TWI778789B - 配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品 - Google Patents

配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品 Download PDF

Info

Publication number
TWI778789B
TWI778789B TW110134295A TW110134295A TWI778789B TW I778789 B TWI778789 B TW I778789B TW 110134295 A TW110134295 A TW 110134295A TW 110134295 A TW110134295 A TW 110134295A TW I778789 B TWI778789 B TW I778789B
Authority
TW
Taiwan
Prior art keywords
information
recipe
historical
component
component information
Prior art date
Application number
TW110134295A
Other languages
English (en)
Other versions
TW202312030A (zh
Inventor
傅昱翔
Original Assignee
華新麗華股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華新麗華股份有限公司 filed Critical 華新麗華股份有限公司
Priority to TW110134295A priority Critical patent/TWI778789B/zh
Priority to CN202111185466.XA priority patent/CN115810401A/zh
Priority to US17/562,066 priority patent/US11829390B2/en
Application granted granted Critical
Publication of TWI778789B publication Critical patent/TWI778789B/zh
Publication of TW202312030A publication Critical patent/TW202312030A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Biology (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

本發明提供一種配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品。其中降維模組依據每一歷史配方資訊的成分資訊及降維演算法獲得降維成分資訊。神經網路模組依據成分資訊與降維成分資訊獲得多個經訓練神經網路參數。神經網路模組依據該些經訓練神經網路參數及初始成分資訊獲得降維初始成分資訊。搜尋模組在該些歷史配方資訊中尋找具有第一數量的多個候選配方資訊。判斷模組判斷每一候選配方資訊的物性資訊是否滿足規格,輸出滿足規格的解配方資訊。

Description

配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品
本發明係有關於配方建構領域。特別是應用神經網路於整合經驗知識以建構配方的技術。
劑量效應關係是一種輸入與輸出變數之間變化關係的形式,在不同的製程中具有相同的形式,像是電線電纜配方設計之化學原料組合(輸入)與成品被覆材料物理特性性質(輸出)之關係、電線電纜軟銅線拉伸製程之機台可控參數(輸入)與線材物理性質(輸出)之關係、冷/熱軋鋼製程之機台可控參數(輸入)與成品品質特徵(輸出)之關係或不鏽鋼成品 (板類、棒類或盤元類)酸洗製程之可控參數(輸入)與成品重量消耗(輸出)之關係等形式。然而,傳統上,實際應用時要建構前述劑量效應關係,往往是以人力經驗試誤為主,並無法有效利用過去成功經驗所產生及累積的知識。
有鑑於此,本發明一些實施例提供一種配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品,以改善現有技術問題。
本發明一實施例提供一種配方建構系統,配方建構系統包含降維模組、神經網路模組、搜尋模組以及判斷模組。降維模組經配置以接收多個歷史配方資訊,並依據每一歷史配方資訊的成分資訊及降維演算法獲得每一歷史配方資訊的降維成分資訊。神經網路模組經配置以接收初始成分資訊,其中,神經網路模組經配置依據每一歷史配方資訊的成分資訊與降維成分資訊訓練神經網路模組的多個神經網路參數以獲得多個經訓練神經網路參數。神經網路模組並依據該些經訓練神經網路參數及初始成分資訊獲得降維初始成分資訊。搜尋模組經配置以依據第一距離度量、降維初始成分資訊以及每一歷史配方資訊的降維成分資訊,在該些歷史配方資訊中尋找具有第一數量的多個候選配方資訊。以及判斷模組經配置以判斷每一候選配方資訊的物性資訊是否滿足規格。響應於該些候選配方資訊中的解配方資訊的物性資訊滿足規格,輸出解配方資訊。
本發明一實施例提供一種配方建構方法,由一處理器執行。配方建構方法包含以下步驟:接收多個歷史配方資訊,並依據每一歷史配方資訊的成分資訊及降維演算法獲得每一歷史配方資訊的降維成分資訊。接收初始成分資訊。依據每一歷史配方資訊的成分資訊與降維成分資訊訓練神經網路模組的多個神經網路參數以獲得多個經訓練神經網路參數,並依據該些經訓練神經網路參數及初始成分資訊獲得降維初始成分資訊。依據第一距離度量、降維初始成分資訊以及每一歷史配方資訊的降維成分資訊,在該些歷史配方資訊中尋找具有第一數量的多個候選配方資訊。以及判斷每一候選配方資訊的物性資訊是否滿足規格。響應於該些候選配方資訊中的解配方資訊的物性資訊滿足規格,輸出解配方資訊。
本發明提供一種內儲程式之電腦可讀取媒體及一種非暫時性電腦程式產品,當處理器載入程式並執行後,能夠完成前述配方建構方法。
基於上述,本發明一些實施例提供一種配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品,藉由降維模組接收多個歷史配方資訊,並依據每一歷史配方資訊的成分資訊及降維演算法獲得每一歷史配方資訊的降維成分資訊。神經網路模組接收初始成分資訊。依據每一歷史配方資訊的成分資訊與降維成分資訊訓練神經網路模組的多個神經網路參數以獲得多個經訓練神經網路參數。神經網路模組再依據該些經訓練神經網路參數及初始成分資訊獲得降維初始成分資訊。搜尋模組經配置以依據第一距離度量、降維初始成分資訊以及每一歷史配方資訊的降維成分資訊,在該些歷史配方資訊中尋找具有第一數量的多個候選配方資訊。以及判斷模組經配置以判斷每一候選配方資訊的物性資訊是否滿足規格。響應於該些候選配方資訊中的解配方資訊的物性資訊滿足規格,輸出解配方資訊,可自動化且有效地利用歷史配方資訊所內蘊的知識。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之實施例的詳細說明中,將可清楚的呈現。圖式中各元件的比例或尺寸,係以誇張或省略或概略的方式表示,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均仍應落在本發明所揭示之技術內容涵蓋之範圍內。在所有圖式中相同的標號將用於表示相同或相似的元件。以下實施例中所提到的「耦接」或「連接」一詞可指任何直接或間接、有線或無線的連接手段。
圖1A係依據本一發明實施例所繪示的配方建構系統100與歷史配方資訊105的方塊圖。圖1B係依據本一發明實施例所繪示的配方建構系統100與原始歷史配方資訊107的方塊圖。請同時參閱圖1A與圖1B。如圖1A所示,在一種軟體的實施方式中,配方建構系統100包含降維模組101、神經網路模組102、搜尋模組103以及判斷模組104。其中,降維模組101經配置以接收多個歷史配方資訊105。
歷史配方資訊105的每一個配方資訊都包含一個成分資訊與一個物性資訊。在本實施例中,成分資訊包含各化學原料之數量。物性資訊包含成品之物理性質。成分資訊以及物性資訊以向量形式呈現。例如,成分資訊以下列成分資訊向量的形式呈現: (1.0, 2.0, 1.5, 4, 2.3, 1.7, 10)。 成分資訊向量的每一分量都代表不同的化學原料成分,其數值代表製造時不同的化學原料成分的用量。例如,第一個分量代表的是第一種主膠的用量,第二個分量代表的是第二種主膠的用量,第三個分量代表的是第一種填料的用量等等。成分資訊向量所顯示的資訊即是成分資訊。
物性資訊以下列物性資訊向量的形式呈現: (1.12, 341, 33.67, 5.52)。 物性資訊向量的每一分量都代表不同的物理性質。這些物理性質是以對應的成分資訊所製造出的成品的物理性質。例如,物性資訊向量的第一個分量代表的是抗張強度,第二個分量代表的是伸長百分比,第三個分量代表的是混煉膠黏度,第四個分量代表的是壓縮變形等等。物性資訊向量所顯示的資訊即是物性資訊。
需要說明的是,雖然在本實施例中,成分資訊包含各化學原料之數量,物性資訊包含成品之物理性質。在本發明一實施例中,成分資訊包含電線電纜軟銅線拉伸製程之機台可控參數與物性資訊包含線材物理性質。在本發明一實施例中,成分資訊包含冷/熱軋鋼製程之機台可控參數,物性資訊包含成品品質特徵。在本發明一實施例中,成分資訊包含不鏽鋼成品 (板類、棒類或盤元類)酸洗製程之可控參數,物性資訊包含成品重量消耗。只要成分資訊與物性資訊包含一變化關係即可,本發明並不予以限定。又雖在本實施例中是以向量形式呈現成分資訊以及物性資訊,亦可以矩陣形式呈現成分資訊以及物性資訊,本發明並不予以限定。
配方建構系統100會從外部接收一個規格。配方建構系統100的神經網路模組102從外部接收一個初始成分資訊。配方建構系統100的目標就是要依據從外部接收一個初始成分資訊以及歷史配方資訊105,輸出可以製造出物性滿足這個規格的成品的成分資訊向量,亦即輸出成分資訊向量所代表的成分資訊。
在本實施例中,規格是物性限制範圍的集合,以前述例物性資訊向量為例,規格是;抗張強度>13,伸長百分比>300,混煉膠黏度>20,壓縮變形<10。
在本實施例中,降維模組101所接收的歷史配方資訊105的成分資訊向量是已經過標準化的數值。亦即,成分資訊向量的每一個分量的數值,是一個原始歷史配方資訊的原始成分資訊的向量標準化後的數值。在本實施例中,標準化是對每一原始歷史配方資訊的原始成分資訊的向量減去其對應的平均值後,再除以其對應的標準差。舉例來說,若原始歷史配方資訊是以下三組向量: 第一組:原始成分資訊向量(273, 82,105,210,9,904,    680),物性資訊向量(23,62,34.99)。 第二組:原始成分資訊向量(163,149,191,180,12,843,746),物性資訊向量(0,20,41.14)。 第三組:原始成分資訊向量(162,148,191,179,16,840,743),物性資訊向量(1,20,41.81)。 原始成分資訊向量的第一個分量的平均值是(273+163+162)/3=199.33,標準差是52.09。再利用原始成分資訊向量的第一個分量的平均值199.3與標準差52.09,以及公式
Figure 02_image001
去正規化所有原始成分資訊向量的第一個分量的數值,得到(273-199.3)/52.09=1.41,(163-199.3)/52.09=-0.69以及(162-199.3)/52.09=-0.71。如此,就完成原始成分資訊向量的第一個分量的標準化。重複上面的步驟,對每個原始成分資訊向量的每個分量做標準化,以得到歷史配方資訊105的成分資訊的向量。原始成分資訊向量的每個分量的平均值與標準差被稱為標準化參數。
需要說明的是,前述標準化的方法並非是唯一的方法,可依實際資料的特性,選擇適當的標準化參數以對原始成分資訊進行標準化。
請參考圖1B,在本發明一實施例中,配方建構系統100’更包含標準化模組106。標準化模組106經配置以接收原始歷史配方資訊107,並依照前面所述的方法對原始歷史配方資訊107進行標準化,以獲得歷史配方資訊105的成分資訊。再將歷史配方資訊105傳送給降維模組101。
以下即配合圖式詳細說明本發明實施例之配方建構方法以及配方建構系統100、100’之各模組之間如何協同運作。
圖3係依據本發明一實施例所繪示的降維模組101與神經網路模組102運作示意圖。圖9係依據本發明一實施例所繪示的配方建構方法流程圖。請一併參閱圖1A、圖1B、圖3及圖9。在步驟S901中,降維模組101接收多個歷史配方資訊105,並依據每一歷史配方資訊105的成分資訊及降維演算法獲得每一歷史配方資訊105的降維成分資訊。
在本實施例中,如圖3所繪示,降維模組101利用t-SNE演算法作為降維演算法,對所有歷史配方資訊105的成分資訊向量301進行降維以得到降維成分資訊向量302。降維成分資訊向量302位於二維的向量空間中。
在步驟S902中,神經網路模組102將每一個歷史配方資訊105的成分資訊向量301與對應的降維成分資訊向量302作為訓練樣本,訓練神經網路模組102的多個神經網路參數以獲得多個經訓練神經網路參數。也就是說,在本實施例中,利用神經網路模組102的多個神經網路參數學習降維演算法的內部過程。在獲得經訓練神經網路參數後,神經網路模組102從外部接收一個初始成分資訊,初始成分資訊在本實施例中,以一個初始成分資訊向量表示。並依據經訓練神經網路參數及初始成分資訊獲得降維初始成分資訊。這個初始成分資訊向量已利用前述原始成分資訊向量的每個分量的平均值與標準差(即標準化參數)做過標準化(在圖1B所繪示的實施例則是先由標準化模組106接收原始初始成分資訊,再由標準化模組106利用前述原始成分資訊向量的每個分量的平均值與標準差做標準化以獲得初始成分資訊再傳入神經網路模組102以獲得降維初始成分資訊)。
前述利用神經網路模組102學習降維演算法的內部過程,可在不使初始成分資訊影響歷史配方資訊105的成分資訊向量301的降維過程的情況下,獲得對應的降維成分資訊向量302,而保持降維成分資訊向量302的獨立性,使降維成分資訊向量302不會受到初始成分資訊的影響。
在本發明一些實施例中,降維模組101利用其他非線性演算法(例如,Locally Linear Embedding (LLE)或是Isometric Mapping演算法)作為降維演算法,本發明並不予以限定非線性演算法的種類。
在本發明一些實施例中,降維模組101利用線性演算法(例如,主成分分析(Principal components analysis,PCA))作為降維演算法。
圖4係依據本發明一實施例所繪示的搜尋模組103運作示意圖。請再同時參閱圖4。
在步驟S903中,搜尋模組103依據第一距離度量、降維初始成分資訊以及每一歷史配方資訊105的降維成分資訊,在該些歷史配方資訊105中尋找具有第一數量的多個候選配方資訊。
在本實施例中,搜尋模組103依據第一距離度量(在本實施例中為二維向量空間的歐式距離),在該些歷史配方資訊向量中,尋找距離降維初始成分資訊向量401最近的第一數量(在圖4所繪示的例子中第一數量為5)個降維成分資訊向量402。搜尋模組103再尋找這些降維成分資訊向量402所對應的第一數量個歷史配方資訊。這些第一數量個歷史配方資訊為以下說明方便,稱為候選配方資訊。
在步驟S904中,在選出第一數量個候選配方資訊後,判斷模組104再判斷這些第一數量個候選配方資訊的物性資訊中,是否有滿足規格的物性資訊。如果這些第一數量個候選配方資訊的物性資訊中有滿足規格的物性資訊,為了方便說明,稱滿足規格的物性資訊所對應的候選配方資訊為解配方資訊。判斷模組104再輸出這些解配方資訊。
需要說明的是,雖然在前述實施例中,第一距離度量為二維向量空間的歐式距離。並且降維模組101利用t-SNE演算法作為降維演算法,對所有歷史配方資訊105的成分資訊向量301進行降維以得到位於二維的向量空間中的降維成分資訊向量302。然而,第一距離度量亦可以選擇其他度量方法(如曼哈頓距離(Manhattan Distance)、切比雪夫距離 (Chebyshev Distance)等等),只要能賦予二維的向量空間中各點距離即可。降維模組101也可利用t-SNE演算法將所有歷史配方資訊105的成分資訊向量301降維到3維,或利用其他降維演算法將所有歷史配方資訊105的成分資訊向量301降維到其他維度,本發明並不以前述實施例為限。
圖2係依據本一發明實施例所繪示的配方建構系統200與歷史配方資訊105的方塊圖。請參閱圖2,圖2所繪示的配方建構系統200與圖1A相較,更包含分群模組201、模型建立模組202、預測模型選擇模組203以及演化計算模組204。圖5係依據本一發明實施例所繪示的分群模組201運作示意圖。圖10係依據本發明一實施例所繪示的配方建構方法流程圖。請一併參閱圖2、圖5及圖10。
響應於前述第一數量個候選配方資訊的物性資訊中不存在滿足規格的物性資訊,在步驟S1001中,分群模組201依據分群演算法及每一歷史配方資訊105的降維成分資訊,將該些歷史配方資訊105分成多個資料群。
在本實施例中,分群模組201以階層式分群法(Hierarchical Clustering)作為分群演算法,並依據每一歷史配方資訊105的降維成分資訊,將降維成分資訊分成多個資料群。以圖5所繪示的例子來說明,分群模組201將降維成分資訊分成多個資料群501、502、503以及504。對應地,歷史配方資訊105也同時也分別對應資料群501、502、503以及504。
在步驟S1002中,模型建立模組202依據每一資料群中每一成員的成分資訊與物性資訊,建立每一資料群的候選預測模型。
在圖5所繪示的例子中,模型建立模組202依據每一個資料群501、502、503以及504中每一成員的成分資訊與物性資訊,建立每一資料群501、502、503以及504的候選預測模型。在本實施例中,模型建立模組202對每一個資料群501、502、503以及504,利用多元回歸(multivariable linear regression)建立每一個資料群501、502、503以及504中成分資訊向量與物性資訊向量的線性模型,這些線型模型作為其資料群的候選預測模型。
需要說明的是,在本實施例中,分群模組201以階層式分群法(Hierarchical Clustering)作為分群演算法,模型建立模組202利用多元回歸(multivariable linear regression)建立每一個資料群501、502、503以及504的候選預測模型。在本發明的一些實施例中,分群模組201以k-平均值(k-mean)作為分群演算法,模型建立模組202利用全連接神經網路建立每一個資料群501、502、503以及504的候選預測模型。只要分群模組201達到分群目的,模型建立模組202可建立每一個資料群501、502、503以及504的候選預測模型即可,本發明並不以前述實施例為限。
在本發明的一些實施例中,分群模組201以基於密度之含噪空間聚類法(Density-based spatial clustering of applications with noise,簡寫為DBSCAN) 作為分群演算法。在本發明的一些實施例中,分群模組201以期望最大化演算法(Expectation-maximization algorithm) 作為分群演算法。
在步驟S1003中,預測模型選擇模組203依據該些候選配方資訊從該些資料群中選擇一個近似群,設定選擇的近似群的候選預測模型為預測模型。
在本實施例中,預測模型選擇模組203,依據計數候選配方資訊的降維成分資訊向量位於各資料群的數量,選擇候選配方資訊的降維成分資訊向量所在最多的資料群之一作為近似群。預測模型選擇模組203並設定選擇的近似群的候選預測模型為預測模型。
以圖5所繪示的例子來說明,預測模型選擇模組203計數後,得到候選配方資訊的降維成分資訊向量(在圖5所繪示的例子中為降維成分資訊向量402)皆位於資料群501中,因此預測模型選擇模組203選擇資料群501作為近似群。預測模型選擇模組203並設定資料群501的候選預測模型為預測模型。
在步驟S1004中,演化計算模組204執行步驟S1005~S1007。在步驟S1005中,演化計算模組204依據規格設定適應度函數。在本實施例中,演化計算模組204依據規格所包含所有物性限制範圍,選擇符合物性限制範圍的閉區間,並計算這些閉區間的中點。再以物性資訊向量至該些閉區間中點所形成向量的曼哈頓距離(Manhattan Distance)作為適應度函數。
以前述規格:抗張強度>13,伸長百分比>300,混煉膠黏度>20,壓縮變型<10為例。演化計算模組204選擇符合物性限制範圍的閉區間為:抗張強度:[13,15],伸長百分比:[300,310],混煉膠黏度:[20,30],壓縮變型:[9,10]。這些閉區間中點所形成的向量為(14,305,25,9.5)。演化計算模組204接下來的目標就是要計算出一組成分資訊向量,使得預測模型基於這組成分資訊向量所預測的物性資訊向量至這些閉區間中點所形成的向量(14,305,25,9.5)的曼哈頓距離盡量地小。因此,演化計算模組204選擇物性向量至該些閉區間中點所形成向量(14,305,25,9.5)的曼哈頓距離(Manhattan Distance)作為適應度函數。
也就是說,適應度函數可以表示為:
Figure 02_image003
其中,N表示物性資訊向量的維度,
Figure 02_image005
表示符合物性限制範圍的各閉區間中點,
Figure 02_image007
表示前述基於計算所得的成分資訊向量所預測的物性資訊向量的第i個分量。在此例中,
Figure 02_image009
=14,
Figure 02_image011
=305,
Figure 02_image013
=25以及
Figure 02_image015
=9.5。
由於在歷史配方資訊105的成分資訊中記載有使用的成分,在現在時點不一定能取得。或由於成本考量,並不考慮使用該成分。因此演化計算模組204在計算新的成分資訊向量前,在步驟S1006中,會先從外部接收一個調整參數,這個調整參數指示歷史配方資訊105的成分資訊以及待計算的成分資訊中哪些成分在演化計算中予以考慮而可調整,哪些成分在演化計算中不予以考慮。亦即,調整參數指示成分資訊中的多個可調整資訊。
以前述成分資訊向量(1.0, 2.0, 1.5, 4, 2.3, 1.7, 10)為例,第一個分量代表的是第一種主膠的量,第二個分量代表的是第二種主膠的量,第三個分量代表的是第一種填料的量,如果在演化計算中不考慮使用第一種主膠,則調整參數指示不考慮使用第一種主膠。而在接下來的步驟S1007,都會將對應第一種主膠的向量分量設為0而使這個向量分量不參與演化計算。在後面的說明中,會詳細介紹此一部分。
在本實施例中,調整參數以一個串列(List)Mask來實現,其中MASK是串列名稱。串列(List)Mask中的數值由0和1組成。若串列在第i位置上的值為0,則表示對應這個位置的成分資訊向量的分量所代表的成分在演化計算中不被考慮。以串列Mask=[0,1,1,1,1,1,1]為例,串列Mask的第一個串列元素為0,表示成分資訊向量中的第1個分量所對應的成分(在此例中為第一種主膠)將不在演化計算中考慮。而串列Mask的第二個至第七個串列元素為1,表示成分資訊向量中的第2~7個分量所對應的成分將在演化計算中考慮
在步驟S1007中,演化計算模組204依據適應度函數、調整參數、演化演算法及近似群輸出演化配方資訊。
演化演算法的種類繁多。圖11係依據本發明一實施例所繪示的演化計算流程圖。前述步驟S1007包含圖11所繪示的步驟S1101~S1105。請同時參閱圖2、圖5以及圖11,由於在步驟S1003中,預測模型選擇模組203選擇候選配方資訊的降維成分資訊向量所在最多的資料群作為近似群,在步驟S1101中,演化計算模組204選出位於近似群中的候選配方資訊,作為近似配方資訊。並依據調整參數,調整每一近似配方資訊的成分資訊以獲得多個調整後近似配方資訊。演化計算模組204依據該些調整後近似配方資訊設定初始集合,並再設定初始集合為當前演化集合。
在此,以圖5所繪示的例子來說明。在步驟S1003中,預測模型選擇模組203選擇候選配方資訊的降維成分資訊向量所在最多的資料群501作為近似群。演化計算模組204選出位於近似群中的候選配方資訊,在此例候選配方資訊為5個降維成分資訊向量402所對應的歷史配方資訊。若這5個降維成分資訊向量402所對應的歷史配方資訊的歷史配方資訊向量分別為: 第一個:成分資訊向量(1,2,3,4,5,6,7,8),物性資訊向量(23,62,34.99); 第二個;成分資訊向量(1.1,2,3,4.1,5,6,7.1,8),物性資訊向量(0,20,41.14); 第三個:成分資訊向量(1.1,2,3,4.1,5,6,7.1,8),物性資訊向量(1,25,42.89); 第四個:成分資訊向量(1.2,2.2,3,4.3,5,6,7.1,8),物性資訊向量(2,19,48.80); 第五個:成分資訊向量(1.4,2,3.3,4.1,5,6,7.1,8.1),物性資訊向量(3,20,41.81); 調整參數為串列Mask=[1,1,1,0,0,0,1,1]。則依據調整參數獲得5個調整後近似配方資訊向量分別為: 第一個:調整後成分資訊向量(1,2,3,0,0,0,7,8),物性資訊向量(23,62,34.99); 第二個;調整後成分資訊向量(1.1,2,3,0,0,0,7.1,8),物性資訊向量(0,20,41.14); 第三個:調整後成分資訊向量(1.1,2,3,0.0,0,7.1,8),物性資訊向量(1,25,42.89); 第四個:調整後成分資訊向量(1.2,2.2,3,0,0,0,7.1,8),物性資訊向量(2,19,48.80); 第五個:調整後成分資訊向量(1.4,2,3.3,0,0,0,7.1,8.1),物性資訊向量(3,20,41.81)。
演化計算模組204再將這5個調整後近似配方資訊向量中的調整後成分資訊向量加入初始集合,再將初始集合擴增到一個固定的子代數量。擴增的方法有很多種,在一些實施例中,演化計算模組204直接複製初始集合既有的調整後成分資訊向量使初始集合擴增到一個固定的子代數量。在一些實施例中,演化計算模組204隨機從初始集合中選出一個成分資訊向量,再對串列Mask指示在演化計算中需要考慮的成分的數值,在一個範圍內加上一個隨機實數以作為新的成分資訊向量,以及利用預測模型計算出新的成分資訊向量的物性資訊向量,將新的成分資訊向量與其物性資訊向量加入初始集合,直到初始集合擴增到子代數量。
在步驟S1102中,演化計算模組204將當前演化集合加入候選類中,以記錄每一次計算出的當前演化集合。演化計算模組204並依據適應度函數與預測模型從當前演化集合中選擇多個可繁衍個體。
在此實施例中,演化計算模組204計算當前演化集合中所有成員的適應度函數值,再依據所有成員的適應度函數值從小到大排序當前演化集合中所有成員。所有成員的適應度函數值中最小的值在本發明中定義為當前演化集合的代表適應度函數值。演化計算模組204再依據這個排序選出演化數量個當前演化集合中成員作為可繁衍個體。
在步驟S1103中,對該些數量為演化數量的可繁衍個體依序進行交換程序與變異程序以獲得下一演化集合,並如前面步驟S1003的說明,依據調整參數調整下一演化集合後設為當前演化集合。
在步驟S1104中,重複執行步驟S1102與步驟S1103,直到重覆次數達到一個預設的執行次數。
最後,在步驟S1105中,判斷模組104依據適應度函數從候選類中選擇一個演化集合,其中,這個演化集合的代表適應度函數值是候選類中所有演化集合的代表適應度函數值中最小的。判斷模組104將這個選出的演化集合作為演化配方資訊輸出。
圖6A、圖6B係依據本發明一實施例所繪示的變異程序操作示意圖。圖7係依據本發明一實施例所繪示的交換程序操作示意圖。圖12係依據本發明一實施例所繪示的交換程序流程圖。圖13係依據本發明一實施例所繪示的變異程序流程圖。請同時參閱圖6A、圖6B、圖7、圖12以及圖13。
在步驟S1102中,演化計算模組204依據適應度函數與預測模型從當前演化集合中選擇多個可繁衍個體。在步驟S1201中,演化計算模組204依據交換率,隨機執行以下兩個步驟:(i) 隨機從該些可繁衍個體中選出第一個體與第二個體,交換該第一個體部分非全部的成分資訊與第二個體部分非全部的成分資訊,以產生第三個體與第四個體。演化計算模組204將第三個體與第四個體加入該些可繁衍個體。(ii) 依據第一範圍限制及調整參數,隨機產生一第五個體與一第六個體,將該第五個體與該第六個體加入該些可繁衍個體。
在本實施例中,交換率是[0,1]之間的一個實數,表示執行前述步驟(i)的機率。演化計算模組204利用一般軟體模擬隨機之函式,例如Python裡random模組的random()函式。random()函式會隨機產生範圍在[0,1)間的一個實數。演化計算模組204利用Python裡random模組的random()函式以及下列的程式結構: if random.random()<交換率: 執行前述步驟(i) else: 執行前述步驟(ii) 達成以交換率的機率執行前述(i)所記載步驟,以(1-交換率)的機率執行前述(ii)所記載步驟。例如,交換率為0.7,則前述程式結構會以0.7的機率執行步驟(i),以0.3的機率執行步驟(ii)。
在步驟(i)中,演化計算模組204隨機(利用Python裡random模組的sample()函式)從可繁衍個體中選出第一個體與第二個體,再隨機選擇兩切斷點(利用Python裡random模組的randint ()函式選出來各在成分資訊向量長度內的整數),交換第一個體的成分資訊向量與第一個體的成分資訊向量中兩切斷點間分量的內容。以圖7所繪示的例子來說明,成分資訊向量的分量601是調整參數指示不予考慮的部分,因此被調整為0。演化計算模組204隨機從可繁衍個體中選出第一個體與第二個體。其中第一個體的成分資訊向量為701,第二個體的成分資訊向量為702。演化計算模組204隨機選擇兩切斷點703與704,再將兩切斷點703與704間分量的內容交換,產生成分資訊向量701’與成分資訊向量702’。演化計算模組204利用預測模型計算成分資訊向量701’的物性資訊向量以產生第三個體。演化計算模組204利用預測模型計算成分資訊向量702’的物性資訊向量以產生第四個體。演化計算模組204將第三個體與第四個體加入可繁衍個體中。
在步驟(ii)中,演化計算模組204依據第一範圍限制[-2,2]及調整參數,在調整參數所指示要考慮成分資訊向量的分量,隨機產生[-2,2]之間的實數,以產生兩個成分資訊向量。演化計算模組204利用預測模型計算對應這兩個成分資訊向量的物性資訊向量以產生第五個體與第六個體。將第五個體與第六個體加入可繁衍個體中。以Mask=[0,1,1,1,1,1,1]為例。隨機產生的兩個成分資訊向量為(0,0.1,-0.3,1,1.5,1,1)及(0,1,1,1.5,0.2,-1.7,0.8)。再利用預測模型計算對應的物性資訊向量,例如是,(2,33,7)及(3,44,5)。則可以設定: 第五個體:成分資訊向量(0,0.1,-0.3,1,1.5,1,1),物性資訊向量(2,33,7); 第六個體;成分資訊向量(0,1,1,1.5,0.2,-1.7,0.8),物性資訊向量(3,44,5)。
在步驟S1202中,演化計算模組204判斷可繁衍個體的數量是否達到預定數量,在本實施例中,預定數量為前面所提的固定的子代數量。
需要說明的是,預定數量不一定需要是子代數量,也可以大於子代數量,演化計算模組204產生預定數量的可繁衍個體後,再做其他處理,本發明並不予以限制。
在執行交換程序後,演化計算模組204執行變異程序。在步驟S1301中,依據調整參數,在第二範圍限制內調整每一可繁衍個體的成分資訊。
在本實施例中,演化計算模組204依據第二範圍限制(0.01,0.1)以及(-1,-0.01),對每一可繁衍個體的成分資訊,在每一個調整參數所指示要考慮成分資訊向量的分量,加上隨機產生在(0.01,0.1) 以及(-1,-0.01)中的實數(利用Python裡random模組的uniform()函式),以產生異變的成分資訊向量,演化計算模組204利用預測模型計算對應異變的成分資訊向量的物性資訊向量以產生異變的可繁衍個體。
在一實施例中,演化計算模組204在加上隨機產生在(0.01,0.1)以及(-1,-0.01)中的實數後,進一步檢查異變後的成分資訊向量的分量其數值是否合理,如果演化計算模組204將異變後的成分資訊向量的分量數值還原回實際製造時的用量後,發現還原回實際製造時的用量是負值時,表示異變後的成分資訊向量的分量數值是不合理的,因此將異變後的成分資訊向量的分量數值設為0。
以圖6A所繪示的例子來說明,在這個例子中, Mask=[1,1,1,0,0,0,1,1],成分資訊向量600的分量601是調整參數指示不予考慮的部分。演化計算模組204依據第二範圍限制(0.01,0.1)以及(-1,-0.01),隨機產生實數0.09加上成分資訊向量600第二個分量的數值602(實際值是2)得到新的第二個分量的數值602’(實際值是2.09)而產生新的成分資訊向量600’。
以圖6B所繪示的例子來說明,在這個例子中,Mask=[1,1,1,0,0,0,1,1],成分資訊向量603的分量601是調整參數指示不予考慮的部分。演化計算模組204依據第二範圍限制(0.01,0.1)以及(-1,-0.01),隨機產生實數-0.08加上成分資訊向量603第八個分量的數值604(實際值是0.01)得到新的第八個分量的數值604’(實際值是-0.07)而產生新的成分資訊向量603’。但演化計算模組204判斷-0.07的數值不合理(在此例子中假定第8個分量的平均值是0),因此將第八個分量的數值設為0得到新的第八個分量的數值604”而產生新的成分資訊向量603”。
需要說明的是,前面所述各實施例的初始成分資訊向量可由專家先行評估而得,此時,本發明實施例所揭示的配方建構系統100、100’及200可充分整合這個初始成分資訊向量與歷史配方資訊105所內蘊的知識。當然,前面所述各實施例的初始成分資訊向量亦可隨機產生,本發明實施例所揭示的配方建構系統100、100’及200可利用歷史配方資訊105所內蘊的知識去找尋滿足規格的成分資訊。在本發明一實施例中,配方建構系統200將輸出的演化配方資訊中的一個成分資訊向量作為初始成分資訊向量。
另需要說明的是,雖然在前述說明中,引用Python裡random模組內的內建函式實現隨機選擇功能,以及利用Python裡random模組內的內建函式搭配Python語法中if的結構實現隨機執行步驟,當然也可以利用C++語言標準函式庫(Standard Library)中的<random>函式庫的內建函式實現隨機選擇功能,以及利用C++語言裡<random>函式庫的內建函式搭配C++語法中if的結構實現隨機執行步驟,也可以利用其他程式語言中具有產生隨機數字的函式實現隨機選擇功能,以及利用其他程式語言具有產生隨機數字的函式搭配程式語言語法中條件分支指令的結構實現隨機執行步驟,本發明並不以此為限。
圖8是本說明書的一個實施例的電子設備800的結構示意圖。如圖8所示,在硬體層面,電子設備800包括處理器801、內部記憶體802以及非揮發性記憶體803。內部記憶體802例如是隨機存取記憶體(Random - Access Memory, RAM)。非揮發性記憶體(non-volatile memory)例如是至少1個磁碟記憶體等。當然,電子設備800還可能包括其他功能所需要的硬體。
內部記憶體802和非揮發性記憶體803,用於存放程式,程式可以包括程式碼,程式碼包括電腦操作指令。內部記憶體802和非揮發性記憶體803向處理器801提供指令和資料。處理器801從非揮發性記憶體803中讀取對應的電腦程式到內部記憶體802中然後運行,在邏輯層面上形成配方建構系統100、100’或200。處理器801具體用於執行圖9到圖13所記載的各步驟。
處理器801可能是一種積體電路晶片,具有信號的處理能力。在實現過程中,前述實施例中揭露的各方法、步驟可以透過處理器801中的硬體的積體邏輯電路或者軟體形式的指令完成。處理器801可以是通用處理器,包括中央處理器(Central Processing Unit, CPU)、數位信號處理器(Digital Signal Processor, DSP)、專用積體電路(Application Specific Integrated Circuit,ASIC)、現場可程式化閘陣列(Field-Programmable Gate Array,FPGA)或者其他可程式化邏輯裝置,可以實現或執行前述實施例中揭露的各方法、步驟。
本說明書實施例還提供了一種電腦可讀儲存媒體,電腦可讀儲存媒體儲存至少一指令,該至少一指令當被電子設備800的處理器801執行時,能夠使電子設備800的處理器801執行前述實施例中揭露的各方法、步驟。
電腦的儲存媒體的例子包括,但不限於相變記憶體(PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型的隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電可抹除可程式化唯讀記憶體(EEPROM)、快閃記憶體或其他內部記憶體技術、唯讀光碟唯讀記憶體(CD-ROM)、數位多功能光碟(DVD)或其他光學儲存器、磁盒式磁帶,磁帶式磁碟儲存器或其他磁性儲存設備或任何其他非傳輸媒體,可用於儲存可以被計算設備存取的資訊。按照本文中的界定,電腦可讀媒體不包括暫態媒體(transitory media),如調變的資料信號和載波。
100、100’、200:配方建構系統
101:降維模組
102:神經網路模組
103:搜尋模組
104:判斷模組
105:歷史配方資訊
106:標準化模組
107:原始歷史配方資訊
201:分群模組
202:模型建立模組
203:預測模型選擇模組
204:演化計算模組
301:成分資訊向量
302:降維成分資訊向量
401:降維初始成分資訊向量
402:降維成分資訊向量
501、502、503、504:資料群
600、600’、603、603’、603”、701、701’、702、702’:成分資訊向量
601:成分資訊向量的分量
602、602’、604、604’、604”:數值
703、704:切斷點
800:電子設備
801:處理器
802:內部記憶體
803:非揮發性記憶體
S901~S904、S1001~S1007、S1101~S1105、S1201~S1202、S1301:步驟
圖1A係依據本發明一實施例所繪示的配方建構系統與歷史配方資訊的方塊圖。 圖1B係依據本發明一實施例所繪示的配方建構系統與原始歷史配方資訊的方塊圖。 圖2係依據本發明一實施例所繪示的配方建構系統與歷史配方資訊的方塊圖。 圖3係依據本發明一實施例所繪示的降維模組與神經網路模組運作示意圖。 圖4係依據本發明一實施例所繪示的搜尋模組運作示意圖。 圖5係依據本發明一實施例所繪示的分群模組運作示意圖。 圖6A係依據本發明一實施例所繪示的變異程序操作示意圖。 圖6B係依據本發明一實施例所繪示的變異程序操作示意圖。 圖7係依據本發明一實施例所繪示的交換程序操作示意圖。 圖8係本說明書的一個實施例的電子設備的結構示意圖。 圖9係依據本發明一實施例所繪示的配方建構方法流程圖。 圖10係依據本發明一實施例所繪示的配方建構方法流程圖。 圖11係依據本發明一實施例所繪示的演化計算流程圖。 圖12係依據本發明一實施例所繪示的交換程序流程圖。 圖13係依據本發明一實施例所繪示的變異程序流程圖。
200:配方建構系統
101:降維模組
102:神經網路模組
103:搜尋模組
104:判斷模組
105:歷史配方資訊
201:分群模組
202:模型建立模組
203:預測模型選擇模組
204:演化計算模組

Claims (18)

  1. 一種配方建構系統,包含:一降維模組,經配置以接收多個歷史配方資訊,並依據每一該歷史配方資訊的一成分資訊及一降維演算法獲得每一該歷史配方資訊的一降維成分資訊;一神經網路模組,經配置以接收一初始成分資訊,其中,該神經網路模組經配置依據每一該歷史配方資訊的該成分資訊與該降維成分資訊訓練該神經網路模組的多個神經網路參數以獲得多個經訓練神經網路參數,並依據該些經訓練神經網路參數及該初始成分資訊獲得一降維初始成分資訊;一搜尋模組,經配置以依據一第一距離度量、該降維初始成分資訊以及每一該歷史配方資訊的該降維成分資訊,在該些歷史配方資訊中尋找一第一數量個距離該降維成分資訊最近的多個候選配方資訊;以及一判斷模組,經配置以判斷每一該候選配方資訊的一物性資訊是否滿足一規格,響應於該些候選配方資訊中的一解配方資訊的該物性資訊滿足該規格,輸出該解配方資訊。
  2. 如請求項1所述之配方建構系統,該配方建構系統更包含:一分群模組,經配置以依據一分群演算法及每一該歷史配方資訊的該降維成分資訊,將該些歷史配方資訊分成多個資料群;一模型建立模組,經配置以依據每一該資料群中每一成員的該成分資訊與該物性資訊,建立每一該資料群的一候選預測模型; 一預測模型選擇模組,經配置以依據該些候選配方資訊從該些資料群中選擇一近似群,設定該近似群之該候選預測模型為一預測模型;以及一演化計算模組,經配置以執行下列步驟:(a)依據該規格設定一適應度函數;(b)接收一調整參數;(c)依據該適應度函數、該調整參數、一演化演算法及該近似群輸出一演化配方資訊;其中,該調整參數指示該近似群中每一成員的該成分資訊中的多個可調整資訊。
  3. 如請求項2所述之配方建構系統,其中步驟(c)包含步驟:(c1)選出該些候選配方資訊中位於該近似群中的多個近似配方資訊,並依據該調整參數,調整每一該近似配方資訊的該成分資訊以獲得多個調整後近似配方資訊,依據該些調整後近似配方資訊設定一初始集合,並設定該初始集合為一當前演化集合;(c2)將該當前演化集合加入一候選類中,並依據該適應度函數與該預測模型從該當前演化集合中選擇多個可繁衍個體;(c3)對該些可繁衍個體依序進行一交換程序與一變異程序以獲得一下一演化集合,並依據該調整參數調整該下一演化集合後設為該當前演化集合;以及(c4)重複步驟(c2)、(c3)一執行次數; 其中,該判斷模組經配置以依據該適應度函數從該候選類中選擇一演化集合作為該演化配方資訊輸出。
  4. 如請求項3所述之配方建構系統,其中,該交換程序包含下列步驟:(c31)依據一交換率,隨機執行以下兩個步驟:(i)隨機從該些可繁衍個體中選出一第一個體與一第二個體,交換該第一個體部分非全部的該成分資訊與該第二個體部分非全部的該成分資訊,以產生一第三個體與一第四個體,將該第三個體與該第四個體加入該些可繁衍個體;及(ii)依據一第一範圍限制及該調整參數,隨機產生一第五個體與一第六個體,將該第五個體與該第六個體加入該些可繁衍個體;及(c32)重複執行步驟(c31)直到該些可繁衍個體的數量達到一預定數量。
  5. 如請求項3所述之配方建構系統,其中,該變異程序包含下列步驟:依據該調整參數,在一第二範圍限制內隨機調整每一該可繁衍個體的該成分資訊。
  6. 如請求項1所述之配方建構系統,該配方建構系統更包含:一標準化模組,經配置以接收多個原始歷史配方資訊以及一原始初始成分資訊,其中,每一該原始歷史配方資訊包含該物性資訊與一原始成分資訊,該標準化模組依據每一該原始歷史配方資訊的該原始成分資 訊獲得多個標準化參數,該標準化模組依據該些標準化參數以及該些原始歷史配方資訊獲得該些歷史配方資訊及每一該歷史配方資訊的該成分資訊,該標準化模組依據該些標準化參數以及該原始初始成分資訊獲得該初始成分資訊。
  7. 如請求項1所述之配方建構系統,其中,該降維演算法為非線性演算法。
  8. 如請求項7所述之配方建構系統,其中,該降維演算法為t分佈隨機鄰近嵌入(t-distributed stochastic neighbor embedding,t-SNE)演算法。
  9. 一種配方建構方法,由一處理器執行,該配方建構方法包含:接收多個歷史配方資訊,並依據每一該歷史配方資訊的一成分資訊及一降維演算法獲得每一該歷史配方資訊的一降維成分資訊;接收一初始成分資訊,依據每一該歷史配方資訊的該成分資訊與該降維成分資訊訓練一神經網路模組的多個神經網路參數以獲得多個經訓練神經網路參數,並依據該些經訓練神經網路參數及該初始成分資訊獲得一降維初始成分資訊;依據一第一距離度量、該降維初始成分資訊以及每一該歷史配方資訊的該降維成分資訊,在該些歷史配方資訊中尋找具有一第一數量的多個候選配方資訊;以及 判斷每一該候選配方資訊的一物性資訊是否滿足一規格,響應於該些候選配方資訊中的一解配方資訊的該物性資訊滿足該規格,輸出該解配方資訊。
  10. 如請求項9所述之配方建構方法,該配方建構方法更包含:依據一分群演算法及每一該歷史配方資訊的該降維成分資訊,將該些歷史配方資訊分成多個資料群;依據每一該資料群中每一成員的該成分資訊與該物性資訊,建立每一該資料群的一候選預測模型;依據該些候選配方資訊從該些資料群中選擇一近似群,設定該近似群之該候選預測模型為一預測模型;以及執行下列演化計算步驟:(a)依據該規格設定一適應度函數;(b)接收一調整參數;(c)依據該適應度函數、該調整參數、一演化演算法及該近似群輸出一演化配方資訊;其中,該調整參數指示該近似群中每一成員的該成分資訊中的多個可調整資訊。
  11. 如請求項10所述之配方建構方法,其中,演化計算步驟(c)包含步驟:(c1)依據該調整參數調整該些候選配方資訊中位於該近似群中的多個近似配方資訊以獲得多個調整後近似配方資訊,依據該些調 整後近似配方資訊設定一初始集合,並設定該初始集合為一當前演化集合;(c2)將該當前演化集合加入一候選類中,並依據該適應度函數與該預測模型從該當前演化集合中選擇多個可繁衍個體;(c3)對該些可繁衍個體進行一交換程序與一變異程序以獲得一下一演化集合,並依據該調整參數調整該下一演化集合後設為該當前演化集合;(c4)重複步驟(c2)、(c3)一執行次數;以及(c5)依據該適應度函數從該候選類中選擇一演化集合作為該演化配方資訊輸出。
  12. 如請求項11所述之配方建構方法,其中,該交換程序包含:(c31)依據一交換率,隨機執行以下兩個步驟:(i)隨機從該些可繁衍個體中選出一第一個體與一第二個體,交換該第一個體部分非全部的該成分資訊與該第二個體部分非全部的成分資訊,以產生一第三個體與一第四個體,將該第三個體與該第四個體加入該些可繁衍個體;及(ii)依據一第一範圍限制及該調整參數,隨機產生一第五個體與一第六個體,將該第五個體與該第六個體加入該些可繁衍個體;及(c32)重複執行步驟(c31)直到該些可繁衍個體的數量達到一預定數量。
  13. 如請求項11所述之配方建構方法,其中,該變異程序包含:依據該調整參數,在一第二範圍限制內隨機調整每一該可繁衍個體的該成分資訊。
  14. 如請求項9所述之配方建構方法,該配方建構方法更包含:接收多個原始歷史配方資訊以及一原始初始成分資訊,其中,每一該原始歷史配方資訊包含該物性資訊與一原始成分資訊;依據每一該原始歷史配方資訊的該原始成分資訊獲得多個標準化參數;依據該些標準化參數以及該些原始歷史配方資訊獲得該些歷史配方資訊及每一該歷史配方資訊的該成分資訊;以及依據該些標準化參數以及該原始初始成分資訊獲得該初始成分資訊。
  15. 如請求項9所述之配方建構方法,其中,該降維演算法為非線性。
  16. 如請求項15所述之配方建構方法,其中,該降維演算法為t分佈隨機鄰近嵌入(t-distributed stochastic neighbor embedding,t-SNE)演算法。
  17. 一種內儲程式之電腦可讀取記錄媒體,當一處理器載入該內儲程式並執行後,完成如請求項9至16任一項所述之方法。
  18. 一種非暫時性電腦程式產品,其儲存至少一指令,當該至少一指令由一處理器執行時,使該處理器執行如請求項9至16任一項所述之方法。
TW110134295A 2021-09-14 2021-09-14 配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品 TWI778789B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW110134295A TWI778789B (zh) 2021-09-14 2021-09-14 配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品
CN202111185466.XA CN115810401A (zh) 2021-09-14 2021-10-12 配方建构系统、方法、可读存储介质与计算机程序产品
US17/562,066 US11829390B2 (en) 2021-09-14 2021-12-27 Recipe construction system, recipe construction method, computer readable recording media with stored programs, and non-transitory computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134295A TWI778789B (zh) 2021-09-14 2021-09-14 配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品

Publications (2)

Publication Number Publication Date
TWI778789B true TWI778789B (zh) 2022-09-21
TW202312030A TW202312030A (zh) 2023-03-16

Family

ID=84958295

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134295A TWI778789B (zh) 2021-09-14 2021-09-14 配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品

Country Status (3)

Country Link
US (1) US11829390B2 (zh)
CN (1) CN115810401A (zh)
TW (1) TWI778789B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220501A (zh) * 2021-11-24 2022-03-22 江苏大学 炒饭食味特性的快速定量评价方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130223724A1 (en) * 2010-06-28 2013-08-29 Precitec Itm Gmbh Method for classifying a multitude of images recorded by a camera observing a processing area and laser material processing head using the same
US20180243800A1 (en) * 2016-07-18 2018-08-30 UHV Technologies, Inc. Material sorting using a vision system
CN111753752A (zh) * 2020-06-28 2020-10-09 重庆邮电大学 基于卷积神经网络多层特征融合的机器人闭环检测方法
TW202044095A (zh) * 2019-03-18 2020-12-01 德商贏創運營有限公司 產生塗料、清漆、印刷油墨、研磨樹脂、顏料濃縮物、或其它塗覆材料之組合物的方法
TWI732544B (zh) * 2020-05-05 2021-07-01 國立中正大學 二維材料薄膜檢測方法及二維材料薄膜檢測系統

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396870B2 (en) * 2009-06-25 2013-03-12 University Of Tennessee Research Foundation Method and apparatus for predicting object properties and events using similarity-based information retrieval and modeling
US11494690B2 (en) * 2019-03-15 2022-11-08 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and method of high dimensional data analysis in real-time
GB201915879D0 (en) * 2019-10-31 2019-12-18 Black Swan Data Ltd Using social data to improve long term sales forecasting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130223724A1 (en) * 2010-06-28 2013-08-29 Precitec Itm Gmbh Method for classifying a multitude of images recorded by a camera observing a processing area and laser material processing head using the same
US20180243800A1 (en) * 2016-07-18 2018-08-30 UHV Technologies, Inc. Material sorting using a vision system
TW202044095A (zh) * 2019-03-18 2020-12-01 德商贏創運營有限公司 產生塗料、清漆、印刷油墨、研磨樹脂、顏料濃縮物、或其它塗覆材料之組合物的方法
TWI732544B (zh) * 2020-05-05 2021-07-01 國立中正大學 二維材料薄膜檢測方法及二維材料薄膜檢測系統
CN111753752A (zh) * 2020-06-28 2020-10-09 重庆邮电大学 基于卷积神经网络多层特征融合的机器人闭环检测方法

Also Published As

Publication number Publication date
TW202312030A (zh) 2023-03-16
US20230081281A1 (en) 2023-03-16
US11829390B2 (en) 2023-11-28
CN115810401A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN111563706A (zh) 一种基于lstm网络的多变量物流货运量预测方法
US20150254554A1 (en) Information processing device and learning method
JP2023523029A (ja) 画像認識モデル生成方法、装置、コンピュータ機器及び記憶媒体
CN112633426B (zh) 处理数据类别不均衡的方法、装置、电子设备及存储介质
WO2022227217A1 (zh) 文本分类模型的训练方法、装置、设备及可读存储介质
WO2019200738A1 (zh) 数据特征提取的方法、装置、计算机设备和存储介质
WO2023279694A1 (zh) 车辆置换预测方法、装置、设备及存储介质
TWI778789B (zh) 配方建構系統、配方建構方法、內儲程式之電腦可讀取記錄媒體與非暫時性電腦程式產品
CN117316333A (zh) 基于通用的分子图表示学习模型的逆合成预测方法及装置
CN115391561A (zh) 图网络数据集的处理方法、装置、电子设备、程序及介质
CN113868523A (zh) 推荐模型训练方法、电子设备及存储介质
CN114154557A (zh) 癌症组织分类方法、装置、电子设备及存储介质
CN116976530A (zh) 一种电缆设备状态预测方法、装置及存储介质
CN111062524A (zh) 基于优化遗传算法的景区短期客流量的预测方法及系统
CN114239949A (zh) 一种基于双阶段注意力机制的网站访问量预测方法及系统
CN116467466A (zh) 基于知识图谱的编码推荐方法、装置、设备及介质
Baur et al. Predicting high-dimensional heterogeneous time series employing generalized local states
CN114968992A (zh) 数据识别清洗及补偿方法、装置、电子设备及存储介质
CN114529096A (zh) 基于三元闭包图嵌入的社交网络链路预测方法及系统
CN114443851A (zh) 一种改进的基于概率校准的知识图谱生成方法
CN111767980A (zh) 模型优化方法、装置及设备
CN111242235B (zh) 一种相似特征测试数据集生成方法
JP7420278B2 (ja) 情報処理装置、情報処理方法、及び、記録媒体
US20240028910A1 (en) Modeling method of neural network for simulation in semiconductor design process, simulation method in semiconductor design process using the same, manufacturing method of semiconductor device using the same, and semiconductor design system performing the same
CN118468031A (zh) 一种样本增广方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent