TWI794906B - 半導體裝置之製造方法及離子束照射裝置 - Google Patents

半導體裝置之製造方法及離子束照射裝置 Download PDF

Info

Publication number
TWI794906B
TWI794906B TW110127368A TW110127368A TWI794906B TW I794906 B TWI794906 B TW I794906B TW 110127368 A TW110127368 A TW 110127368A TW 110127368 A TW110127368 A TW 110127368A TW I794906 B TWI794906 B TW I794906B
Authority
TW
Taiwan
Prior art keywords
region
ion beam
irradiated
beam irradiated
insulator
Prior art date
Application number
TW110127368A
Other languages
English (en)
Other versions
TW202238954A (zh
Inventor
橋本惇一
佐佐木俊行
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202238954A publication Critical patent/TW202238954A/zh
Application granted granted Critical
Publication of TWI794906B publication Critical patent/TWI794906B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/3233Discharge generated by other radiation using charged particles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using ion beam radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2633Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Non-Volatile Memory (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

半導體裝置之製造方法,係包含有:準備「被配置於半導體基板,並包含第1區域及距離半導體基板的高度比第1區域低之第2區域」的階差構造體;及藉由對第1區域及第2區域照射離子束的方式,蝕刻階差構造體,照射至第1區域之離子束的照射量,係比照射至第2區域之離子束的照射量大。

Description

半導體裝置之製造方法及離子束照射裝置
本揭示之實施形態,係關於半導體裝置之製造方法及離子束照射裝置。 [相關申請案之交互參考] 本申請案,係以2021年03月22日先行提出申請之日本專利申請案第2021-047982號作為優先權基礎且主張享有其利益,其全部內容皆藉由引用而被包含於本申請案。
已知使用了作為半導體裝置之NAND型快閃記憶體的半導體封裝。為了使像這樣的NAND型快閃記憶體大容量化而採用層積了眾多記憶單元之構成的三維NAND型快閃記憶體已被實用化。連接於各個記憶單元之複數個導電層,係被層積於基板上並被連接於驅動電路等。
本揭示之實施形態,係提供一種提升了製造效率的半導體裝置之製造方法及離子束照射裝置。
一實施形態的半導體裝置之製造方法,係包含有:準備「被配置於半導體基板,並包含第1區域及距離半導體基板的高度比第1區域低之第2區域」的階差構造體;及藉由對第1區域及第2區域照射離子束的方式,蝕刻階差構造體,照射至第1區域之離子束的照射量,係比照射至第2區域之離子束的照射量大。
根據上述構成,可提供一種提升了製造效率的半導體裝置之製造方法及離子束照射裝置。
[詳細說明]
以下,參閱圖面,具體地說明關於本實施形態的半導體裝置之製造方法及離子束照射裝置。在以下說明中,針對具有大致相同之功能及構成的要素,賦予相同符號或在相同符號後追加了字母的符號,並僅在必要的情況下重複進行說明。以下所示之各實施形態,係例示用以使該實施形態之技術思想具體化的裝置或方法。實施形態之技術思想,係並未將構成零件的材質、形狀、構造、配置等特定於下述者。實施形態之技術思想,係亦可為對申請專利範圍施加了各種變更者。
為了使說明更明確,圖面,係與實際形態相比,有時示意地表示關於各部的寬度、厚度、形狀等,但始終只是一例,並不限定本發明之解釋。在本說明書與各圖面中,對具備了與關於已出現之圖面所說明者相同的功能之要素,係有時賦予相同符號並省略重複說明。
藉由相同製程所形成之複數個膜,係具有相同的層構造且包含相同材料。在本說明書中,係即便在複數個膜分別發揮不同功能或作用的情況下,像這樣藉由相同製程所形成之複數個膜亦分別作為存在於同一層的膜來進行處理。
在本發明之各實施形態中,將從基板朝向記憶單元的方向稱為上方。反之,將從記憶單元朝向基板的方向稱為下方。如此一來,為了方便說明,雖使用上方或下方這樣的用語進行說明,但例如基板與記憶單元之上下關係亦可被配置為與圖示相反。又,在以下說明中,例如基板上之記憶單元這樣的表現,係如上述般地只不過是說明基板與記憶單元的上下關係,亦可在基板與記憶單元之間配置其他構件。
在本說明書中,「α包含A、B或C」、「α包含A、B及C之任一者」、「α包含選自由A、B及C所構成的群之一」這樣的表現,係只要沒有特別地明示,則不排除α包含A~C之複數個組合的情形。而且,該些表現,係亦不排除α包含其他要素的情形。
以下之各實施形態,係只要不產生技術性的矛盾,亦可將其彼此組合。
在以下之各實施形態中,係雖例示說明記憶單元陣列作為半導體裝置,但可將本揭示的技術應用於記憶單元陣列以外的半導體裝置(例如CPU、顯示器、中介層等)。
<第1實施形態>[半導體裝置的整體構成] 使用圖1,說明關於本實施形態之半導體裝置的整體構成。圖1,係表示本實施形態之半導體裝置10的各要素之配置的立體圖。
半導體裝置10,係NAND型快閃記憶體裝置,包含三維配置的記憶單元。具體而言,係相對於半導體基板11之表面,在垂直方向串聯連接源極側選擇閘極電晶體、多數個(例如64個)記憶體單元電晶體及汲極側選擇閘極電晶體而構成記憶體串。另外,在串聯連接之多數個記憶體單元電晶體的兩端或多數個記憶體單元電晶體間的其中一部分之間,亦可包含虛擬單元電晶體。
半導體裝置10,係被形成於半導體基板11上。在半導體基板11上,係劃分有記憶單元區域MCR、引出區域HUR。在記憶單元區域MCR,係形成有包含三維層積之複數個記憶單元的記憶單元陣列16。記憶單元陣列16,係具有交互層積了複數個導電層及複數個絕緣層的層積體。該複數個導電層成為被連接於記憶體串之各電晶體的源極側選擇閘極線、字元線、汲極側選擇閘極線。複數個導電層及複數個絕緣層,係延伸至引出區域HUR,形成層積配線構造體17。在記憶單元陣列16上,係設置有未圖示的位元線,並被連接於周邊電路18。在層積配線構造體17上,係設置有未圖示的配線,並被連接於周邊電路18。
半導體基板11上,係進一步劃分有周邊電路區域PER。在周邊電路區域PER,係形成有周邊電路18。周邊電路18,係具有多數個CMOS電晶體。周邊電路18,係具有驅動被連接於記憶單元之各字元線的驅動電路、選擇各字元線的解碼器電路、讀出時感測位元線電位的感測放大器及包含寫入時將電壓供給至位元線之位元線電位控制電路的行系電路(column system circuit)等。另外,在圖1中,省略周邊電路區域PER的配線。半導體基板11,係具有與晶片外部進行信號之交換或接收電源之供給的焊墊列19。
[記憶單元區域MCR及引出區域HUR之構成] 圖2,係表示本實施形態之半導體裝置的記憶單元區域MCR與引出區域HUR之構成的立體圖。為了防止圖面錯綜複雜,表示具有導電性的構件並省略圖中的陰影線。在圖2中未表示構件之部分,係使用二氧化矽等的絕緣材料進行絕緣。
在記憶單元區域MCR中,係在使用了矽單結晶的半導體基板11上形成有記憶單元陣列16。記憶單元陣列16,係具有相對於半導體基板11之表面平行延伸的絕緣層、導電層71、絕緣層、導電層72、絕緣層、導電層73、絕緣層、導電層74、絕緣層。記憶單元陣列16,係具有交互層積了該些複數個絕緣層與複數個導電層的層積體。在圖面中,係雖只表示4層導電層,但可像33層、65層這樣的進而層積多數層。該些導電層,係與被連接於電晶體的源極側選擇閘極線、字元線或汲極側選擇閘極線對應。
在記憶單元區域MCR,係形成有貫通複數個絕緣層與複數個導電層的記憶體柱40。記憶體柱40,係圓筒狀,從外周側朝向中心側層積有包含二氧化矽膜的塊狀絕緣膜、包含氮化矽膜的電荷蓄積膜、包含二氧化矽膜的隧道絕緣膜、包含非晶質或多晶矽膜的半導體通道、二氧化矽膜。導電層71、72、73、74(與選擇閘極線或字元線對應)所包圍的部分,係作為將載子捕捉至氮化矽膜之非揮發性的記憶單元之一部分而發揮功能。
在引出區域HUR中,係在使用了矽單結晶的半導體基板11上形成有層積配線構造體17。在引出區域HUR亦形成有從記憶單元區域MCR延伸的複數個絕緣層與複數個導電層。層積配線構造體17,係具有相對於半導體基板11之表面平行延伸的絕緣層、導電層71、絕緣層、導電層72、絕緣層、導電層73、絕緣層、導電層74、絕緣層。層積配線構造體17,係具有交互層積了該些複數個絕緣層與複數個導電層的層積體。在圖面中,係雖只表示4層導電層,但如前述般地可像33層、65層這樣的進而層積多數層。而且,在引出區域HUR中,該些導電層,係與從字元線、源極側選擇閘極線或汲極側選擇閘極線引出的配線對應。
在引出區域HUR中,複數個導電層71、72、73、74(與從選擇閘極線或字元線引出的配線對應),係以露出下層的導電層之一部分的方式,被形成為階梯構造。導電層71、72、73、74,係被連接於在階梯構造所露出之區域中分別對應的接觸栓塞51、52、53、54(在此,不區別接觸栓塞51、52、53、54時,係設成為接觸栓塞50)。各接觸栓塞50,係經由貫通未圖示之絕緣體的接觸孔被引出至層積配線構造體17上。
接觸栓塞50,係直徑大於記憶體柱40且剖面積大。又,接觸栓塞50,係配置密度小於記憶體柱40。換言之,接觸栓塞50,係無須如記憶體柱40般高密度地配置於狹窄面積中。
[層積配線構造體之構成] 圖3,係表示層積配線構造體17之構成的(A)上視圖及(B)剖面圖。層積配線構造體17,係具有被層積於半導體基板11上的複數個導電層71、72、73、74、75、76、77(在此,不區別複數個導電層71~77時,係設成為導電層70)。複數個導電層71、72、73、74、75、76、77,係與複數個絕緣層31、32、33、34、35、36、37(在此,不區別複數個複數個絕緣層31~37時,係設成為絕緣層30)交互且周期性地被層積於與半導體基板11之主面垂直的方向(層積方向)。在圖面中,係雖只表示7層導電層,但如前述般地可像33層、65層這樣的進而層積多數層。各個導電層70,係單層。亦即,在針對1個導電層70觀察剖面形狀的情況下,單一材料在導電層70的膜厚方向(Z方向)上亦可連續。又,在1個導電層70內部亦可不存在界面。導電層70之材料,係例如亦可為鎢。
在沿層積方向相鄰接的導電層70與導電層70之間形成絕緣層30。在半導體基板11與最下層的導電層71之間亦形成絕緣層31。沿層積方向相鄰接的導電層70,係只要相互絕緣即可,絕緣層30之材料,係例如亦可為二氧化矽(SiO 2)、TEOS(Tetra Ethyl Ortho Silicate)等的氧化矽。絕緣層30,係例如使用CVD(Chemical Vapor Deposition)裝置沈積而成。
複數個導電層70及複數個絕緣層30,係分別以露出下層的導電層70之一部分的方式,被形成為階梯構造。在層積體之階梯構造上,係形成有包埋階梯構造的絕緣體90。絕緣體90之材料,係例如亦可為二氧化矽(SiO 2)、TEOS(Tetra Ethyl Ortho Silicate)等的氧化矽。
在圖3雖未表示,但在絕緣體90形成有複數個接觸孔CH。接觸孔CH,係被形成為將絕緣體90貫通至對應的導電層70。接觸孔CH,係在底部露出階梯構造中對應的導電層70。亦即,接觸孔CH,係分別距離半導體裝置上面的深度不同。
在接觸孔CH,係形成有接觸栓塞50。接觸栓塞50,係在接觸孔CH的底部與導電層70連接。亦即,接觸栓塞50,係分別距離層積配線構造體17上面的長度不同。接觸栓塞50皆為圓柱形,接觸栓塞50之材料,係例如亦可為鎢等的金屬。
[層積配線構造體之製造方法] 參閱圖4~圖8,說明關於本實施形態的層積配線構造體17之製造方法。
首先,如圖4所示般,在半導體基板11上,使絕緣層31(TEOS膜)、犧牲層21(SiN膜)、絕緣層32(TEOS膜)、犧牲層22(SiN膜)、絕緣層33(TEOS膜)、犧牲層23 (SiN膜)、絕緣層34(TEOS膜)、犧牲層24(SiN膜)、絕緣層35(TEOS膜)、犧牲層25(SiN膜)、犧牲層36(TEOS膜)、犧牲層26(SiN膜)、絕緣層37(TEOS膜)、犧牲層27(SiN膜)依序成膜而形成層積體。該些絕緣層31、32、33、34、35、36、37(TEOS膜)及犧牲層21、22、23、24、25、26、27 (SiN膜,在此,不區別犧牲層21、22、23、24、25、26、27時,係設成為犧牲層20),係例如使用CVD裝置沈積而成。交互層積之絕緣層30與犧牲層20,係被形成為相互接觸。複數個犧牲層20及複數個絕緣層30,係分別以露出下層的犧牲層20之一部分的方式,形成為階梯構造。在本實施形態中,絕緣層30之材料,係雖例示了TEOS膜,但絕緣層30之材料並不限定於此,例如亦可為二氧化矽(SiO 2)。在本實施形態中,犧牲層20之材料,係雖例示了氮化矽膜(SiN),但犧牲層20之材料並不限定於此,例如亦可為矽且亦可為鎢等的金屬。
在層積體上,係使包埋層積體之階梯構造的絕緣體90成膜而形成階差構造體。由於絕緣體90,係具有大致均勻的厚度,因此,反映出階梯構造的較大階差。亦即,階差構造體之上面(絕緣體90之上面),係具有從絕緣層31之上面至犧牲層27之上面為止的較大階差。在此,在圖4中,絕緣體90之上面,係各層之階梯構造的較小階差得到緩和而形成連接較大階差之斜面。然而,並不限定於此,絕緣體90之上面,係亦可反映各層的階梯構造之較小的階差之至少一部分。絕緣體90,係形成為其上面的最低部分(箭頭)比犧牲層27之上面高。亦即,絕緣體90,係形成為比階梯構造的較大階差(從絕緣層31之上面至犧牲層27之上面)厚。絕緣體90,係例如使用CVD裝置沈積而成。絕緣體90之材料,係例如亦可為二氧化矽(SiO 2)、TEOS(Tetra Ethyl Ortho Silicate)等的氧化矽。
具有階差之階差構造體的表面形狀(絕緣體90的表面形狀),係藉由原子力顯微鏡(AFM:Atomic Force Microscope)等來測定。藉由測定基板上的階差構造體之表面形狀的方式,製作基板上之三維圖。從基板上之三維圖,可獲得絕緣體90上面的階差資訊。基於絕緣體90上面的階差資訊,藉由從半導體基板11至絕緣體90之上面為止的高度,劃分成後述的複數個區域(區域A~C)。
如圖5~7所示般,階差構造體之階差(絕緣體90之階差),係藉由「使用後述的離子束照射裝置,對特定區域照射離子束來進行蝕刻」的方式,達成平坦化。首先,如圖5所示般,對從半導體基板11至絕緣體90之上面為止的高度為最高之區域A(犧牲層27上)照射離子束,藉此,蝕刻區域A內之階差構造體的絕緣體90。在絕緣體90包含氧化矽的情況下,離子束所包含的離子種,係不含H的C xF y +離子為較佳。作為C xF y +離子,係例如亦可為C 3F 5 +離子,且亦可為C 4F 6 +離子。藉由照射包含像這樣的離子種之離子束的方式,可蝕刻絕緣體90。又,在犧牲層27為包含氮化矽、矽或鎢的情況下,犧牲層27成為蝕刻阻止層,且亦可選擇性地蝕刻絕緣體90。
照射至區域A之離子束的照射量,係可因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度(a)來適當調整。離子束之照射量,係可藉由離子束的掃描速度、掃描次數、密度來控制。離子束之照射量,係藉由離子束的掃描速度、掃描次數、密度來控制為較佳。在此,在圖5中,係將絕緣體90蝕刻至犧牲層27的上面。然而,並不限定於此,絕緣體90,係亦可殘留一部分。絕緣體90,係只要從其上面的最低部分蝕刻至犧牲層27的上面之間即可。
如圖6所示般,對從半導體基板11至絕緣體90之上面為止的高度為區域A之後第二高的區域B(階梯構造之上半部上)照射離子束,藉此,蝕刻區域B內之階差構造體的絕緣體90。區域B,係從半導體基板11至絕緣體90之上面為止的高度比區域A低,且不含區域A。
照射至區域B之離子束的照射量,係可因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度(b)來適當調整。照射至區域B之離子束的照射量,係比照射至區域A之離子束的照射量小。照射至區域B之離子束的掃描速度,係亦可比照射至區域A之離子束的掃描速度大。照射至區域B之離子束的掃描次數,係亦可比照射至區域A之離子束的掃描次數少。照射至區域B之離子束的密度,係亦可比照射至區域A之離子束的密度小。在此,在圖6中,係將絕緣體90蝕刻至絕緣體90上面的最低部分。然而,並不限定於此,絕緣體90,係只要從其上面的最低部分蝕刻至犧牲層27的上面之間即可。
如圖7所示般,對從半導體基板11至絕緣體90之上面為止的高度為區域B之後第二高的區域C(階梯構造之下半部上)照射離子束,藉此,蝕刻區域C內之階差構造體的絕緣體90。區域C,係從半導體基板11至絕緣體90之上面為止的高度比區域B低,且不含區域A及區域B。
照射至區域C之離子束的照射量,係可因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度(c)來適當調整。照射至區域C之離子束的照射量,係比照射至區域B之離子束的照射量小。照射至區域C之離子束的掃描速度,係亦可比照射至區域B之離子束的掃描速度大。照射至區域C之離子束的掃描次數,係亦可比照射至區域B之離子束的掃描次數少。照射至區域C之離子束的密度,係亦可比照射至區域B之離子束的密度小。在此,在圖7中,係將絕緣體90蝕刻至絕緣體90上面的最低部分。然而,並不限定於此,絕緣體90,係只要從其上面的最低部分蝕刻至犧牲層27的上面之間即可。
在本實施形態中,係表示了如下述方法:藉由「因應距離半導體基板11的高度,將具有較大階差之階差構造體分成不同的3個區域(區域A~C)來進行蝕刻」的方式,簡單地達成大致平坦化。然而,並不限定於此,藉由「將以距離半導體基板11的高度所進行之區域的劃分進一步細分化」的方式,可實現進一步微調整。在本實施形態中,係表示了如下述方法:藉由「從距離半導體基板11的高度較高之區域A按照距離半導體基板11的高度較低之區域C的順序來蝕刻階差構造體」的方式,達成大致平坦化。然而,並不限定於此,亦可從距離半導體基板11的高度較低之區域C按照距離半導體基板11的高度較高之區域A的順序來蝕刻階差構造體。
如上述般,本實施形態的半導體裝置之製造方法,係藉由「對特定區域照射特定照射量之離子束來進行蝕刻」的方式,可使具有較大階差之階差構造體大致平坦化,並可提升半導體裝置的製造效率。
如圖8所示般,絕緣體90之上面,係亦可藉由化學機械研磨(CMP:chemical mechanical polishing),研磨至犧牲層27的上面而達成平坦化。
在絕緣體90及犧牲層27上,係使絕緣膜91成膜。而且,在層積體之預定區域挖掘未圖示的狹縫,並藉由該狹縫一併去除層積體所包含的犧牲層20。其結果,在存在有犧牲層20之部分產生空洞。而且,藉由將鎢等的金屬埋入該空洞之方式,形成圖3所示的導電層70。
如上述般,本實施形態的半導體裝置之製造方法,係藉由「對特定區域照射特定照射量之離子束來進行蝕刻」的方式,可容易地使具有較大階差之階差構造體大致平坦化。無需藉由濕蝕刻來運用複數個工程,就可提升半導體裝置的製造效率。
[離子束照射裝置之構成] 圖9,係表示離子束照射裝置之構成的示意圖。圖9所示之離子束照射裝置100,係ECR (Electron Cyclotron Resonance)電漿型,具備有電漿生成室200、射束線300及射束照射室400。
電漿生成室200,係藉由在真空腔室內產生磁場且導入微波的方式,產生電漿。當「在產生了電漿的狀態下導入氣體且將預定之加速電壓施加至加速電極」時,則生成離子束。電漿生成室200,係例如亦可使用C 4F 6氣體及O 2氣體,生成蝕刻絕緣體90之包含C 3F 5 +離子或C 4F 6 +離子的離子束。此時之離子能量,係例如1000eV以上為較佳。電漿生成室200,係可控制離子束的密度。
在電漿生成室200所生成之離子束,係經由質量選擇器(mass selector)210、擋板220到達射束線300。質量選擇器210,係分離並引出目標離子。例如,當在真空腔室內產生包含碳元素及氟元素之CF系的電漿後,能以質量選擇器210提取C 3F 5 +離子或C 4F 6 +離子。擋板220,係例如法拉第杯且遮蔽離子束。擋板控制部230,係控制擋板220的關關。
射束線300,係使在電漿生成室200所生成的離子束經由聚光透鏡310、節流器320、偏向器330、接物透鏡340到達射束照射室400。離子束,係藉由以聚光透鏡310、節流器320、接物透鏡340進行聚焦的方式,可抑制離子束的光點尺寸。離子束之光點尺寸(半高寬),係例如亦可從奈米級至微米級。
偏向器330,係能以固定順序掃描離子束或將其偏向至任意位置。偏向器控制部350,係可按制離子束的掃描速度及掃描次數。偏向器控制部350,係基於從基板上之三維圖所獲得的階差構造體之階差資訊,因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度,控制離子束的掃描速度及掃描次數。藉由具有像這樣的構成,可對特定照射區域照射特定照射量之離子束。
射束照射室400,係具備有:平台410,固定基板;及相對位置控制部420,控制平台410與離子束的相對位置。相對位置控制部420,係例如可藉由移動平台410的方式,控制離子束之照射區域。相對位置控制部420,係基於從基板上之三維圖所獲得的階差構造體之階差資訊,因應從半導體基板11至絕緣體90之上面的高度,劃分成複數個照射區域(例如,上述區域A~C)。藉由具有像這樣的構成,可控制照射離子束的區域。
如上述般,本實施形態的離子束照射裝置,係藉由「對特定區域照射特定照射量之離子束來進行蝕刻」的方式,可容易地使具有較大階差之階差構造體大致平坦化。無需藉由濕蝕刻來運用複數個工程,就可提升半導體裝置的製造效率。
<變形例> 本變形例之層積配線構造體的構成,係與第1實施形態之層積配線構造體的構成相同。本實施形態的層積配線構造體之製造方法,係除了離子束的照射區域以外,其餘與第1實施形態的層積配線構造體之製造方法相同。省略與第1實施形態相同的說明,在此,係說明關於與第1實施形態的層積配線構造體之製造方法不同的部分。
[層積配線構造體之製造方法] 參閱圖10~圖12,說明關於本實施形態的層積配線構造體17之製造方法。
首先,藉由圖4中所說明的方法,形成階差構造體。具有階差之階差構造體的表面形狀(絕緣體90之表面形狀),係藉由AFM等來測定。藉由測定基板上的階差構造體之表面形狀的方式,製作基板上之三維圖。從基板上之三維圖,可獲得絕緣體90上面的階差資訊。基於絕緣體90上面的階差資訊,藉由從半導體基板11至絕緣體90之上面為止的高度,劃分成後述的複數個區域(區域A’~C’)。
如圖10~12所示般,階差構造體之階差(絕緣體90之階差),係藉由「使用離子束照射裝置,對特定區域照射離子束來進行蝕刻」的方式,達成平坦化。首先,如圖10所示般,對從半導體基板11至絕緣體90之上面為止的高度較高之區域A’照射離子束,藉此,蝕刻區域A’內的階差構造體之絕緣體90的一部分。
照射至區域A’之離子束的照射量,係可因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度(a)來適當調整。離子束之照射量,係可藉由離子束的掃描速度、掃描次數、密度來控制。在此,在圖10中,係將絕緣體90蝕刻至從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面的高度(a)之2/3的高度(b)。
如圖11所示般,對區域A’與從半導體基板11至絕緣體90之上面為止的高度為區域A’之後第二高的區域B’(區域A’+B’)照射離子束,藉此,蝕刻區域A’+B’內的階差構造體之絕緣體90的一部分。區域B’,係從半導體基板11至絕緣體90之上面為止的高度比區域A’低,且不含區域A’。
照射至區域A’+B’之離子束的照射量,係可因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度(b)來適當調整。照射至區域A’+B’之離子束的照射量,係與圖10中照射至區域A’之離子束的照射量相同。照射至區域A’+B’之離子束的掃描速度,係亦可與圖10中照射至區域A’之離子束的掃描速度相同。照射至區域A’+B’之離子束的掃描次數,係亦可與圖10中照射至區域A’之離子束的掃描次數相同。照射至區域A’+B’之離子束的密度,係亦可與圖10中照射至區域A’之離子束的密度相同。在此,在圖11中,係將絕緣體90蝕刻至從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面的高度(b)之1/2的高度(c)。
如圖12所示般,對區域A’+B’與從半導體基板11至絕緣體90之上面為止的高度為區域B’之後第二高的區域C’(區域A’+B’+C’)照射離子束,藉此,蝕刻區域A’+B’+C’內的階差構造體之絕緣體90的一部分。區域C’,係從半導體基板11至絕緣體90之上面為止的高度比區域B’低,且不含區域A’及B’。
照射至區域A’+B’+C’之離子束的照射量,係可因應從絕緣體90上面的最低部分(箭頭)至絕緣體90之上面為止的高度(c)來適當調整。照射至區域A’+B’+C’之離子束的照射量,係與圖11中照射至區域A’+B’之離子束的照射量相同。照射至區域A’+B’+C’之離子束的掃描速度,係亦可與圖11中照射至區域A’+B’之離子束的掃描速度相同。照射至區域A’+B’+C’之離子束的掃描次數,係亦可與圖11中照射至區域A’+B’之離子束的掃描次數相同。照射至區域A’+B’+C’之離子束的密度,係亦可與圖11中照射至區域A’+B’之離子束的密度相同。在此,在圖12中,係將絕緣體90蝕刻至絕緣體90上面的最低部分。然而,並不限定於此,絕緣體90,係只要從其上面的最低部分蝕刻至犧牲層27的上面之間即可。
在本實施形態中,係表示了如下述方法:藉由「因應距離半導體基板11的高度,將具有較大階差之階差構造體分成不同的3個區域(區域A’~C’),並重疊距離半導體基板11的高度較高之區域來進行蝕刻」的方式,簡單地達成大致平坦化。藉由三次離子束之照射,照射至區域A’之離子束的照射量,係比照射至區域B’之離子束的照射量大,照射至區域B’之離子束的照射量,係比照射至區域C’之離子束的照射量大。照射至區域A’之離子束的掃描次數,係比照射至區域B’之離子束的掃描次數多,照射至區域B’之離子束的掃描次數,係比照射至區域C’之離子束的掃描次數多。
在本實施形態中,係因應距離半導體基板11的高度,將具有較大階差之階差構造體分成不同的3個區域(區域A’~C’)。然而,並不限定於此,藉由「將以距離半導體基板11的高度所進行之區域的劃分進一步細分化」的方式,可實現進一步微調整。在本實施形態中,係表示了如下述方法:藉由「從距離半導體基板11的高度較高之區域A’按照區域A’+B’、區域A’+B’+C’的順序來蝕刻階差構造體」的方式,達成大致平坦化。然而,並不限定於此,亦可從區域A’+B’+C’按照區域A’+B’、區域A’的順序來蝕刻階差構造體。
如上述般,本實施形態的半導體裝置之製造方法,係藉由「對特定區域照射特定照射量之離子束來進行蝕刻」的方式,可使具有較大階差之階差構造體大致平坦化,並可提升半導體裝置的製造效率。
其次,藉由圖8中所說明的方法,形成圖3所示之層積配線構造體17。
<第2實施形態> 本實施形態之層積配線構造體的構成,係除了複數個導電層及複數個絕緣層的數量以外,其餘與第1實施形態之層積配線構造體的構成相同。本實施形態的層積配線構造體之製造方法,係除了「以照射離子束進行成膜來代替照射離子束進行蝕刻」以外,其餘與第1實施形態的層積配線構造體之製造方法相同。省略與第1實施形態相同的說明,在此,係說明關於與第1實施形態的層積配線構造體之製造方法不同的部分。
[層積配線構造體之構成] 圖13,係表示層積配線構造體17之構成的(A)上視圖及(B)剖面圖。在圖面中,係雖只表示4層導電層,但如前述般地可像33層、65層這樣的進而層積多數層。由於本實施形態之層積配線構造體的構成,係除了複數個導電層及複數個絕緣層的數量以外,其餘與第1實施形態之層積配線構造體的構成相同,因此,在此省略說明。
[層積配線構造體之製造方法] 參閱圖14~圖19,說明關於本實施形態的層積配線構造體17之製造方法。
首先,如圖14所示般,在半導體基板11上,使絕緣層31(TEOS膜)、犧牲層21(SiN膜)、絕緣層32(TEOS膜)、犧牲層22(SiN膜)、絕緣層33(TEOS膜)、犧牲層23 (SiN膜)、絕緣層34(TEOS膜)、犧牲層24(SiN膜)依序成膜而形成層積體(階差構造體)。該些絕緣層31、32、33、34 (TEOS膜,在此,不區別絕緣層31、32、33、34時,係設成為絕緣層30)及犧牲層21、22、23、24(SiN膜,在此,不區別犧牲層21、22、23、24時,係設成為犧牲層20),係例如使用CVD裝置沈積而成。交互層積之絕緣層30與犧牲層20,係被形成為相互接觸。複數個犧牲層20及複數個絕緣層30,係分別以露出下層的犧牲層20之一部分的方式,形成為階梯構造。在本實施形態中,絕緣層30之材料,係雖例示了TEOS膜,但絕緣層30之材料並不限定於此,例如亦可為二氧化矽(SiO 2)。在本實施形態中,犧牲層20之材料,係雖例示了氮化矽膜(SiN),但犧牲層20之材料並不限定於此,例如亦可為矽且亦可為鎢等的金屬。
具有階差之階差構造體的表面形狀(層積體的表面形狀),係藉由原子力顯微鏡(AFM:Atomic Force Microscope)等來測定。藉由測定基板上的階差構造體之表面形狀的方式,製作基板上之三維圖。從基板上之三維圖,可獲得絕緣體31及犧牲層21、22、23、24上面的階差資訊。基於絕緣體31及犧牲層21、22、23、24上面的階差資訊,藉由從半導體基板11至絕緣體31及犧牲層21、22、23、24之上面為止的高度,劃分成後述的複數個區域(區域D~G)。
如圖15~18所示般,階差構造體之階差(層積體之階差),係藉由「使用後述的離子束照射裝置,對特定區域照射離子束來進行成膜」的方式,達成平坦化。首先,如圖15所示般,對從半導體基板11至層積體之上面為止的高度為最低之區域D(絕緣層31露出之區域)照射離子束,藉此,使絕緣體90成膜於區域D的絕緣層31上。成膜於區域D之絕緣體90,係成膜為比從半導體基板11至層積體之上面為止的高度為第2低之區域E(犧牲層21露出之區域)的高度高。亦即,成膜於區域D之絕緣體90的厚度,係形成為比區域D與區域E之階差(犧牲層21之厚度)d大。成膜於區域D之絕緣體90的厚度,係區域D與區域E之階差(犧牲層21之厚度)d的110%以上130%以下為較佳。
在絕緣體90包含二氧化矽(SiO 2)的情況下,離子束所包含的離子種,係SiH x +離子與O 2 +離子為較佳。例如,亦可為SiH 4 +離子且亦可為SiH 2 +離子。藉由照射包含像這樣的離子種之離子束的方式,可使絕緣體90成膜。
照射至區域D之離子束的照射量,係可因應區域D與區域E之階差(犧牲層21之厚度)d來適當調整。離子束之照射量,係可藉由離子束的掃描速度、掃描次數、密度來控制。離子束之照射量,係藉由離子束的掃描速度來控制為較佳。
如圖16所示般,對區域D與從半導體基板11至層積體之上面為止的高度為區域D之後第二低的區域E(區域D+E)照射離子束,藉此,使絕緣體90成膜於區域D+E的階差構造體上。區域E,係從半導體基板11至層積體之上面為止的高度比區域D高,且不含區域D。
成膜於區域D+E之絕緣體90,係成膜為比從半導體基板11至層積體之上面為止的高度為第3低之區域F (犧牲層22露出之區域)的高度高。亦即,成膜於區域D+E之絕緣體90的厚度,係形成為比區域E與區域F之階差(絕緣層32與犧牲層22之厚度)e大。成膜於區域D+E之絕緣體90的厚度,係區域E與區域F之階差(絕緣層32與犧牲層22之厚度)e的110%以上130%以下為較佳。
照射至區域D+E之離子束的照射量,係可因應區域E與區域F之階差(絕緣層32與犧牲層22之厚度)e來適當調整。照射至區域D+E之離子束的照射量,係亦可比圖15中照射至區域D之離子束的照射量大。照射至區域D+E之離子束的掃描速度,係亦可比圖15中照射至區域D之離子束的掃描速度小。照射至區域D+E之離子束的掃描次數,係亦可比圖15中照射至區域D之離子束的掃描次數多。照射至區域D+E之離子束的密度,係亦可比圖15中照射至區域D之離子束的密度大。
如圖17所示般,對區域D+E與從半導體基板11至層積體之上面為止的高度為區域E之後第二低的區域F (區域D+E+F)照射離子束,藉此,使絕緣體90成膜於區域D+E+F的階差構造體上。區域F,係從半導體基板11至層積體之上面為止的高度比區域E高,且不含區域D及E。
成膜於區域D+E+F之絕緣體90,係成膜為比從半導體基板11至層積體之上面為止的高度為第4低之區域G(犧牲層23露出之區域)的高度高。亦即,成膜於區域D+E+F之絕緣體90的厚度,係形成為比區域F與區域G之階差(絕緣層33與犧牲層23之厚度)f大。成膜於區域D+E+F之絕緣體90的厚度,係區域F與區域G之階差(絕緣層33與犧牲層23之厚度)f的110%以上130%以下為較佳。
照射至區域D+E+F之離子束的照射量,係可因應區域F與區域G之階差(絕緣層33與犧牲層23之厚度)f來適當調整。照射至區域D+E+F之離子束的照射量,係亦可與圖16中照射至區域D+E之離子束的照射量相同。照射至區域D+E+F之離子束的掃描速度,係亦可與圖16中照射至區域D+E之離子束的掃描速度相同。照射至區域D+E+F之離子束的掃描次數,係亦可與圖16中照射至區域D+E之離子束的掃描次數相同。照射至區域D+E+F之離子束的密度,係亦可與圖16中照射至區域D+E之離子束的密度相同。
如圖18所示般,對區域D+E+F與從半導體基板11至層積體之上面為止的高度為區域F之後第二低的區域G(區域D+E+F+G)照射離子束,藉此,使絕緣體90成膜於區域D+E+F+G的階差構造體上。區域G,係從半導體基板11至層積體之上面為止的高度比區域F高,且不含區域D、E及F。
成膜於區域D+E+F+G之絕緣體90,係成膜為比從半導體基板11至層積體之上面為止的高度為第5低之犧牲層24露出之區域的高度高。亦即,成膜於區域D+E+F+G之絕緣體90的厚度,係形成為比區域G與犧牲層24露出之區域的階差(絕緣層34與犧牲層24之厚度)g大。成膜於區域D+E+F+G之絕緣體90的厚度,係區域G與犧牲層24露出之區域的階差(絕緣層34與犧牲層24之厚度)g的110%以上130%以下為較佳。
照射至區域D+E+F+G之離子束的照射量,係可因應區域G與犧牲層24露出之區域的階差(絕緣層34與犧牲層24之厚度)g來適當調整。照射至區域D+E+F+G之離子束的照射量,係亦可比圖17中照射至區域D+E+F之離子束的照射量大。照射至區域D+E+F+G之離子束的掃描速度,係亦可比圖17中照射至區域D+E+F之離子束的掃描速度小。照射至區域D+E+F+G之離子束的掃描次數,係亦可比圖17中照射至區域D+E+F之離子束的掃描次數多。照射至區域D+E+F+G之離子束的密度,係亦可比圖17中照射至區域D+E+F之離子束的密度大。
在本實施形態中,係表示了如下述方法:藉由「因應距離半導體基板11的高度,將具有較大階差之階差構造體(層積體)分成不同的4個區域(區域D~G),並重疊距離半導體基板11的高度較低之區域來進行成膜」的方式,簡單地達成大致平坦化。藉由四次離子束之照射,照射至區域D之離子束的照射量,係比照射至區域E之離子束的照射量大,照射至區域E之離子束的照射量,係比照射至區域F之離子束的照射量大,照射至區域F之離子束的照射量,係比照射至區域G之離子束的照射量大。照射至區域D之離子束的掃描次數,係比照射至區域E之離子束的掃描次數多,照射至區域E之離子束的掃描次數,係比照射至區域F之離子束的掃描次數多,照射至區域F之離子束的掃描次數,係比照射至區域G之離子束的掃描次數多。
在本實施形態中,係因應距離半導體基板11的高度,將具有較大階差之階差構造體(層積體)分成不同的4個區域(區域D~G)。然而,並不限定於此,藉由「將以距離半導體基板11的高度所進行之區域的劃分進一步細分化」的方式,可實現進一步微調整。在本實施形態中,係表示了如下述方法:藉由「從距離半導體基板11的高度較低之區域D按照區域D+E、區域D+E+F、區域D+E+F+G的順序來使階差構造體成膜」的方式,達成大致平坦化。然而,並不限定於此,亦可從區域D+E+F+G按照區域D+E+F、區域D+E、區域D的順序來使階差構造體成膜。
在本實施形態中,係使比各個階差大之膜厚的絕緣體90成膜。藉由將絕緣體90之厚度形成為比各個階差大的方式,可應對絕緣體90的成膜不均。
如上述般,本實施形態的半導體裝置之製造方法,係藉由「對特定區域照射特定照射量之離子束來進行成膜」的方式,可使具有較大階差之階差構造體大致平坦化,並可提升半導體裝置的製造效率。
在絕緣體90及犧牲層27上,係使絕緣膜91成膜。而且,在層積體之預定區域挖掘未圖示的狹縫,並藉由該狹縫一併去除層積體所包含的犧牲層20。其結果,在存在有犧牲層20之部分產生空洞。而且,藉由將鎢等的金屬埋入該空洞之方式,形成圖13所示的導電層70。
如上述般,本實施形態的半導體裝置之製造方法,係藉由「對特定區域照射特定照射量之離子束來進行成膜」的方式,可容易地使具有較大階差之階差構造體大致平坦化,並可提升半導體裝置的製造效率。
[離子束照射裝置之構成] 本實施形態之離子束照射裝置的構成,係除了氣體的種類與能量以外,其餘與第1實施形態之離子束照射裝置的構成相同。省略與第1實施形態相同的說明,在此,係說明關於與第1實施形態的離子束照射裝置之構成不同的部分。
電漿生成室200,係藉由在真空腔室內產生磁場且導入微波的方式,產生電漿。當「在產生了電漿的狀態下導入氣體且將預定之加速電壓施加至加速電極」時,則生成離子束。電漿生成室200,係例如亦可使用SiH 4氣體及O 2氣體,生成使二氧化矽成膜之包含SiH 4 +離子與O 2 +離子的離子束。亦可使用SiH 2氣體及NO氣體,生成包含SiH 2 +離子與NO +離子的離子束。亦可使用SiH 2氣體及N 2O氣體,生成包含SiH 2 +離子與N 2O +離子的離子束。亦可使用SiH 2Cl 2氣體及H 2O氣體,生成包含SiH x +離子的離子束。亦可使用SiH 2Cl 2氣體及H 2O氣體,生成包含SiH 2Cl 2 +氣體及H 2O +氣體的離子束。亦可使用SiH 4氣體及CO 2、H 2氣體,生成包含SiH 4 +離子與CO 2 +離子與H 2 +離子的離子束。此時之離子能量,係例如300eV以下為較佳。
10:半導體裝置 11:半導體基板 17:層積配線構造體 18:周邊電路 16:記憶單元陣列 MCR:記憶單元區域 HUR:引出區域 PER:周邊電路區域 19:焊墊列 71:導電層 72:導電層 73:導電層 74:導電層 40:憶體柱 51:接觸栓塞 52:接觸栓塞 53:接觸栓塞 54:接觸栓塞 50:接觸栓塞 75:導電層 76:導電層 77:導電層 31:絕緣層 32:絕緣層 33:絕緣層
[圖1],係表示一實施形態的半導體裝置之整體構成的立體圖。 [圖2],係表示一實施形態之半導體裝置的記憶單元區域MCR與引出區域HUR之構成的立體圖。 [圖3],係表示一實施形態的層積配線構造體之構成的上視圖及剖面圖。 [圖4],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖5],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖6],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖7],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖8],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖9],係表示一實施形態的離子束照射裝置之構成的示意圖。 [圖10],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖11],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖12],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖13],係表示一實施形態的層積配線構造體之構成的上視圖及剖面圖。 [圖14],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖15],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖16],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖17],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。 [圖18],係表示一實施形態的層積配線構造體之製造方法的上視圖及剖面圖。
27:犧牲層
90:絕緣體
11:半導體基板
20:犧牲層
21:犧牲層
22:犧牲層
23:犧牲層
24:犧牲層
25:犧牲層
26:犧牲層

Claims (17)

  1. 一種半導體裝置之製造方法,其特徵係,包含有:準備「被配置於半導體基板,並包含第1區域及距離前述半導體基板的高度比前述第1區域低之第2區域」的階差構造體;及藉由對前述第1區域及前述第2區域照射離子束的方式,蝕刻前述階差構造體,照射至前述第1區域之離子束的照射量,係比照射至前述第2區域之離子束的照射量大。
  2. 如請求項1之半導體裝置之製造方法,其中,照射至前述第1區域之離子束的掃描速度,係比照射至前述第2區域之離子束的掃描速度小。
  3. 如請求項1或2之半導體裝置之製造方法,其中,照射至前述第1區域之離子束的掃描次數,係比照射至前述第2區域之離子束的掃描次數多。
  4. 如請求項1或2之半導體裝置之製造方法,其中,前述階差構造體,係包含氧化矽,前述離子束,係包含CxFy +離子。
  5. 一種半導體裝置之製造方法,其特徵係,包含有: 準備「被配置於半導體基板,並包含第1區域及距離前述半導體基板的高度比前述第1區域低之第2區域」的階差構造體;及藉由對前述第1區域及前述第2區域照射離子束的方式,成膜於前述階差構造體,照射至前述第1區域之離子束的照射量,係比照射至前述第2區域之離子束的照射量小。
  6. 如請求項5之半導體裝置之製造方法,其中,照射至前述第1區域之離子束的掃描速度,係比照射至前述第2區域之離子束的掃描速度大。
  7. 如請求項5或6之半導體裝置之製造方法,其中,照射至前述第1區域之離子束的掃描次數,係比照射至前述第2區域之離子束的掃描次數少。
  8. 如請求項5或6之半導體裝置之製造方法,其中,前述離子束,係包含SiHx +離子,形成包含二氧化矽的膜。
  9. 一種離子束照射裝置,其特徵係,具備有:電漿生成室,生成離子束;偏向器,對前述離子束進行掃描或偏向;偏向器控制部,控制前述偏向器之前述離子束的掃描 速度或掃描次數;及射束照射室,包含固定基板的平台及控制前述平台與前述離子束之相對位置的相對位置控制部,前述相對位置控制部,係基於前述基板上之階差構造體的階差資訊,決定第1區域及「距離前述基板之高度不同於前述第1區域」的第2區域,前述偏向器控制部,係對前述第1區域及前述第2區域照射不同照射量的離子束。
  10. 如請求項9之離子束照射裝置,其中,在前述第1區域之距離前述基板的高度比前述第2區域之距離前述基板的高度高時,前述偏向器控制部,係將照射量比前述第2區域大的離子束照射至前述第1區域。
  11. 如請求項10之離子束照射裝置,其中,在前述階差構造體包含氧化矽時,前述電漿生成室,係生成包含CxFy +離子的離子束。
  12. 如請求項10或11之離子束照射裝置,其中,前述偏向器控制部,係將照射至前述第1區域之離子束的掃描速度設成為比照射至前述第2區域之離子束的掃描速度小。
  13. 如請求項10或11之離子束照射裝置,其中,前述偏向器控制部,係將照射至前述第1區域之離子束的掃描次數設成為比照射至前述第2區域之離子束的掃 描次數多。
  14. 如請求項9之離子束照射裝置,其中,在前述第1區域之距離前述基板的高度比前述第2區域之距離前述基板的高度高時,前述偏向器控制部,係將照射量比前述第2區域小的離子束照射至前述第1區域。
  15. 如請求項14之離子束照射裝置,其中,前述電漿生成室,係生成包含SiHx的離子束。
  16. 如請求項14或15之離子束照射裝置,其中,前述偏向器控制部,係將照射至前述第1區域之離子束的掃描速度設成為比照射至前述第2區域之離子束的掃描速度大。
  17. 如請求項14或15之離子束照射裝置,其中,前述偏向器控制部,係將照射至前述第1區域之離子束的掃描次數設成為比照射至前述第2區域之離子束的掃描次數少。
TW110127368A 2021-03-22 2021-07-26 半導體裝置之製造方法及離子束照射裝置 TWI794906B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047982A JP2022146813A (ja) 2021-03-22 2021-03-22 半導体装置の製造方法およびイオンビーム照射装置
JP2021-047982 2021-03-22

Publications (2)

Publication Number Publication Date
TW202238954A TW202238954A (zh) 2022-10-01
TWI794906B true TWI794906B (zh) 2023-03-01

Family

ID=83284125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127368A TWI794906B (zh) 2021-03-22 2021-07-26 半導體裝置之製造方法及離子束照射裝置

Country Status (4)

Country Link
US (1) US12040155B2 (zh)
JP (1) JP2022146813A (zh)
CN (1) CN115117076A (zh)
TW (1) TWI794906B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157473A1 (en) * 2008-01-10 2013-06-20 Kabushiki Kaisha Toshiba Mask Manufacturing Device
US20130221491A1 (en) * 2012-02-23 2013-08-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field-effect transistors having controlled fin height and method of making
US20190074189A1 (en) * 2017-09-07 2019-03-07 Samsung Electronics Co., Ltd. Methods for manufacturing semiconductor devices having three-dimensionally arranged memory cells
US20190341254A1 (en) * 2017-11-14 2019-11-07 Taiwan Semiconductor Manufacturing Co., Ltd. Directional processing to remove a layer or a material formed over a substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118988B2 (en) 1994-08-15 2006-10-10 Buerger Jr Walter Richard Vertically wired integrated circuit and method of fabrication
US6288357B1 (en) 2000-02-10 2001-09-11 Speedfam-Ipec Corporation Ion milling planarization of semiconductor workpieces
US8313663B2 (en) * 2008-09-24 2012-11-20 Tel Epion Inc. Surface profile adjustment using gas cluster ion beam processing
US10670960B2 (en) * 2010-08-23 2020-06-02 Exogenesis Corporation Enhanced high aspect ratio etch performance using accelerated neutral beams derived from gas-cluster ion beams
KR102410666B1 (ko) 2015-01-09 2022-06-20 삼성전자주식회사 반도체 소자의 계측 방법, 및 이를 이용한 반도체 소자의 제조방법
US10546719B2 (en) 2017-06-02 2020-01-28 Fei Company Face-on, gas-assisted etching for plan-view lamellae preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157473A1 (en) * 2008-01-10 2013-06-20 Kabushiki Kaisha Toshiba Mask Manufacturing Device
US20130221491A1 (en) * 2012-02-23 2013-08-29 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field-effect transistors having controlled fin height and method of making
US20190074189A1 (en) * 2017-09-07 2019-03-07 Samsung Electronics Co., Ltd. Methods for manufacturing semiconductor devices having three-dimensionally arranged memory cells
US20190341254A1 (en) * 2017-11-14 2019-11-07 Taiwan Semiconductor Manufacturing Co., Ltd. Directional processing to remove a layer or a material formed over a substrate

Also Published As

Publication number Publication date
JP2022146813A (ja) 2022-10-05
TW202238954A (zh) 2022-10-01
US12040155B2 (en) 2024-07-16
CN115117076A (zh) 2022-09-27
US20220301809A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US11825656B2 (en) 3D NAND memory device and method of forming the same
WO2018071116A1 (en) Select transistors with tight threshold voltage in 3d memory
US10020314B1 (en) Forming memory cell film in stack opening
US10971513B2 (en) Three-dimensional semiconductor memory devices and method of manufacturing the same
US8207029B2 (en) Method for manufacturing semiconductor device
US9929041B1 (en) Semiconductor device and method for manufacturing same
CN109585454B (zh) 3d存储器件及其制造方法
KR101160185B1 (ko) 차폐전극을 갖는 3차원 수직형 메모리 셀 스트링, 이를 이용한 메모리 어레이 및 그 제조 방법
US11581327B2 (en) Three-dimensional flash memory with reduced wire length and manufacturing method therefor
US9779948B1 (en) Method of fabricating 3D NAND
US9960046B2 (en) Methods of manufacturing semiconductor device having a blocking insulation layer
CN110676257B (zh) 3d存储器件及其制造方法
TWI627711B (zh) 垂直式記憶體及其製作方法
US10347502B2 (en) Methods for manufacturing semiconductor devices having three-dimensionally arranged memory cells
CN111223870A (zh) 3d存储器件及其制造方法
US9502470B2 (en) Semiconductor memory device and method for manufacturing same
TWI794906B (zh) 半導體裝置之製造方法及離子束照射裝置
JP2006086522A (ja) 電荷捕獲半導体メモリデバイス
CN109698203B (zh) 一种三维存储器及其制备方法
US20220285170A1 (en) Method of manufacturing semiconductor device, method of manufacturing stacked wiring structure, and ion beam irradiation apparatus
US20230075852A1 (en) Semiconductor storage device and manufacturing method thereof
JP2024087306A (ja) 半導体記憶装置