TWI781672B - 聚丙烯聚乙烯混合物升級 - Google Patents

聚丙烯聚乙烯混合物升級 Download PDF

Info

Publication number
TWI781672B
TWI781672B TW110124578A TW110124578A TWI781672B TW I781672 B TWI781672 B TW I781672B TW 110124578 A TW110124578 A TW 110124578A TW 110124578 A TW110124578 A TW 110124578A TW I781672 B TWI781672 B TW I781672B
Authority
TW
Taiwan
Prior art keywords
iso
polypropylene
content
xylene cold
xcs
Prior art date
Application number
TW110124578A
Other languages
English (en)
Other versions
TW202206534A (zh
Inventor
蘇珊那 瑪格麗特 卡倫
帕維爾 舒托夫
屯安 陳
Original Assignee
奧地利商柏列利斯股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商柏列利斯股份公司 filed Critical 奧地利商柏列利斯股份公司
Publication of TW202206534A publication Critical patent/TW202206534A/zh
Application granted granted Critical
Publication of TWI781672B publication Critical patent/TWI781672B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本發明係關於一種增容劑(B)之用途,其用於升級 聚丙烯-聚乙烯摻合物(A),該摻合物包含 (A-1)聚丙烯及 (A-2)聚乙烯 其中聚丙烯(A-1)與聚乙烯(A-2)之重量比在19:1至1:19範圍內, 該升級就以下特性中之至少一或多者而言 (i)         斷裂伸長率(ISO 527-1,2;F3/4), (ii)        夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1), (iii)       夏比缺口衝擊強度(1eA)(非儀錶化,在0℃下根據ISO 179-1), (iv)       夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1), (v)        抗穿刺性(能量,在+23℃下根據ISO7785-2)及 (vi)       低溫抗穿刺性(能量,在0℃或-20℃下根據ISO 7765-2),其中相對於最終組成物,增容劑(B)以1至35 wt.-%、較佳2至25 wt.-%、更佳3至9 wt.-%之量使用。

Description

聚丙烯聚乙烯混合物升級
本發明係關於適用於升級聚丙烯及聚乙烯之混合物的異相聚合物,尤其用於升級回收聚烯烴材料,且係關於此類異相聚合物用於升級聚丙烯及聚乙烯之混合物的用途。本發明亦關於經升級之聚丙烯聚乙烯組成物。
聚丙烯及聚乙烯之混合物之特徵在於混溶性有限。當將此類混合物加工成最終產品時,機械及光學特性將可能之應用限制為非要求高之超低成本應用,諸如公園長椅或地工織物加固件。摻合物形態為邁向有價值的應用之決定性障礙中之一者,此在回收材料領域中尤其明顯。極常見之回收流含有緊鄰多種副產物之聚乙烯及聚丙烯。可在水中使用密度分離進行分離,且接著基於螢光、近紅外線吸收或拉曼(Raman)螢光進行進一步分離。然而,通常相當難以獲得純的回收聚丙烯或純的回收聚乙烯。一般而言,市場上回收量之聚丙烯為聚丙烯(polypropylene;PP)及聚乙烯(polyethylene;PE)兩者之混合物,此對於消費後廢料流而言尤其如此。此外,回收聚烯烴材料常常與非聚烯烴材料交叉污染,該等非聚烯烴材料諸如聚對苯二甲酸伸乙酯、聚醯胺、聚苯乙烯或如木、紙、玻璃或鋁之非聚合物質,從而進一步限制形態。多種增容劑之用途為此項技術中已知的。Jun Xu等人, Macromolecules 2018, 51 (21), 8585-8596描述二嵌段、四嵌段及六嵌段共聚物(block copolymer;BCP)用於等規聚丙烯與HDPE之相容的用途。作者亦已描述,使用乙烯丙烯橡膠(ethylene propylene rubber;EPR)及乙烯丙烯二烯單體(ethylene propylene diene monomer;EPDM)橡膠會引起相分離問題,且當以較高量使用時會損害拉伸強度。據報告,烯烴嵌段共聚物(olefin block copolymer;OBC)為PE及iPP之混合物的良好增容劑,諸如由Munro J.等人, Proc. SPE ANTEC 2017, 961-966描述。然而,歸因於具有挑戰性且成本高的生產方法,廣泛使用OBC受到限制。另一組增容劑為乙烯辛烯彈性體(ethylene octene;EO橡膠),其亦相當昂貴且可降低硬度。異相共聚物及異相無規共聚物用於升級回收聚烯烴流之用途已描述於主要處理硬度及抗衝擊特性之文獻中。WO2007071494A1教示在0.5至20 g/10 min之較寬熔體流動速率範圍及100%至1000%之較寬斷裂伸長率範圍內使用撓曲模數低於600 MPa之異相聚烯烴組成物。尤其,低MFR(0.6 g/10 min)異相聚烯烴「HC2」,其包括兩部分丙烯共聚物,亦即第一丙烯無規共聚物及不溶於二甲苯中之第二基本上線性乙烯/丙烯共聚物;以及固有黏度為3.2 dl/g之乙烯丙烯橡膠,已被例示用於升級PE/PP比率為約18之回收物。增容劑「HC2」進一步經受減黏裂煉,從而產生8 g/10 min之MFR,且用於PE/PP比率為約1之回收物。結果證明,經升級組成物之斷裂伸長率值僅在不受歡迎的大量之異相聚烯烴下方令人滿意。
因此,此項技術中深感需要用於PP/PE混合物之其他增容劑以改善機械效能,亦即在較低量之增容劑下改善流動性(MFR)、硬度(如藉由拉伸模數ISO 1873-2所量測)、衝擊強度(夏比缺口衝擊強度ISO 179-1 eA,在+23℃下及在-20℃下)及尤其斷裂伸長率(ISO 527-2)以及室溫(23℃)抗穿刺性及尤其低溫抗穿刺性(在0℃及-20℃下)之間之平衡。
本發明提供增容劑(B)之用途,該增容劑為包含基質相及分散於其中之彈性體相之異相共聚物,其中該基質相包括無規聚丙烯共聚物,且其中該異相共聚物具有 -    2.0至30 g/10 min之熔體流動速率MFR2 (230℃,ISO1133),及 -    在154℃至168℃範圍內之至少一個熔點Tm1, -    在130℃至160℃範圍內之視情況存在之第二熔點Tm2, -    在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3, -    60至80 wt.-%、較佳70至80 wt.-%之二甲苯冷不溶物含量(xylene cold insoluble;XCI)(ISO 16152,1ed,25℃),及 -    20至40 wt.-%之二甲苯冷可溶物含量(xylene cold soluble;XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100 wt.-%, -    該二甲苯冷不溶物含量(XCI)中2.0至6.0 wt.-%、較佳2.3至3.5 wt.-%之衍生自乙烯之單元的含量,及 -    該二甲苯冷可溶物含量(XCS)中20.0至40.0 wt.-%、較佳25.0至35.0 wt.%之衍生自乙烯之單元的含量; -    固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1 dl/g至小於6.0 dl/g、較佳3.0至5.0 dl/g、最佳3.3至4.3 dl/g之該二甲苯冷可溶物含量(XCS), 該增容劑用於升級聚丙烯-聚乙烯摻合物(A),該摻合物包含 (A-1)聚丙烯及 (A-2)聚乙烯 其中聚丙烯(A-1)與聚乙烯(A-2)之重量比為19:1至1:19, 該升級關於以下特性中之至少一或多者 (i)         斷裂伸長率(ISO 527-2) (ii)        夏比(Charpy)缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1) (iii)       夏比缺口衝擊強度(1eA)(非儀錶化,在+0℃下根據ISO 179-1) (iv)       夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1) (v)        抗穿刺性(能量,在23℃下根據ISO7785-2) (vi)       低溫抗穿刺性(能量,在0℃或-20℃下根據ISO 7765-2) 其中相對於最終組成物,增容劑(B)以1至35 wt.-%、較佳2至25 wt.-%、更佳3至9 wt.-%之量使用。
本發明進一步提供一種用於升級聚丙烯-聚乙烯摻合物(A)之方法,該摻合物包含 (A-1)聚丙烯及 (A-2)聚乙烯 其中聚丙烯(A-1)與聚乙烯(A-2)之重量比為19:1至1:19, 該升級關於以下特性中之至少一或多者 (i)         斷裂伸長率(ISO 527-2) (ii)        夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1) (iii)       夏比缺口衝擊強度(1eA)(非儀錶化,在0℃下根據ISO 179-1) (iv)       夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1) (v)        抗穿刺性(能量,在23℃下根據ISO7785-2) (vi)       低溫抗穿刺性(能量,在0℃或-20℃下根據ISO 7765-2) 該方法藉由熔融摻合該聚丙烯-聚乙烯摻合物(A) 與相對於最終組成物,呈1至35 wt.-%、較佳2至25 wt.-%、更佳3至9 wt.-%之量的增容劑(B),其中該增容劑(B)為包含基質相及分散於其中之彈性體相之異相共聚物,其中該基質相包括無規聚丙烯共聚物且其中該異相共聚物具有 -    2.0至30 g/10 min之熔體流動速率MFR2 (230℃,ISO1133),及 -    在154℃至168℃範圍內之至少一個熔點Tm1, -    在130℃至160℃範圍內之視情況存在之第二熔點Tm2, -    在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3, -    60至80 wt.-%、較佳70至80 wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及 -    20至40 wt.-%、較佳20至30 wt.%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100 wt.-%, -    該二甲苯冷不溶物含量(XCI)中2.0至6.0 wt.-%、較佳2.3至3.5 wt.-%之衍生自乙烯之單元的含量,及 -    該二甲苯冷可溶物含量(XCS)中20.0至40.0 wt.-%、較佳25.0至35.0 wt.%之衍生自乙烯之單元的含量; -    固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1 dl/g至小於6.0 dl/g、較佳3.0至5.0 dl/g、更佳3.3至4.3 dl/g之該二甲苯冷可溶物含量(XCS)。
在另一態樣中,本發明提供可藉由摻合以下獲得之聚丙烯-聚乙烯組成物 a)65至99 wt.-%、較佳75至98 wt.-%、更佳91至97 wt.-%之聚丙烯-聚乙烯摻合物(A),該摻合物包含 A-1)聚丙烯, A-2)聚乙烯, 其中聚丙烯與聚乙烯之重量比為19:1至1:19,與 b)1至35 wt.-%、較佳2至25 wt.-%、更佳3至9 wt.-%之增容劑(B),該增容劑為包含基質相及分散於其中之彈性體相之異相共聚物,其中該基質相包括無規聚丙烯共聚物,且其中該異相共聚物具有 -    2.0至30 g/10 min之熔體流動速率MFR2 (230℃,ISO1133),及 -    在154℃至168℃範圍內之至少一個熔點Tm1, -    在130℃至160℃範圍內之視情況存在之第二熔點Tm2, -    在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3, -    60至80 wt.-%、較佳70至80 wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及 -    20.0至40.0 wt.-%、較佳20至30 wt.%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100 wt.-%; -    該二甲苯冷不溶物含量(XCI)中2.0至6.0 wt.-%、較佳2.3至3.5 wt.-%之衍生自乙烯之單元的含量,及 -    該二甲苯冷可溶物含量(XCS)中20.0至40.0 wt.-%、較佳25.0至35.0 wt.%之衍生自乙烯之單元的含量, -    固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1 dl/g至小於6.0 dl/g、較佳3.0至5.0 dl/g、最佳3.3至4.3 dl/g之該二甲苯冷可溶物含量(XCS),且 -    其中MFR2 (摻合物(A))/MFR2 (增容劑(B))((ISO1133,2.16 kg載荷,在230℃下)之比率在0.1至12.5範圍內。
在又另一態樣中,本發明提供一種用於聚丙烯/聚乙烯摻合物之相容之異相共聚物,該異相共聚物包含基質相及分散於其中之彈性體相,其中該基質相包括無規聚丙烯共聚物,且其中 該異相共聚物具有 -    2.0至30 g/10 min之熔體流動速率MFR2 (230℃,ISO1133),及 -    在154℃至168℃範圍內之至少一個熔點Tm1, -    在130℃至160℃範圍內之視情況存在之第二熔點Tm2, -    在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3, -    60至80 wt.-%、較佳70至80 wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及 -    20至40 wt.-%、較佳20至30 wt.-%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100 wt.-%, -    該二甲苯冷不溶物含量(XCI)中2.0至6.0 wt.-%、較佳2.3至3.5 wt.-%之衍生自乙烯之單元的含量,及 -    該二甲苯冷可溶物含量(XCS)中20.0至40.0 wt.-%、較佳25.0至35.0 wt.%之衍生自乙烯之單元的含量; 固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1 dl/g至小於6.0 dl/g、較佳3.0至5.0 dl/g、最佳3.3至4.3 dl/g之該二甲苯冷可溶物含量(XCS)。定義
除非另外定義,否則本文中所使用之所有技術及科學術語具有與本發明所屬技術領域中具有通常知識者通常所理解相同之含義。儘管任何與本文所描述之彼等方法及材料類似或等效之方法及材料可用於實踐本發明之測試,但本文描述較佳材料及方法。在描述及主張本發明時,將根據下文所闡述之定義使用以下術語。除非另外清晰指示,否則術語「一(a/an)」及其類似術語之使用係指一或多個。增容劑(B)(亦即根據本發明之異相共聚物)之丙烯均聚物-無規共聚物基質相指示與無規聚丙烯共聚物混合之丙烯均聚物構成之基質相。兩種聚合物,亦即第一聚丙烯均聚物及第二聚丙烯無規共聚物之存在可藉由如諸如藉由差示掃描熱量測定(DSC)由兩個可識別峰或一峰及一肩峰來指定之範圍內之兩個熔點之存在來偵測。「升級(upgrading)」意謂改善反應物摻合物之一或多個特性,諸如斷裂伸長率、夏比缺口衝擊或粒子形態,使得所得組成物,亦即反應物摻合物與增容劑之組合展示優於反應物摻合物之一或多個特性。分散相粒子形態描述如藉由顯微法可觀測到的分散相粒子之粒度分佈。分散相粒子形態之「升級」意謂如藉由顯微法觀測到及視情況藉由影像分析所分析之分散相的形態經優化。
出於本發明之目的 -    斷裂伸長率(ISO 527-2)關於起始值增加至少50%,尤其100%; -    夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1)關於起始值增加至少5.0%,尤其10%; -    夏比缺口衝擊強度(1eA)(非儀錶化,在0℃下根據ISO 179-1)關於起始值增加至少5.0%,尤其10%; -    夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1)關於起始值增加至少5.0%,尤其10%; -    穿刺能量(在+23℃下根據ISO 7765-2)相對於起始材料增加至少15%; -    穿刺能量(在-20℃下或在0℃下根據ISO 7765-2)相對於起始材料增加至少15%應視為「升級」或「改善(improving)」。
出於本說明書之目的,相較於原生聚合物,術語「回收廢棄物(recycled waste)」或「回收材料(recycled material)」用於指示自消費後廢料及工業廢料兩者回收之材料。消費後廢料係指物體已完成至少第一使用週期(或生命週期),亦即已服務其第一目的;而工業廢料係指製造廢品,其通常不會被消費者接觸。術語「原生(virgin)」指示新產生材料及/或在其第一使用之前的物體,其尚未經回收。原生材料及回收材料易於基於污染物之不存在或存在而區分,諸如檸檬烯及/或脂肪酸及/或紙及/或木。聚丙烯-聚乙烯摻合物亦可相對於其來源藉由聚苯乙烯及/或聚醯胺之存在而區分。殘餘含量指示超過偵測極限之含量。多種不同種類之聚乙烯或聚丙烯可存在於「回收材料」中。藉由使用等規聚丙烯(iPP)及高密度聚乙烯(HDPE)進行校準,以實驗方式測定聚丙烯(A-1)相對於聚乙烯加聚乙烯共聚物(A-2)之比率。聚合物摻合物為兩種或大於兩種聚合物組分之混合物。大體而言,可藉由將兩種或大於兩種聚合物組分混合來製備摻合物。此項技術中已知的適合之混合程序為聚合後摻合。聚合後摻合可為乾式摻合聚合物組分(諸如聚合物粉末及/或混配的聚合物丸粒)或藉由熔融混合聚合物組分之熔融摻合。丙烯無規共聚物為丙烯單體單元及共聚單體單元之共聚物,其中共聚單體單元無規分佈在聚丙烯鏈上。「增容劑(compatibilizer)」為聚合物化學反應中之物質,將其添加至具有有限混溶性之聚合物摻合物中以提高其穩定性。「聚丙烯-聚乙烯摻合物(polypropylene-polyethylene blend)」係指含有聚丙烯及聚乙烯兩者之組成物,亦包括聚丙烯共聚物以及聚乙烯共聚物。由於不可能直接測定聚丙烯含量及聚乙烯含量,19:1至1:19之聚丙烯(A-1)與聚乙烯(A-2)重量比指示如自藉由iPP及HDPE之校準及藉由IR光譜法之測定所測定的當量比。術語「彈性體(elastomer)」指示具有彈性特性的天然或合成聚合物。術語「XCS」係指在25℃下根據ISO 16152測定之二甲苯冷可溶物含量(XCS wt.-%)。術語「XCI」係指在25℃下根據ISO 16152測定之二甲苯冷不溶物含量(XCI wt.-%)。若未另外指示,則「%」係指重量-%。異相性質之存在可容易地藉由玻璃轉移點之數目確定。反應器摻合物為源自串聯耦接之兩個或更多個反應器中或具有兩個或更多個反應室之反應器中之生產的摻合物。或者,反應器摻合物可由在溶液中摻合產生。反應器摻合物與如藉由熔融擠壓產生之化合物形成對比。增容劑
根據本發明之增容劑為包含基質相及分散於其中之彈性體相之異相共聚物,其中基質相包括無規聚丙烯共聚物及亦聚丙烯均聚物。熟習此項技術者將立即識別聚丙烯均聚物之存在,其可容易地藉由差示掃描熱量測定,藉由例如熔融峰分析來偵測。換言之,至少一個熔點Tm1在154℃至168℃範圍內之存在指示聚丙烯均聚物之存在。通常異相共聚物包括聚丙烯均聚物基質(通常指示為HECO)或其包括無規聚丙烯共聚物基質(通常指示為RAHECO),其中此類基質亦可由兩種關於其分子量分佈及/或其共聚單體含量不同之無規聚丙烯共聚物構成。根據本發明之異相共聚物具有2.0至30 g/10 min、較佳5.0至15.0 g/10 min、最佳6.0至15.0 g/10 min之熔體流動速率MFR2 (230℃,ISO1133)。根據本發明之異相共聚物進一步須具有至少一個在154℃至168℃範圍內之熔點Tm1。如上文所解釋,此類熔點標記均聚物之存在。存在視情況存在之源自無規聚丙烯共聚物之在130℃至160℃範圍內的第二熔點Tm2。可能的是,在130℃至160℃之溫度範圍內之無規聚丙烯共聚物的熔點明顯可見。然而,通常此情況將並非如此且熔點將在DSC熱分析圖中呈現為肩峰。根據本發明之異相共聚物視情況具有在110℃至125℃範圍內之至少第二或第三熔點Tm3。此類熔點源自聚乙烯。根據本發明之異相共聚物進一步須具有60至80 wt.-%、較佳70至80 wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃)及20至40 wt.-%、較佳20至30 wt.-%(之二甲苯冷可溶物含量(XCS)ISO 16152,1ed,25℃),其中二甲苯冷不溶物含量(XCI)及二甲苯冷可溶物含量(XCS)總計為100 wt.-%。二甲苯冷可溶物含量之量不應過高,因為此可能降低硬度且其亦不應過低,因為若非如此,抗衝擊性及抗穿刺性可能並不足夠。熟習此項技術者應理解,基質組分及彈性體組分二者均有助於二甲苯冷可溶物含量。如自實驗部分可見,丙烯均聚物-聚丙烯無規共聚物之混合物,亦即由如在反應器1及2中產生之基質組分構成的混合物具有相對較高的二甲苯冷可溶物含量。
根據本發明之異相共聚物進一步具有二甲苯冷不溶物含量(XCI)中2.0至6.0 wt.-%,、較佳2.3至3.5 wt.-%之衍生自乙烯之單元的含量。此外,根據本發明之異相共聚物之二甲苯冷可溶物含量(XCS)中之衍生自乙烯之單元的含量為20.0至40.0 wt.-%、較佳為25.0至35.0 wt.%。在另一態樣中,根據本發明之異相共聚物之二甲苯冷可溶物含量(XCS)可具有在2.1 dl/g至小於6.0 dl/g之寬範圍內之固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)。較佳地,二甲苯冷可溶物含量(XCS)之固有黏度在3.0至5.0 dl/g範圍內,且最佳在3.3至4.3 dl/g範圍內。此類IV(XCS)範圍尤其有益於抗衝擊性及抗穿刺性。在又另一較佳態樣中,二甲苯冷可溶物含量(XCS)包括僅衍生自乙烯及丙烯之單元。換言之,彈性體可僅為丙烯與乙烯之共聚物。
根據本發明之異相共聚物較佳為丙烯均聚物、無規聚丙烯共聚物及乙烯丙烯橡膠之反應器摻合物。因此,根據本發明之異相共聚物可容易地在各種類型之聚合物設備中製得,該等聚合物設備諸如Borstar®組態(環管反應器-氣相反應器1-氣相反應器2)、Spheripol組態(環管反應器1-環管反應器2-氣相反應器1)、具有液體丙烯作為阻隔氣體之Spheripol組態及其他常見類型之生產設備。
根據本發明之異相共聚物,亦即增容劑(B)較佳具有至少625 MPa、更佳至少650 MPa且最佳至少700 MPa之拉伸模數(根據ISO 527-2量測)。
在另一態樣中,根據本發明之異相共聚物,亦即根據本發明之增容劑(B)具有6.0至12.0 wt.-%之衍生自乙烯之單元的總含量。
在特定具體實例中,增容劑(B)係藉由使用齊格勒納他催化劑製得。若如此,則在154℃至168℃範圍內之至少一個熔點Tm1將發現在161℃至168℃範圍內。歸因於可加工性及成本優勢,具有至少一個在161℃至168℃範圍內之熔點Tm1之增容劑為較佳的。聚丙烯 - 聚乙烯摻合物( A
根據本發明之聚丙烯-聚乙烯摻合物(A)較佳具有以下特性中之一或多者: a)   如藉由使用固相微萃取(HS-SPME-GC-MS)所測定之以下檸檬烯含量:0.1 ppm至100 ppm、較佳0.1 ppm至50 ppm、更佳0.1 ppm至20 ppm、最佳0.1 ppm至5 ppm; b)  如藉由使用固相微萃取(HS-SPME-GC-MS)所測定之0.1至100 ppm之脂肪酸含量; c)   如藉由NMR所測定之0.05至1.5 wt.-%之聚醯胺含量; d)  如藉由NMR所測定之0.05至3.0 wt.-%之聚苯乙烯含量。
較佳地,根據本發明之聚丙烯-聚乙烯摻合物(A)為回收材料,更佳源自家庭廢棄物。
根據本發明之聚丙烯-聚乙烯摻合物(A)包含 (A-1)聚丙烯及 (A-2)聚乙烯 其中聚丙烯(A-1)與聚乙烯(A-2)之重量比為19:1至1:19。
應理解,聚丙烯-聚乙烯摻合物(A)可在組成上廣泛變化,亦即可包括聚丙烯均聚物、聚丙烯共聚物、聚乙烯及聚乙烯共聚物。由於不可能直接測定聚丙烯含量及聚乙烯含量,19:1至1:19之聚丙烯(A-1)與聚乙烯(A-2)重量比為如自藉由iPP及HDPE之校準所測定的當量比。
習知地,根據本發明之聚丙烯-聚乙烯摻合物(A)可具有以下中之一或多者: -    如實驗部分中所描述測定之殘餘PET; -    如實驗部分中所描述之殘餘滑石及白堊含量; -    金屬殘餘含量(藉由x射線螢光(XRF)測定) -    如實驗部分中所描述之紙殘餘量 -    如實驗部分中所描述之木殘餘量 -    如藉由使用頂空固相微萃取(HS-SPME-GC-MS)所量測,0.1至100 ppm之總游離脂肪酸含量。用於升級之用途
根據本發明之增容劑用於升級聚丙烯-聚乙烯摻合物(A),該摻合物包含 (A-1)聚丙烯及 (A-2)聚乙烯 其中聚丙烯(A-1)與聚乙烯(A-2)之重量比為19:1至1:19。 該升級至少關於以下特性中之一或多者 (i)         斷裂伸長率(ISO 527-2) (ii)        夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1) (iii)       夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1) (iv)       穿刺能量(在23℃下根據ISO 7765-2)相對於起始材料增加15%; (v)        低溫穿刺能量(在-20℃或0℃下根據ISO 7765-2)相對於起始材料增加15%。
根據本發明,相對於最終組成物,增容劑(B)以1至35 wt.-%、較佳2至25 wt.-%、更佳3至9 wt.-%之量使用。應避免相較於所指示之35 wt.-%、較佳地25 wt.-%且最佳9 wt.-%的最大值還更大量之增容劑,因為若如此,斷裂伸長率及/或硬度可能再次受損。聚丙烯 - 聚乙烯組成物
關於根據本發明之聚丙烯-聚乙烯組成物之較佳態樣描述於下文中。
根據本發明之聚丙烯-聚乙烯組成物應具有相對高之硬度。因此,增容劑(B)較佳具有至少625 MPa、更佳至少650 MPa且最佳如上文所描述之拉伸模數。製品
本發明亦關於一種製品,其包含如上文所描述之聚丙烯-聚乙烯組成物、較佳由該組成物組成。
在一尤其較佳具體實例中,用於聚丙烯/聚乙烯摻合物之相容之異相共聚物包含基質相及分散於其中之彈性體相,其中該基質相包括無規聚丙烯共聚物,且其中該異相共聚物具有 -    2.0至30 g/10 min之熔體流動速率MFR2 (230℃,ISO1133),及 -    在154℃至168℃範圍內之至少一個熔點Tm1, -    在130℃至160℃範圍內之視情況存在之第二熔點Tm2, -    在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3, -    70至80 wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及 -    20至30 wt.-%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100 wt.-%, -    該二甲苯冷不溶物含量(XCI)中2.0至6.0 wt.-%、較佳2.3至3.5 wt.-%之衍生自乙烯之單元的含量,及 -    二甲苯冷可溶物含量(XCS)中25.0至35.0 wt.-%之衍生自乙烯之單元的含量; -    固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為3.3至4.3 dl/g之該二甲苯冷可溶物含量(XCS)。
此異相共聚物較佳具有至少650 MPa之拉伸模數(根據ISO 527-2量測)。在另一態樣中,此異相共聚物之基質包括聚丙烯均聚物-無規聚丙烯共聚物之混合物,較佳由該混合物組成。在又另一態樣中,此異相共聚物之二甲苯冷可溶物含量(XCS)包括僅衍生自乙烯及丙烯之單元。此外,亦較佳地,此異相共聚物為丙烯均聚物、無規聚丙烯共聚物及乙烯丙烯橡膠之反應器摻合物。
在下文中,將描述兩個尤其較佳具體實例。
根據本發明之第一特定及較佳具體實例的聚丙烯-聚乙烯組成物較佳具有以下特性中之一或多者 -    至少7.0 kJ/m2 之夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1),及/或 -    至少2.5 kJ/m2 之夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1),及/或 -    至少200%、尤其300%之斷裂伸長率(ISO 527-2); -    至少800 MPa之拉伸模數(ISO 527-2).; -    至少4.0 J之穿刺能量(在+23℃下根據ISO 7765-2); -    至少0.6 J之穿刺能量(在-20℃下根據ISO 7765-2)。
至少7.0 kJ/m2 之良好夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1)可容易地藉由使用較高量之增容劑來達成。3.3至4.3 dl/g範圍內之二甲苯冷可溶物含量IV(XCS)之固有黏度有利於至少2.5 kJ/m2 之夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1)。至少200%、尤其300%之良好斷裂伸長率(ISO 527-2)需要有限量之增容劑及較佳固有黏度為3.0至5.0 dl/g、更佳3.3至4.3 dl/g之二甲苯冷可溶物含量IV(XCS)。僅可藉由有限量之增容劑及視情況在預見範圍之下端的二甲苯冷可溶物含量才達成至少800 MPa之拉伸模數。
摻合物(A),亦即較佳地,如此第一特定及較佳具體實例中所含有之回收材料較佳具有以下特徵中之一或多者: -    2:1至1:2之聚丙烯相對於聚乙烯之比率; -    至少900 MPa之拉伸模數(ISO 527-2); -    3.0至10.0 g/10 min之熔體流動速率MFR2 (ISO1133,230℃,2.16 kg))。
根據本發明之第二特定及較佳具體實例的聚丙烯-聚乙烯組成物較佳具有以下特性中之一或多者: -    至少1200 MPa之拉伸模數(ISO 527-2),及/或 -    至少40%之斷裂伸長率(ISO 527-2)。
摻合物(A),亦即較佳地,如此第二特定及較佳具體實例中所含有之回收材料較佳具有以下特徵中之一或多者: -    19:1至10:1之聚丙烯相對於聚乙烯之比率; -    至少1100 MPa之拉伸模數(ISO 527-2); -    7.0至25.0 g/10 min、較佳7.0至17.0 g/10 min之熔體流動速率MFR2 (ISO1133,230℃,2.16 kg))。實驗部分
包括以下實例以展現如申請專利範圍中所描述的本發明之某些態樣及具體實例。然而,所屬技術領域中具有通常知識者應瞭解,以下描述僅為說明性且不應以任何方式視為本發明之限制。測試方法 a)   iPP 、聚苯乙烯、聚乙烯 及含乙烯共聚物 、聚 ( 對苯二甲酸伸乙酯 ) 之量及聚醯胺 -6 之量
為建立不同校準曲線,摻合不同標準物亦即iPP及HDPE及iPP、PS及PA6。為了對異質聚合物之含量進行定量,使用Bruker Vertex 70 FTIR光譜儀在固態下記錄IR光譜。在190℃下用壓縮成型裝置在4-6 MPa夾持力下製備膜。對於iPP及HDPE之校準標準物的膜厚度為300 μm,且為了對iPP、PS及PA 6進行定量,使用50-100 μm膜厚度。採用標準透射FTIR光譜法,其使用4000 cm-1至400 cm-1之光譜範圍、6 mm之孔徑、2 cm-1之光譜解析率、16次背景掃描、16次光譜掃描、32之零填充因子之干涉圖及Norton Beer強變跡法。
量測iPP中1167 cm-1處之條帶的吸收度,且根據校準曲線(吸收度/以cm為單位之厚度相對於以重量%為單位之iPP含量)對iPP含量進行定量。
量測1601 cm-1(PS)及3300 cm-1(PA6)處之條帶的吸收度,且根據校準曲線(吸收度/以cm為單位之厚度相對於以wt.-%為單位之PS及PA含量)對PS及PA6含量進行定量。含聚乙烯及乙烯之共聚物的含量係藉由自100減去(iPP+PS+PA6),考慮如以下方法中所測定之非聚合雜質的含量而獲得。分析係以雙重測定形式進行。b) 拉伸模數及斷裂拉伸應變
拉伸模數及斷裂拉伸應變係使用如EN ISO 1873-2中所描述製備之射出成形之標本1B(狗骨骼形狀,4 mm厚度)根據ISO 527-2(在23℃下,交叉頭速度=1 mm/min;測試速度50 mm/min)量測。在標本在23℃下之96 h調節時間後,進行量測。c) 衝擊強度
衝擊強度係根據EN ISO 1873-2製備之射出成形之80×10×4 mm3 的標本上根據ISO 179-1 eA在+23℃下、在0℃下及在-20℃下以夏比缺口衝擊強度形式測定。在標本在23℃下之96 h調節時間後,進行量測。d) 儀錶化穿刺測試
根據ISO6603-2:2000,在23℃、0℃及-20℃下在60×60×1 mm3 射出成形之薄板上進行儀錶化穿刺測試。在標本在23℃下之96 h調節時間後,進行量測。e) 共聚單體含量 ( 丙烯 - - 乙烯 )- 乙烯含量 -IR 光譜法
定量紅外線(IR)光譜法用於經由相對於原級方法之校準對聚(乙烯-共-丙烯)共聚物中之乙烯含量進行定量。經由使用一組具有已知乙烯含量之內部非商業校準標準物促進校準,該等已知乙烯含量藉由定量13 C溶液態核磁共振(NMR)光譜法測定。校準程序係以文獻中充分記載之習知方式進行。校準組係由38個校準標準物組成,其中在多種條件下以中試或全規模生產之乙烯含量範圍為0.2-75.0 wt.%。校準組經選擇以反映最終定量IR光譜法方法所接觸之典型多種共聚物。
使用Bruker Vertex 70 FTIR光譜儀在固態下記錄定量IR光譜。光譜記錄於25×25 mm、厚度為300 mm之正方形膜上,該等膜藉由在180℃-210℃及4-6 MPa下進行壓縮成型而製備。對於具有極高乙烯含量(>50 mol%)之樣品,使用100 mm厚膜。採用標準透射FTIR光譜法,其使用5000-500 cm-1 之光譜範圍、6 mm之孔徑、2 cm-1 之光譜解析率、16次背景掃描、16次光譜掃描、64之零填充因子之干涉圖及布萊克曼-哈里斯3項變跡法(Blackmann-Harris 3-term apodisation)。使用730及720 cm-1 (AQ )處對應於(CH2 )>2 結構單元之CH2 擺動變形之總面積進行定量分析(積分法G,限值762及694 cm-1 )。定量帶標準化至4323 cm-1 (AR )處對應於CH結構單元之CH帶之面積(積分法G,限值4650 cm-1 、4007 cm-1 )。接著使用二次校準曲線自標準化吸收(AQ /AR )預測以重量%為單位之乙烯含量。校準曲線先前已藉由對校準組所量測之標準化吸收及主要共聚單體含量之普通最小平方(OLS)回歸分析建構。 ( 丙烯 - - 乙烯 )- 乙烯含量 -13 C NMR 光譜法
使用分別地在用於1 H及13 C之400.15及100.62 MHz下操作的Bruker Avance III 400 NMR光譜儀在溶液態下記錄定量13 C{1 H}NMR光譜。所有光譜均在125℃下使用氮氣(對於所有氣動裝置)使用13 C最佳化之10 mm寬溫探頭記錄。將大約200 mg材料連同乙醯基丙酮酸鉻(III)(Cr(acac)3 )一起溶解於3 ml之1,2-四氯乙烷-d2 (TCE-d2 )中,產生弛豫劑於溶劑中之65 mM溶液(Singh, G., Kothari, A., Gupta, V., Polymer Testing 28 5 (2009), 475)。
為確保均質溶液,在於加熱塊中製備初始樣品後,進一步在旋轉烘箱中加熱NMR管至少1小時。插入至磁體中後,使試管在10 Hz下旋轉。此設置主要針對高解析度而選擇且針對精確乙烯含量定量以定量方式為所需。採用標準單脈衝激發,無NOE,使用最佳化之頂錐角、1 s再循環延時及雙階WALTZ16解耦合流程(Zhou, Z.,等人. J. Mag. Reson. 187 (2007) 225及Busico, V.,等人, Macromol. Rapid Commun. 2007, 28, 1128中)。每個光譜獲得總共6144(6k)個瞬態。定量13 C{1 H} NMR光譜經處理、積分,且自積分測定相關定量特性。所有化學位移均使用溶劑之化學位移在30.00 ppm下間接參照乙烯嵌段(EEE)之中心亞甲基。甚至在此結構單元不存在時,此方法允許類似參照。觀測對應於乙烯併入之特性信號(Cheng, H. N., Macromolecules 17 (1984), 1950)且共聚單體部分經計算為關於聚合物中之所有單體的聚合物中之乙烯部分:fE=(E/(P+E))。共聚單體部分使用Wang等人(Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157)之方法經由對13 C{1 H}光譜之整個光譜區域之多個信號進行積分而定量。出於其穩固性質及在需要時考慮區域缺陷之存在的能力選擇此方法。略微調節積分區域以增加在接觸之共聚單體含量之整個範圍內的適用性。對於具有極低乙烯含量之系統,在其中僅在PPEPP序列中觀測到經分離乙烯,Wang等人之方法經修改以減少不再存在之積分位點的影響。此方法降低了對此類系統之乙烯含量的過高估計且藉由將用於測定絕對乙烯含量之位點數目減少至E = 0.5(Sββ + Sβγ + Sβδ + 0.5(Sαβ + Sαγ))來達成。經由使用此組位點,對應積分等式使用Wang等人之論文中所使用之相同記法變成E = 0.5(IH +IG + 0.5( IC + ID ))(Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157)。不修改用於絕對丙烯含量之等式。自莫耳分數計算共聚單體併入莫耳百分比:E [mol%]=100 * fE。自莫耳分數計算共聚單體併入重量百分比:E [wt.%] = 100 * (fE * 28.06) / ((fE * 28.06) + ((1-fE) * 42.08))。f)    PE PS PA PET TiO2 含量
含量係使用膜厚度方法,使用定量頻帶I(q)之強度及按壓膜T之厚度,使用以下關係測定:[I(q) / T ]m+c=C,其中m及c為自使用自13 C-NMR光譜法獲得之共聚單體含量建構的校準曲線測定的係數。
共聚單體含量係以基於藉由13 C-NMR校準之傅立葉變換紅外光譜法(FTIR)的已知方式,使用Nicolet Magna 550 IR光譜儀連同Nicolet Omnic FTIR軟體量測的。厚度為約250 μm之膜由樣本壓縮成型。類似膜係由具有已知含量之共聚單體的校準樣品製得。共聚單體含量係根據波數範圍為1430至1100 cm-1 之光譜測定。吸光度藉由選擇所謂的較短或較長基線或兩者而經量測呈峰之高度形式。經由約在1410與1220 cm-1 之間的最小點及較長基線將較短基線繪製呈約1410-1320 cm-1 。需要特定對於每一基線類型進行校正。同樣,未知樣品之共聚單體含量在校準樣品之共聚單體含量的範圍內。g) 滑石及白堊含量
根據以下程序進行TGA: 熱解重量分析(TGA)實驗用Perkin Elmer TGA 8000進行。將大約10-20 mg材料置放於鉑盤中。溫度在50℃下平衡10分鐘,且隨後在氮氣下,以20℃/min之加熱速率升高至950℃。約550℃與700℃之間的重量損失(WCO2 )歸因於由CaCO3 釋放的CO2 ,且因此白堊含量經評估為: 白堊含量=100/44×WCO2
之後,溫度以20℃/min之冷卻速率降至300℃。接著,將氣體切換為氧氣,且使溫度再次升高至900℃。此步驟中之重量損失歸因於碳黑(Wcb)。知曉碳黑及白堊之含量,除白堊及碳黑之外的灰分含量經計算為: 灰分含量=(灰分殘餘物)- 56/44×WCO2 - Wcb 其中灰分殘餘物為在氮氣下進行的第一步驟中之900℃下量測的重量%。灰分含量經估計為與用於研究回收物的滑石含量相同。h)   MFR
熔體流動速率在230℃下在2.16 kg載荷(MFR2 )下量測。熔體流動速率為標準化為ISO 1133的測試裝置在10分鐘內在230℃的溫度下在2.16 kg載荷下擠出的以公克為單位之聚合物之量。i) 金屬量
金屬量係藉由x線螢光(XRF)測定j) 紙、木之量
紙及木係藉由習知實驗室方法,包括碾磨、浮選、顯微法及熱解重量分析(TGA)測定。k) 檸檬烯量測
使用固相微萃取(HS-SPME-GC-MS)藉由標準添加進行檸檬烯定量。
將50 mg研磨樣本稱重至20 mL頂空瓶中且在添加呈不同濃度之檸檬烯及經玻璃塗佈磁性攪拌棒後,藉由襯有矽酮/PTFE之磁力蓋將瓶密閉。微型毛細管(10 pL)用於將已知濃度之稀釋檸檬烯標準品添加至樣本。添加0、2、20及100 ng等於0 mg/kg、0.1 mg/kg、1mg/kg及5 mg/kg檸檬烯,此外,標準量之6.6 mg/kg、11 mg/kg及16.5 mg/kg檸檬烯與本申請案中測試的樣本中之一些組合使用。為定量,使用以SIM模式獲得的離子-93。在60℃下藉由具有2 cm穩定的柔性50/30 pm DVB/Carboxen/PDMS纖維之頂空固相微萃取進行揮發性部分之富集,保持20分鐘。在270℃下,直接在GCMS系統之經加熱注入口中進行去吸附。
GCMS參數: 管柱:30 m HP 5 MS 0.25*0.25 注入器:具有0.75 mm SPME襯裡之不分流進樣,270℃ 溫度程式:-10℃(1 min) 載氣:氦5.0,31 cm/s線速度,恆定流速 MS:單一四極,直接介接,280℃介接溫度 獲取:SIM掃描模式 掃描參數:20-300 amu SIM參數:m/Z 93,100 ms停留時間l) 總自由脂肪酸含量
使用頂空固相微萃取(HS-SPME-GC-MS)藉由標準添加進行脂肪酸定量。
將50 mg研磨樣本稱重至20 mL頂空瓶中且在添加呈不同濃度之檸檬烯及經玻璃塗佈磁性攪拌棒後,藉由襯有矽酮/PTFE之磁力蓋將瓶密閉。10 μL微型毛細管用於將已知濃度之稀釋自由脂肪酸混合物(乙酸、丙酸、丁酸、戊酸、己酸及辛酸)標準品添加至三個不同量下之樣本。添加0、50、100及500 ng等於各個別酸之0 mg/kg、1 mg/kg、2 mg/kg及10 mg/kg。為進行定量,除丙酸在本文中使用離子74外,所有酸都使用SIM模式下獲得之離子60。
GCMS參數: 管柱:20 m ZB Wax加0.25*0.25 注入器:具有玻璃內襯之分裂襯裡之分流進樣5:1,250℃ 溫度程式:40℃(1 min),在6℃/min下至120℃,在15℃/min下至245℃(5 min) 載劑:氦5.0,40 cm/s線速度,恆定流速 MS:單一四極,直接介接,220℃介接溫度 獲取:SIM掃描模式 掃描參數:46-250 amu 6.6次掃描/秒(scan/s) SIM參數:m/z 60,74,6.6次掃描/秒m) 玻璃轉移溫度
玻璃轉移溫度係根據ISO 6721-7藉由動態機械熱分析測定。量測係使用TA Ares G2測試裝置在2℃/min之加熱速率及1 Hz之頻率下在-130℃與+160℃之間在壓縮成型樣品(40×10×1 mm3 )上以扭轉變形模式進行。實驗
增容劑CE1及IE1至IE4以試驗室規模在三相(塊體、氣相1及氣相2)聚合設置下製得。
如下製備本發明IE1-IE4及比較實施例CE1之聚合方法中所用的催化劑: 所使用之化學物質: 20%丁基乙基鎂(Mg(Bu)(Et),BEM)之甲苯的溶液,由Chemtura提供;2-乙基己醇,由Amphochem提供;3-丁氧基-2-丙醇-(DOWANOL™ PnB),由Dow提供;雙(2-乙基己基)檸康酸鹽,由SynphaBase提供;TiCl4,由Millenium Chemicals提供;甲苯,由Aspokem提供;Viscoplex® 1-254,由Evonik提供;庚烷,由Chevron提供。 製備Mg烷氧基化合物: 藉由在攪拌(70 rpm)下在20 l不鏽鋼反應器中向11 kg丁基乙基鎂(Mg(Bu)(Et))之甲苯中之20 wt%溶液中添加4.7 kg 2-乙基己醇與1.2 kg丁氧基丙醇之混合物來製備Mg醇鹽溶液。在添加期間,使反應器內容物保持低於45℃。在完成添加之後,在60℃下持續混合(70 rpm)反應混合物30分鐘。在冷卻至室溫之後,將2.3 kg供體雙(2-乙基己基)檸康酸鹽添加至Mg醇鹽溶液中,使溫度保持低於25℃。在攪拌(70 rpm)下持續混合15分鐘。 製備固體催化劑組分: 將20.3 kg之TiCl4及1.1 kg之甲苯添加至20 l不鏽鋼反應器中。在350 rpm下混合且使溫度保持在0℃下,在1.5小時期間添加14.5 kg之實施例1中所製備之Mg烷氧基化合物。添加1.7 l之Viscoplex® 1-254及7.5 kg之庚烷,且在0℃下混合1小時之後,在1小時內將所形成之乳液的溫度升高至90℃。在30分鐘之後,停止混合,使催化劑液滴固化且使所形成之催化劑粒子沉降。在沉降(1小時)後,虹吸走上清液。接著將催化劑粒子在90℃下用45 kg之甲苯洗滌20分鐘,之後用庚烷洗滌兩次(30 kg,15 min)。在第一次庚烷洗滌期間,溫度降低至50℃,且在第二次洗滌期間,降低至室溫。
由此獲得之催化劑與作為共催化劑之三乙基鋁(TEAL)及作為供體之二環戊基二甲氧基矽烷(D-供體)一起使用。
將原生聚合物粉末(IE1-IE4及CE1)或丸粒(CE2-CE4)在220℃下與回收材料丸粒(摻合物A 1號,摻合物A 2號)及0.2 wt% Irganox B225抗氧化劑及0.05 wt%硬脂酸鈣在同向旋轉雙螺桿擠出機ZSK-18 Megalab中混配,產生含有回收材料之化合物。
在比較實施例CE2中,使用SB815MO。
在比較實施例CE3中,使用ED007HP。
在比較實施例CE4中,使用SC876CF。
商業級SB815MO購自Borealis AG, Austria且為具有1.5 g/10 min之MFR、150℃之熔融溫度、8.0 wt%之總C2含量及28 wt%之XCS含量的成核丙烯-乙烯無規異相共聚物。
商業級ED007HP購自Borealis AG, Austria且為具有5.5 g/10 min之MFR、167℃之熔融溫度、6.5 wt%之總C2含量及25 wt%之XCS含量的成核丙烯-乙烯異相共聚物。
商業級SC876CF購自Borealis AG, Austria且為具有3.8 g/10 min之MFR、150℃之熔融溫度、13.0 wt%之總C2含量及43 wt%之XCS含量的成核丙烯-乙烯無規異相共聚物。
表1概述製程條件及所獲得之特徵。 1 製備增容劑
   IE1 IE2 IE3 IE4 CE1
反應器 1 塊體             僅基質
溫度 [℃] 70 70 70 70 70
壓力 [barg] 33.9 31.5 33.9 33.8 33.9
停留時間 [h] 0.50 0.50 0.50 0.50 0.50
分流 [wt.-%] 43.4 44.9 40.5 42.3 50.3
H2/C3 [mol/kmol] 8.5 3.5 8.5 8.5 8.5
MFR [g/10min] 90 25 90 90 90
XCS [wt.-%] 3.2 3.2 3.2 3.2 3.2
C2 [wt.-%] 0 0 0 0 0
反應器 2 GPR1               
溫度 [℃] 80 80 80 80 80
壓力 [barg] 25 25 25 25 25
停留時間 [h] 0.74 0.58 0.66 0.64 0.78
分流, [wt.-%] 41.8 40.5 44.2 42.6 49.7
C2/C3 [mol/kmol] 121 99 108 101 103
H2/C2 [mol/kmol] 266 321 309 336 330
H2/C3 [mol/kmol] 32 32 33 34 34
MFR [g/10min] 22 12 22 22 22
XCS [wt.-%] 16.5 16.5 16.5 16.5 16.5
C2 [wt.-%] 4.5 4.5 4.5 4.5 4.5
C2/XCS [wt.-%] 17.3 17.3 17.3 17.3 17.3
IV/XCS [dl/g] 1.32 1.32 1.32 1.32 1.32
反應器 3 GPR2               
溫度 [℃] 80 80 80 80 -
壓力 [barg] 14 25 25 14 -
停留時間 [h] 0.44 0.24 0.45 0.52 -
分流, [wt.-%] 14.9 14.6 15.3 15.1 -
C2/C3 [mol/kmol] 638 165 168 618 -
H2/C2 [mol/kmol] 5 25 0 0 -
最終                  
MFR,總計 [g/10min] 9.8 7.5 7.1 8.6 22.1
C2總計 [wt.-%] 11.1 7.3 8.2 11.1 4.5
XCS [wt.-%] 29.6 27.1 29.7 25.1 16.5
C2/XCS [wt.-%] 26.8 21.1 21.7 28.4 17.3
IV/XCS [dl/g] 3.19 2.37 3.88 4.23 1.32
表2顯示增容劑及用於比較目的之增容劑的特性。 2 增容劑及比較增容劑之特性
   CE1- Comp 1(僅基質) IE1- Comp 1 IE2- Comp 2 IE3- Comp 3 IE4- Comp 4 CE2-Comp 2 (RAHECO1) CE3-Comp 3 (HECO1) CE4-Comp 4 (RAHECO 2)
均聚物+無規共聚物(具有基質)
MFR2 (230℃,ISO1133) g/10 min 22.1 9.8 7.5 7.1 8.6 1.8 5.0 5.0
Tm1 ℃ 165 165 165 165 165 150 167 150
Tm2 ℃ 肩峰 肩峰 - 肩峰
Tm3 ℃    117       117         
XCI Wt.-% 83.5 70.4 72.9 70.3 74.9 72.0 74.0 63.6
XCS Wt.-% 16.5 29.6 27.1 29.7 25.1 28.0 26.0 36.4
C2(XCI) Wt.-% 2.7 3.0 2.6 2.9 2.7 3.9 2.2 5.9
C2(XCS) Wt.-% 17.3 26.8 21.1 21.7 28.4 17.8 28.0 28.7
IV(XCS) dl/g 1.3 3.2 2.4 3.9 4.2 2.0 6.8 1.8
C2總計 4.5 11.1 7.3 8.2 11.1 7.0 6.8 12.8
斷裂伸長率% ISO 527-2 500 560 480 540 500 450 150 850
拉伸模數 990 700 740 700 770 500 1100 400
夏比NIS ISO 179 1eA +23℃;kJ/m2 5 73 68 76 76 73 35 76
夏比NIS ISO 179 1eA 20℃;kJ/m2 1.0 3.4 1.5 2.1 5.0 1.1 6.0 2.0
本發明之增容劑1具有3.2 dl/g之中等高IV(XCS)及26.8 wt.-%之中等C2(XCS)。本發明之增容劑2具有2.4 dl/g之低IV(XCS)及21.1 wt.-%之相對低C2(XCS)。本發明之增容劑3具有3.9 dl/g之高IV(XCS)及21.7 wt.-%之相對低C2(XCS)。本發明之增容劑4具有4.2 dl/g之高IV(XCS)及28.4 wt.-%之中等C2(XCS)。比較增容劑1為丙烯均聚物與無規丙烯乙烯共聚物之混合物。比較增容劑2為具有2.0 dl/g之低IV(XCS)及17.8 wt.-%之低C2(XCS)的無規異相聚丙烯共聚物。比較增容劑3為具有6.8 dl/g之高IV(XCS)及28.0 wt.-%之中等C2(XCS)之異相聚丙烯共聚物。比較增容劑4為具有1.8 dl/g之低IV(XCS)及28.7 wt.-%之中等C2(XCS)之無規異相聚丙烯共聚物。
表3顯示如用於評估之聚丙烯/聚乙烯摻合物(A)之特性。 3 :聚丙烯 / 聚乙烯摻合物混合物(摻合物 A )之特性
   摻合物A 1號 摻合物A 2號
PP/PE比 3 : 2 13 : 1
回收來源
檸檬烯 > 0.1 ppm > 0.1 ppm
MFR2(230℃,ISO1133),g/10 min 5.0 15.0
拉伸模數,ISO 527-2,MPa 950 1390
斷裂伸長率% (ISO 527-2) 130 24
夏比NIS +23℃,ISO 179 1eA,kJ/m2 6.7 5.2
夏比NIS -20℃,ISO 179 1eA,kJ/m2 2.2 -
夏比NIS 0℃,ISO 179 1eA,kJ/m2 - 3.6
IPT ISO 7765-2,+23℃,4.4 m/s,1 mm:擊穿能量,J 1.8 1.9
IPT ISO 7765-2,+23℃,4.4 m/s,1 mm:最大力,N 6.9×10² 8.2×10²
IPT ISO 7765-2,-20℃或0℃,4.4 m/s,1 mm:擊穿能量,J 0.3 (-20℃) 0.9 (0℃)
IPT ISO 7765-2,-20℃或0℃,4.4 m/s,1 mm:最大力,N 2.6×10² (-20℃) 5.5×10² (0℃)
兩種摻合物均顯示不可接受之斷裂伸長率特性。 摻合物A 1號及摻合物A 2號與如上文所描述之不同量之增容劑及比較增容劑摻合。 4 顯示如使用摻合物 A 1 號之經升級組成物所獲得的特性。
   增容劑之量 拉伸模數MPa(ISO 527-2) 斷裂伸長率%(ISO 527-2) 夏比NIS:+23℃,kJ/m2 (ISO 179 1eA) 夏比NIS (-20℃),kJ/m2 (ISO 179 1eA) IPT ISO 7765-2,+23℃,4.4 m/s,1 mm:擊穿能量,J IPT ISO 7765-2,+23℃,4.4 m/s,1 mm:最大力N IPT ISO 7765-2,-20℃,4.4 m/s,1 mm:擊穿能量,J IPT ISO 7765-2,-20℃,4.4 m/s,1 mm:最大力,N 熱偏轉溫度,Met. B/0.45 MPa(ISO 75-2),℃
CE1-comp1 5 890 162 6.3 2.7 2.3 760 0.8 545 66.9
IE1-Comp1 5 868 300 6.9 2.3 2.7 804 0.7 459 69.2
IE2-Comp2 5 854 326 6.6 2.2 3.8 922 0.9 572 70.2
IE3-Comp3 5 854 333 7.4 3.1 4.2 951 0.7 497 67.3
IE4-Comp4 5 856 339 7.6 3.0 4.2 948 1.1 643 67.1
CE2-Comp2 5 864 271 7.4 2.9 3.6 914 0.7 500 67.1
CE3-Comp3 5 950 80 7.2 2.4 1.4 750 0.4 408 68.5
CE4-Comp4 5 908 343 7.7 3.2 2.4 777 0.4 299 66.7
                                
CE1-comp1 15 922 159 6.4 2.2 1.5 627 0.2 204 68.5
IE1-Comp1 15 872 311 8.7 2.9 2.5 767 0.6 434 66.4
IE2-Comp2 15 890 269 7.8 2.3 1.7 653 0.4 278 66.6
IE3-Comp3 15 872 343 8.4 2.8 1.8 665 0.4 325 66.4
IE4-Comp4 15 876 328 8.9 3.1 2.2 723 0.5 377 66.6
CE2-Comp2 15 885 301 8.4 2.8 1.9 692 0.3 256 67.0
CE3-Comp3 15 959 21 8.3 2.8 1.1 877 0.6 610 69.7
CE4-Comp4 15 827 442 9.4 3.3 3.0 847 0.5 411 65.2
                                
CE1-comp1 30 931 102 6.7 2.0 1.4 622 0.1 165 70.3
IE1-Comp1 30 807 162 11.8 3.6 2.9 817 0.9 611 65.7
IE2-Comp2 30 830 226 9.3 2.6 2.1 736 0.3 241 65.8
IE3-Comp3 30 801 304 10.7 3.0 2.8 805 0.4 324 64.3
IE4-Comp4 30 818 163 11.9 3.8 2.7 765 1.0 598 65.3
CE2-Comp2 30 817 257 10.6 2.8 2.3 778 0.3 266 66.0
CE3-Comp3 30 972 29 11.1 3.7 5.0 981 1.2 683 70.5
CE4-Comp4 30 715 408 12.3 3.7 4.1 902 1.0 622 60.8
可見,根據本發明之所有增容劑已以出人意料地低的5 wt.-%之量使斷裂伸長率提高至所需值。在30 w.-%之較高增容劑載荷下,此作用開始消失。夏比NIS(+23℃)得益於提高之增容劑載荷,而夏比NIS(-20℃)對增容劑載荷之依賴性變小。關於斷裂伸長率之改善可在約100 MPa下硬度略微降低的情況下實現。在所需的低載荷為僅5%下,本發明之增容劑2、3及4(100%-300%)顯示室溫抗穿刺性且尤其低溫抗穿刺性的極顯著提高。在所需的低增容劑載荷下,具有3.9及4.2 dl/g之相對高IV(XCS)之根據本發明之增容劑3號及4號令人驚訝地顯示最佳特性平衡。 5 顯示如使用摻合物 A 2 號之經升級組成物所獲得的特性。
   增容劑之量 拉伸模數MPa(ISO 527-2) 斷裂伸長率%(ISO 527-2) 夏比NIS:+23℃,kJ/m2 (ISO 179 1eA) 夏比NIS(0℃),kJ/m2 (ISO 179 1eA) IPT ISO 7765-2,+23℃,4.4 m/s,1 mm:擊穿能量,J IPT ISO 7765-2,+23℃,4.4 m/s,1 mm:最大力,N IPT ISO 7765-2,-0℃,4.4 m/s,1 mm:擊穿能量,J IPT ISO 7765-2,-0℃,4.4 m/s,1 mm:最大力,N 熱偏轉溫度,Met. B/0.45 MPa(ISO 75-2),℃
CE1-Comp1 5 1415 42 5.2 3.5 1.7 728 0.9 562 88.1
IE1-Comp1 5 1397 42 5.8 3.5 2.6 874 1.4 730 87.1
IE2-Comp2 5 1399 47 5.7 3.5 1.9 750 1.3 710 88.3
IE3-Comp3 5 1395 43 5.8 3.7 2.5 863 1.1 634 87.6
IE4-Comp4 5 1397 45 5.8 3.6 2.3 816 1.0 568 87.3
CE2-Comp2 5 1397 55 5.8 3.5 2.1 803 0.8 515 87.5
                                
CE1-Comp1 15 1346 47 5.2 3.4 1.3 544 0.9 582 84.5
IE1-Comp1 15 1268 68 6.9 4.6 1.8 720 2.0 889 81.9
IE2-Comp2 15 1284 74 6.4 3.9 1.2 609 1.1 660 83.5
IE3-Comp3 15 1266 75 6.6 3.8 1.9 746 1.4 708 82.9
IE4-Comp4 15 1286 57 6.9 4.2 1.9 744 1.5 698 83.0
CE2-Comp2 15 1262 64 6.1 3.7 1.3 624 1.1 620 82.8
出人意料地,當使用所需低量之5 wt.-%增容劑時,拉伸模數尚未受到不利影響,且在15 wt.-%之增容劑載荷下僅受損約100 MPa。同時斷裂伸長率可自24%提高至至少40%。在5%增容劑載荷下,夏比NIS(+23℃)可僅輕微地增加,而針對0℃下之夏比NIS未觀測到改變。在較高增容劑載荷(15%)下,觀測到一些顯著夏比NIS(+23℃)升高(自5.2升高至多6.5-7.0 kJ/m2 )以及夏比NIS在0℃下之一些略微升高。在5%增容劑載荷下不影響熱變形溫度,而在15%增容劑下存在一些自87℃降至83℃之強力降低。可見,根據本發明之增容劑為替代增容劑,其可替換標準HECO及RAHECO之增容劑,諸如比較增容劑CE3-Comp3及CE4-Comp4。

Claims (15)

  1. 一種增容劑(B)之用途,該增容劑為包含基質相及分散於其中之彈性體相的異相共聚物,其中該基質相包括無規聚丙烯共聚物,且其中該異相共聚物具有2.0至30g/10min之熔體流動速率MFR2(230℃,ISO1133),及在154℃至168℃範圍內之至少一個熔點Tm1,在130℃至160℃範圍內之視情況存在之第二熔點Tm2,在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3,60至80wt.-%之二甲苯冷不溶物含量(xylene cold insoluble;XCI)(ISO 16152,1ed,25℃),及20至40wt.-%之二甲苯冷可溶物含量(xylene cold soluble;XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100wt.-%,該二甲苯冷不溶物含量(XCI)中2.0至6.0wt.-%之衍生自乙烯之單元的含量,及該二甲苯冷可溶物含量(XCS)中20.0至40.0wt.-%之衍生自乙烯之單元的含量;固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1dl/g至小於6.0dl/g之該二甲苯冷可溶物含量(XCS),該增容劑用於升級聚丙烯-聚乙烯摻合物(A),該摻合物包含(A-1)聚丙烯及(A-2)聚乙烯其中聚丙烯(A-1)與聚乙烯(A-2)之重量比為19:1至1:19,該升級關於以下特性中之至少一或多者 (i)斷裂伸長率(ISO 527-2)(ii)夏比(Charpy)缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1);(iii)夏比缺口衝擊強度(1eA)(非儀錶化,在0℃下根據ISO 179-1);(iv)夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1);(v)抗穿刺性(能量,在+23℃下根據ISO7785-2)(vi)低溫抗穿刺性(能量,在0℃或-20℃下根據ISO 7765-2)其中相對於最終組成物,增容劑(B)以1至35wt.-%之量使用。
  2. 如請求項1之用途,其中該基質相包括聚丙烯均聚物-無規聚丙烯共聚物之混合物。
  3. 一種用於升級聚丙烯-聚乙烯摻合物(A)之方法,該摻合物包含(A-1)聚丙烯及(A-2)聚乙烯其中聚丙烯(A-1)與聚乙烯(A-2)之重量比為19:1至1:19,該升級關於以下特性中之至少一或多者(i)斷裂伸長率(ISO 527-2)(ii)夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1)(iii)夏比缺口衝擊強度(1eA)(非儀錶化,在0℃下根據ISO 179-1)(iv)夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1)(v)抗穿刺性(能量,在+23℃下根據ISO7785-2)(vi)低溫抗穿刺性(能量,在0℃或-20℃下根據ISO 7765-2)該方法藉由熔融摻合該聚丙烯-聚乙烯摻合物(A)與相對於最終組成物呈 1至35wt.-%之量的增容劑(B),其中該增容劑(B)為包含基質相及分散於其中之彈性體相之異相共聚物,其中該基質相包括無規聚丙烯共聚物,且其中該異相共聚物具有2.0至30g/10min之熔體流動速率MFR2(230℃,ISO1133),及在154℃至168℃範圍內之至少一個熔點Tm1,在130℃至160℃範圍內之視情況存在之第二熔點Tm2,在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3,60至80wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及20至40wt.-%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100wt.-%,該二甲苯冷不溶物含量(XCI)中2.0至6.0wt.-%之衍生自乙烯之單元的含量,及該二甲苯冷可溶物含量(XCS)中20.0至40.0wt.-%之衍生自乙烯之單元的含量;固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1dl/g至小於6.0dl/g之該二甲苯冷可溶物含量(XCS)。
  4. 如請求項3之方法,其中該基質相包括聚丙烯均聚物-無規聚丙烯共聚物之混合物。
  5. 一種聚丙烯-聚乙烯組成物,其可藉由摻合以下獲得:a)65至99wt.-%之聚丙烯-聚乙烯摻合物(A),該摻合物包含A-1)聚丙烯,A-2)聚乙烯, 其中聚丙烯與聚乙烯之重量比為19:1至1:19,與b)1至35wt.-%之增容劑(B),該增容劑為包含基質相及分散於其中之彈性體相之異相共聚物,其中該基質相包括無規聚丙烯共聚物,且其中該異相共聚物具有2.0至30g/10min之熔體流動速率MFR2(230℃,ISO1133),及在154℃至168℃範圍內之至少一個熔點Tm1,在130℃至160℃範圍內之視情況存在之第二熔點Tm2,在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3,60至80wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及20.0至40.0wt.-%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100wt.-%,該二甲苯冷不溶物含量(XCI)中2.0至6.0wt.-%之衍生自乙烯之單元的含量,及該二甲苯冷可溶物含量(XCS)中20.0至40.0wt.-%之衍生自乙烯之單元的含量,固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.0dl/g至小於6.0dl/g之該二甲苯冷可溶物含量(XCS),且其中MFR2(摻合物(A))/MFR2(增容劑(B))((ISO1133,2.16kg載荷,在230℃下)之比率在0.5至2.0範圍內。
  6. 如請求項5之聚丙烯-聚乙烯組成物,其中該基質相包括聚丙烯均聚物-無規聚丙烯共聚物之混合物。
  7. 如請求項5或6之聚丙烯-聚乙烯組成物,其中該增容劑(B)具 有至少625MPa之拉伸模數(根據ISO 527-2量測)。
  8. 如請求項5之聚丙烯-聚乙烯組成物,其中聚丙烯-聚乙烯摻合物(A)具有以下特性中之一或多者:(i)如藉由使用固相微萃取(HS-SPME-GC-MS)所測定之以下檸檬烯含量:0.1ppm至100ppm;(ii)如藉由使用固相微萃取(HS-SPME-GC-MS)所測定之0.1至100ppm之脂肪酸含量(iii)如藉由NMR所測定之0.05至1.5wt.-%之聚醯胺含量;(iv)如藉由NMR所測定之0.05至3.0wt.-%之聚苯乙烯含量。
  9. 如請求項5之聚丙烯-聚乙烯組成物,其具有以下特徵中之一或多者:至少6.0kJ/m2之夏比缺口衝擊強度(1eA)(非儀錶化,在+23℃下根據ISO 179-1),及/或至少2.5kJ/m2之夏比缺口衝擊強度(1eA)(非儀錶化,在-20℃下根據ISO 179-1),及/或至少300%之斷裂伸長率(ISO 527-2),及/或至少800mPa之拉伸模數(ISO 527-2))。
  10. 如請求項5之聚丙烯-聚乙烯組成物,其具有:至少1200MPa之拉伸模數(在1mm/min、+23℃下根據ISO 527-2);及/或至少40%之斷裂伸長率(ISO 527-2)。
  11. 一種經升級混合物之製品,其包含如請求項5之組成物。
  12. 一種用於聚丙烯/聚乙烯摻合物之相容之異相共聚物,該異相共聚物包含基質相及分散於其中之彈性體相,其中該基質相包括無規聚丙烯共聚物,其中 該異相共聚物具有2.0至30g/10min之熔體流動速率MFR2(230℃,ISO1133),及在154℃至168℃範圍內之至少一個熔點Tm1,在130℃至160℃範圍內之視情況存在之第二熔點Tm2,在110℃至125℃範圍內之視情況存在之第二或第三熔點Tm3,60至80wt.-%之二甲苯冷不溶物含量(XCI)(ISO 16152,1ed,25℃),及20至40wt.-%之二甲苯冷可溶物含量(XCS)(ISO 16152,1ed,25℃),其中該二甲苯冷不溶物含量(XCI)及該二甲苯冷可溶物含量(XCS)總計為100wt.-%,該二甲苯冷不溶物含量(XCI)中2.0至6.0wt.-%之衍生自乙烯之單元的含量,及該二甲苯冷可溶物含量(XCS)中20.0至40.0wt.-%之衍生自乙烯之單元的含量;固有黏度(在135℃下根據DIN ISO 1628/1在十氫萘中量測)為2.1dl/g至小於6.0dl/g之該二甲苯冷可溶物含量(XCS),且其中視情況該異相共聚物具有至少650MPa之拉伸模數(根據ISO 527-2量測)。
  13. 如請求項12之異相共聚物,其中該基質相包括聚丙烯均聚物-無規聚丙烯共聚物之混合物。
  14. 如請求項12之異相共聚物,其中該二甲苯冷可溶物含量(XCS)僅包括衍生自乙烯及丙烯之單元。
  15. 如請求項12之異相共聚物,其中該異相共聚物為丙烯均聚物、無規聚丙烯共聚物及乙烯丙烯橡膠之反應器摻合物。
TW110124578A 2020-07-07 2021-07-05 聚丙烯聚乙烯混合物升級 TWI781672B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20184412.3A EP3936565A1 (en) 2020-07-07 2020-07-07 Polypropylene polyethylene mixture upgrading
EP20184412.3 2020-07-07

Publications (2)

Publication Number Publication Date
TW202206534A TW202206534A (zh) 2022-02-16
TWI781672B true TWI781672B (zh) 2022-10-21

Family

ID=71523025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124578A TWI781672B (zh) 2020-07-07 2021-07-05 聚丙烯聚乙烯混合物升級

Country Status (5)

Country Link
US (1) US20230279208A1 (zh)
EP (1) EP3936565A1 (zh)
CN (1) CN115916852A (zh)
TW (1) TWI781672B (zh)
WO (1) WO2022008434A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023217709A1 (en) * 2022-05-09 2023-11-16 Borealis Ag Recyclate based thermoforming composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201602199A (zh) * 2014-05-07 2016-01-16 柏列利斯股份公司 具改良性質的聚丙烯-聚乙烯摻合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520847A (ja) 2005-12-21 2009-05-28 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ リサイクルポリオレフィンから得られる組成物
KR101918175B1 (ko) * 2011-07-08 2019-01-29 보레알리스 아게 헤테로상 공중합체
ES2663149T3 (es) * 2015-11-04 2018-04-11 Borealis Ag Composición de polipropileno-polietileno con fluidez mejorada
WO2020070175A1 (en) * 2018-10-04 2020-04-09 Borealis Ag Upgraded recycled relatively polyethylene rich polyolefin materials
US20220025150A1 (en) * 2018-10-04 2022-01-27 Borealis Ag Upgraded recyled polypropylene rich polyolefin material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201602199A (zh) * 2014-05-07 2016-01-16 柏列利斯股份公司 具改良性質的聚丙烯-聚乙烯摻合物

Also Published As

Publication number Publication date
EP3936565A1 (en) 2022-01-12
TW202206534A (zh) 2022-02-16
WO2022008434A1 (en) 2022-01-13
CN115916852A (zh) 2023-04-04
US20230279208A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
EP4017917B1 (en) Polypropylene - polyethylene blends with improved properties
US10358546B2 (en) Low EFO polypropylene composition
US20130143996A1 (en) Composition
US20230096321A1 (en) Heterophasic polypropylene compositions comprising a recycled material as modifier with an improved balance of mechanical properties
US12006425B2 (en) Low filled automotive polypropylene composition containing recyclates
CA3000906C (en) High flow tpo composition with excellent balance in mechanical properties for automotive interior
US20230287202A1 (en) Filled automotive polypropylene composition containing recyclates
EP4101890B1 (en) Polypropylene composition for exterior automotive applications
CA3004383A1 (en) High flow tpo composition with excellent low temperature impact
CA3003227C (en) High flow tpo composition with excellent tensile strain at break and low powder stickiness
TWI781672B (zh) 聚丙烯聚乙烯混合物升級
TW202018001A (zh) 升級的再生聚乙烯聚丙烯摻合物
CA3002116A1 (en) Heterophasic composition
WO2020229597A1 (en) Heterophasic polypropylene composition
TWI782646B (zh) 升級的再生聚乙烯聚丙烯摻合物
EP4424767A1 (en) Polypropylene composition suitable for automotive applications
WO2023217709A1 (en) Recyclate based thermoforming composition
WO2024180037A1 (en) Polypropylene composition suitable for automotive applications
WO2022088019A1 (en) Glass fiber-reinforced composition with improved impact strength
JP2018135419A (ja) ポリプロピレン系樹脂組成物

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent