2,是和與永久磁鐵812a~812b的磁化方向Dm的長度相對應的長度同等而幾乎為固定。磁鐵設置空間1121a~1121b的寬度方向的長度L2亦可和永久磁鐵812a~812b的磁化方向Dm的長度相同,亦可為了較容易將永久磁鐵812a~812b設置在磁鐵孔817a~817b中,而比永久磁鐵812a~812b的磁化方向Dm的長度更(稍微)長。另外,在本實施形態中例示永久磁鐵812a~812b的磁化方向Dm的長度為固定的情況。然而,永久磁鐵812a~812b的磁化方向Dm的長度並不一定要固定。當永久磁鐵812a~812b的磁化方向Dm的長度不是固定的情況下,亦可將磁鐵設置空間1121a~1121b的寬度方向的長度,設為和與永久磁鐵812a~812b的磁化方向Dm的長度相對應的長度同等。在此情況下,磁鐵設置空間1121a~1121b的寬度方向的長度不是固定的。
若在磁鐵設置空間1121a~1121b的至少一部分的區域設置永久磁鐵812a~812b,則會因被永久磁鐵812a~812b所佔據,而不再是空間。磁鐵間磁障空間1122a~1122b是和圖8所示的磁鐵間磁障814a~814b一致,且即使設置永久磁鐵812a~812b,仍然還是空間。外周側磁障空間1123a~1123b是和圖9所示的外周側磁障813a~813b一致,且即使設置永久磁鐵812a~812b,仍然還是空間。此外,當在磁鐵間磁障空間1122a~1122f及外周側磁障空間1123a~1123f設置非磁性體的情況下,磁鐵間磁障空間1122a~1122f及外周側磁障空間1123a~1123f的至少一部分的區域會被非磁性體佔據。
接下來,一邊參照圖10及圖11A~圖11C,一邊說明軟磁性體部820的構成之一例。另外,在此例示以下情況:在圖11B中,角落部1132e、1132g為第2端部1112c的2個角落部,角落部1132h、1132j為第2端部1112d的2個角落部。
在圖10中,軟磁性體部820具有磁鐵間橋接部821a~821h、外側部822a~822h、及內側部823a。
磁鐵間橋接部821a~821h是橋接外緣部當中軟磁性材料存在的區域。在圖10及圖11A所示的例子中,橋接外緣部是被以下直線及端部所包圍的區域:將在相同的極設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第2端部1112a~1112b的外周側的角落部1132a、1132c彼此連結的直線(在圖10中參照連結第2端部1112a~1112b的外周側之端的二點鏈線)、將該2個磁鐵孔817a~817b的第2端部1112a~1112b的內周側的角落部1132b、1132d彼此連結的直線(在圖10中參照連結第2端部1112a~1112b的內周側之端的二點鏈線)、及該2個磁鐵孔817a~817b的第2端部1112a~1112b。在圖10中,在本實施形態中例示在橋接外緣部831a僅存在有軟磁性材料的情況。僅存在有軟磁性材料是指不包含磁障等軟磁性材料以外的區域之情形。從而,在本實施形態中,磁鐵間橋接部821a是和橋接外緣部831a一致。另外,在圖10及圖11A中,橋接外緣部831a是對應於在相同的極中設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第2端部1112a~1112b之間的區域。又,在相同的極中設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第2端部1112a~1112b之間的區域,亦可包含有磁障等軟磁性材料以外的區域。在此情況下,磁鐵間橋接部821a是從橋接外緣部831a除去了軟磁性材料以外的區域之區域。又,磁鐵間橋接部821a~821h的數量是等於轉子810的極數(在本實施形態中為8)。
具體而言,在圖11A所示的例子中,橋接外緣部831a是被以下直線及端部所包圍的區域:將磁鐵孔817a~817b的第2端部1112a~1112b的外周側的角落部1132a、1132c彼此連結的直線1141a、將該2個磁鐵孔817a~817b的第2端部1112a~1112b的內周側的角落部1132d、1132d彼此連結的直線1141b、及該2個磁鐵孔817a~817b的第2端部1112a~1112b。磁鐵間橋接部821a是和此橋接外緣部831a一致。在圖10及圖11A中,排列地顯示符號821a及831a就是指這個情形。
又,在圖11B及圖11C所示的例子中,是如以下地決定橋接外緣部。 在圖11B所示的例子中,橋接外緣部831b是被以下直線及端部所包圍的區域:將磁鐵孔817a~817b的第2端部1112c~1112d的外周側的角落部1132e、1132h彼此連結的直線1141c、將該2個磁鐵孔817a~817b的第2端部1112c~1112d的內周側的角落部1132g、1132j彼此連結的直線1141d、及該2個磁鐵孔817a~817b的第2端部1112c~1112d。磁鐵間橋接部821i是和此橋接外緣部831b一致。在圖11B中,排列地顯示符號821i及831b就是指這個情形。
在圖11C所示的例子中,橋接外緣部831c是被以下直線及端部所包圍的區域:將磁鐵孔817a~817b的第2端部1112e~1112f的外周側的角落部1132k、1132m彼此連結的直線1141f、將該2個磁鐵孔817a~817b的第2端部1112e~1112f的內周側的角落部1132l、1132n彼此連結的直線1141g、及該2個磁鐵孔817a~817b的第2端部1112e~1112f。磁鐵間橋接部821j是和此橋接外緣部831c一致。在圖11C中,排列地顯示符號821j及831c就是指這個情形。
外側部822a是在外側外緣部當中存在有軟磁性材料的區域。外側外緣部是在磁鐵間橋接部821a的外周側上連結於磁鐵間橋接部821的區域。在圖10及圖11A所示的例子中,外側外緣部是被設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第3端部1113a~1113b、及轉子鐵芯811的外周面818所包圍的區域。在圖9中,在本實施形態中例示在外側外緣部832a中僅存在有軟磁性材料(不包含磁障等軟磁性材料以外的區域)的情況。從而,外側部822a是和外側外緣部832a一致。但是,在外側外緣部832a中亦可包含磁障等軟磁性材料以外的區域。在此情況下,外側部822a是從外側外緣部832a除去了軟磁性材料以外的區域之區域。又,外側部822a~822h的數量是等於轉子810的極數(在本實施形態中為8)。
具體而言,在圖11A所示的例子中,外側外緣部832a是被以下直線、端部、及外周面所包圍的區域:將磁鐵孔817a~817b的第2端部1112a~1112b的外周側的角落部1132a、1132c彼此連結的直線1141a、該2個磁鐵孔817a~817b的第3端部1113a~1113b、及轉子鐵芯811的外周面818。外側部822a是和此外側外緣部832a一致。在圖10及圖11A中,排列地顯示符號822a及832a就是指這個情形。
又,在圖11B及圖11C所示的例子中,是如以下地決定外側外緣部。 在圖11B所示的例子中,外側外緣部832b是被以下直線、端部、及外周面所包圍的區域:將磁鐵孔817a~817b的第2端部1112c~1112d的外周側的角落部1132e、1132h彼此連結的直線1141c、該2個磁鐵孔817c~817d的第3端部1113c~1113d、及轉子鐵芯811的外周面818。外側部822i是和此外側外緣部832b一致。在圖11B中,排列地顯示符號822i及832b就是指這個情形。
在圖11C所示的例子中,外側外緣部832c是被以下直線、端部、及外周面所包圍的區域:將磁鐵孔817a~817b的第2端部1112e~1112f的外周側的角落部1132k、1132m彼此連結的直線1141f、該2個磁鐵孔817e~817f的第3端部1113e~1113f、及轉子鐵芯811的外周面818。外側部822j是和此外側外緣部832c一致。在圖11C中,排列地顯示符號822j及832c就是指這個情形。
內側部823a是在內側外緣部當中存在有軟磁性材料的區域。內側外緣部是在磁鐵間橋接部821a的內周側上連結於磁鐵間橋接部821a的軟磁性材料的區域。在圖10及圖11A所示的例子中,內側外緣部是被設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第4端部1114a~1114b、轉子鐵芯811的外周面818、及轉子鐵芯811的內周面819所包圍的區域。在圖9中,在本實施形態中例示在內側外緣部833a僅存在有軟磁性材料的情況。僅存在有軟磁性材料是指不包含磁障等軟磁性材料以外的區域之情形。從而,內側部823a是和內側外緣部833a一致。但是,在內側外緣部833a中亦可包含磁障等軟磁性材料以外的區域。在此情況下,內側部823a是從內側外緣部833a除去了軟磁性材料以外的區域之區域。又,在圖9所示的例子中,內側部823a的數量為1個。另外,內側部823a不一定要被轉子鐵芯811的外周面818所包圍。例如,當將轉子鐵芯811構成為在相互相鄰的極的外周側磁障813a(外周側磁障空間1123a)之間不存在有軟磁性材料的情況下,內側部823a不會被轉子鐵芯811的外周面818所包圍。
具體而言,在圖11A所示的例子中,內側外緣部833a是被以下直線、端部、外周面、及內周面所包圍的區域:將設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第2端部1112a~1112b的內周側的角落部1132b、1132d彼此連結的直線1141b、該2個磁鐵孔817a~817b的第4端部1114a~1114b、轉子鐵芯811的外周面818、及轉子鐵芯811的內周面819。內側部823a是和此內側外緣部833a一致。在圖10及圖11A中,排列地顯示符號823a及833a就是指這個情形。
又,在圖11B及圖11C所示的例子中,是如以下地決定內側外緣部。 在圖11B所示的例子中,內側外緣部833b是被以下直線、端部、外周面、及內周面所包圍的區域:將設置永久磁鐵812a~812b的2個磁鐵孔817c~817d的第2端部1112c~1112d的內周側的角落部1132e、1132h彼此連結的直線1141c、該2個磁鐵孔817c~817d的第4端部1114c~1114d、轉子鐵芯811的外周面818、及轉子鐵芯811的內周面819。內側部823b是和此內側外緣部833b一致。在圖11B中,排列地顯示符號823b及833b就是指這個情形。
在圖11C所示的例子中,內側外緣部833c是被以下直線、端部、外周面、及內周面所包圍的區域:將設置永久磁鐵812a~812b的2個磁鐵孔817e~817f的第2端部1112e~1112f的內周側的角落部1132l、1132n彼此連結的直線1141g、該2個磁鐵孔817e~817f的第4端部1114e~1114f、轉子鐵芯811的外周面818、及轉子鐵芯811的內周面819。內側部823c是和此內側外緣部833c一致。在圖11C中,排列地顯示符號823c及833c就是指這個情形。
接著,針對磁鐵間橋接部821a的寬度w進行說明。在轉子鐵芯剖面中,磁鐵間橋接部821a的寬度w是用橋接寬度規定線1142a~1142c之與軟磁性材料重疊的部分的長度來表示。如圖11A~圖11C所示,橋接寬度規定線1142a~1142c為下述直線:將設置永久磁鐵812a~812b的2個磁鐵孔817a~817b、817c~817d、817e~817f的第2端部1112a~1112b、1112c~1112d、1112e~1112f彼此,以和軟磁性材料重疊的長度為最短的方式來連結的直線。
具體而言,在圖11A所示的例子中,將設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第2端部1112a~1112b彼此,以和軟磁性材料重疊的長度為最短的方式來連結的直線為直線1142a,並且和前述直線1141a一致。在圖11A中,排列地顯示符號1141a及1142a就是指這個情形。在此情況下,在轉子鐵芯剖面中,磁鐵間橋接部821a的寬度w是橋接寬度規定線1142a之與軟磁性材料重疊的部分的長度。在圖11A所示的例子中,整個橋接寬度規定線1142a會和軟磁性體材料重疊。從而,磁鐵間橋接部821a的寬度w是和橋接寬度規定線1142a的長度相等。由於在磁鐵間橋接部形成有孔,因此當橋接寬度規定線的一部分和軟磁性材料重疊的情況下,磁鐵間橋接部的寬度w即為橋接寬度規定線之與軟磁性材料重疊的部分的長度。此外,橋接寬度規定線和軟磁性材料重疊的部分的長度,是從橋接寬度規定線的長度減去橋接寬度規定線未和軟磁性材料重疊的部分的長度而得到的長度。
在圖11B所示的例子中,將設置永久磁鐵812a~812b的2個磁鐵孔817c~817d的第2端部1112c~1112d彼此,以和軟磁性材料重疊的長度為最短的方式來連結的直線為直線1142b,並且和前述直線1141e一致。在圖11B中,排列地顯示符號1141e及1142b就是指這個情形。從而,橋接寬度規定線為直線1142b。在此情況下,在轉子鐵芯剖面中,磁鐵間橋接部821i的寬度w是橋接寬度規定線1142b之與軟磁性材料重疊的部分的長度。在圖11B所示的例子中,整個橋接寬度規定線1142b會和軟磁性體材料重疊。從而,磁鐵間橋接部821i的寬度w是和橋接寬度規定線1142b的長度相等。
在圖11C所示的例子中,將設置永久磁鐵812a~812b的2個磁鐵孔817e~817f的第2端部1112e~1112f彼此,以和軟磁性材料重疊的長度為最短的方式來連結的直線為直線1142c,並且和前述直線1141f一致。在圖11C中,排列地顯示符號1141f及1142c就是指這個情形。從而,橋接寬度規定線為直線1142c。在此情況下,在轉子鐵芯剖面中,磁鐵間橋接部821j的寬度w是橋接寬度規定線1142c之與軟磁性材料重疊的部分的長度。在圖11C所示的例子中,整個橋接寬度規定線1142c會和軟磁性體材料重疊。從而,磁鐵間橋接部821j的寬度w是和橋接寬度規定線1142c的長度相等。
如以上地決定的磁鐵間橋接部821的寬度w,較理想的是轉子鐵芯811的直徑的0.02倍以下。若磁鐵間橋接部821的寬度w大於轉子鐵芯811的直徑的0.02倍,則會因通過磁鐵間橋接部821的磁通變多,而使通過磁鐵間橋接部821的磁通所包含的回流磁通變多。從而,由不會成為回流磁通的磁通(參照圖5B所示的磁通φ13、φ14)所帶來的轉子810的轉矩增大效果會減少。
又,磁鐵間橋接部821的寬度w較理想的是大於以下式(1)所決定的長度w min。 w min=ρ×S×r g×ω÷Ys …(1) 在此,ρ是構成軟磁性體部820的軟磁性材料的密度(kg/m 3)。ρ例如是由IPMSM800的規格來事先決定的。Ys是構成軟磁性體部820的軟磁性材料在常溫下的降伏應力(Pa)。
降伏應力(Ys)例如是由軟磁性材料的規格來事先決定。此外,降伏應力(Ys)亦可為測定值。當要採用測定值來作為降伏應力(Ys)的情況下,例如亦可如以下地進行。首先,從軟磁性材料的板厚方向上的中心部採集JIS5號試驗片來作為拉伸試驗片。然後,依據JIS Z 2241:2011的記載對拉伸試驗片進行拉伸試驗,藉此測定降伏應力(Ys)。此時,以拉伸試驗片的軋延方向為拉伸方向。詳細而言,當藉由拉伸試驗,來測定JIS Z 2241:2011所記載的上降伏點及下降伏點的情況下,降伏應力(Ys)亦可為上降伏點。另一方面,當藉由拉伸試驗,未明確地顯現出降伏現象的材料的情況下,降伏應力(Ys)亦可為JIS Z 2241:2011所記載的偏移法所測定的0.2%強度。
S是後述的外力影響部824(參照圖11A~圖11C所示的824a~824c)在轉子鐵芯剖面中的面積(m 2)。r g是從轉子810(轉子鐵芯811)的旋轉中心(旋轉軸線0)到外力影響部824的轉子鐵芯剖面中的重心G的位置之半徑方向上的距離(m)(參照圖11A~圖11C的連結外力影響部824的轉子鐵芯剖面中的重心G與旋轉軸線0的直線1178)。重心G的位置是依據重心的定義,而決定為作用於外力影響部824的各部分的重力的合力產生作用的點。另外,在圖11A~圖11C中,為了方便說明及標記,顯示外力影響部824a~824c的重心G的大概位置。ω是以最高旋轉數旋轉時之轉子810的角速度(rad/sec)。轉子810的最高旋轉數是在IPMSM800中所容許的轉子810的旋轉數的上限值,並且是由IPMSM800的規格來事先決定。 由於當磁鐵間橋接部821的寬度w過大時轉矩會降低,因此較理想的是設為式(1)中所決定的長度w min的3.0倍以下。
在此,外力影響部824是被在相同的極設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第3端部1113、轉子鐵芯811(軟磁性體部820)的外周面818、及橋接寬度規定線1142所包圍的軟磁性材料的區域。 在圖11A所示的例子中,外力影響部824a是被設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第3端部1113a~1113b、轉子鐵芯811的外周面818、及橋接寬度規定線1142a所包圍的軟磁性材料的區域。
在圖11B所示的例子中,外力影響部824b是被設置永久磁鐵812a~812b的2個磁鐵孔817c~817d的第3端部1113c~1113d、轉子鐵芯811的外周面818、及橋接寬度規定線1142b所包圍的軟磁性材料的區域。
在圖11C所示的例子中,外力影響部824c是被設置永久磁鐵812a~812b的2個磁鐵孔817e~817f的第3端部1113e~1113f、轉子鐵芯811的外周面818、及橋接寬度規定線1142c所包圍的軟磁性材料的區域。 並且,一個轉子810所包含的外力影響部824的數量是和轉子810的極數(在本實施形態中為8個)相等。式(1)中的S並不是這8個外力影響部824在轉子鐵芯剖面中的面積的合計值,而是1個外力影響部824在轉子鐵芯剖面中的面積。
在轉子鐵芯811中,當轉子810(轉子鐵芯811)旋轉時應力最集中的區域,是位於和橋接寬度規定線1142a~1142c重疊的位置之軟磁性材料的區域。在以下的說明中,因應於需要而將此區域稱為應力集中區域。當磁鐵間橋接部821的寬度w和式(1)的w min相等的情況下,當轉子810(轉子鐵芯811)以最高旋轉數旋轉時產生在應力集中區域的應力,會和軟磁性材料的降伏應力(理論上)相等。從而,為了抑制轉子810(轉子鐵芯811)以最高旋轉數旋轉時應力集中區域斷裂的情形,磁鐵間橋接部821的寬度w較理想的是設為大於式(1)的w min
(計算例) 接著,說明計算例。在本計算例中是藉由進行有限元素法的電磁場解析來計算:使如圖8所示地在每1極以V字形配置有2個永久磁鐵的IPMSM,依照包含激磁條件的電磁場解析條件來動作(旋轉)時的轉子鐵芯的各微小區域(網格)中的磁通密度向量、渦電流向量、及轉矩。此外,轉矩是設為馬克士威應力。並且,藉由進行有限元素法的應力解析來計算應力向量,前述應力向量是使該IPMSM依照包含楊氏模數或蒲松比等物性值的應力解析條件來動作(旋轉)時的轉子鐵芯的各微小區域(網格)中的應力向量。由於有限元素法的電磁場解析及應力解析的手法是一般的手法,因此在此省略其詳細的說明。另外,在各計算例中,轉子鐵芯的磁障及凹陷部以外的條件,包含電磁場解析條件而為相同的條件。在本計算例中,作為電磁場解析的條件,將永久磁鐵的殘留磁通密度設為0.4T。又,將流動於定子線圈的激磁電流,設為峰值為20A且頻率為50Hz的三相交流電流。又,將前進角設為30°。又,轉子鐵芯的直徑皆為27mm。又,定子鐵芯的狹槽數為24個。
首先,如(原委)欄的((第1知識見解))欄所說明,將驗證以下設計帶來的效果的結果顯示在表1中:在轉子鐵芯剖面中,使開放端部前方側角落部1131a、1131c的位置比基準位置831a、831b更靠轉子鐵芯111的旋轉方向的後方側。
[表1]
編號 θf θb 凹陷部 轉矩增減 備註
1 基準位置 基準位置 ±0% -
2 0.625° 基準位置 +3.6% 發明例
3 1.25° 基準位置 +5.6% 發明例
4 1.875° 基準位置 +8.3% 發明例
5 2.5° 基準位置 +9.4% 發明例
6 3.125° 基準位置 +10.4% 發明例
7 3.75° 基準位置 +12.7% 發明例
8 4.325° 基準位置 +13.6% 發明例
9 5.0° 基準位置 +13.7% 發明例
10 5.625° 基準位置 +13.2% 發明例
11 6.25° 基準位置 +12.8% 發明例
12 6.875° 基準位置 +11.4% 發明例
13 7.5° 基準位置 +9.8% 發明例
14 8.125° 基準位置 +8.3% 發明例
15 8.75° 基準位置 +6.2% 發明例
16 9.375° 基準位置 +2.0% 發明例
17 10° 基準位置 -3.4% 比較例
18 基準位置 0.625° +1.3% 發明例
19 基準位置 1.25° +5.6% 發明例
20 基準位置 1.875° +1.5% 發明例
21 基準位置 2.5° +0.3% 比較例
22 基準位置 3.125° -0.6% 比較例
23 5.0° 1.25° +15.4% 發明例
24 5.0° 1.25° +16.5% 發明例
在表1中,在θf的欄中顯示有圖11A所示的前方側的外周側磁障的移動角度θf(°)。又,在表1中,在θb的欄中顯示有圖11A所示的後方側的外周側磁障的移動角度θb(°)。又,在表1中,基準位置是表示前方側的外周側磁障的移動角度θf及後方側的外周側磁障的移動角度θb為0°。又,在表1中,在凹陷部的欄中顯示凹陷部的有無。
如本實施形態所定義,由於前方側的外周側磁障的移動角度θf及後方側的外周側磁障的移動角度θb是2條直線(例如直線1171、1172)所形成的角度,因此取0以上的值。另外,例如,將極座標系統決定成使偏角θ的正向和轉子的旋轉方向為相同的方向,並且以該極座標系統來表現前方側的外周側磁障的移動角度θf及後方側的外周側磁障的移動角度θb。在此情況下,這些移動角度θf、θb分別為負值,表示相對於基準位置而位於負方向側(旋轉方向的後方側)的情形。以上情形針對凹陷部開口角度θc也是相同的。
在轉矩增減的欄中顯示有以下的值:當前方側的外周側磁障的移動角度θf及後方側的外周側磁障的移動角度θb分別為0°的情況下,以百分率來表示相對於轉子的轉矩的增減量。從而,轉矩增減的欄的值越大則表示轉子的轉矩比下述情況的轉子的轉矩更大:前方側的外周側磁障的移動角度θf及後方側的外周側磁障的移動角度θb分別為0°的情況。
圖12A、圖12B是分別顯示表1的編號9、19的解析執行對象的轉子的構成(轉子剖面)的圖。圖12C、圖12D是分別顯示表1的編號23、24的解析執行對象的轉子的構成(轉子剖面)的圖。在圖12A~圖12D中也是和圖1同樣地,顯示將垂直地切斷於IPMSM的旋轉軸線0而成的剖面分成4等分的4個區域的一個區域(在IPMSM的區域當中構成轉子的2個極的區域)。另外,只要針對這一個區域執行電磁場解析,就可以利用IPMSM的旋轉對稱性,來得到轉子剖面整體的電磁場解析的結果。又,如前述,在圖12A~圖12D中也是和圖1等同樣地,僅對構成轉子的1極的部分附加符號,並且省略構成轉子的其他極的部分的符號。
在圖12A~圖12D中,如本實施形態所說明,在轉子鐵芯剖面中,外周側磁障1201a~1201e會到達轉子鐵芯的外周面1211a~1211d而開放。又,磁鐵間磁障1202a~1202b不相連,在磁鐵間磁障1202a~1202b之間存在有軟磁性材料(磁鐵間橋接部)。
如前述,在本計算例中,定子鐵芯的狹槽數N slot為24個。從而,基準位置移動角度θa為π/12rad=15°即(θa(rad)=2π/N slot)。如本實施形態所說明,前方側的外周側磁障的移動角度θf較理想的是設為θa/24以上且15θa/24以下,更理想的是設為θa/3±θa/24的範圍內。在本計算例中,前方側的外周側磁障的移動角度θf較理想的是設為0.625°以上且9.375°以下,更理想的是設為5±0.625°的範圍內。
在表1中,在前方側的外周側磁障的移動角度θf為0.625°以上且9.375°以下之編號2~16中,由於轉矩增減是顯示出正值,因此得知可以提升轉子的轉矩。又,可得知在前方側的外周側磁障的移動角度θf為5±0.625°的範圍內之編號8~10中,可使轉子的轉矩更加提升。特別是在前方側的外周側磁障的移動角度θf為5±0.625°的範圍內的中心值的5°之編號9中,轉矩增減的值顯示極大值。另一方面,在前方側的外周側磁障的移動角度θf大於9.375°之編號17中,由於轉矩增減是顯示出負值,因此得知無法提升轉子的轉矩。
又,後方側的外周側磁障的移動角度θb較理想的是設為θa/24以上且θa/8以下,更理想的是設為θa/12±θa/24的範圍內。在本計算例中,後方側的外周側磁障的移動角度θb較理想的是設為0.625°以上且1.875°以下,更理想的是設為1.25±0.625°的範圍內。
在表1中,在後方側的外周側磁障的移動角度θb為0.625°以上且1.875°以下之編號18~21中,由於轉矩增減是顯示出正值,因此得知可以提升轉子的轉矩。又,可得知在後方側的外周側磁障的移動角度θb為1.25±0.625°的範圍內之編號18~20中,可使轉子的轉矩更加提升。特別是在後方側的外周側磁障的移動角度θb為1.25±0.625°的範圍內的中心值的1.25°之編號19中,轉矩增減的值顯示極大值。另一方面,在後方側的外周側磁障的移動角度θb大於1.875°之編號21,22中,由於轉矩增減是顯示出0附近或負值,因此得知無法提升轉子的轉矩。
由以上表1的編號2~22的結果可得知,即使僅將前方側的外周側磁障的移動角度θf及後方側的磁障的移動角度θb的其中一者設為本實施形態所說明的範圍,仍然可以使轉子的轉矩提升。
但是,在表1中,在編號23中,轉矩增減的值比編號2~16、18~20更大,可得知可以使轉子的轉矩更加提升,前述編號23是如編號9所示地決定前方側的外周側磁障的移動角度θf,並且如編號19所示地將後方側的磁障的移動角度θb之雙方設為本實施形態所決定的範圍內。
又,如本實施形態所說明,凹陷部開口角度θc較理想的是設為θa/8以上且25θa/24θa以下,更理想的是設為3θa/4±θa/12的範圍內。在本計算例中,基準位置移動角度θa為2π/24(rad)=15(°)。從而,凹陷部開口角度θc較理想的是設為1.975°以上且15.625°以下,較理想的是設為11.25°±1.25°的範圍內。又,凹陷部深度最大值Cd較理想的是設為轉子鐵芯的直徑的0.01倍以上且0.1以下的範圍內。如前述,在本計算例中,轉子鐵芯的直徑皆為27mm。表1所示的編號24和後述表2的編號27是相同的。圖12D所示的凹陷部1242a的凹陷部開口角度θc為3.125°。又,圖12D所示的凹陷部1242a的凹陷部深度最大值Cd是轉子鐵芯的直徑的0.05倍。
在表1中,編號24除了設置了以上的凹陷部1242a以外,是和編號23相同的條件的結果。比較編號23~24後,可得知藉由設置本實施形態所說明的範圍的凹陷部開口角度θc及具有凹陷部深度最大值Cd的凹陷部1242a,可以更加提升轉子的轉矩。
接著,如(原委)欄的((第2知識見解))欄所說明,將驗證以下設計帶來的效果的結果顯示在表2中:在轉子鐵芯811的外周面818的區域當中,在和比最低的磁通密度更高的磁通密度的芯齒123a、123b相向的位置上設置凹陷部815a。
[表2]
編號 θf θb θc Cd[mm] 轉矩增減 備註
23 5.0° 1.25° 0 0 +15.4% 發明例
25 5.0° 1.25° 1.25° 轉子直徑*0.05 +15.4% 發明例
26 5.0° 1.25° 1.875° 轉子直徑*0.05 +15.8% 發明例
27(=24) 5.0° 1.25° 3.125° 轉子直徑*0.05 +16.5% 發明例
28 5.0° 1.25° 5.0° 轉子直徑*0.05 +17.8% 發明例
29 5.0° 1.25° 10° 轉子直徑*0.05 +22.4% 發明例
30 5.0° 1.25° 11.25 轉子直徑*0.05 +22.7% 發明例
31 5.0° 1.25° 15.0 轉子直徑*0.05 +18.0% 發明例
32 5.0° 1.25° 15.625 轉子直徑*0.05 +16.6% 發明例
33 5.0° 1.25° 16.25 轉子直徑*0.05 +15.0% 發明例
34 5.0° 1.25° 11.25 轉子直徑*0.01 +18.6% 發明例
35 5.0° 1.25° 11.25 轉子直徑*0.04 +22.0% 發明例
36 5.0° 1.25° 11.25 轉子直徑*0.06 +22.9% 發明例
37 5.0° 1.25° 11.25 轉子直徑*0.07 +22.7% 發明例
38 5.0° 1.25° 11.25 轉子直徑*0.1 +17.6% 發明例
39 5.0° 1.25° 11.25 轉子直徑*0.11 +15.4% 發明例
在表2中,在θc的欄、Cd的欄中分別顯示有圖11A所示的凹陷部開口角度θc、凹陷部深度最大值Cd。在表2中,轉子直徑*數值是對該數值乘上轉子鐵芯的直徑而得的值。表2中的其他標記是和表1相同。此外,在表2中會再次揭示表1所示的編號23。
圖12E是顯示表2的編號36的解析執行對象的轉子的構成(轉子剖面)的圖。又,如前述,圖12D是顯示表2的編號27(表1的編號24)中的解析執行對象的轉子的構成(轉子剖面)的圖。表2的編號36相對於表2的編號27(表1的編號24),凹陷部1242a~1242b的凹陷部開口角度θc不同。
如前述,在本計算例中,凹陷部開口角度θc較理想的是設為1.975°以上且15.625°以下,更理想的是設為11.25°±1.25°的範圍內。又,凹陷部深度最大值Cd較理想的是設為轉子鐵芯的直徑的0.01倍以上且0.1以下的範圍內。
在表2中,比較編號23與編號25後可得知:如編號25所示,當凹陷部開口角度θc小於1.975°時,即使設置凹陷部也不會有助於轉子的轉矩之提升。同樣地,比較編號23與編號33後可得知:如編號33所示,當凹陷部開口角度θc大於15.625°時,即使設置凹陷部也不會有助於轉子的轉矩之提升。又,比較編號23與編號39後可得知:如編號39所示,當凹陷部深度最大值Cd大於轉子鐵芯的直徑的0.1倍時,即使設置凹陷部也不會有助於轉子的轉矩之提升。
另一方面,在凹陷部開口角度θc為1.975°以上且15.625°以下,且凹陷部深度最大值Cd為轉子鐵芯的直徑的0.01倍以上且0.1以下的編號26~32、34~38中,轉矩增減的值會比編號23更大。從而,可得知和編號23相較之下,編號26~32、34~38可以提升轉子的轉矩。
又,可得知在凹陷部開口角度θc為11.25°±1.25°的範圍內之編號29~30中,可使轉子的轉矩更加提升。特別是在凹陷部開口角度θc為11.25°±1.25°的範圍內的中心值的11.25°之編號30中,轉矩增減的值顯示極大值。又,可得知在凹陷部深度最大值Cd為轉子鐵芯的直徑的0.04倍以上且0.07倍以下的範圍內之編號35~37中,可使轉子的轉矩更加提升。特別是在編號36中,轉矩增減的值顯示極大值,前述編號36顯示凹陷部深度最大值Cd為轉子鐵芯的直徑的0.04倍以上且0.07倍以下的範圍內的中心附近的值。
又,在表2中,例如比較編號23與編號36後,可得知即使不將前方側的外周側磁障的移動角度θf及後方側的磁障的移動角度θb設為本實施形態所說明的範圍,藉由將凹陷部開口角度θc及凹陷部深度最大值Cd設為本實施形態所說明的範圍,仍然可以使轉子的轉矩提升。
由以上可得知,只要將前方側的外周側磁障的移動角度θf、後方側的磁障的移動角度θb、凹陷部開口角度θc、及凹陷部深度最大值Cd當中的任一者設為本實施形態所說明的範圍,針對其他不設為本實施形態所說明的範圍亦可。
接著,如(原委)欄的((第3知識見解)欄所說明,將驗證進行以下內容所帶來的效果的結果顯示在表3中:積極地設置磁鐵間橋接部821、及使外周側磁障813擴大至轉子鐵芯811的外周面818而開放。
[表3]
編號 轉矩[Nm]  
40 0.62 圖12F
41 0.37 圖12G
42 0.55 圖12H
43 0.48 圖12I
圖12F~圖12I是分別顯示表3的編號40~43的解析執行對象的轉子的構成(轉子剖面)的圖。另外,在此,為了僅驗證((第3知識見解))欄的效果,並未將前方側的外周側磁障的移動角度θf及後方側的磁障的移動角度θb設為本實施形態所說明的範圍。
在圖12F中,在轉子鐵芯剖面中,外周側磁障1201f~1201g是到達轉子鐵芯的外周面1211f而開放。又,磁鐵間磁障1202a~1202b不相連,在磁鐵間磁障1202a~1202b之間存在有軟磁性材料(磁鐵間橋接部1232a)。在圖12F所示的例子中,磁鐵間橋接部的寬度w為0.3mm。又,在圖12F所示的例子中,式(1)的w min為0.075mm。
圖12G所示的磁鐵間磁障1202a~1202b的形狀及大小,與圖12F所示的轉子的磁鐵間磁障1202a~1202b的形狀及大小是相同的。從而,圖12G所示的轉子的磁鐵間橋接部1232a的形狀及大小,與圖12F所示的轉子的磁鐵間橋接部1232a的形狀及大小是相同的。又,圖12G所示的外周側磁障1201h~1201i的形狀及大小,與磁鐵間磁障1202a~1202b的形狀及大小是相同的。在圖12G中,外周側磁障1201h~1201i及磁鐵間磁障1202a~1202b是配置成使外周側橋接部的寬度及磁鐵間橋接部的寬度大致均等。又,在轉子鐵芯剖面中,圖12G所示的外周側磁障1201h~1201i不會到達轉子鐵芯的外周面1211g而開放。
在本計算例中,在轉子鐵芯剖面中,外周側橋接部的寬度是以與通過該磁鐵間橋接部的磁通流動的方向垂直的方向的長度來表示。磁鐵間橋接部的寬度是在該磁鐵間橋接部中的該長度(與磁通流動的方向垂直的方向的長度)當中最短的長度。
在圖12H中,在永久磁鐵1221a~1221b(磁鐵間磁障1202d~1202e)之間存在有軟磁性材料(磁鐵間橋接部1232b)。圖12H所示的外周側磁障1202d~1202e的形狀及大小,與磁鐵間磁障1232b的形狀及大小是相同的。又,在圖12H中,外周側磁障1201j~1201k及磁鐵間磁障1202d~1102e是配置成使外周側橋接部1231c~1231d的寬度及磁鐵間橋接部1232b的寬度大致均等。又,圖12H所示的外周側橋接部1231c~1231d的寬度、磁鐵間橋接部1232b的寬度,分別比圖12G所示的外周側橋接部1231a~1231b的寬度、磁鐵間橋接部1132a的寬度更短。
參照圖11A~圖11C,如前述,在轉子鐵芯剖面中,磁鐵間橋接部的寬度是用橋接寬度規定線之與軟磁性材料重疊的部分的長度來表示。橋接寬度規定線為下述直線:將設置永久磁鐵的2個磁鐵孔的第2端部彼此,以和軟磁性材料重疊的長度為最短的方式來連結的直線。參照圖11B及圖11C,如前述,以和構成軟磁性體部的軟磁性材料重疊的長度成為最短距離的方式畫出的直線的兩端位置會包含於第2端部。從而,在圖12H所示的例子中,以最短距離將磁鐵間磁障1202d~1202e之間的區域連結的直線的長度為磁極間橋接部的寬度。
又,在轉子鐵芯剖面中,圖12H所示的外周側磁障1201j~1201k不會到達轉子鐵芯的外周面1211h而開放。又,圖12H所示的磁鐵間磁障1202d~1202e並不相連。從而,在磁鐵間磁障1202(1202d~1202e))之間存在有軟磁性材料(磁鐵間橋接部)。
圖12I所示的外周側磁障1201h~1201i的形狀及大小,與圖12G所示的轉子的外周側磁障1201h~1201i的形狀及大小是相同的。從而,圖12I所示的外周側橋接部1231a~1231b的形狀及大小,與圖12G所示的轉子的外周側橋接部1231a~1231b的形狀及大小是相同的。又,在圖12I中,比永久磁鐵1221a~1221b更靠左右方向Ds上的內周側的磁障(磁鐵間磁障1202f)的數量為一個。
在表3中,可知若如圖12G所示地將外周側橋接部1131a~1131b及磁鐵間橋接部1132a的寬度,設為和圖12F所示的磁極間橋接部1132a的寬度相同,且比圖12H所示的磁極間橋接部1232b更寬時,則和如圖12H所示地將外周側橋接部1231c~1231d的寬度及磁鐵間橋接部1232b的寬度縮窄的情況相較之下,轉子的轉矩會變得較低。又,若如圖12I所示地設置外周側橋接部1231a~1213b,且去除掉磁鐵間橋接部,則和如圖12G所示地設置外周側橋接部1231a~1231b及磁鐵間橋接部1232a,並且將磁鐵間橋接部1232a的寬度設為與圖12F所示的磁極間橋接部1232a的寬度相同,且比圖12H所示的磁極間橋接部1232b更寬的情況相較之下,轉子的轉矩會變得較高。然而,可得知若如圖12I所示地去除掉磁鐵間橋接部,則和圖12H所示地設置外周側橋接部1231c~1231d及磁鐵間橋接部1232b,並且將外周側橋接部1231c~1231d的寬度及磁鐵間橋接部1232b的寬度設為比圖12G所示的外周側橋接部1231a~1231b的寬度及磁鐵間橋接部1232a的寬度更狹窄的情況相較之下,轉子的轉矩會變得較低。並且,可得知若如圖12F所示地不設置外周側橋接部而設置磁鐵間橋接部1232a,則和如圖12G所示地設置外周側橋接部1231a~1231b及磁鐵間橋接部1232a的情況、以及如圖12H所示地將外周側橋接部1231c~1231d及磁鐵間橋接部1232b的寬度設為比圖12G所示的外周側橋接部1231a~1231b的寬度及磁鐵間橋接部1232a的寬度更狹窄的情況相較之下,轉子的轉矩會變得較高。亦即,可得知當如圖12F所示地設置磁鐵間橋接部1232a,並使外周側磁障1201f~1201g擴大到轉子鐵芯的外周面而開放的情況下,則轉子的轉矩為最高。
在表4中顯示圖12F所示的轉子及圖12H所示的轉子的應力的計算結果。表4所顯示的值是依以下方式算出的值。首先,以旋轉數欄位所示的旋轉數旋轉時,施加於轉子鐵芯的應力的計算值當中,將最大的應力的值設為以該旋轉數旋轉時施加於轉子鐵芯的應力的最大值。並且,對於以該旋轉數旋轉時施加於轉子鐵芯的應力的最大值,以圖12H所示的轉子以20000rpm旋轉時施加於該轉子的轉子鐵芯的應力的最大值為100,來進行正規化(無因次化)。將像這樣正規化過的值顯示於表4的各欄。
[表4]
旋轉數[rpm] 圖12F 圖12H
1000 0.17 0.25
3000 1.55 2.25
5000 4.32 6.25
10000 17.2 25.0
15000 38.8 56.3
20000 69.0 100
如表3所示,圖12G所示的轉子的轉矩與圖12I所示的轉子的轉矩是比圖12F及圖12H所示的轉子的轉矩更小。從而,和圖12I所示的轉子相較之下,圖12F及圖12H所示的轉子在電磁上較為優勢。於是,使用表4,從力學的觀點來比較圖12F所示的轉子與圖12H所示的轉子。圖12F所示的磁鐵間橋接部1232a的寬度、與圖12H所示的外周側橋接部1231c~1231d及磁鐵間橋接部1232b的寬度之和是大致相同的。然而,如表4所示,和圖12H所示的轉子相較之下,在圖12F所示的轉子中施加於轉子鐵芯的應力的最大值較低。從而,可得知和圖12H所示的轉子相較之下,圖12F所示的轉子可以更加提升相對於離心力的耐力。 如以上,和圖12G~圖12I所示的轉子(轉子鐵芯)相較之下,圖12F所示的轉子(轉子鐵芯)可說是在力學及電磁上較為優勢的形狀。
(總結) 如以上,在本實施形態中,在轉子鐵芯剖面中,開放端部前方側角落部1131a、1131c的位置是位於比基準位置831a~831b更靠轉子鐵芯811的旋轉方向的後方側。在此,在轉子鐵芯剖面中,開放端部前方側角落部1131a、1131c是在設置於相同的極的至少一個開放端部1111a~1111b之轉子鐵芯811的圓周方向上的2個角落部1131a~1131b、1131c~1131d當中,在轉子鐵芯811的旋轉方向上的前方側的角落部。又,基準位置831a、831b分別是對於具有該開放端部1111a、1111b的磁鐵孔817a、817b的基準位置。從而,可以使轉子810的轉矩增加。
又,在本實施形態中,前方側開放端部1111a的前方側開放端部前方側角落部1131a的位置是位於比基準位置831a更靠轉子鐵芯811的旋轉方向的後方側,前述基準位置831a是對於具有該前方側開放端部1111a的磁鐵孔817a的基準位置。又,後方側開放端部1111b的後方側開放端部前方側角落部1131b的位置是位於比基準位置831b更靠轉子鐵芯811的旋轉方向的後方側,前述基準位置831b是對於具有該後方側開放端部1111b的磁鐵孔817b的基準位置。從而,可以使永久磁鐵812a~812b配置為所謂的V字形之轉子810的轉矩增加。
又,在本實施形態中,將前方側的外周側磁障移動角度θf設為θa/24以上且15θa/24以下(θa為基準位置移動角度)。從而,可以確實地使轉子810的轉矩增加。
又,在本實施形態中,將後方側的外周側磁障的移動角度θb設為θa/24以上且θa/8以下。從而,可以確實地使轉子810的轉矩增加。
又,在本實施形態中,將開放端部1111a~1111b的轉子鐵芯811的圓周方向的長度L1設為永久磁鐵812a~812b的磁化方向Dm的長度L2的0.1倍以上且1.0倍以下。從而,可以確實地抑制回流磁通。
又,在本實施形態中,在和定子鐵芯121的芯齒123a、123b具有間隔而相向的位置上設置凹陷部815a,前述定子鐵芯121是設置在和轉子鐵芯811的外周面818具有間隔而相向的位置上。芯齒123a、123b是和芯齒123a~123d當中磁通密度最低的芯齒123b、123d不同的芯齒。從而,可以使轉子810的轉矩更加增加。
又,在本實施形態中,在轉子鐵芯剖面中,將凹陷部開口角度θc設為θa/8以上且25θa/24θa以下(θa為基準位置移動角度)。從而,可以確實地使轉子810的轉矩增加。
並且,在本實施形態中,將凹陷部深度最大值Cd設為轉子鐵芯811的直徑的0.01倍以上且0.1以下的範圍內。從而,可以確實地使轉子810的轉矩增加。
又,在本實施形態中,轉子鐵芯811在每1極具有複數個磁極孔。又,在該每1極中複數個磁鐵孔包含2個磁鐵孔817a~817b,前述磁鐵孔817a~817b分別具有在左右方向Ds上位於外周側的第1端部1111a~1111b、以及在左右方向Ds上位於比第1端部1111a~1111b更內周側的第2端部1112a~1112b。軟磁性體部820在2個磁鐵孔817a~817b的各第2端部1112a~1112b之間具有磁鐵間橋接部821a。2個磁鐵孔817a~817b的第2端部1112a~1112b是和磁鐵間磁障空間1122a~1122b的端部一致並且被封閉。另一方面,2個磁鐵孔817a~817b的第1端部1111a~1111b是開放的。從而,可以使IPMSM800的轉矩更加增加。
又,在本實施形態中,將磁鐵間橋接部821a的寬度w設為轉子鐵芯811的直徑的0.02倍以下。從而,可以更加減少磁鐵間橋接部821a的寬度w。據此,可以更加減少通過磁鐵間橋接部821a的磁通所包含的回流磁通。藉此,可以增加有助於轉子810的轉矩的磁通(不會成為回流磁通的磁通)。
又,在本實施形態中,使磁鐵間橋接部821a的寬度w超過式(1)的w min。從而,可以抑制因轉子810(轉子鐵芯811)的旋轉而產生的應力,造成以磁鐵間橋接部821a為起點的斷裂發生的情形。
又,在本實施形態中,將在相同的極中設置永久磁鐵812a~812b的2個磁鐵孔817a~817b的第2端部1112a~1112b之間的區域設為軟磁性材料的區域,藉此就不會存在有成為磁障的空間。從而,若第2端部1112a~1112b之間的區域的大小相同,則和在第2端部1112a~1112b之間的區域有成為磁障的區域之情況相較之下,可以擴大第2端部1112a~1112b之間的區域所包含的橋接部(磁鐵間橋接部821a)。據此,可以將第2端部1112a~1112b之間的區域的大小設為最低限度的大小。藉此,例如可以縮小轉子810(轉子鐵芯811)的每1極的區域的大小。
又,在本實施形態中,將永久磁鐵812a~812b的常溫下的殘留磁通密度設為0.8T以下。從而,可以更加減少通過磁鐵間橋接部821a的磁通所包含的回流磁通。據此,可以增加有助於轉子810的轉矩的磁通(不會成為回流磁通的磁通)。又,若將永久磁鐵812a~812b的常溫下的殘留磁通密度設為0.4T以下,則可以更加減少通過磁鐵間橋接部821a的磁通所包含的回流磁通。據此,可以更增加有助於轉子810的轉矩的磁通(不會成為回流磁通的磁通)。
又,在本實施形態中是使用未含有稀土的永久磁鐵來作為永久磁鐵812a~812b。從而,即使不使用難以取得的材料,也可以使轉子810的轉矩增加。
(變形例) 在本實施形態中,例示了在每1極設置2個永久磁鐵812a~812b的情況。但是,每1極的永久磁鐵的數量亦可為1個亦可為3個以上。
但是,當永久磁鐵的數量為3個以上的情況下,較理想的是設為如以下。亦即,較理想的是,在設置於磁鐵孔的永久磁鐵的磁化方向Dm上的端部當中,在轉子鐵芯的外周面側的端部(在圖11A所示的例子中為第3端部1113)與轉子鐵芯的外周面之間的區域未設置有永久磁鐵,前述磁鐵孔具有必須決定前方側的外周側磁障的移動角度θf及後方側的磁障的移動角度θb的外周側磁障。這是因為只要設為像這樣,就可以將前方側的外周側磁障的移動角度θf及後方側的磁障的移動角度θb設為本實施形態所說明的範圍,而確實地使轉子的轉矩提升。
又,在每1極設置1個永久磁鐵的情況下,在設置該永久磁鐵的磁鐵孔中,該永久磁鐵的左右方向Ds的兩側之成為磁障的空間會變成前方側磁障及後方側磁障。在此情況下,前方側磁障及後方側磁障之雙方或其中一方會具有開放端部。
又,在本實施形態中,例示了IPMSM來作為永久磁鐵埋入型的旋轉電機。然而,永久磁鐵埋入型的旋轉電機並不限定於IPMSM。例如,永久磁鐵埋入型的旋轉電機亦可為IPMSG(Interior Permanent Magnet Synchronous Generator,內置永磁同步發電機)。
另外,以上所說明的本發明的實施形態均只是用來顯示實施本發明時的具體化的例子,並不是要藉由這些實施形態來限定地解釋本發明的技術範圍。亦即,本發明可以在不脫離其技術思想或其主要特徵的情形下,以各種形式來實施。
另外,以上實施形態的揭示是如例如以下。 [揭示1] 一種轉子鐵芯,是具備軟磁性體部的轉子鐵芯,前述軟磁性體部是使用軟磁性材料而形成,且每1極具有至少一個磁鐵孔, 前述磁鐵孔相對於設置在該磁鐵孔的永久磁鐵,在左右方向的兩側具有成為前方側磁障的空間及成為後方側磁障的空間,前述左右方向是和該永久磁鐵的磁化方向以及平行於成為旋轉中心的旋轉軸線的方向相垂直, 在成為前述前方側磁障的空間及成為前述後方側磁障的空間當中,至少一個成為磁障的空間具有在前述轉子鐵芯的外周面上開放的開放端部, 在相對於前述旋轉軸線而垂直的剖面中,設置在轉子的相同的極的至少一個前述開放端部的開放端部前方側角落部的位置,是位於比基準位置更靠前述轉子鐵芯的旋轉方向的後方側,前述基準位置是對具有該開放端部的前述磁鐵孔的基準位置, 在前述剖面中,前述開放端部前方側角落部是在設置於轉子的相同的極的至少一個前述開放端部之前述轉子鐵芯的圓周方向上的2個角落部當中,在前述轉子鐵芯的旋轉方向上的前方側的角落部, 在前述剖面中,對具有前述開放端部的前述磁鐵孔的基準位置是通過永久磁鐵基準端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置,前述永久磁鐵基準端部是設置在該磁鐵孔的前述永久磁鐵當中,位在最接近於該開放端部的位置的前述永久磁鐵的端部的一個, 在前述剖面中,位在最接近於前述開放端部的位置的前述永久磁鐵的前述永久磁鐵基準端部,是在該永久磁鐵的端部當中,位於從通過包含該永久磁鐵的一個極的區域的前述圓周方向上的中心位置與前述旋轉軸線的直線起算的前述圓周方向上的距離最遠的位置之端部,從通過包含位在最接近於前述開放端部的位置的前述永久磁鐵的一個極的區域的前述圓周方向上的中心位置、與前述旋轉軸線的直線起算的前述圓周方向上的距離,是在前述轉子鐵芯的旋轉方向上的前方側及後方側當中在該開放端部所存在之側決定的距離。 [揭示2] 如揭示1所記載的轉子鐵芯,其中在前述剖面中,設置在轉子的相同的極的全部前述開放端部的前述開放端部前方側角落部的位置,是位於比基準位置更靠前述轉子鐵芯的旋轉方向的後方側,前述基準位置是對於具有該開放端部的前述磁鐵孔的基準位置。 [揭示3] 如揭示1或2所記載的轉子鐵芯,其中前述轉子鐵芯在每1極具有複數個磁極孔, 前述複數個磁鐵孔具有位於前述旋轉方向的前方側的前方側磁鐵孔、及位於前述旋轉方向的後方側的後方側磁鐵孔, 前述前方側磁鐵孔所具有的成為前述前方側磁障的空間,是比前述前方側磁鐵孔所具有的成為前述後方側磁障的空間更靠前述旋轉方向的前方側,且位於前述轉子鐵芯的外周側的外周側磁障, 前述後方側磁鐵孔所具有的成為前述後方側磁障的空間,是比前述後方側磁鐵孔所具有的成為前述前方側磁障的空間更靠前述旋轉方向的後方側,且位於前述轉子鐵芯的外周側的外周側磁障, 在前述前方側磁鐵孔所具有的成為前述前方側磁障的空間、及前述後方側磁鐵孔所具有的成為前述後方側磁障的空間當中,至少一個成為磁障的空間具有前述開放端部, 在前述剖面中,前述開放端部前方側角落部具有前方側開放端部前方側角落部、及後方側開放端部前方側角落部當中的至少一個, 在前述剖面中,前述前方側開放端部前方側角落部是在前方側開放端部的前述轉子鐵芯的圓周方向上的2個角落部當中,在前述旋轉方向的前方側的角落部, 在前述剖面中,前述前方側開放端部是前述前方側磁鐵孔所具有的成為前述前方側磁障的空間的前述開放端部, 在前述剖面中,前述後方側開放端部是後方側開放端部的前述轉子鐵芯的圓周方向上的2個角落部當中,在前述旋轉方向的前方側的角落部, 在前述剖面中,前述後方側開放端部前方側角落部是前述後方側磁鐵孔所具有的成為前述後方側磁障的空間的前述開放端部, 在前述剖面中,前述永久磁鐵基準端部具有前方側永久磁鐵端部與後方側永久磁鐵端部當中的至少一個, 在前述剖面中,前述前方側永久磁鐵端部是在設置於前述前方側磁鐵孔的前述永久磁鐵的端部當中,在前述旋轉方向的最前方側的位置的端部, 在前述剖面中,前述後方側永久磁鐵端部是在設置於前述後方側磁鐵孔的前述永久磁鐵的端部當中,在前述旋轉方向的最後方側的位置的端部, 在前述剖面中,前述基準位置具有前方側基準位置與後方側基準位置當中的至少一個, 在前述剖面中,前述前方側基準位置是通過前述前方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置, 在前述剖面中,前述後方側基準位置是通過前述後方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置。 [揭示4] 如揭示3所記載的轉子鐵芯,其中前述開放端部前方側角落部具有前述前方側開放端部前方側角落部與前述後方側開放端部前方側角落部, 前述永久磁鐵基準端部具有前述前方側永久磁鐵端部與前述後方側永久磁鐵端部, 前述基準位置具有前述前方側基準位置與前述後方側基準位置, 前述前方側磁鐵孔所具有的成為前述前方側磁障的空間、及前述後方側磁鐵孔所具有的成為前述後方側磁障的空間分別具有前述開放端部。 [揭示5] 如揭示1~4中任一揭示所記載的轉子鐵芯,其中在前述剖面中,在前述開放端部前方側角落部當中,通過在相同的極中位於比前述圓周方向的中心更靠前述旋轉方向的前方側的前述開放端部前方側角落部與前述旋轉軸線的直線、及通過對具有以該開放端部前方側角落部為角落部的一個的前述開放端部的前述磁鐵孔的前述基準位置與前述旋轉軸線之直線所形成的角度,為θa/24以上且15θa/24以下, θa是從前述基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad), θa是以2π/N slot來算出, N slot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。 [揭示6] 如揭示1至5中任一項所記載的轉子鐵芯,其中在前述剖面中,在前述開放端部前方側角落部當中,通過在相同的極中位於比前述圓周方向的中心更靠前述旋轉方向的後方側的前述開放端部前方側角落部與前述旋轉軸線的直線、及通過對於具有以該開放端部前方側角落部為角落部的一個的前述開放端部的前述磁鐵孔的前述基準位置與前述旋轉軸線之直線所形成的角度,為θa/24以上且θa/8以下, θa是從前述基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad), θa是以2π/N slot來算出, N slot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。 [揭示7] 如揭示1至6中任一揭示所記載的轉子鐵芯,其中前述開放端部的前述圓周方向的長度為:設置在具有該開放端部的前述磁鐵孔的前述永久磁鐵的磁化方向的長度的0.1倍以上且1.0倍以下。 [揭示8] 如揭示1~7中任一揭示所記載的轉子鐵芯,其中前述軟磁性體部更具有具在前述轉子鐵芯的外周面開放的開放端部的凹陷部,來作為和成為前述磁障的空間不同的凹陷部, 前述凹陷部是位於和芯齒具有間隔而相向的位置上,前述芯齒是在定子鐵芯的芯齒當中和磁通密度最低的芯齒不同的芯齒,前述定子鐵芯是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置上。 [揭示9] 如揭示8所記載的轉子鐵芯,其中在前述剖面中,在前述凹陷部的開放端部中的2個角落部當中,通過前述旋轉方向的後方側的角落部即凹陷部後方側角落部與前述旋轉軸線的直線、及通過在和設置該凹陷部的極相同的極中位於比該凹陷部更靠前述旋轉方向的後方側的前述開放端部前方側角落部與前述旋轉軸線的直線所形成的角度為θa, 在前述凹陷部的開放端部中的2個角落部當中,通過前述旋轉方向的前方側的角落部即凹陷部前方側角落部與前述旋轉軸線的直線、及通過前述凹陷部後方側角落部與前述旋轉軸線的直線所形成的角度為θa/8以上且25θa/24θa以下, 在前述剖面中,θa是從通過後方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置即後方側基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad), 前述後方側永久磁鐵端部是在設置於相同的極的前述永久磁鐵的端部當中,位於前述圓周方向的最後方側的端部, θa是以2π/N slot來算出, N slot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。 [揭示10] 如揭示8或9所記載的轉子鐵芯,其中前述凹陷部的深度的最大值是在前述轉子鐵芯的直徑的0.01倍以上且0.1倍以下的範圍內。 [揭示11] 如揭示1至10中任一揭示所記載的轉子鐵芯,其中前述轉子鐵芯在每1極具有複數個磁極孔, 前述複數個磁鐵孔具有位於前述旋轉方向的前方側的前方側磁鐵孔、及位於前述旋轉方向的後方側的後方側磁鐵孔, 前述前方側磁鐵孔所具有的成為前述前方側磁障的空間,是位於比前述前方側磁鐵孔所具有的成為前述後方側磁障的空間更靠前述旋轉方向的前方側, 前述後方側磁鐵孔所具有的成為前述前方側磁障的空間,是位於比前述後方側磁鐵孔所具有的成為前述後方側磁障的空間更靠前述旋轉方向的後方側, 前述軟磁性體部具有磁鐵間橋接部,前述磁鐵間橋接部是配置在前述前方側磁鐵孔所具有的成為前述後方側磁障的空間、及前述後方側磁鐵孔所具有的成為前述後方側磁障的空間之間的區域, 前述前方側磁鐵孔具有第1端部,前述第1端部是相對於設置在該前方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的前方側成為前述開放端部, 前述前方側磁鐵孔相對於設置在該前方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的後方側具有第2端部, 前述後方側磁鐵孔具有第1端部,前述第1端部是相對於設置在該後方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的後方側成為前述開放端部, 前述後方側磁鐵孔相對於設置在該後方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的後方側具有第2端部, 前述前方側磁鐵孔及前述後方側磁鐵孔各自的前述第2端部是和成為磁障的空間的端部一致並且被封閉。 [揭示12] 如揭示11所記載的轉子鐵芯,其中在前述剖面中,橋接寬度規定線之與前述軟磁性材料重疊的部分的長度是前述轉子鐵芯的直徑的0.02倍以下, 前述橋接寬度規定線是將前述前方側磁鐵孔及前述後方側磁鐵孔的前述第2端部彼此,以和前述軟磁性材料重疊的長度為最短的方式來連結的直線。 [揭示13] 如揭示11或12所記載的轉子鐵芯,其中在前述剖面中, 前述前方側磁鐵孔及前述後方側磁鐵孔分別更具有第3端部與第4端部,前述第3端部是在設置於該前方側磁鐵孔及該後方側磁鐵孔的前述永久磁鐵的磁化方向上位於外周側,前述第4端部是在該永久磁鐵的磁化方向上位於比前述第3端部更靠內周側, 在前述剖面中,橋接寬度規定線之與前述軟磁性材料重疊的部分的長度是超過w min, 前述橋接寬度規定線是將前述前方側磁鐵孔及前述後方側磁鐵孔的前述第2端部彼此,以和前述軟磁性材料重疊的長度為最短的方式來連結的直線, w min是以ρ×S×r g×ω÷Ys來算出, ρ是前述軟磁性材料的密度(kg/m 3), Ys是前述軟磁性材料在常溫下的降伏應力(Pa), S是外力影響部的面積(m 2), 在前述剖面中,前述外力影響部是位於前述橋接寬度規定線的一端的前述前方側磁鐵孔的前述第3端部、位於前述橋接寬度規定線的另一端的前述後方側磁鐵孔的前述第3端部、前述軟磁性體部的外周面、及前述橋接寬度規定線所包圍的前述軟磁性材料的區域, r g是前述剖面中的前述外力影響部的重心的位置與前述旋轉的中心的半徑方向上的距離(m), ω是以最高旋轉數旋轉時的轉子的角速度(rad/sec)。 [揭示14] 一種轉子鐵芯,是具備軟磁性體部的轉子鐵芯,前述軟磁性體部是使用軟磁性材料而形成,且每1極具有至少一個磁鐵孔, 前述軟磁性體部在外周面具有凹陷部, 前述磁鐵孔在左右方向上具有第1端部及第2端部,前述左右方向是和設置在該磁鐵孔的永久磁鐵的磁化方向與平行於成為旋轉中心的旋轉軸線的方向垂直, 在前述第1端部及前述第2端部當中,至少其中一個端部是開放的開放端部, 前述凹陷部是位於和前述開放端部不同的位置, 前述凹陷部是位於和芯齒具有間隔而相向的位置上,前述芯齒是在定子鐵芯的芯齒當中和磁通密度最低的芯齒不同的芯齒,前述定子鐵芯是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置上。 [揭示15] 如揭示14所記載的轉子鐵芯,其中在前述剖面中,在前述凹陷部的開放端部中的2個角落部當中,通過前述轉子鐵芯的旋轉方向的後方側的角落部即凹陷部後方側角落部與前述旋轉軸線的直線、及通過在和設置該凹陷部的極相同的極中位於比該凹陷部更靠前述旋轉方向的後方側的開放端部前方側角落部與前述旋轉軸線的直線所形成的角度為θa, 在前述剖面中,前述開放端部前方側角落部是在設置於轉子的相同的極的至少一個前述開放端部的前述轉子鐵芯的圓周方向上的2個角落部當中,在前述轉子鐵芯的旋轉方向上的前方側的角落部, 在前述凹陷部的開放端部中的2個角落部當中,通過前述旋轉方向的前方側的角落部即凹陷部前方側角落部與前述旋轉軸線的直線、及通過前述凹陷部後方側角落部與前述旋轉軸線的直線所形成的角度為θa/8以上且25θa/24θa以下, 在前述剖面中,θa是從通過後方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置即後方側基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad), 前述後方側永久磁鐵端部是在設置於相同的極的前述永久磁鐵的端部當中,位於前述圓周方向的最後方側的端部, θa是以2π/N slot來算出, N slot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。 [揭示16] 如揭示14或15所記載的轉子鐵芯,其中前述凹陷部的深度的最大值是在前述轉子鐵芯的直徑的0.01倍以上且0.1倍以下的範圍內。 [揭示17] 一種轉子,其具備: 如揭示1至16中任一揭示所記載的轉子鐵芯、及 設置在前述轉子鐵芯的複數個永久磁鐵。 [揭示18] 如揭示17所記載的轉子,其中前述永久磁鐵在常溫下的殘留磁通密度為0.8T以下。 [揭示19] 如揭示17或18所記載的轉子,其中前述永久磁鐵不含有稀土。 [揭示20] 一種旋轉電機,其具備: 如揭示17至19中任一揭示所記載的轉子;及 定子。 產業上之可利用性
本發明可以利用在例如旋轉電機。
0:旋轉軸線(原點) 100,800:IPMSM 110,810:轉子 111,811:轉子鐵芯 112,112a,112b,812a,812b,1221a,1221b:永久磁鐵 113a,113b,113c,113d,114a,114b,114c,114d,813a,813b,814a,814b:磁障 115,818,1211a,1211b,1211c,1211d,1211f,1211g:外周面 116a,116b:外周側橋接部(橋接部) 117,117a,117b:磁鐵間橋接部(橋接部) 118a,119a,815a,1242a:凹陷部 120:定子 121:定子鐵芯 122:狹槽 123a,123b,123c,123d:芯齒 201a,201b,201c,201d,901a,901b,901c,901d:磁極面 310,310c,310d,1011,1151a:開放端部 813,1201a,1201b,1201c,1201d,1201e:外周側磁障 816:孔 817a,817b,817c,817d,817e,817f,817g:磁鐵孔 819:內周面 820:軟磁性體部 821,821a,821b,821c,821d,821e,821f,821g,821h,821i,821j,1232a:磁鐵間橋接部 822a,822b,822c,822d,822e,822f,822g,822h,822i,822j:外側部 823a,823b,823c:內側部 824a,824b,824c:外力影響部 831a,831b:基準位置(橋接外緣部) 831c:橋接外緣部 832a,832b,832c:外側外緣部 833a,833b,833c:內側外緣部 841a:永久磁鐵基準端部(前方側永久磁鐵端部) 841b:永久磁鐵基準端部(後方側永久磁鐵端部) 1111:第1端部 1111a:第1端部(前方側開放端部) 1111b:第1端部(後方側開放端部) 1112:第2端部 1112a,1112b,1112c,1112d,1112e,1112f:第2端部 1113a,1113b,1113c,1113d,1113e,1113f:第3端部 1114a,1114b,1114c,1114d,1114e,1114f:第4端部 1121a,1121b,1122a,1122b,1122c,1122d,1122e,1122f,1123a,1123b,1123c,1123d,1123e,1123f:空間 1131a,1131b,1131c,1131d,1132a,1132b,1132c,1132d,1132e,1132f,1132g,1132h,1132i,1132j,1132k,1132l,1132m,1132n,1161a,1161b:角落部 1141a,1141b,1141c,1141d,1141e,1141f,1141g,1171,1172,1173,1174,1175,1176,1177,1178:直線 1142a,1142b,1142c:橋接寬度規定線(直線) 1201f,1201g,1202d,1202e,1201h,1201i,1201j,1201k:外周側磁障 1202a,1202b,1202d,1202e,1202f:磁鐵間磁障 1231a,1231b,1231c,1231d:外周側橋接部 1232a,1232b:磁鐵間橋接部(磁極間橋接部) Cd:凹陷部深度最大值 Dm:磁化方向 Ds:左右方向 G:空隙 G:重心 L1,L2:長度 N,S:磁極 r:向徑 r g:距離 w:寬度 θ:偏角 θa:基準位置移動角度 θb,θc,θf:角度 φ1,φ2,φ3,φ11,φ12,φ13,φ14,φ25,φ26,φ31,φ32,φ35,φ36:磁通
圖1是顯示IPMSM的基本形狀的一例的圖。 圖2是顯示圖1所示的IPMSM的轉子剖面的圖。 圖3是顯示IPMSM的最佳形狀的一例的圖。 圖4A是顯示最佳形狀的IPMSM中的磁通密度向量的第1解析結果的圖。 圖4B是說明第1解析結果的磁通的流動之概略情形的一例的圖。 圖5A是顯示最佳形狀的IPMSM中的磁通密度向量的第2解析結果的圖。 圖5B是說明第2解析結果的磁通的流動之概略情形的一例的圖。 圖6A是顯示永久磁鐵的殘留磁通密度為0.4T時之基本形狀的IPMSM中的磁通密度向量的一例的圖。 圖6B是說明永久磁鐵的殘留磁通密度為0.4T時之基本形狀的IPMSM中的磁通流動的概略情形的一例的圖。 圖7A是顯示永久磁鐵的殘留磁通密度為1.0T時之基本形狀的IPMSM中的磁通密度向量的一例的圖。 圖7B是說明永久磁鐵的殘留磁通密度為1.0T時之基本形狀的IPMSM中的磁通流動的概略情形的一例的圖。 圖8是顯示實施形態的IPMSM的構成之一例的圖。 圖9是顯示實施形態的轉子剖面的一例的圖。 圖10是顯示實施形態的轉子鐵芯的構成的一例的圖。 圖11A是放大圖10所示的轉子鐵芯的一部分來顯示的圖。 圖11B是顯示轉子鐵芯的構成的第1變形例的圖。 圖11C是顯示轉子鐵芯的構成的第2變形例的圖。 圖12A是顯示解析執行對象的轉子的構成的第1例的圖。 圖12B是顯示解析執行對象的轉子的構成的第2例的圖。 圖12C是顯示解析執行對象的轉子的構成的第3例的圖。 圖12D是顯示解析執行對象的轉子的構成的第4例的圖。 圖12E是顯示解析執行對象的轉子的構成的第5例的圖。 圖12F是顯示解析執行對象的轉子的構成的第6例的圖。 圖12G是顯示解析執行對象的轉子的構成的第7例的圖。 圖12H是顯示解析執行對象的轉子的構成的第8例的圖。 圖12I是顯示解析執行對象的轉子的構成的第9例的圖。
0:旋轉軸線(原點)
811:轉子鐵芯
815a:凹陷部
817a,817b:磁鐵孔
818:外周面
820:軟磁性體部
821a:磁鐵間橋接部
822a:外側部
823a:內側部
824a:外力影響部
831a,831b:基準位置(橋接外緣部)
833a:內側外緣部
841a:永久磁鐵基準端部(前方側永久磁鐵端部)
841b:永久磁鐵基準端部(後方側永久磁鐵端部)
1111a:第1端部(前方側開放端部)
1111b:第1端部(後方側開放端部)
1112a,1112b:第2端部
1113a,1113b:第3端部
1114a,1114b:第4端部
1121a,1121b,1122a,1122b,1123a,1123b:空間
1131a,1131b,1131c,1131d,1132a,1132b,1132c,1132d,1161a,1161b:角落部
1141a,1141b,1171,1172,1173,1174,1175,1176,1177,1178:直線
1142a:橋接寬度規定線(直線)
1151a:開放端部
Cd:凹陷部深度最大值
Dm:磁化方向
Ds:左右方向
G:重心
L1,L2:長度
rg:距離
θa:基準位置移動角度
θb,θc,θf:角度
w:寬度

Claims (18)

  1. 一種轉子鐵芯,是具備軟磁性體部的轉子鐵芯,前述軟磁性體部是使用軟磁性材料而形成,且每1極具有至少一個磁鐵孔,前述磁鐵孔相對於設置在該磁鐵孔的永久磁鐵,在左右方向的兩側具有成為前方側磁障的空間及成為後方側磁障的空間,前述左右方向是和該永久磁鐵的磁化方向以及平行於成為旋轉中心的旋轉軸線的方向相垂直,在成為前述前方側磁障的空間及成為前述後方側磁障的空間當中,至少一個成為磁障的空間具有在前述轉子鐵芯的外周面上開放的開放端部,在相對於前述旋轉軸線而垂直的剖面中,前述前方側磁障的空間是位於比前述後方側磁障還靠前述轉子鐵芯的旋轉方向的前方側,在前述剖面中,設置在轉子的相同的極的至少一個前述開放端部的開放端部前方側角落部的位置,是位於比基準位置更靠前述轉子鐵芯的旋轉方向的後方側,前述基準位置是對具有該開放端部的前述磁鐵孔的基準位置,在前述剖面中,前述開放端部前方側角落部是在設置於轉子的相同的極的至少一個前述開放端部之前述轉子鐵芯的圓周方向上的2個角落部當中,在前述轉子鐵芯的旋轉方向上的前方側的角落部,在前述剖面中,對具有前述開放端部的前述磁鐵孔的基準位置是通過永久磁鐵基準端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置,前述永久磁鐵基準端部是設置在該磁鐵孔的前述永久磁鐵當中,位在最接近於該開放端部的位置的前述永久磁鐵的端部的一個,在前述剖面中,位在最接近於前述開放端部的位置的前述永久磁鐵的前述永久磁鐵基準端部,是在該永久磁鐵的端部當中,位於從通過包含該永久磁鐵的一個極的區域的前述圓周方向上的中心位置與前述旋轉軸線的直線起算的前述圓周方向上的距離最遠的位置之端部, 從通過包含位在最接近於前述開放端部的位置的前述永久磁鐵的一個極的區域的前述圓周方向上的中心位置、與前述旋轉軸線的直線起算的前述圓周方向上的距離,是在前述轉子鐵芯的旋轉方向上的前方側及後方側當中在該開放端部所存在之側決定的距離。
  2. 如請求項1之轉子鐵芯,其中在前述剖面中,設置在轉子的相同的極的全部前述開放端部的前述開放端部前方側角落部的位置,是位於比基準位置更靠前述轉子鐵芯的旋轉方向的後方側,前述基準位置是對於具有該開放端部的前述磁鐵孔的基準位置。
  3. 如請求項1或2之轉子鐵芯,其中前述轉子鐵芯在每1極具有複數個磁鐵孔,前述複數個磁鐵孔具有位於前述旋轉方向的前方側的前方側磁鐵孔、及位於前述旋轉方向的後方側的後方側磁鐵孔,前述前方側磁鐵孔所具有的成為前述前方側磁障的空間,是比前述前方側磁鐵孔所具有的成為前述後方側磁障的空間更靠前述旋轉方向的前方側,且位於前述轉子鐵芯的外周側的外周側磁障,前述後方側磁鐵孔所具有的成為前述後方側磁障的空間,是比前述後方側磁鐵孔所具有的成為前述前方側磁障的空間更靠前述旋轉方向的後方側,且位於前述轉子鐵芯的外周側的外周側磁障,在前述前方側磁鐵孔所具有的成為前述前方側磁障的空間、及前述後方側磁鐵孔所具有的成為前述後方側磁障的空間當中,至少一個成為磁障的空間具有前述開放端部,在前述剖面中,前述開放端部前方側角落部具有前方側開放端部前方側角落部、及後方側開放端部前方側角落部當中的至少一個,在前述剖面中,前述前方側開放端部前方側角落部是在前方側開放端部的 前述轉子鐵芯的圓周方向上的2個角落部當中,在前述旋轉方向的前方側的角落部,在前述剖面中,前述前方側開放端部是前述前方側磁鐵孔所具有的成為前述前方側磁障的空間的前述開放端部,在前述剖面中,前述後方側開放端部前方側角落部是後方側開放端部的前述轉子鐵芯的圓周方向上的2個角落部當中,在前述旋轉方向的前方側的角落部,在前述剖面中,前述後方側開放端部前方側角落部是前述後方側磁鐵孔所具有的成為前述後方側磁障的空間的前述開放端部,在前述剖面中,前述永久磁鐵基準端部具有前方側永久磁鐵端部與後方側永久磁鐵端部當中的至少一個,在前述剖面中,前述前方側永久磁鐵端部是在設置於前述前方側磁鐵孔的前述永久磁鐵的端部當中,在前述旋轉方向的最前方側的位置的端部,在前述剖面中,前述後方側永久磁鐵端部是在設置於前述後方側磁鐵孔的前述永久磁鐵的端部當中,在前述旋轉方向的最後方側的位置的端部,在前述剖面中,前述基準位置具有前方側基準位置與後方側基準位置當中的至少一個,在前述剖面中,前述前方側基準位置是通過前述前方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置,在前述剖面中,前述後方側基準位置是通過前述後方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置。
  4. 如請求項3之轉子鐵芯,其中前述開放端部前方側角落部具有前述前方側開放端部前方側角落部與前述後方側開放端部前方側角落部,前述永久磁鐵基準端部具有前述前方側永久磁鐵端部與前述後方側永久磁 鐵端部,前述基準位置具有前述前方側基準位置與前述後方側基準位置,前述前方側磁鐵孔所具有的成為前述前方側磁障的空間、及前述後方側磁鐵孔所具有的成為前述後方側磁障的空間分別具有前述開放端部。
  5. 如請求項1或2之轉子鐵芯,其中在前述剖面中,在前述開放端部前方側角落部當中,通過在相同的極中位於比前述圓周方向的中心更靠前述旋轉方向的前方側的前述開放端部前方側角落部與前述旋轉軸線的直線、及通過對具有以該開放端部前方側角落部為角落部的一個的前述開放端部的前述磁鐵孔的前述基準位置與前述旋轉軸線之直線所形成的角度,為θa/24以上且15θa/24以下,θa是從前述基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad),θa是以2π/Nslot來算出,Nslot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。
  6. 如請求項1或2之轉子鐵芯,其中在前述剖面中,在前述開放端部前方側角落部當中,通過在相同的極中位於比前述圓周方向的中心更靠前述旋轉方向的後方側的前述開放端部前方側角落部與前述旋轉軸線的直線、及通過對於具有以該開放端部前方側角落部為角落部的一個的前述開放端部的前述磁鐵孔的前述基準位置與前述旋轉軸線之直線所形成的角度,為θa/24以上且θa/8以下,θa是從前述基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad),θa是以2π/Nslot來算出,Nslot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。
  7. 如請求項1或2之轉子鐵芯,其中前述開放端部的前述圓周方向的長度為:設置在具有該開放端部的前述磁鐵孔的前述永久磁鐵的磁化方向的長度的0.1倍以上且1.0倍以下。
  8. 如請求項1或2之轉子鐵芯,其中前述軟磁性體部更具有具在前述轉子鐵芯的外周面開放的開放端部的凹陷部,來作為和成為前述磁障的空間不同的凹陷部,前述凹陷部是位於和芯齒具有間隔而相向的位置上,前述芯齒是在定子鐵芯的芯齒當中和磁通密度最低的芯齒不同的芯齒,前述定子鐵芯是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置上。
  9. 如請求項8之轉子鐵芯,其中在前述剖面中,在前述凹陷部的開放端部中的2個角落部當中,通過前述旋轉方向的後方側的角落部即凹陷部後方側角落部與前述旋轉軸線的直線、及通過在和設置該凹陷部的極相同的極中位於比該凹陷部更靠前述旋轉方向的後方側的前述開放端部前方側角落部與前述旋轉軸線的直線所形成的角度為θa,在前述凹陷部的開放端部中的2個角落部當中,通過前述旋轉方向的前方側的角落部即凹陷部前方側角落部與前述旋轉軸線的直線、及通過前述凹陷部後方側角落部與前述旋轉軸線的直線所形成的角度為θa/8以上且25θa/24θa以下,在前述剖面中,θa是從通過後方側永久磁鐵端部與前述旋轉軸線的直線、與前述轉子鐵芯的外周面的交點的位置即後方側基準位置起算之繞著前述旋轉軸線的角度即移動角度(rad),前述後方側永久磁鐵端部是在設置於相同的極的前述永久磁鐵的端部當中,位於前述圓周方向的最後方側的端部,θa是以2π/Nslot來算出, Nslot是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置之定子鐵芯的狹槽數(個)。
  10. 如請求項8之轉子鐵芯,其中前述凹陷部的深度的最大值是在前述轉子鐵芯的直徑的0.01倍以上且0.1倍以下的範圍內。
  11. 如請求項1或2之轉子鐵芯,其中前述轉子鐵芯在每1極具有複數個磁鐵孔,前述複數個磁鐵孔具有位於前述旋轉方向的前方側的前方側磁鐵孔、及位於前述旋轉方向的後方側的後方側磁鐵孔,前述前方側磁鐵孔所具有的成為前述前方側磁障的空間,是位於比前述前方側磁鐵孔所具有的成為前述後方側磁障的空間更靠前述旋轉方向的前方側,前述後方側磁鐵孔所具有的成為前述前方側磁障的空間,是位於比前述後方側磁鐵孔所具有的成為前述後方側磁障的空間更靠前述旋轉方向的前方側,前述軟磁性體部具有磁鐵間橋接部,前述磁鐵間橋接部是配置在前述前方側磁鐵孔所具有的成為前述後方側磁障的空間、及前述後方側磁鐵孔所具有的成為前述後方側磁障的空間之間的區域,前述前方側磁鐵孔具有第1端部,前述第1端部是相對於設置在該前方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的前方側成為前述開放端部,前述前方側磁鐵孔相對於設置在該前方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的後方側具有第2端部,前述後方側磁鐵孔具有第1端部,前述第1端部是相對於設置在該後方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的後方側成為前述開放端部,前述後方側磁鐵孔相對於設置在該後方側磁鐵孔的前述永久磁鐵而在前述旋轉方向的前方側具有第2端部,前述前方側磁鐵孔及前述後方側磁鐵孔各自的前述第2端部是和成為磁障 的空間的端部一致並且被封閉。
  12. 如請求項11之轉子鐵芯,其中在前述剖面中,橋接寬度規定線之與前述軟磁性材料重疊的部分的長度是前述轉子鐵芯的直徑的0.02倍以下,前述橋接寬度規定線是將前述前方側磁鐵孔及前述後方側磁鐵孔的前述第2端部彼此,以和前述軟磁性材料重疊的長度為最短的方式來連結的直線。
  13. 如請求項11之轉子鐵芯,其中在前述剖面中,前述前方側磁鐵孔及前述後方側磁鐵孔分別更具有第3端部與第4端部,前述第3端部是在設置於該前方側磁鐵孔及該後方側磁鐵孔的前述永久磁鐵的磁化方向上位於外周側,前述第4端部是在該永久磁鐵的磁化方向上位於比前述第3端部更靠內周側,在前述剖面中,橋接寬度規定線之與前述軟磁性材料重疊的部分的長度是超過wmin,前述橋接寬度規定線是將前述前方側磁鐵孔及前述後方側磁鐵孔的前述第2端部彼此,以和前述軟磁性材料重疊的長度為最短的方式來連結的直線,wmin是以ρ×S×rg×ω÷Ys來算出,ρ是前述軟磁性材料的密度(kg/m3),Ys是前述軟磁性材料在常溫下的降伏應力(Pa),S是外力影響部的面積(m2),在前述剖面中,前述外力影響部是位於前述橋接寬度規定線的一端的前述前方側磁鐵孔的前述第3端部、位於前述橋接寬度規定線的另一端的前述後方側磁鐵孔的前述第3端部、前述軟磁性體部的外周面、及前述橋接寬度規定線所包圍的前述軟磁性材料的區域,rg是前述剖面中的前述外力影響部的重心的位置與前述旋轉的中心的半徑 方向上的距離(m),ω是以最高旋轉數旋轉時的轉子的角速度(rad/sec)。
  14. 一種轉子鐵芯,是具備軟磁性體部的轉子鐵芯,前述軟磁性體部是使用軟磁性材料而形成,且每1極具有至少一個磁鐵孔,前述軟磁性體部在外周面具有凹陷部,前述磁鐵孔在左右方向上具有第1端部及第2端部,前述左右方向是和設置在該磁鐵孔的永久磁鐵的磁化方向與平行於成為旋轉中心的旋轉軸線的方向垂直,在前述第1端部及前述第2端部當中,至少其中一個端部是開放的開放端部,前述凹陷部是位於和前述開放端部不同的位置,前述凹陷部是位於和芯齒具有間隔而相向的位置上,前述芯齒是在定子鐵芯的芯齒當中和磁通密度最低的芯齒不同的芯齒,前述定子鐵芯是設置在和前述轉子鐵芯的外周面具有間隔而相向的位置上。
  15. 一種轉子,其具備:如請求項1至14中任一項之轉子鐵芯、及設置在前述轉子鐵芯的複數個永久磁鐵。
  16. 如請求項15之轉子,其中前述永久磁鐵在常溫下的殘留磁通密度為0.8T以下。
  17. 如請求項15或16之轉子,其中前述永久磁鐵不含有稀土。
  18. 一種旋轉電機,其具備:如請求項15至17中任一項之轉子;及定子。
TW111137556A 2021-11-15 2022-10-03 轉子鐵芯、轉子及旋轉電機 TWI818755B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-185697 2021-11-15
JP2021185697 2021-11-15

Publications (2)

Publication Number Publication Date
TW202322520A TW202322520A (zh) 2023-06-01
TWI818755B true TWI818755B (zh) 2023-10-11

Family

ID=86335491

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111137556A TWI818755B (zh) 2021-11-15 2022-10-03 轉子鐵芯、轉子及旋轉電機

Country Status (7)

Country Link
JP (1) JPWO2023084937A1 (zh)
KR (1) KR20240067956A (zh)
CN (1) CN118251825A (zh)
CA (1) CA3229772A1 (zh)
MX (1) MX2024004348A (zh)
TW (1) TWI818755B (zh)
WO (1) WO2023084937A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248183B (zh) * 2012-02-13 2015-07-15 株式会社电装 同步马达
US20170126080A1 (en) * 2015-10-29 2017-05-04 Fujitsu General Limited Rotor and permanent magnet electric motor
TW201728768A (zh) * 2016-02-10 2017-08-16 日新製鋼股份有限公司 永久磁鐵內嵌式馬達的轉子鐵芯用鋼板及其製造方法、永久磁鐵內嵌式馬達的轉子鐵芯以及永久磁鐵內嵌式馬達
JP2019057984A (ja) * 2017-09-20 2019-04-11 株式会社豊田自動織機 永久磁石式回転電機のロータ
US20210265881A1 (en) * 2020-02-24 2021-08-26 Hyundai Motor Company Rotor of motor having expansion barrier in a rotor core
TWM617436U (zh) * 2021-06-04 2021-09-21 士林電機廠股份有限公司 馬達之磁石固定結構

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958466B1 (fr) * 2010-03-31 2017-09-08 Valeo Equip Electr Moteur Machine electrique tournante synchrone a aimants permanents et concentration de flux
JP5279777B2 (ja) * 2010-08-28 2013-09-04 三菱電機株式会社 同期電動機の回転子
JP5350342B2 (ja) * 2010-09-08 2013-11-27 三菱電機株式会社 同期電動機の回転子
JP5447418B2 (ja) * 2011-03-28 2014-03-19 株式会社豊田自動織機 回転電機の永久磁石埋設型回転子及び回転電機
JP5762105B2 (ja) * 2011-04-20 2015-08-12 三菱電機株式会社 永久磁石型回転電機の製造方法
JP5370433B2 (ja) * 2011-08-21 2013-12-18 株式会社豊田自動織機 永久磁石埋設型電動モータ
JP2014128116A (ja) * 2012-12-26 2014-07-07 Toyota Industries Corp 永久磁石埋設型回転電機
CN105745820B (zh) * 2013-11-20 2018-11-16 日立汽车系统株式会社 旋转电机和具备该旋转电机的电动车辆
US11032834B2 (en) 2016-06-20 2021-06-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method and device
JP7348525B2 (ja) 2020-01-17 2023-09-21 日本製鉄株式会社 コア設計装置、コア設計方法、およびプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248183B (zh) * 2012-02-13 2015-07-15 株式会社电装 同步马达
US20170126080A1 (en) * 2015-10-29 2017-05-04 Fujitsu General Limited Rotor and permanent magnet electric motor
US10256684B2 (en) * 2015-10-29 2019-04-09 Fujitsu General Limited Rotor and permanent magnet electric motor
US20190190331A1 (en) * 2015-10-29 2019-06-20 Fujitsu General Limited Rotor and permanent magnet electric motor
US11171525B2 (en) * 2015-10-29 2021-11-09 Fujitsu General Limited Rotor and permanent magnet electric motor
TW201728768A (zh) * 2016-02-10 2017-08-16 日新製鋼股份有限公司 永久磁鐵內嵌式馬達的轉子鐵芯用鋼板及其製造方法、永久磁鐵內嵌式馬達的轉子鐵芯以及永久磁鐵內嵌式馬達
JP2019057984A (ja) * 2017-09-20 2019-04-11 株式会社豊田自動織機 永久磁石式回転電機のロータ
US20210265881A1 (en) * 2020-02-24 2021-08-26 Hyundai Motor Company Rotor of motor having expansion barrier in a rotor core
TWM617436U (zh) * 2021-06-04 2021-09-21 士林電機廠股份有限公司 馬達之磁石固定結構

Also Published As

Publication number Publication date
MX2024004348A (es) 2024-04-25
CN118251825A (zh) 2024-06-25
WO2023084937A1 (ja) 2023-05-19
TW202322520A (zh) 2023-06-01
KR20240067956A (ko) 2024-05-17
CA3229772A1 (en) 2023-05-19
JPWO2023084937A1 (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
JP5714189B2 (ja) 回転子およびその回転子を備えた回転電機
JP6806352B2 (ja) 回転電機、回転子鉄心の製造方法
JP5443778B2 (ja) 永久磁石式回転電機の回転子及びその回転電機
US8415856B2 (en) Rotor for electric rotating machine
CN109792176B (zh) 包括转子和定子的电机
JP6894663B2 (ja) 回転子および永久磁石電動機
CN103107620B (zh) 永磁式同步电动机的转子、电动机及机床
JP4900132B2 (ja) 回転子及び回転電機
US10256683B2 (en) Electric machine having asymmetric magnetic pole shape for torque ripple reduction
JPWO2018190103A1 (ja) 回転電機の回転子
JP5904293B2 (ja) 永久磁石埋め込み式回転電機
JP6083467B2 (ja) 永久磁石埋め込み式回転電機
JP2016010176A (ja) モータ
JP2009130969A (ja) 扁平形ブラシレスモータ
JP2019180132A (ja) 回転子鉄心、回転子及び同期リラクタンス回転電機
TWI818755B (zh) 轉子鐵芯、轉子及旋轉電機
JP2009077525A (ja) 回転電機の回転子及び回転電機
JP6315086B2 (ja) 永久磁石埋め込み式回転電機
JP2001069701A (ja) 磁石モータ
CN110178288A (zh) 转子和使用该转子的马达
JP2009044893A (ja) 回転子及び回転電機
JP2013118788A (ja) ブラシレスモータ
JP2018064323A (ja) 同期リラクタンス型回転電機
JP2015070768A (ja) 永久磁石式回転電機
JP2014064422A (ja) ロータコアおよびその製造方法