TWI778262B - Tunable light projector - Google Patents

Tunable light projector Download PDF

Info

Publication number
TWI778262B
TWI778262B TW108116925A TW108116925A TWI778262B TW I778262 B TWI778262 B TW I778262B TW 108116925 A TW108116925 A TW 108116925A TW 108116925 A TW108116925 A TW 108116925A TW I778262 B TWI778262 B TW I778262B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
layer
light
electrode layer
substrate
Prior art date
Application number
TW108116925A
Other languages
Chinese (zh)
Other versions
TW202030456A (en
Inventor
陳宏山
陳明璿
Original Assignee
源奇科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/371,127 external-priority patent/US11126060B2/en
Application filed by 源奇科技股份有限公司 filed Critical 源奇科技股份有限公司
Publication of TW202030456A publication Critical patent/TW202030456A/en
Application granted granted Critical
Publication of TWI778262B publication Critical patent/TWI778262B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Holo Graphy (AREA)

Abstract

A tunable light projector including a light source, a fixed optical phase modulator, a tunable liquid crystal panel, and a driver is provided. The light source is configured to emit a light beam. The fixed optical phase modulator is disposed on a path of the light beam and configured to modulate phases of the light beam. The tunable liquid crystal panel is disposed on the path of the light beam and configured to switch the light beam between a structured light and a flood light. The driver is electrically connected to a first electrode layer and a second electrode layer of the tunable liquid crystal panel and configured to change a voltage difference between the first electrode layer and the second electrode layer, so as to switch the light beam between the structured light and the flood light.

Description

可調式光投射器Adjustable light projector

本發明是有關於一種感測裝置及光投射器,且特別是有關於一種光學感測裝置、結構光投射器及可調式光投射器。 The present invention relates to a sensing device and a light projector, and more particularly, to an optical sensing device, a structured light projector and an adjustable light projector.

目前三維感測(3D sensing)的主流技術分為飛行時間法(time of flight;TOF)以及結構光技術(structured illumination)。TOF技術是利用脈衝雷射(pulsed laser)以及互補式金屬氧化物半導體(CMOS)感測器來測量光反射時間換算成距離。因成本以及構造,一般較適合長距離的物體解析。在結構光技術,利用紅外光源(IR source)投影到繞射元件(diffractive optical element;DOE)以產生二維的繞射圖案,再利用感測器來收集反射光。物體的三維距離可利用三角法來換算出來。結構光技術受限於具有固定焦距的投影鏡頭,因此繞射圖型清楚成像的距離也是有限制的,最終導致可被解析物體的距離侷限於一小範圍內。 At present, the mainstream technologies of 3D sensing are divided into time of flight (TOF) and structured illumination (structured illumination). TOF technology uses a pulsed laser and a complementary metal-oxide-semiconductor (CMOS) sensor to measure light reflection time and convert it into distance. Due to cost and structure, it is generally more suitable for long-distance object analysis. In structured light technology, an IR source (IR source) is projected onto a diffractive optical element (DOE) to generate a two-dimensional diffraction pattern, and a sensor is used to collect the reflected light. The three-dimensional distance of an object can be converted using trigonometry. Structured light technology is limited by a projection lens with a fixed focal length, so the distance at which the diffraction pattern can be clearly imaged is also limited, and ultimately the distance of the object that can be resolved is limited to a small range.

為解決上述結構光技術的問題,有人提出在鏡組中加入變跡透鏡(apodized lens)以產生多個焦距的系統。然而,此做法會犧牲掉光效率以及二維繞射圖案的點數以及解析度。 In order to solve the above-mentioned problems of the structured light technology, some people propose a system in which an apodized lens is added to the lens group to generate multiple focal lengths. However, this approach sacrifices optical efficiency as well as the number and resolution of the 2D diffraction pattern.

此外,在行動裝置的三維臉部辨識中,泛光系統與結構光系統皆被採用以達到三維臉部辨識。泛光系統先被用來判斷接近的物體是否為人臉,如果接近的物體是人臉,結構光系統便隨後被啟動且用以判斷所偵測到的人臉是否為此行動裝置的使用者的臉。然而,在一個行動裝置中同時採用兩個系統(即泛光系統與結構光系統)會佔用許多空間,且較為昂貴。 In addition, in the 3D face recognition of the mobile device, both the flood light system and the structured light system are used to achieve the 3D face recognition. The floodlight system is first used to determine whether the approaching object is a human face. If the approaching object is a human face, the structured light system is then activated and used to determine whether the detected face is the user of the mobile device s face. However, using two systems simultaneously (ie, the flood light system and the structured light system) in one mobile device takes up a lot of space and is expensive.

本發明提供一種利用液晶來控制結構光的對焦的光學感測裝置。 The present invention provides an optical sensing device using liquid crystal to control the focus of structured light.

本發明提供一種利用液晶來控制結構光的對焦的結構光投射器。 The invention provides a structured light projector which utilizes liquid crystal to control the focusing of structured light.

本發明提供一種可調式光投射器,其利用可調式液晶面板來使光束在結構光與泛光之間切換。 The present invention provides an adjustable light projector, which utilizes an adjustable liquid crystal panel to switch light beams between structured light and flood light.

本發明的一實施例提出一種光學感測裝置,適用於偵測物體或物體的特徵。光學感測裝置包括結構光投射器以及感測器。結構光投射器用以將一結構光投射至該物體。結構光投射器包括光源、繞射光學元件以及液晶透鏡模組。光源用以發出一光束。繞射光學元件配置於光束的路徑上,且用以產生繞射圖案以形成結構光。液晶透鏡模組配置於光束的路徑以及結構光的路徑的至少一者上,且能夠控制至少兩個對焦態之間的對焦。感測器與結構光投射器相鄰,用以感測一反射光。反射光為結構光自物 體的反射。 An embodiment of the present invention provides an optical sensing device suitable for detecting an object or a feature of the object. The optical sensing device includes a structured light projector and a sensor. The structured light projector is used for projecting a structured light to the object. The structured light projector includes a light source, a diffractive optical element and a liquid crystal lens module. The light source is used for emitting a light beam. The diffractive optical element is disposed on the path of the light beam, and is used to generate a diffractive pattern to form structured light. The liquid crystal lens module is disposed on at least one of the path of the light beam and the path of the structured light, and can control the focus between at least two focus states. The sensor is adjacent to the structured light projector for sensing a reflected light. The reflected light is structured light body reflection.

本發明的一實施例提出一種結構光投射器。結構光投射器包括光源、繞射光學元件以及液晶透鏡模組。光源用以發出一光束。繞射光學元件配置於光束的路徑上,且用以產生繞射圖案以形成結構光。液晶透鏡模組配置於光束的路徑以及結構光的路徑的至少一者上,且能夠控制至少兩個對焦態之間的對焦。 An embodiment of the present invention provides a structured light projector. The structured light projector includes a light source, a diffractive optical element and a liquid crystal lens module. The light source is used for emitting a light beam. The diffractive optical element is disposed on the path of the light beam, and is used to generate a diffractive pattern to form structured light. The liquid crystal lens module is disposed on at least one of the path of the light beam and the path of the structured light, and can control the focus between at least two focus states.

本發明的一實施例提出一種可調式光投射器,其包括一光源、一固定式光學相位調制器、一可調式液晶面板及一驅動器。光源用以發出一光束。固定式光學相位調制器配置於光束的路徑上,且用以調制光束的相位。可調式液晶面板配置於光束的路徑上,且用以使光束在一結構光與一泛光之間切換。可調式液晶面板包括一第一基板、一第二基板、一液晶層、一第一電極層及一第二電極層。液晶層配置於第一基板與第二基板之間。第一電極層與第二電極層的至少其中之一為一圖案化層。第一電極層與第二電極層皆配置於第一基板與第二基板的其中之一上,或分別配置於第一基板與第二基板上。驅動器電性連接至第一電極層與第二電極層,且用以改變第一電極層與第二電極層之間的電壓差,進而使光束在結構光與泛光之間切換。 An embodiment of the present invention provides an adjustable light projector, which includes a light source, a fixed optical phase modulator, an adjustable liquid crystal panel, and a driver. The light source is used for emitting a light beam. The fixed optical phase modulator is arranged on the path of the light beam and is used to modulate the phase of the light beam. The adjustable liquid crystal panel is arranged on the path of the light beam, and is used for switching the light beam between a structured light and a flood light. The adjustable liquid crystal panel includes a first substrate, a second substrate, a liquid crystal layer, a first electrode layer and a second electrode layer. The liquid crystal layer is disposed between the first substrate and the second substrate. At least one of the first electrode layer and the second electrode layer is a patterned layer. Both the first electrode layer and the second electrode layer are disposed on one of the first substrate and the second substrate, or are respectively disposed on the first substrate and the second substrate. The driver is electrically connected to the first electrode layer and the second electrode layer, and is used for changing the voltage difference between the first electrode layer and the second electrode layer, so as to switch the light beam between structured light and flood light.

基於上述,本發明實施例的結構光投射器包括至少一具有可調變焦距的液晶透鏡模組。在結構光投射器內提供具有可調變焦距的液晶透鏡模組增加了結構光可聚焦的範圍。此外,可以獲得利用上述結構光投射器的小型光學感測器。在本發明的實施 例的可調式光投射器中,利用可調式液晶面板來使光束在結構光與泛光之間切換,因此本發明的實施例將泛光系統與結構光系統整合成單一系統,其減少了具有結構光與泛光功能的電子裝置的成本與體積。 Based on the above, the structured light projector according to the embodiment of the present invention includes at least one liquid crystal lens module with adjustable zoom. Providing a liquid crystal lens module with adjustable zoom in the structured light projector increases the focusable range of structured light. In addition, a small optical sensor utilizing the above structured light projector can be obtained. in the implementation of the present invention In the adjustable light projector of the example, an adjustable liquid crystal panel is used to switch the light beam between structured light and flood light. Therefore, the embodiment of the present invention integrates the flood light system and the structured light system into a single system, which reduces the need for Cost and volume of electronic devices with structured light and floodlight functions.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

10:光學感測裝置 10: Optical sensing device

102:物體 102: Objects

100、200a、200b、200c:結構光投射器 100, 200a, 200b, 200c: Structured Light Projectors

104:感測器 104: Sensor

106:開口 106: Opening

110:光源 110: Light source

120、220、320、420a、420b、520、620、720:液晶透鏡模組 120, 220, 320, 420a, 420b, 520, 620, 720: Liquid crystal lens module

122:液晶透鏡單元 122: Liquid crystal lens unit

124:固態透鏡 124: Solid State Lens

130:繞射光學元件 130: Diffractive Optical Elements

222:液晶層 222: liquid crystal layer

224a:第一基板 224a: first substrate

224b:第二基板 224b: Second substrate

226:液晶分子 226: Liquid Crystal Molecule

228、428a、428b:電源 228, 428a, 428b: Power

230a:第一電極/電極 230a: First Electrode/Electrode

230b:第二電極/電極 230b: Second Electrode/Electrode

230c:第三電極/電極 230c: Third Electrode/Electrode

232a:配向膜/第一配向膜 232a: alignment film/first alignment film

232b:配向膜/第二配向膜 232b: alignment film/second alignment film

530a:電極 530a: Electrodes

530b:浮動電極 530b: Floating Electrode

640:高阻抗材料層 640: High impedance material layer

722:液晶單元 722: Liquid crystal cell

724:異向性透鏡 724: Anisotropic Lens

800、800c、800k:可調式光投射器 800, 800c, 800k: Adjustable Light Projector

810:光源 810: Light source

811:光束 811: Beam

820:固定式光學相位調制器 820: Fixed Optical Phase Modulator

830:驅動器 830: Drive

900、900a、900b、900c、900d、900e、900f、900g、900h、900i、900j:可調式液晶面板 900, 900a, 900b, 900c, 900d, 900e, 900f, 900g, 900h, 900i, 900j: Adjustable LCD Panel

910:第一基板 910: First substrate

920:第二基板 920: Second substrate

930、930a、930b:液晶層 930, 930a, 930b: liquid crystal layer

932、932b:液晶分子 932, 932b: Liquid crystal molecules

934:聚合物網絡 934: Polymer Networks

934b:聚合物 934b: Polymer

940、940g:第一電極層 940, 940g: the first electrode layer

942:微開孔 942: Micro opening

942g、952g:導電微圖案 942g, 952g: Conductive micropattern

950、950g、950h、950j:第二電極層 950, 950g, 950h, 950j: the second electrode layer

960、960a、960d:第一配向層 960, 960a, 960d: the first alignment layer

970、970a、970d:第二配向層 970, 970a, 970d: the second alignment layer

980:高阻抗層 980: High impedance layer

990:絕緣層 990: Insulation layer

A1:光軸 A1: Optical axis

D:最大直徑 D: maximum diameter

F1、F2:焦距 F1, F2: focal length

L1:配向 L1: Alignment

LB:光束 LB: Beam

LP:偏振光 LP: polarized light

R1:局部相同配向區域 R1: Local same alignment region

R2:光斑區域 R2: spot area

SL:結構光 SL: Structured Light

△V:電壓差 △V: Voltage difference

圖1是依照本發明一實施例的光學感測裝置的示意圖。 FIG. 1 is a schematic diagram of an optical sensing device according to an embodiment of the present invention.

圖2是圖1的結構光投射器的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of the structured light projector of FIG. 1 .

圖3A至3C是依照本發明至少一實施例的另一結構光投射器的剖面示意圖。 3A to 3C are schematic cross-sectional views of another structured light projector according to at least one embodiment of the present invention.

圖4A以及圖4B是依照本發明至少一實施例的圖2的不同液晶透鏡模組於兩個不同狀態下的剖面示意圖。 4A and 4B are schematic cross-sectional views of different liquid crystal lens modules of FIG. 2 in two different states according to at least one embodiment of the present invention.

圖5至8是依照本發明至少一實施例的圖2的不同液晶透鏡模組的剖面示意圖。 5 to 8 are schematic cross-sectional views of different liquid crystal lens modules of FIG. 2 according to at least one embodiment of the present invention.

圖9是依照本發明至少一實施例的液晶層的俯視示意圖。 9 is a schematic top view of a liquid crystal layer according to at least one embodiment of the present invention.

圖10A至10B是依照本發明至少一實施例的另一液晶透鏡模組於兩個不同狀態下的剖面示意圖。 10A to 10B are schematic cross-sectional views of another liquid crystal lens module in two different states according to at least one embodiment of the present invention.

圖11A與圖11B分別為本發明的一實施例的可調式光投射器在結構光模式與泛光模式的剖面示意圖。 11A and FIG. 11B are schematic cross-sectional views of an adjustable light projector in a structured light mode and a flood light mode, respectively, according to an embodiment of the present invention.

圖12A、圖12B及圖12C分別為圖11A與圖11B中的第一電極層之根據本發明的三個實施例的上視示意圖。 12A , 12B and 12C are schematic top views of the first electrode layer in FIGS. 11A and 11B according to three embodiments of the present invention, respectively.

圖13A、圖13B及圖13C為圖12A的第一電極層的其他三種變化的上視示意圖。 13A , 13B and 13C are schematic top views of other three variations of the first electrode layer of FIG. 12A .

圖14A為圖11A的可調式液晶面板的剖面示意圖。 14A is a schematic cross-sectional view of the adjustable liquid crystal panel of FIG. 11A .

圖14B與圖14C繪示圖14A的可調式液晶面板的其他兩種變化。 14B and 14C illustrate other two variations of the adjustable liquid crystal panel of FIG. 14A.

圖15A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 15A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖15B為本發明的另一實施例的可調式液晶面板的剖面示意圖。 15B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖15C為本發明的另一實施例的可調式液晶面板的剖面示意圖。 15C is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖16A繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的一實施例的配向。 FIG. 16A illustrates the alignment of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to an embodiment of the present invention.

圖16B繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的另一實施例的另一種變化的配向。 FIG. 16B illustrates another variation of the alignment of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to another embodiment of the present invention.

圖17A為採用圖16B的配向層的一可調式光投射器的剖面示意圖。 FIG. 17A is a schematic cross-sectional view of a tunable light projector using the alignment layer of FIG. 16B .

圖17B為圖17A中的光斑區域與配向層的上視示意圖。 FIG. 17B is a schematic top view of the light spot area and the alignment layer in FIG. 17A .

圖18A、圖18B及圖18C繪示一可調式液晶面板的剖面示意圖及在三種不同的模式下施加至液晶層的電壓差。 18A , 18B and 18C are schematic cross-sectional views of an adjustable liquid crystal panel and voltage differences applied to the liquid crystal layer in three different modes.

圖19A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 19A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖19B為圖19A中的第一基板的上視示意圖。 FIG. 19B is a schematic top view of the first substrate in FIG. 19A .

圖20A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 20A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖20B為圖20A中的第一基板的上視示意圖。 FIG. 20B is a schematic top view of the first substrate in FIG. 20A .

圖21A為本發明的另一實施例的可調式液晶面板的剖面示意圖。 21A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖21B為本發明的另一實施例的可調式液晶面板的剖面示意圖。 21B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention.

圖22為本發明的另一實施例的可調式光投射器的剖面示意圖。 22 is a schematic cross-sectional view of an adjustable light projector according to another embodiment of the present invention.

以下將配合圖式詳細說明例示性實施例,關連圖式中的相同元件或等同元件,則盡可能的援用相同的參考標號以及陳述。 Exemplary embodiments will be described in detail below in conjunction with the drawings, and where possible, the same reference numerals and statements will be used in relation to the same elements or equivalent elements in the drawings.

另外,為了易於描述,本文中可使用諸如「之下(underlying)」、「下方(below)」、「下(lower)」、「上覆(overlying)」、「上(upper)」、「頂(top)」、「底(bottom)」、「左(left)」、「右(right)」及類似者的空間相對術語,來描述如圖中所繪示的一個元件或特徵與另一元件或特徵的關係。除了諸圖中所描繪的定向以外,空間相對術語亦意欲涵蓋裝置在使用或操作 中的不同定向。裝置可以其他方式定向(旋轉90度或處於其他定向),且本文中所使用的空間相對描述詞可同樣相應地進行解譯。 In addition, for ease of description, expressions such as "underlying", "below", "lower", "overlying", "upper", "top" may be used herein. (top)," "bottom," "left," "right," and the like are spatially relative terms used to describe one element or feature and another element as illustrated in the figures or characteristic relationship. In addition to the orientation depicted in the figures, spatially relative terms are also intended to encompass the device in use or operation different orientations in . The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

圖1是依照本發明一實施例的光學感測裝置10的示意圖。圖1中示出的光學感測裝置10是一種利用結構光來偵測物體的感測裝置。具體而言,光學感測裝置10包括結構光投射器100以及與結構光投射器100相鄰的感測器104。結構光投射器100是用以向物體102產生結構光SL,而感測器104是用以感測自物體102反射的結構光SL。結構光SL可包括但不限於將光圖案投影到物體102的多重光束,例如:一系列的線、圈、點或類似者。其中線、圈、點或類似者可有序排列或無序排列。物體102可為例如手掌、人臉或任何具有三維特徵的物體。當結構光SL投射到物體102時,結構光SL的光圖案會因物體102的凹凸表面而變形。該變形的結構光SL隨後自物體102反射,該反射的光穿過開口106到達感測器104。舉例而言,開口106可包括透鏡、孔、透明罩等。感測器104感測在物體102上的光圖案的變形以計算出物體102表面的深度,亦即,物體102表面上的點至感測器104之間的距離。感測器104可連接到用以計算物體102的三維特徵的處理器(圖中未示出)。 FIG. 1 is a schematic diagram of an optical sensing device 10 according to an embodiment of the present invention. The optical sensing device 10 shown in FIG. 1 is a sensing device that uses structured light to detect objects. Specifically, the optical sensing device 10 includes a structured light projector 100 and a sensor 104 adjacent to the structured light projector 100 . The structured light projector 100 is used for generating structured light SL to the object 102 , and the sensor 104 is used for sensing the structured light SL reflected from the object 102 . Structured light SL may include, but is not limited to, multiple beams of light that project a light pattern onto object 102, such as a series of lines, circles, dots, or the like. Wherein the lines, circles, dots or the like can be arranged in order or out of order. Object 102 may be, for example, a palm, a human face, or any object having three-dimensional features. When the structured light SL is projected on the object 102 , the light pattern of the structured light SL is deformed by the uneven surface of the object 102 . The deformed structured light SL is then reflected from the object 102 and the reflected light passes through the opening 106 to the sensor 104 . For example, openings 106 may include lenses, apertures, transparent covers, and the like. The sensor 104 senses the deformation of the light pattern on the object 102 to calculate the depth of the surface of the object 102 , that is, the distance from a point on the surface of the object 102 to the sensor 104 . The sensor 104 may be connected to a processor (not shown) for calculating three-dimensional features of the object 102 .

圖2是依照本發明實施例的結構光投射器100的剖面示意圖。結構光投射器100包括光源110、液晶透鏡模組120以及繞射光學元件(diffractive optical element,DOE)130。配置於結構光投射器100一端的光源110是用以發出光束LB。光源110可為 發光二極體(LED)、雷射二極體、邊射型雷射(edge emitting laser)、垂直共振腔面射型雷射(vertical-cavity surface-emitting laser;VCSEL)或任何其他能發出可見或不可見(例如:紅外光(IR)或紫外光(UV))光束LB。在一些實施例,光源110可為單一IR雷射二極體,在其他一些實施例光源110可為IR雷射二極體陣列,形成光源110的光源的數量不限於此。 FIG. 2 is a schematic cross-sectional view of a structured light projector 100 according to an embodiment of the present invention. The structured light projector 100 includes a light source 110 , a liquid crystal lens module 120 and a diffractive optical element (DOE) 130 . The light source 110 disposed at one end of the structured light projector 100 is used to emit the light beam LB. The light source 110 can be Light emitting diodes (LEDs), laser diodes, edge emitting lasers, vertical-cavity surface-emitting lasers (VCSELs), or any other or invisible (eg infrared (IR) or ultraviolet (UV)) beam LB. In some embodiments, the light source 110 may be a single IR laser diode, and in other embodiments, the light source 110 may be an IR laser diode array, and the number of light sources forming the light source 110 is not limited thereto.

結構光投射器100更包括配置於光束LB路徑上的液晶透鏡模組120。液晶透鏡模組120能夠控制光束LB的對焦狀態以為結構光投射器100提供至少兩個對焦狀態。可選擇性的將偏振片(圖中未示出)放置在光束LB上液晶透鏡模組120前以為液晶透鏡模組120提供偏振光束LB。 The structured light projector 100 further includes a liquid crystal lens module 120 disposed on the path of the light beam LB. The liquid crystal lens module 120 can control the focus state of the light beam LB to provide at least two focus states for the structured light projector 100 . Optionally, a polarizer (not shown in the figure) is placed on the light beam LB in front of the liquid crystal lens module 120 to provide the liquid crystal lens module 120 with a polarized light beam LB.

如圖2所示,繞射光學元件130配置於光束LB的路徑上且在液晶透鏡模組120之後。然而,繞射光學元件130與液晶透鏡模組120的配置順序不限於此。在一些實施例中,繞射光學元件130可配置於光束LB的路徑上且在液晶透鏡模組120之前。在一些實施例,甚至可以置於光束LB的路徑上且於液晶透鏡模組120的多個元件之間。繞射光學元件130是一種用以產生繞射圖案的光學元件,用以產生如上述參考圖1所述的結構光SL。舉例而言,繞射光學元件130可包含將光束LB分光至多個點的圖案,或者是將光束LB塑造至網格線的圖案,但不限於此。為簡易起見,以下將通過繞射光學元件130的光束LB稱為結構光SL。此外,為了易於描述,提供互相垂直的x-方向以及z-方向。舉例而言, 在本實施例中,將z-方向定為垂直於光源110發光的表面的方向。 As shown in FIG. 2 , the diffractive optical element 130 is disposed on the path of the light beam LB and behind the liquid crystal lens module 120 . However, the arrangement order of the diffractive optical element 130 and the liquid crystal lens module 120 is not limited to this. In some embodiments, the diffractive optical element 130 may be disposed on the path of the light beam LB and before the liquid crystal lens module 120 . In some embodiments, it may even be placed on the path of the light beam LB and between multiple elements of the liquid crystal lens module 120 . The diffractive optical element 130 is an optical element for generating a diffraction pattern for generating the structured light SL as described above with reference to FIG. 1 . For example, the diffractive optical element 130 may include a pattern that splits the light beam LB into a plurality of points, or a pattern that shapes the light beam LB to grid lines, but is not limited thereto. For simplicity, the light beam LB passing through the diffractive optical element 130 is hereinafter referred to as structured light SL. Furthermore, for ease of description, the x-direction and the z-direction that are perpendicular to each other are provided. For example, In this embodiment, the z-direction is defined as the direction perpendicular to the surface on which the light source 110 emits light.

圖3A至圖3C示出依照本發明一些實施例的各種不同的結構光投射器200a至200c的剖面示意圖。結構光投射器200a至200c與圖2示出的結構光投射器100類似。結構光投射器200a至200c與結構光投射器100之間的差別在於結構光投射器200a至200c包括液晶透鏡單元122以及固態透鏡124而不包括液晶透鏡模組120。在一些實施例中,液晶透鏡單元122與固態透鏡124的組合可做為圖2的液晶透鏡模組120。 3A-3C illustrate schematic cross-sectional views of various structured light projectors 200a-200c according to some embodiments of the present invention. The structured light projectors 200a to 200c are similar to the structured light projector 100 shown in FIG. 2 . The difference between the structured light projectors 200 a to 200 c and the structured light projector 100 is that the structured light projectors 200 a to 200 c include the liquid crystal lens unit 122 and the solid-state lens 124 but do not include the liquid crystal lens module 120 . In some embodiments, the combination of the liquid crystal lens unit 122 and the solid-state lens 124 can be used as the liquid crystal lens module 120 of FIG. 2 .

參考圖3A,固態透鏡124配置於光束LB的路徑上且位於繞射光學元件130以及光源110之間,而液晶透鏡單元122配置於光束LB的路徑上且位於固態透鏡124與繞射光學元件130之間。在圖3B中,固態透鏡124配置於光束LB的路徑上且位於繞射光學元件130以及光源110之間,而液晶透鏡單元122配置於繞射光學元件130上遠離光源110的一側。換句話說,液晶透鏡單元122配置於結構光SL的路徑上。在圖3C中,固態透鏡124配置於光束LB的路徑上且位於繞射光學元件130以及光源110之間,而液晶透鏡單元122配置於光束LB的路徑上且位於固態透鏡124與光源110之間。 Referring to FIG. 3A , the solid-state lens 124 is disposed on the path of the light beam LB and is located between the diffractive optical element 130 and the light source 110 , and the liquid crystal lens unit 122 is disposed on the path of the light beam LB and located between the solid-state lens 124 and the diffractive optical element 130 between. In FIG. 3B , the solid-state lens 124 is disposed on the path of the light beam LB between the diffractive optical element 130 and the light source 110 , and the liquid crystal lens unit 122 is disposed on the side of the diffractive optical element 130 away from the light source 110 . In other words, the liquid crystal lens unit 122 is disposed on the path of the structured light SL. In FIG. 3C , the solid-state lens 124 is disposed on the path of the light beam LB and between the diffractive optical element 130 and the light source 110 , and the liquid crystal lens unit 122 is disposed on the path of the light beam LB and between the solid-state lens 124 and the light source 110 .

在一些實施例之中,固態透鏡124可為單一透鏡或一具有多透鏡的組合,其限定了結構光投射器200a的主要焦距。在一些實施例中,固態透鏡124在光束LB進入液晶透鏡單元122或繞射光學元件130前使光束準直。在一些實施例中,液晶透鏡單元 122具有可調變焦距且包含至少一液晶包層(liquid crystal cell layer)。可藉由施加電壓來控制液晶透鏡單元122內的液晶分子(圖中未示出)的定向來控制液晶透鏡單元122的焦距。 In some embodiments, the solid-state lens 124 may be a single lens or a combination with multiple lenses that defines the primary focal length of the structured light projector 200a. In some embodiments, the solid state lens 124 collimates the light beam LB before it enters the liquid crystal lens unit 122 or the diffractive optical element 130 . In some embodiments, the liquid crystal lens unit 122 has an adjustable zoom and includes at least one liquid crystal cell layer. The focal length of the liquid crystal lens unit 122 can be controlled by applying a voltage to control the orientation of liquid crystal molecules (not shown) within the liquid crystal lens unit 122 .

圖4A至圖8揭露可作為圖2中液晶透鏡模組120的液晶透鏡模組的一些實施例。在一些實施例中,圖4A至圖8所揭露的液晶透鏡模組可作為圖3A至圖3C的液晶透鏡單元122,且本發明不限於此。 FIGS. 4A to 8 disclose some embodiments of a liquid crystal lens module that can be used as the liquid crystal lens module 120 of FIG. 2 . In some embodiments, the liquid crystal lens module disclosed in FIGS. 4A to 8 can be used as the liquid crystal lens unit 122 of FIGS. 3A to 3C , and the present invention is not limited thereto.

圖4A及圖4B是依照本發明的一實施例的液晶透鏡模組220的剖面示意圖。液晶透鏡模組220包括第一基板224a、第二基板224b以及液晶層222。液晶層222在垂直方向(z-方向)包夾於第一基板224a與第二基板224b之間。液晶層222每個部位的有效折射率與施加於第一電極230a以及第二電極230b的電壓有關,其中第一電極230a配置於第一基板224a之上介於液晶層222與第一基板224a之間,第二電極230b配置於第二基板224b之上介於液晶層222與第二基板224b之間,且電壓由電源228提供。液晶透鏡模組220進一步包括分別配置於第一電極230a以及第二電極230b上且與液晶層222相對兩側接觸的配向膜232。配向膜232a及配向膜232b具有表面紋理,用以藉由控制液晶分子226的預傾角以及極角來將液晶分子226提供初始定向。所述預傾角是指液晶分子226的長軸與垂直於z-方向的面之間的角度;所述極角是指液晶分子226的長軸在垂直於z-方向的面上與一固定軸(例如:沿x-方向)之間的角度。用於本實施例配向膜232的 材料可為聚合物(例如:聚酰亞胺),但不限於此。 4A and 4B are schematic cross-sectional views of a liquid crystal lens module 220 according to an embodiment of the present invention. The liquid crystal lens module 220 includes a first substrate 224 a , a second substrate 224 b and a liquid crystal layer 222 . The liquid crystal layer 222 is sandwiched between the first substrate 224a and the second substrate 224b in the vertical direction (z-direction). The effective refractive index of each part of the liquid crystal layer 222 is related to the voltage applied to the first electrode 230a and the second electrode 230b, wherein the first electrode 230a is disposed on the first substrate 224a and interposed between the liquid crystal layer 222 and the first substrate 224a. During this time, the second electrode 230b is disposed on the second substrate 224b between the liquid crystal layer 222 and the second substrate 224b, and the voltage is provided by the power supply 228. The liquid crystal lens module 220 further includes alignment films 232 respectively disposed on the first electrode 230 a and the second electrode 230 b and in contact with opposite sides of the liquid crystal layer 222 . The alignment film 232a and the alignment film 232b have surface textures for providing initial orientation of the liquid crystal molecules 226 by controlling the pretilt angle and the polar angle of the liquid crystal molecules 226 . The pretilt angle refers to the angle between the long axis of the liquid crystal molecules 226 and the plane perpendicular to the z-direction; the polar angle refers to the angle between the long axis of the liquid crystal molecules 226 on the plane perpendicular to the z-direction and a fixed axis. (eg: along the x-direction). Used for the alignment film 232 of this embodiment The material may be a polymer (eg, polyimide), but is not limited thereto.

參考圖4A,液晶透鏡模組220的液晶層222具有非均勻厚度。如圖4A所示,液晶層222具有一曲面以及一平面,且在中間部位為最厚。液晶層222的曲面對應到第一基板224a的曲面、彎曲的第一電極230a以及彎曲的上方配向膜232a。此外,在本實施例,當電極230a及230b與電源228斷開時,液晶層222內所有的液晶分子226實質上以相同定向排列。也就是說,所有液晶分子226的長軸沿水平x-方向,其中x-方向與z-方向正交。當電極230a與230b與電源228導通時,如圖4B所示,液晶分子226的定向經旋轉以至長軸與z-方向排列。 Referring to FIG. 4A , the liquid crystal layer 222 of the liquid crystal lens module 220 has a non-uniform thickness. As shown in FIG. 4A , the liquid crystal layer 222 has a curved surface and a flat surface, and is thickest at the middle portion. The curved surface of the liquid crystal layer 222 corresponds to the curved surface of the first substrate 224a, the curved first electrode 230a and the curved upper alignment film 232a. In addition, in this embodiment, when the electrodes 230a and 230b are disconnected from the power source 228, all the liquid crystal molecules 226 in the liquid crystal layer 222 are arranged in substantially the same orientation. That is, the long axes of all liquid crystal molecules 226 are along the horizontal x-direction, where the x-direction is orthogonal to the z-direction. When the electrodes 230a and 230b are turned on with the power source 228, as shown in FIG. 4B, the orientation of the liquid crystal molecules 226 is rotated so that the long axis and the z-direction are aligned.

在本實施例,圖4A至4B的液晶透鏡模組220可做為折射透鏡(refractive lens)。具體而言,當液晶透鏡模組220未與電源228連接時,液晶層222具有第一有效折射率使得當與液晶透鏡模組220的凸型結合時,沿z-方向進入的光會聚焦到第一焦距F1。在圖4B中,當液晶透鏡模組220與電源228連接,液晶分子226沿z-軸的排列會將液晶層222的有效折射率改變為第二有效折射率,使得當與液晶層222的凸型結合時,沿z-方向進入的光會聚焦到第二焦距F2。因此,液晶透鏡模組220的焦距可藉由打開或關閉電源228來控制。 In this embodiment, the liquid crystal lens module 220 of FIGS. 4A to 4B can be used as a refractive lens. Specifically, when the liquid crystal lens module 220 is not connected to the power source 228, the liquid crystal layer 222 has a first effective refractive index such that when combined with the convex shape of the liquid crystal lens module 220, light entering along the z-direction will be focused to The first focal length F1. In FIG. 4B , when the liquid crystal lens module 220 is connected to the power supply 228 , the alignment of the liquid crystal molecules 226 along the z-axis will change the effective refractive index of the liquid crystal layer 222 to the second effective refractive index, so that when the liquid crystal layer 222 is aligned with the convexity of the liquid crystal layer 222 When combined, light entering in the z-direction is focused to the second focal length F2. Therefore, the focal length of the liquid crystal lens module 220 can be controlled by turning on or off the power supply 228 .

圖5是依照本發明一實施例的液晶透鏡模組320的剖面示意圖。液晶透鏡模組320包括第一基板224a、第二基板224b、液晶層222、第一電極230a、第二電極230b以及配向膜232a及 232b,其佈置類似於液晶透鏡模組220。參照圖5,液晶透鏡模組320與液晶透鏡模組220之間的差別在於第一基板224a、第一電極230a、第二電極230b以及第一配向膜232a的形狀。具體而言,在圖5中,第一基板224a是一在z-方向上具有均勻厚度的基板,第一電極230a以及第一配向膜232a是平的,且第二電極230b以及第二配向膜232b是階梯狀的。基於第二電極230b以及第二配向膜232b為階梯狀,液晶層222具有非均勻厚度的液晶層,具有繞射透鏡的光學特性。舉例而言,第二電極230b以及第二配向膜232b的階梯狀可經設計使得跟隨所述階梯狀的液晶層222可為一種菲涅耳透鏡(Fresnel lens),但本發明不限於此。類似於液晶透鏡模組220,可以通過在第一電極230a和第二電極230b之間施加電壓來控制液晶透鏡模組320的焦距。 FIG. 5 is a schematic cross-sectional view of a liquid crystal lens module 320 according to an embodiment of the present invention. The liquid crystal lens module 320 includes a first substrate 224a, a second substrate 224b, a liquid crystal layer 222, a first electrode 230a, a second electrode 230b, an alignment film 232a and 232b, the arrangement is similar to that of the liquid crystal lens module 220. 5 , the difference between the liquid crystal lens module 320 and the liquid crystal lens module 220 lies in the shapes of the first substrate 224a, the first electrode 230a, the second electrode 230b and the first alignment film 232a. Specifically, in FIG. 5, the first substrate 224a is a substrate with a uniform thickness in the z-direction, the first electrode 230a and the first alignment film 232a are flat, and the second electrode 230b and the second alignment film are flat 232b is stepped. Since the second electrode 230b and the second alignment film 232b are stepped, the liquid crystal layer 222 has a liquid crystal layer with a non-uniform thickness and has optical properties of a diffractive lens. For example, the stepped shapes of the second electrode 230b and the second alignment film 232b can be designed so that the liquid crystal layer 222 following the stepped shapes can be a Fresnel lens, but the invention is not limited thereto. Similar to the liquid crystal lens module 220, the focal length of the liquid crystal lens module 320 can be controlled by applying a voltage between the first electrode 230a and the second electrode 230b.

圖6A是依照本發明一實施例的液晶透鏡模組420a的剖面示意圖。 6A is a schematic cross-sectional view of a liquid crystal lens module 420a according to an embodiment of the present invention.

在圖6A中,液晶透鏡模組420a包括第一基板224a、第二基板224b、液晶層222、第二電極230b以及配向膜232a及232b,其佈置類似於液晶透鏡模組220。參照圖6A,液晶透鏡模組420a與液晶透鏡模組220之間的差別在於第一基板224a、第一電極230a以及第一配向膜232a。具體而言,在圖6A中,第一基板224a是在z-方向上具有均勻厚度的基板,第一電極230a是在其間具有間隙或開口的圖案化電極並且設置在第一基板224a的與液晶層222相對的一側上,且第一配向膜232a是平的。因此,本實施例 的液晶層222具有均勻的厚度。在一些實施例中,第一電極230a也可以設置在第一基板224a和第一配向膜232a之間,但不限於此。 In FIG. 6A , the liquid crystal lens module 420 a includes a first substrate 224 a , a second substrate 224 b , a liquid crystal layer 222 , a second electrode 230 b , and alignment films 232 a and 232 b , which are arranged similarly to the liquid crystal lens module 220 . 6A , the difference between the liquid crystal lens module 420a and the liquid crystal lens module 220 lies in the first substrate 224a, the first electrode 230a and the first alignment film 232a. Specifically, in FIG. 6A, the first substrate 224a is a substrate having a uniform thickness in the z-direction, the first electrode 230a is a patterned electrode with a gap or opening therebetween and is disposed on the first substrate 224a and the liquid crystal On the opposite side of the layer 222, and the first alignment film 232a is flat. Therefore, this embodiment The liquid crystal layer 222 has a uniform thickness. In some embodiments, the first electrode 230a may also be disposed between the first substrate 224a and the first alignment film 232a, but is not limited thereto.

基於第一電極230a的圖案,液晶層222中的電壓不均勻分佈,導致當第一電極230a連接到電源時,液晶分子226具有不一樣的定向。在一些實施例中,第一電極230a的圖案可以是圖6A中所示的圖案以外的任何其他圖案。液晶取向的不均勻分佈產生分佈式折射率。取決於折射率的分佈,液晶透鏡模組420a可以是折射透鏡或繞射透鏡。 Based on the pattern of the first electrode 230a, the voltage in the liquid crystal layer 222 is unevenly distributed, causing the liquid crystal molecules 226 to have different orientations when the first electrode 230a is connected to a power source. In some embodiments, the pattern of the first electrode 230a may be any other pattern than the pattern shown in FIG. 6A. The non-uniform distribution of liquid crystal orientation produces a distributed index of refraction. The liquid crystal lens module 420a may be a refractive lens or a diffractive lens depending on the distribution of the refractive index.

圖6B是依照本發明一實施例的液晶透鏡模組420b的剖面示意圖。液晶透鏡模組420b類似於液晶透鏡模組420a,不同之處在於液晶透鏡模組420b進一步包括第三電極230c。第三電極230c與第一電極230a相鄰且遠離液晶層222。在本實施例中,第一電極230a和第二電極230b可以連接到第一電源428a以提供電壓V1,而第三電極230c和第二電極230b可以連接第二電源428b以提供電壓V2。第三電極230c的附加使得可進一步控制液晶層222中的電壓分佈,以提供光學性質的進一步微調。取決於折射率的分佈,液晶透鏡模組420b可以是折射透鏡或繞射透鏡。 6B is a schematic cross-sectional view of the liquid crystal lens module 420b according to an embodiment of the present invention. The liquid crystal lens module 420b is similar to the liquid crystal lens module 420a, except that the liquid crystal lens module 420b further includes a third electrode 230c. The third electrode 230c is adjacent to the first electrode 230a and away from the liquid crystal layer 222 . In this embodiment, the first electrode 230a and the second electrode 230b may be connected to the first power source 428a to provide the voltage V1, and the third electrode 230c and the second electrode 230b may be connected to the second power source 428b to provide the voltage V2. The addition of the third electrode 230c allows further control of the voltage distribution in the liquid crystal layer 222 to provide further fine-tuning of the optical properties. The liquid crystal lens module 420b may be a refractive lens or a diffractive lens depending on the distribution of the refractive index.

圖7是依照本發明一實施例的液晶透鏡模組520的剖面示意圖。液晶透鏡模組520是具有均勻厚度的液晶層222的液晶透鏡模組。具體而言,液晶透鏡模組520包括第一基板224a和第二基板224b、液晶層222、第二電極230b以及配向膜232a和232b, 其佈置類似於液晶透鏡模組420a。液晶透鏡模組520和液晶透鏡模組420a之間的差異在於第一電極230a的位置和第二電極230b的結構。具體而言,在圖7中,第一電極230a設置在第一基板224a和第一配向膜232a之間,且第二電極230b是像素化電極。第二電極230b包括連接到電源228的至少一個電極530a和與電極530a相鄰設置的至少一個浮動電極530b,以形成像素化結構。浮動電極530b藉由配置於其之間的絕緣體來分開,例如由第一配向膜232b的一部分來分開,如圖7所示。在一些實施例中,浮動電極530b也可以設置在第一基板224a,第二基板224b或第一基板230a和第二基板230b兩者上。第二電極230b的浮動電極530b上的電壓與相鄰電極530a相關。浮動電極530b提供更多的電壓變化間距,以更好地控制液晶層222中的液晶分子的定向。或者,浮動電極530b中的一些或全部也可以單獨連接到其他電源,以進一步控制液晶分子。取決於折射率的分佈,液晶透鏡模組520可以是折射透鏡或繞射透鏡。 7 is a schematic cross-sectional view of a liquid crystal lens module 520 according to an embodiment of the present invention. The liquid crystal lens module 520 is a liquid crystal lens module having a liquid crystal layer 222 of uniform thickness. Specifically, the liquid crystal lens module 520 includes a first substrate 224a and a second substrate 224b, a liquid crystal layer 222, a second electrode 230b, and alignment films 232a and 232b, Its arrangement is similar to the liquid crystal lens module 420a. The difference between the liquid crystal lens module 520 and the liquid crystal lens module 420a lies in the position of the first electrode 230a and the structure of the second electrode 230b. Specifically, in FIG. 7, the first electrode 230a is disposed between the first substrate 224a and the first alignment film 232a, and the second electrode 230b is a pixelated electrode. The second electrode 230b includes at least one electrode 530a connected to the power source 228 and at least one floating electrode 530b disposed adjacent to the electrode 530a to form a pixelated structure. The floating electrodes 530b are separated by an insulator disposed therebetween, eg, by a portion of the first alignment film 232b, as shown in FIG. 7 . In some embodiments, the floating electrode 530b may also be disposed on the first substrate 224a, the second substrate 224b, or both the first substrate 230a and the second substrate 230b. The voltage on the floating electrode 530b of the second electrode 230b is related to the adjacent electrode 530a. The floating electrode 530b provides more voltage variation pitch to better control the orientation of the liquid crystal molecules in the liquid crystal layer 222 . Alternatively, some or all of the floating electrodes 530b may also be individually connected to other power sources to further control the liquid crystal molecules. Depending on the distribution of the refractive index, the liquid crystal lens module 520 may be a refractive lens or a diffractive lens.

圖8是依照本發明一實施例的液晶透鏡模組620的剖面示意圖。液晶透鏡模組620類似於液晶透鏡模組520,差別在於液晶透鏡模組620具有像素化的第一電極230a,並且進一步包括設置在像素化的第一電極230a和第一配向膜232a之間的高阻抗材料層640。高阻抗材料層640在電極之間提供連續變化的電壓,因此改善了所形成圖像的質量。高阻抗材料層640的片電阻範圍介於109至1014歐姆每平方(Ω/sq)。舉例而言,高阻抗材料層640 由半導體材料(包括III-V族半導體化合物或II-VI半導體化合物的)或聚合物材料(包括聚二氧乙基噻吩(poly(3,4-ethylenedioxythiophene);PEDOT)))製成。當然,高阻抗材料層640可以在上述任何液晶透鏡模組中實現,並且可以具有任何其他圖案。本發明不限於此。 8 is a schematic cross-sectional view of a liquid crystal lens module 620 according to an embodiment of the present invention. The liquid crystal lens module 620 is similar to the liquid crystal lens module 520, except that the liquid crystal lens module 620 has a pixelated first electrode 230a, and further includes a pixelated first electrode 230a and the first alignment film 232a. High resistance material layer 640 . The high resistance material layer 640 provides a continuously varying voltage between the electrodes, thus improving the quality of the image formed. The sheet resistance of the high resistance material layer 640 ranges from 10 9 to 10 14 ohms per square (Ω/sq). For example, the high-resistance material layer 640 is made of semiconductor materials (including III-V semiconductor compounds or II-VI semiconductor compounds) or polymer materials (including poly(3,4-ethylenedioxythiophene); PEDOT))) made. Of course, the high-resistance material layer 640 can be implemented in any of the above-mentioned liquid crystal lens modules, and can have any other patterns. The present invention is not limited to this.

圖9是依照本發明一實施例的液晶層222的俯視(即,沿z-方向)示意圖。具體而言,圖9是液晶層222內的液晶分子因配向膜的控制的而在x-y平面上的示例性佈置圖案。圖9中提供的y-方向垂直於x和z方向。如圖9所示,液晶分子的極角由配向膜控制,以形成Pancharatnam-Berry相液晶透鏡。可以通過具有不同表面圖案的配向膜來形成其他液晶透鏡,本發明不限於此。 9 is a schematic top view (ie, along the z-direction) of the liquid crystal layer 222 according to an embodiment of the present invention. Specifically, FIG. 9 is an exemplary arrangement pattern of liquid crystal molecules in the liquid crystal layer 222 on the x-y plane due to the control of the alignment film. The y-direction provided in Figure 9 is perpendicular to the x and z directions. As shown in FIG. 9, the polar angles of the liquid crystal molecules are controlled by the alignment film to form a Pancharatnam-Berry phase liquid crystal lens. Other liquid crystal lenses may be formed by alignment films having different surface patterns, and the present invention is not limited thereto.

圖10A及圖10B是依照本發明一實施例的液晶透鏡模組720的剖面示意圖。在圖10A及圖10B中,液晶透鏡模組720包括液晶單元722和異向性透鏡(anisotropic lens)724,其中液晶單元722連接到電源228。在液晶透鏡模組720中,液晶單元722設置在沿垂直於x和z方向偏振的光的路徑上(如圖10A所示的偏振光LP)。液晶單元722被配置為控制入射光的偏振。 10A and 10B are schematic cross-sectional views of a liquid crystal lens module 720 according to an embodiment of the present invention. In FIGS. 10A and 10B , the liquid crystal lens module 720 includes a liquid crystal cell 722 and an anisotropic lens 724 , wherein the liquid crystal cell 722 is connected to the power source 228 . In the liquid crystal lens module 720, the liquid crystal cells 722 are disposed on the path of light polarized perpendicular to the x and z directions (polarized light LP as shown in FIG. 10A). The liquid crystal cell 722 is configured to control the polarization of incident light.

參照圖10A和10B,當液晶單元722處於關閉狀態(未施加電壓)時,入射光的偏振不受影響,當液晶單元722處於導通狀態(施加電壓)時,入射光的偏振旋轉90度至x方向。換句話說,當液晶單元722打開時,液晶單元做為半波片以改變入射 光的偏振。異向性透鏡724設置在穿過液晶單元722的光路上。異向性透鏡724的折射率(亦即焦距)取決於光的偏振,例如當光在異向性透鏡的光軸A1方向上偏振時,折射率最大,當光的偏振方向與光軸A1正交時,折射率最小。因為液晶單元722的打開和關閉會改變光的偏振,所以異向性透鏡的焦距也改變。液晶透鏡模組720也被稱為被動式液晶透鏡,因為液晶單元不主動聚焦或發散光。 10A and 10B, when the liquid crystal cell 722 is in the off state (no voltage is applied), the polarization of the incident light is not affected, and when the liquid crystal cell 722 is in the on state (voltage is applied), the polarization of the incident light is rotated by 90 degrees to x direction. In other words, when the liquid crystal cell 722 is turned on, the liquid crystal cell acts as a half-wave plate to change the incidence Polarization of light. An anisotropic lens 724 is provided on the optical path passing through the liquid crystal cell 722 . The refractive index (that is, the focal length) of the anisotropic lens 724 depends on the polarization of the light. For example, when the light is polarized in the direction of the optical axis A1 of the anisotropic lens, the refractive index is the largest, and when the polarization direction of the light is positive to the optical axis A1. When intersecting, the refractive index is the smallest. Because the opening and closing of the liquid crystal cell 722 changes the polarization of the light, the focal length of the anisotropic lens also changes. The liquid crystal lens module 720 is also referred to as a passive liquid crystal lens because the liquid crystal cells do not actively focus or scatter light.

如上所述施加到液晶透鏡模組、液晶透鏡單元和液晶單元的電極的電壓分佈可以由耦合到電極的控制器控制。在一些實施例中,控制器例如是中央處理單元(CPU)、微處理器、數位信號處理器(digital signal processor;DSP)、可程式化控制器、可程式化邏輯元件(programmable logic device;PLD)或其他類似元件,或者所述元件的組合,不受本發明的特別限制。此外,在一些實施例中,控制器的每個功能可以多個程式碼實現。這些程式碼將儲存在儲存器或非暫時性儲存介質中,以便這些程式碼可以由控制器執行。或者,在一實施例中,控制器的每個功能可以一個或多個電路實現。本發明不旨在限制控制器的每個功能是通過軟件還是硬件實現。 The voltage distribution applied to the liquid crystal lens module, the liquid crystal lens unit, and the electrodes of the liquid crystal cell as described above may be controlled by a controller coupled to the electrodes. In some embodiments, the controller is, for example, a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a programmable controller, a programmable logic device (PLD) ) or other similar elements, or combinations of said elements, are not particularly limited by the present invention. Furthermore, in some embodiments, each function of the controller may be implemented in multiple code codes. The code will be stored in memory or non-transitory storage medium so that the code can be executed by the controller. Alternatively, in one embodiment, each function of the controller may be implemented in one or more circuits. The present invention is not intended to limit whether each function of the controller is implemented by software or hardware.

藉由在結構光投射器中提供具有可調變焦距的液晶透鏡,結構光投射器的聚焦範圍變得可調並且能夠涵蓋更寬的範圍,使得能夠測量3D物體上不同距離處的特徵。此外,與聚焦鏡頭中的傳統音圈馬達(voice coil motor;VCM)相比,使用液晶 透鏡的光學投射器具有更小型和低功耗的優點。因此,本發明的光學投射器可以容易地安裝在移動電子裝置中,為移動電子裝置提供3D感測的特徵。 By providing a liquid crystal lens with adjustable zoom in the structured light projector, the focusing range of the structured light projector becomes adjustable and can cover a wider range, enabling the measurement of features at different distances on a 3D object. In addition, compared with the traditional voice coil motor (VCM) in the focusing lens, the use of liquid crystal Lensed optical projectors have the advantage of being smaller and lower power consumption. Therefore, the optical projector of the present invention can be easily installed in a mobile electronic device to provide 3D sensing features for the mobile electronic device.

圖11A與圖11B分別為本發明的一實施例的可調式光投射器在結構光模式與泛光模式的剖面示意圖。請參照圖11A與圖11B,本實施例的可調式光投射器800包括至少一光源810(圖11A與圖11B中是以多個光源810為例)、一固定式光學相位調制器820、一可調式液晶面板900及一驅動器830。這些光源810用以發出多個光束811(在圖11A與圖11B中示意性地繪示一個光源810發出一個光束811為例)。在本實施例中,這些光源810分別為一個垂直共振腔面射型雷射的多個發光區(或發光點),或分別為多個邊射型雷射(edge-emitting laser,EEL),或分別為多個其他適當的雷射發射器或雷射二極體。 11A and FIG. 11B are schematic cross-sectional views of an adjustable light projector in a structured light mode and a flood light mode, respectively, according to an embodiment of the present invention. Referring to FIGS. 11A and 11B , the adjustable light projector 800 of this embodiment includes at least one light source 810 (a plurality of light sources 810 are taken as an example in FIGS. 11A and 11B ), a fixed optical phase modulator 820 , a Adjustable liquid crystal panel 900 and a driver 830 . These light sources 810 are used for emitting a plurality of light beams 811 (in FIG. 11A and FIG. 11B , one light source 810 is schematically shown as an example for emitting one light beam 811 ). In this embodiment, the light sources 810 are respectively a plurality of light-emitting regions (or light-emitting points) of a vertical resonant cavity surface-emitting laser, or are respectively a plurality of edge-emitting lasers (EEL), or a plurality of other suitable laser emitters or laser diodes, respectively.

固定式光學相位調制器820配置於光束811的路徑上,且用以調制光束811的相位。在本實施例中,固定式光學相位調制器820例如為繞射光學元件或透鏡陣列,其將光束811調制成一結構光。 The fixed optical phase modulator 820 is disposed on the path of the light beam 811 and is used to modulate the phase of the light beam 811 . In this embodiment, the fixed optical phase modulator 820 is, for example, a diffractive optical element or a lens array, which modulates the light beam 811 into a structured light.

可調式液晶面板900配置於光束811的路徑上,且用以使光束811在一結構光(如圖11A所繪示)與一泛光(如圖11B所繪示)之間切換。在本實施例中,可調式液晶面板900配置於來自固定式光學相位調制器820的光束811的路徑上。可調式液晶面板900包括一第一基板910、一第二基板920、一液晶層930、 一第一電極層940及一第二電極層950。液晶層930配置於第一基板210與第二基板920之間。第一電極層940與第二電極層950的至少其中之一為圖案化層。圖11A與圖11B繪示第一電極層940為圖案化層。然而,在其他實施例中,第二電極層950可以是圖案化層,或者第一電極層940與第二電極層950兩者皆為圖案化層。在本實施例中,第一基板910與第二基板920為透明基板,例如玻璃基板或塑膠基板。第一電極層940與第二電極層950可以是由氧化銦錫(indium tin oxide,ITO)、其他導電金屬氧化物或其他透明導電材料所製成。 The adjustable liquid crystal panel 900 is disposed on the path of the light beam 811 and is used to switch the light beam 811 between a structured light (as shown in FIG. 11A ) and a flood light (as shown in FIG. 11B ). In this embodiment, the adjustable liquid crystal panel 900 is disposed on the path of the light beam 811 from the fixed optical phase modulator 820 . The adjustable liquid crystal panel 900 includes a first substrate 910, a second substrate 920, a liquid crystal layer 930, A first electrode layer 940 and a second electrode layer 950 . The liquid crystal layer 930 is disposed between the first substrate 210 and the second substrate 920 . At least one of the first electrode layer 940 and the second electrode layer 950 is a patterned layer. 11A and 11B illustrate that the first electrode layer 940 is a patterned layer. However, in other embodiments, the second electrode layer 950 may be a patterned layer, or both the first electrode layer 940 and the second electrode layer 950 are patterned layers. In this embodiment, the first substrate 910 and the second substrate 920 are transparent substrates, such as glass substrates or plastic substrates. The first electrode layer 940 and the second electrode layer 950 may be made of indium tin oxide (ITO), other conductive metal oxides or other transparent conductive materials.

第一電極層940與第二電極層950皆配置於第一基板910與第二基板920的其中之一上,或分別配置於第一基板910與第二基板920上。驅動器830電性連接至第一電極層940與第二電極層950,且用以改變第一電極層940與第二電極層950之間的電壓差,進而使光束811在結構光與泛光之間切換。具體而言,液晶層930的光學空間相位分佈會隨著此電壓差的改變而改變,進而使光束811在結構光與泛光之間切換。 The first electrode layer 940 and the second electrode layer 950 are both disposed on one of the first substrate 910 and the second substrate 920 , or disposed on the first substrate 910 and the second substrate 920 respectively. The driver 830 is electrically connected to the first electrode layer 940 and the second electrode layer 950, and is used to change the voltage difference between the first electrode layer 940 and the second electrode layer 950, so that the light beam 811 is between the structured light and the flood light. switch between. Specifically, the optical spatial phase distribution of the liquid crystal layer 930 changes with the change of the voltage difference, so that the light beam 811 is switched between structured light and flood light.

舉例而言,在圖11A中,第一電極層940與第二電極層950之間的電壓差約為零,且液晶層930的折射率分佈是均勻的,因此液晶層930類似一透明層。所以,來自固定式光學相位調制器820的結構光會穿透此透明層而仍然為一結構光,且可調式光投射器800是處於一結構光模式中。在圖11B中,第一電極層940與第二電極層950之間的電壓差不等於零,且液晶層930的折射 率分佈為不均勻,因此液晶層930類似一透鏡陣列。所以,來自固定式光學相位調制器820的結構光被此透鏡陣列轉換為一泛光,且可調式光投射器800處於一泛光模式。此結構光可以照射在物體上而在物體上形成具有多個點、具有條紋或具有其他適當圖案的光圖案。此泛光可均勻地照射物體。 For example, in FIG. 11A , the voltage difference between the first electrode layer 940 and the second electrode layer 950 is about zero, and the refractive index distribution of the liquid crystal layer 930 is uniform, so the liquid crystal layer 930 resembles a transparent layer. Therefore, the structured light from the fixed optical phase modulator 820 will pass through the transparent layer and still be a structured light, and the tunable light projector 800 is in a structured light mode. In FIG. 11B , the voltage difference between the first electrode layer 940 and the second electrode layer 950 is not equal to zero, and the refraction of the liquid crystal layer 930 The rate distribution is non-uniform, so the liquid crystal layer 930 resembles a lens array. Therefore, the structured light from the fixed optical phase modulator 820 is converted into a flood light by the lens array, and the tunable light projector 800 is in a flood light mode. This structured light can be irradiated on the object to form a light pattern with multiple dots, with stripes, or with other suitable patterns on the object. This floodlight illuminates objects evenly.

在本實施例的可調式光投射器中,可調式液晶面板900被用來使光束811在結構光與泛光之間切換,因此本實施例將泛光系統與結構光系統整合成單一系統,其減少了具有結構光與泛光功能的電子裝置的成本與體積。 In the adjustable light projector of this embodiment, the adjustable liquid crystal panel 900 is used to switch the light beam 811 between structured light and flood light, so this embodiment integrates the flood light system and the structured light system into a single system, It reduces the cost and volume of electronic devices with structured light and floodlight functions.

在另一實施例中,固定式光學相位調制器820用以將光束811調制成一泛光。此外,當第一電極層940與第二電極層950之間的電壓差約為零時,來自固定式光學相位調制器820的泛光穿透液晶層930(此時其為一透明層)且仍然為一泛光。當第一電極層940與第二電極層950之間的電壓差不為零時,來自固定式光學相位調制器820的泛光被液晶層930(此時其為類似透鏡陣列的一光學層)轉換成一結構光。 In another embodiment, the fixed optical phase modulator 820 is used to modulate the light beam 811 into a flood light. In addition, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is about zero, the flood light from the fixed optical phase modulator 820 penetrates the liquid crystal layer 930 (which is a transparent layer at this time) and Still a floodlight. When the voltage difference between the first electrode layer 940 and the second electrode layer 950 is not zero, the flood light from the fixed optical phase modulator 820 is blocked by the liquid crystal layer 930 (at this time it is an optical layer similar to a lens array) into a structured light.

在又一實施例中,固定式光學相位調制器820用以將光束調制成一準直光,且第一電極層940與第二電極層950之間的兩種電壓差分別將液晶層930切換至兩種折射率分佈,進而分別將來自固定式光學相位調制器820的準直光切換成一結構光與一泛光。 In yet another embodiment, the fixed optical phase modulator 820 is used to modulate the light beam into a collimated light, and the two voltage differences between the first electrode layer 940 and the second electrode layer 950 respectively adjust the liquid crystal layer 930 Switching to two refractive index profiles, and then switching the collimated light from the fixed optical phase modulator 820 into a structured light and a flood light, respectively.

圖12A、圖12B及圖12C分別為圖11A與圖11B中的第 一電極層之根據本發明的三個實施例的上視示意圖。請參照圖12A、圖12B與圖12C,圖案化層(如第一電極層940或第二電極層950,且圖中是繪示第一電極層940為例)具有多個微開孔942,其具有小於1毫米的一最大直徑D。微開孔942的形狀包括圓形(如圖12A所繪示)、矩形(如圖12B所繪示)、正方形、六邊形(如圖12C所繪示)、其他幾何形狀、其他不規則形狀或其組合。 12A, FIG. 12B and FIG. 12C are the first images in FIG. 11A and FIG. 11B, respectively. Schematic top view of an electrode layer according to three embodiments of the present invention. 12A , 12B and 12C, the patterned layer (such as the first electrode layer 940 or the second electrode layer 950, and the first electrode layer 940 is shown as an example) has a plurality of micro-openings 942, It has a maximum diameter D of less than 1 mm. The shapes of the micro openings 942 include circle (as shown in FIG. 12A ), rectangle (as shown in FIG. 12B ), square, hexagon (as shown in FIG. 12C ), other geometric shapes, and other irregular shapes or a combination thereof.

圖13A、圖13B及圖13C為圖12A的第一電極層的其他三種變化的上視示意圖。請參照圖12A、圖13A、圖13B及圖13C,微開孔942的尺寸與位置可以是規律的或不規律的。舉例而言,在圖12A中,微開孔942的尺寸彼此相等,且微開孔942的位置是規律的。在圖13A中,微開孔942的尺寸彼此相等,且微開孔942的位置是不規律的。在圖13B中,微開孔942具有不同的尺寸,且微開孔942的位置是規律的。在圖13C中,微開孔942具有不同尺寸,且微開孔942的位置是不規律的。 13A , 13B and 13C are schematic top views of other three variations of the first electrode layer of FIG. 12A . Referring to FIGS. 12A , 13A, 13B and 13C, the sizes and positions of the micro-opening holes 942 may be regular or irregular. For example, in FIG. 12A , the sizes of the micro-opening holes 942 are equal to each other, and the positions of the micro-opening holes 942 are regular. In FIG. 13A, the sizes of the micro-opening holes 942 are equal to each other, and the positions of the micro-opening holes 942 are irregular. In FIG. 13B , the micro-apertures 942 have different sizes, and the positions of the micro-apertures 942 are regular. In FIG. 13C, the micro-apertures 942 have different sizes, and the positions of the micro-apertures 942 are irregular.

圖14A為圖11A的可調式液晶面板的剖面示意圖,且圖14B與圖14C繪示圖14A的可調式液晶面板的其他兩種變化。請參照圖14A,可調式液晶面板900具有液晶層930,其包括聚合物網絡液晶(polymer network liquid crystal,PNLC),其包括液晶分子932與聚合物網絡(polymer network)934。請參照圖14B,可調式液晶面板900a可具有液晶層930a,其包括向列型液晶(nematic liquid crystal)。請參照圖14C,可調式液晶面板900b可具有液晶層930b,其包括聚合物分散液晶(polymer dispersed liquid crystal,PDLC),其包括液晶分子932b與聚合物934b。 14A is a schematic cross-sectional view of the adjustable liquid crystal panel of FIG. 11A , and FIGS. 14B and 14C illustrate other two variations of the adjustable liquid crystal panel of FIG. 14A . Referring to FIG. 14A , the adjustable liquid crystal panel 900 has a liquid crystal layer 930 including a polymer network liquid crystal (PNLC) including liquid crystal molecules 932 and a polymer network 934 . Referring to FIG. 14B, the adjustable liquid crystal panel 900a may have a liquid crystal layer 930a including a nematic liquid crystal. Referring to FIG. 14C, the adjustable liquid crystal panel 900b may have a liquid crystal layer 930b including polymer dispersed liquid crystal (polymer dispersed liquid crystal) liquid crystal, PDLC), which includes liquid crystal molecules 932b and polymers 934b.

圖15A為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖15A,本實施例的可調式液晶面板900c類似於圖14B的可調式液晶面板900a,且其主要差異如下所述。在本實施例中,可調式液晶面板900c更包括一第一配向層960與一第二配向層970。第一配向層960配置於第一基板910與液晶層930a之間,且第二配向層970配置於第二基板920與液晶層930a之間。在本實施例中,第一配向層960配置於第一電極層940與液晶層930a之間,且第二配向層970配置於第二電極層950與液晶層930a之間。在本實施例中,第一配向層960與第二配向層970為水平配向層(parallel alignment layer)。 15A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention. Referring to FIG. 15A, the adjustable liquid crystal panel 900c of this embodiment is similar to the adjustable liquid crystal panel 900a of FIG. 14B, and the main differences are as follows. In this embodiment, the adjustable liquid crystal panel 900c further includes a first alignment layer 960 and a second alignment layer 970 . The first alignment layer 960 is disposed between the first substrate 910 and the liquid crystal layer 930a, and the second alignment layer 970 is disposed between the second substrate 920 and the liquid crystal layer 930a. In this embodiment, the first alignment layer 960 is disposed between the first electrode layer 940 and the liquid crystal layer 930a, and the second alignment layer 970 is disposed between the second electrode layer 950 and the liquid crystal layer 930a. In this embodiment, the first alignment layer 960 and the second alignment layer 970 are parallel alignment layers.

圖15B為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖15B,本實施例之可調式液晶面板900d類似於可調式液晶面板900c,且其主要差異如下所述。在本實施例的可調式液晶面板900d中,第一配向層960d與第二配向層970d為垂直配向層(vertical alignment layer)。 15B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention. Referring to FIG. 15B , the adjustable liquid crystal panel 900d of this embodiment is similar to the adjustable liquid crystal panel 900c, and the main differences are as follows. In the adjustable liquid crystal panel 900d of this embodiment, the first alignment layer 960d and the second alignment layer 970d are vertical alignment layers.

圖15C為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖15C,本實施例之可調式液晶面板900e類似於可調式液晶面板900c,而其主要差異如下所述。在本實施例之可調式液晶面板900e中,第一配向層960與第二配向層970d為一垂直配向層與一水平配向層的組合。舉例而言,第一配向層960為水平配向層,而第二配向層970d為垂直配向層。 15C is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention. Referring to FIG. 15C , the adjustable liquid crystal panel 900e of this embodiment is similar to the adjustable liquid crystal panel 900c, and the main differences are as follows. In the adjustable liquid crystal panel 900e of this embodiment, the first alignment layer 960 and the second alignment layer 970d are a combination of a vertical alignment layer and a horizontal alignment layer. For example, the first alignment layer 960 is a horizontal alignment layer, and the second alignment layer 970d is a vertical alignment layer.

圖16A繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的一實施例的配向(alignment direction)。請參照圖16A,在一實施例中,第一配向層960與第二配向層970的配向L1具有均勻的空間分佈。換言之,在第一配向層960或第二配向層970的不同區域中的配向的方位角(azimuthal angle)彼此相同。 FIG. 16A illustrates the alignment direction of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to an embodiment of the present invention. Referring to FIG. 16A , in one embodiment, the alignment L1 of the first alignment layer 960 and the second alignment layer 970 has a uniform spatial distribution. In other words, the azimuthal angles of the alignments in different regions of the first alignment layer 960 or the second alignment layer 970 are the same as each other.

圖16B繪示圖15A或圖15C中的第一配向層或第二配向層之根據本發明的另一實施例的另一種變化的配向。請參照圖16B,在另一實施例中,第一配向層960a與第二配向層970a的配向L1具有不規則的空間分佈。換言之,在第一配向層960a或第二配向層970a的不同區域中的配向的方位角彼此不同。不同的配向與不同的方位角可折射或繞射來自光源810的不同偏振方向的光束811。 FIG. 16B illustrates another variation of the alignment of the first alignment layer or the second alignment layer in FIG. 15A or FIG. 15C according to another embodiment of the present invention. Referring to FIG. 16B, in another embodiment, the alignment L1 of the first alignment layer 960a and the second alignment layer 970a have irregular spatial distribution. In other words, the azimuth angles of the alignments in different regions of the first alignment layer 960a or the second alignment layer 970a are different from each other. Different alignments and different azimuth angles can refract or diffract light beams 811 of different polarization directions from the light source 810 .

圖17A為採用圖16B的配向層的一可調式光投射器的剖面示意圖。圖17B為圖17A中的光斑區域與配向層的上視示意圖。請參照圖17A與圖17B,本實施例的可調式光投射器800c類似於圖11A的可調式光投射器800,且其主要差異如下所述。在本實施例的可調式光投射器800c中,第一配向層960a與第二配向層970a的配向之不規則的空間分佈之局部相同配向區域R1小於可調式液晶面板900c上之被來自固定式光學相位調制器820的光束811照射的一光斑區域R2。因此,具有各種偏振方向的光束811皆可被液晶層900c折射或繞射。 FIG. 17A is a schematic cross-sectional view of a tunable light projector using the alignment layer of FIG. 16B . FIG. 17B is a schematic top view of the light spot area and the alignment layer in FIG. 17A . Referring to FIGS. 17A and 17B , the adjustable light projector 800 c of this embodiment is similar to the adjustable light projector 800 of FIG. 11A , and the main differences are as follows. In the adjustable light projector 800c of the present embodiment, the locally identical alignment region R1 of the irregular spatial distribution of the alignment of the first alignment layer 960a and the second alignment layer 970a is smaller than that on the adjustable liquid crystal panel 900c from the fixed A light spot area R2 irradiated by the light beam 811 of the optical phase modulator 820 . Therefore, the light beams 811 with various polarization directions can be refracted or diffracted by the liquid crystal layer 900c.

圖18A、圖18B及圖18C繪示一可調式液晶面板的剖面示意圖及在三種不同的模式下施加至液晶層的電壓差。請參照圖18A、圖18B及圖18C,本實施例的可調式液晶面板900f類似於圖14C之可調式液晶面板900b,且其主要差異如下所述。本實施例之可調式液晶面板900f更包括一高阻抗層980(相同於圖8之高阻抗材料層640),其鄰接圖案化層(如第一電極層940)。在圖18A中,當第一電極層940與第二電極層950之間的電壓差為零,施加於液晶層930b的電壓差△V為零,且液晶層930b處於一散射模式,且用以散射來自固定光學相位調制器820的光束811。 18A , 18B and 18C are schematic cross-sectional views of an adjustable liquid crystal panel and voltage differences applied to the liquid crystal layer in three different modes. 18A , 18B and 18C, the adjustable liquid crystal panel 900f of this embodiment is similar to the adjustable liquid crystal panel 900b of FIG. 14C, and the main differences are as follows. The adjustable liquid crystal panel 900f of this embodiment further includes a high impedance layer 980 (same as the high impedance material layer 640 in FIG. 8 ), which is adjacent to the patterned layer (eg, the first electrode layer 940 ). In FIG. 18A, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is zero, the voltage difference ΔV applied to the liquid crystal layer 930b is zero, and the liquid crystal layer 930b is in a scattering mode, and is used for The beam 811 from the fixed optical phase modulator 820 is scattered.

在18B中,當第一電極層940與第二電極層950之間的電壓差為高頻的交流電壓時(此「高頻」例如是大於1kHz且小於等於60kHz的頻率),施加於液晶層930的電壓差△V由於高阻抗層980的作用而隨著位置逐漸變化,且液晶層930b處於一散射且聚光模式,且用以些微散射且會聚來自固定式光學相位調制器820的光束811。 In 18B, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is a high-frequency alternating voltage (the “high frequency” is, for example, a frequency greater than 1 kHz and less than or equal to 60 kHz), applied to the liquid crystal layer The voltage difference ΔV of 930 gradually changes with the position due to the action of the high impedance layer 980, and the liquid crystal layer 930b is in a scattering and condensing mode for slightly scattering and condensing the light beam 811 from the fixed optical phase modulator 820 .

在18C中,當第一電極層940與第二電極層950之間的電壓差為低頻的交流電壓時(此「低頻」例如是大於等於60Hz且小於等於1kHz的頻率),施加於液晶層930的電壓差△V在不同的位置上大約保持恆定,液晶層930b處於一透明模式且類似一透明層,且光束811穿透液晶層930b。此外,上述「高頻」大於上述「低頻」。 In 18C, when the voltage difference between the first electrode layer 940 and the second electrode layer 950 is a low-frequency AC voltage (the "low frequency" is, for example, a frequency greater than or equal to 60 Hz and less than or equal to 1 kHz), applied to the liquid crystal layer 930 The voltage difference ΔV of ΔV remains approximately constant at different positions, the liquid crystal layer 930b is in a transparent mode and resembles a transparent layer, and the light beam 811 penetrates the liquid crystal layer 930b. In addition, the above-mentioned "high frequency" is larger than the above-mentioned "low frequency".

圖19A為本發明的另一實施例的可調式液晶面板的剖面 示意圖,且圖19B為圖19A中的第一基板的上視示意圖。請參照圖19A與圖19B,本實施例的可調式液晶面板900g類似於圖15A之可調式液晶面板900c,且其主要差異如下所述。在本實施例之可調式液晶面板900g中,第一電極層940g與第二電極層950g兩者皆配置於同一基板(例如第一基板910),且皆為圖案化層。第一電極層940g與第二電極層950g具有橫向電場切換(in-plane switch,IPS)的電極設計。具體而言,第一電極層940g包括多個導電微圖案942g,且第二電極層950g包括多個導電微圖案952g。導電微圖案942g與導電微圖案952g沿著一方向(例如圖19A與圖19B中的右方向)交替配置。導電微圖案942g與導電微圖案952g可具有直線形狀。舉例而言,導電微圖案942g與導電微圖案952g的每一者可沿著垂直於圖19A的圖面的一方向延伸。然而,在本實施例中,導電微圖案942g與導電微圖案952g可具有如圖19B所繪示的之字形狀(zigzag shape)。 19A is a cross-section of an adjustable liquid crystal panel according to another embodiment of the present invention FIG. 19B is a schematic top view of the first substrate in FIG. 19A . Referring to FIGS. 19A and 19B , the adjustable liquid crystal panel 900g of this embodiment is similar to the adjustable liquid crystal panel 900c of FIG. 15A , and the main differences are as follows. In the adjustable liquid crystal panel 900g of the present embodiment, both the first electrode layer 940g and the second electrode layer 950g are disposed on the same substrate (eg, the first substrate 910 ), and both are patterned layers. The first electrode layer 940g and the second electrode layer 950g have an in-plane switch (IPS) electrode design. Specifically, the first electrode layer 940g includes a plurality of conductive micropatterns 942g, and the second electrode layer 950g includes a plurality of conductive micropatterns 952g. The conductive micropatterns 942g and the conductive micropatterns 952g are alternately arranged along one direction (eg, the right direction in FIGS. 19A and 19B ). The conductive micropattern 942g and the conductive micropattern 952g may have a linear shape. For example, each of conductive micropattern 942g and conductive micropattern 952g may extend in a direction perpendicular to the plane of FIG. 19A. However, in this embodiment, the conductive micropattern 942g and the conductive micropattern 952g may have a zigzag shape as shown in FIG. 19B .

圖20A為本發明的另一實施例的可調式液晶面板的剖面示意圖,且圖20B為圖20A中的第一基板的上視示意圖。本實施例的可調式液晶面板900h類似於圖19A中的可調式液晶面板900g,且其主要差異如下所述。在本實施例的可調式液晶面板900h中,第一電極層940g與第二電極層950h具有邊緣場切換(fringe-field switch,FFS)的電極設計。第二電極層950h為一平坦連續層,其介於第一電極層940g與第一基板910之間,且第一電極層940g與第二電極層950被配置其間的絕緣層990將彼此絕 緣。圖20A與圖20B中的第一電極層940g相同於圖19A與圖19B中的第一電極層940g的描述。 20A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention, and FIG. 20B is a schematic top view of the first substrate in FIG. 20A . The adjustable liquid crystal panel 900h of this embodiment is similar to the adjustable liquid crystal panel 900g in FIG. 19A, and the main differences are as follows. In the adjustable liquid crystal panel 900h of this embodiment, the first electrode layer 940g and the second electrode layer 950h have a fringe-field switch (FFS) electrode design. The second electrode layer 950h is a flat continuous layer, which is interposed between the first electrode layer 940g and the first substrate 910, and the insulating layer 990 between the first electrode layer 940g and the second electrode layer 950 is arranged to insulate each other. edge. The first electrode layer 940g in FIGS. 20A and 20B is the same as the description of the first electrode layer 940g in FIGS. 19A and 19B .

圖21A為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖21A,本實施例的可調式液晶面板900j類似於圖14B之可調式液晶面板900a,且其主要差異如下所述。在可調式液晶面板900j中,第一電極層940與第二電極層950j為分別配置於第一基板910上與第二基板920上的二個圖案化層,且此二個圖案化層的圖案彼此相同。然而,在其他實施例中,此二個圖案化層的圖案可以彼此不同。 21A is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention. Referring to FIG. 21A, the adjustable liquid crystal panel 900j of this embodiment is similar to the adjustable liquid crystal panel 900a of FIG. 14B, and the main differences are as follows. In the adjustable liquid crystal panel 900j, the first electrode layer 940 and the second electrode layer 950j are two patterned layers respectively disposed on the first substrate 910 and the second substrate 920, and the patterns of the two patterned layers are identical to each other. However, in other embodiments, the patterns of the two patterned layers may be different from each other.

圖21B為本發明的另一實施例的可調式液晶面板的剖面示意圖。請參照圖21B,本實施例的可調式液晶面板900i類似於圖19A或圖20A中的可調式液晶面板900g或900h,且其主要差異如下所述。本實施例的可調式液晶面板900i包括配置於第一基板910上之如圖19A所繪示者的第一電極層940g與第二電極層950g,且包括配置於第二基板920上之如圖20A所繪示者的第一電極層940g與第二電極層950。也就是說,第一基板910側具有橫向電場切換的電極設計,且第二基板920側具有邊緣場切換的電極設計。然而,在其他實施例中,第一基板910側與第二基板920側可皆具有橫向電場切換的電極設計,或是第一基板210側與第二基板920側可皆具有邊緣場切換的電極設計。 21B is a schematic cross-sectional view of an adjustable liquid crystal panel according to another embodiment of the present invention. Referring to FIG. 21B , the adjustable liquid crystal panel 900i of this embodiment is similar to the adjustable liquid crystal panel 900g or 900h in FIG. 19A or FIG. 20A , and the main differences are as follows. The adjustable liquid crystal panel 900i of the present embodiment includes a first electrode layer 940g and a second electrode layer 950g as shown in FIG. 19A disposed on the first substrate 910 , and includes a first electrode layer 940g and a second electrode layer 950g disposed on the second substrate 920 as shown in FIG. 19A . The first electrode layer 940g and the second electrode layer 950 shown in 20A. That is, the first substrate 910 side has an electrode design of lateral electric field switching, and the second substrate 920 side has an electrode design of fringe field switching. However, in other embodiments, both the first substrate 910 side and the second substrate 920 side may have lateral electric field switching electrode designs, or both the first substrate 210 side and the second substrate 920 side may have fringe field switching electrodes design.

圖22為本發明的另一實施例的可調式光投射器的剖面示意圖。本實施例的可調式光投射器800k與圖11A及圖11B之可調 式光投射器800類似,而兩者的差異在於固定式光學相位調制器820與可調式液晶面板900的排列順序。在圖11A與圖11B中,固定式光學相位調制器820配置於光源810與可調式液晶面板900之間。然而,在本實施例中,可調式液晶面板200配置於光源810與固定式光學相位調制器820中,也就是固定式光學相位調制器820配置於來自可調式液晶面板200的光束的路徑上,如此當可調式液晶面板900在如前述實施例的不同模式間切換時,仍可以使後來通過固定式光學相位調制器820的光束在結構光與泛光之間切換。 22 is a schematic cross-sectional view of an adjustable light projector according to another embodiment of the present invention. The adjustable light projector 800k of the present embodiment is the adjustable light projector 800k of FIG. 11A and FIG. 11B The type light projector 800 is similar, and the difference between the two lies in the arrangement order of the fixed optical phase modulator 820 and the adjustable liquid crystal panel 900 . In FIGS. 11A and 11B , the fixed optical phase modulator 820 is disposed between the light source 810 and the adjustable liquid crystal panel 900 . However, in this embodiment, the adjustable liquid crystal panel 200 is disposed in the light source 810 and the fixed optical phase modulator 820, that is, the fixed optical phase modulator 820 is disposed on the path of the light beam from the adjustable liquid crystal panel 200, In this way, when the adjustable liquid crystal panel 900 is switched between different modes as in the previous embodiment, the light beam passing through the fixed optical phase modulator 820 can still be switched between structured light and flood light.

綜上所述,在本發明的實施例的可調式光投射器中,利用可調式液晶面板來使光束在結構光與泛光之間切換,因此本發明的實施例將泛光系統與結構光系統整合成單一系統,其減少了具有結構光與泛光功能的電子裝置的成本與體積。上述多種可調式光投射器的每一者可取代光學感測裝置中的前述多種結構光投射器的任一者,以形成一個兼具泛光辨識功能與結構光辨識功能的光學感測裝置。在泛光辨識功能中,感測器可感測物體,並判斷物體是否為人臉。在結構光辨識功能中,感測器可感測物體上的光圖案,並判斷所偵測到的人臉是否為一電子裝置的使用者的臉。 To sum up, in the adjustable light projector of the embodiment of the present invention, the adjustable liquid crystal panel is used to switch the light beam between the structured light and the flood light, so the embodiment of the present invention combines the flood light system with the structured light The system is integrated into a single system, which reduces the cost and volume of electronic devices with structured light and floodlight functions. Each of the above-mentioned various types of adjustable light projectors can replace any one of the above-mentioned various types of structured light projectors in the optical sensing device to form an optical sensing device having both the flood light recognition function and the structured light recognition function. In the flood light recognition function, the sensor can sense the object and determine whether the object is a human face. In the structured light recognition function, the sensor can sense the light pattern on the object, and determine whether the detected face is the face of a user of an electronic device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍 當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, Protection scope of the present invention The scope of the patent application attached shall prevail.

800:可調式光投射器 800: Adjustable Light Projector

810:光源 810: Light source

811:光束 811: Beam

820:固定式光學相位調制器 820: Fixed Optical Phase Modulator

830:驅動器 830: Drive

900:可調式液晶面板 900: Adjustable LCD panel

910:第一基板 910: First substrate

920:第二基板 920: Second substrate

930:液晶層 930: Liquid crystal layer

940:第一電極層 940: first electrode layer

950:第二電極層 950: second electrode layer

Claims (17)

一種可調式光投射器,包括:一光源,用以發出一光束;一固定式光學相位調制器,配置於該光束的路徑上,且用以調制該光束的相位;一可調式液晶面板,配置於該光束的路徑上,且用以使該光束在一結構光與一泛光之間切換,該可調式液晶面板包括:一第一基板;一第二基板;一液晶層,配置於該第一基板與該第二基板之間;一第一電極層;以及一第二電極層,其中該第一電極層與該第二電極層的至少其中之一為一圖案化層,且該第一電極層與該第二電極層皆配置於該第一基板與該第二基板的其中之一上,或分別配置於該第一基板與該第二基板上;一第一配向層,配置於該第一基板與該液晶層之間;以及一第二配向層,配置於該第二基板與該液晶層之間,其中在該第一配向層或該第二配向層的至少部分不同區域中的配向的方位角彼此不同,該至少部分不同區域中的不同的配向的方位角用於折射或繞射來自該光源的不同偏振方向的光束;以及 一驅動器,電性連接至該第一電極層與該第二電極層,其中該驅動器用以改變該第一電極層與該第二電極層之間的電壓差,並以改變液晶層的折射率分佈的方式,使該光束在該結構光與該泛光之間切換,其中當該第一電極層與該第二電極層之間的電壓差不等於零時,該液晶層為相當於一透鏡陣列的光學層。 An adjustable light projector, comprising: a light source for emitting a light beam; a fixed optical phase modulator, disposed on the path of the light beam, and used to modulate the phase of the light beam; an adjustable liquid crystal panel, configured On the path of the light beam, and used to switch the light beam between a structured light and a flood light, the adjustable liquid crystal panel includes: a first substrate; a second substrate; a liquid crystal layer, disposed on the first substrate between a substrate and the second substrate; a first electrode layer; and a second electrode layer, wherein at least one of the first electrode layer and the second electrode layer is a patterned layer, and the first electrode layer Both the electrode layer and the second electrode layer are arranged on one of the first substrate and the second substrate, or are arranged on the first substrate and the second substrate respectively; a first alignment layer is arranged on the between the first substrate and the liquid crystal layer; and a second alignment layer disposed between the second substrate and the liquid crystal layer, wherein at least part of different regions of the first alignment layer or the second alignment layer The azimuthal angles of the alignments are different from each other, and the different azimuthal angles of the alignments in the at least partially different regions are used to refract or diffract light beams of different polarization directions from the light source; and a driver electrically connected to the first electrode layer and the second electrode layer, wherein the driver is used to change the voltage difference between the first electrode layer and the second electrode layer, and to change the refractive index of the liquid crystal layer The distribution mode makes the light beam switch between the structured light and the flood light, wherein when the voltage difference between the first electrode layer and the second electrode layer is not equal to zero, the liquid crystal layer is equivalent to a lens array optical layer. 如申請專利範圍第1項所述的可調式光投射器,其中該固定式光學相位調制器用以將該光束調制成結構光或泛光。 The adjustable light projector of claim 1, wherein the fixed optical phase modulator is used to modulate the light beam into structured light or flood light. 如申請專利範圍第1項所述的可調式光投射器,其中該固定式光學相位調制器用以將該光束調制成一準直光。 The adjustable light projector of claim 1, wherein the fixed optical phase modulator is used to modulate the light beam into a collimated light. 如申請專利範圍第1項所述的可調式光投射器,其中該圖案化層具有多個微開孔,其所具有的最大直徑小於1毫米。 The adjustable light projector as claimed in claim 1, wherein the patterned layer has a plurality of micro-opening holes with a maximum diameter of less than 1 mm. 如申請專利範圍第4項所述的可調式光投射器,其中該些微開孔的形狀包括圓形、矩形、正方形、六邊形或其組合。 The adjustable light projector according to claim 4, wherein the shapes of the micro-openings include circles, rectangles, squares, hexagons, or combinations thereof. 如申請專利範圍第4項所述的可調式光投射器,其中該些微開孔的尺寸與位置是規律的。 The adjustable light projector as claimed in claim 4, wherein the sizes and positions of the micro-opening holes are regular. 如申請專利範圍第4項所述的可調式光投射器,其中該些微開孔的尺寸與位置是不規律的。 The adjustable light projector as claimed in claim 4, wherein the sizes and positions of the micro-opening holes are irregular. 如申請專利範圍第1項所述的可調式光投射器,其中該液晶層的光學空間相位分佈隨著該電壓差的改變而改變,進而使該光束在該結構光與該泛光之間切換。 The adjustable light projector as claimed in claim 1, wherein the optical spatial phase distribution of the liquid crystal layer changes with the change of the voltage difference, so that the light beam is switched between the structured light and the flood light . 如申請專利範圍第1項所述的可調式光投射器,其中該液晶層包括向列型液晶、聚合物分散液晶或聚合物網絡液晶。 The adjustable light projector of claim 1, wherein the liquid crystal layer comprises nematic liquid crystal, polymer dispersed liquid crystal or polymer network liquid crystal. 如申請專利範圍第1項所述的可調式光投射器,其中該第一配向層與該第二配向層為垂直配向層、水平配向層或其組合。 The adjustable light projector of claim 1, wherein the first alignment layer and the second alignment layer are vertical alignment layers, horizontal alignment layers, or a combination thereof. 如申請專利範圍第1項所述的可調式光投射器,其中該至少部分不同區域中包括局部相同配向區域,該局部相同配向區域小於該可調式液晶面板上之被來自該固定式光學相位調制器的該光束照射的一光斑區域。 The adjustable light projector as claimed in claim 1, wherein the at least some of the different regions include partially identical alignment regions, and the partially identical alignment regions are smaller than the area on the adjustable liquid crystal panel that is modulated by the fixed optical phase from the fixed optical phase. A light spot area of the device illuminated by the beam. 如申請專利範圍第1項所述的可調式光投射器,更包括一高阻抗層,鄰接該圖案化層。 The adjustable light projector as described in claim 1, further comprising a high-impedance layer adjacent to the patterned layer. 如申請專利範圍第1項所述的可調式光投射器,其中該圖案化層包括多個導電微圖案。 The adjustable light projector of claim 1, wherein the patterned layer comprises a plurality of conductive micropatterns. 如申請專利範圍第13項所述的可調式光投射器,其中該些導電微圖案具有直線形狀或之字形狀。 The adjustable light projector of claim 13, wherein the conductive micropatterns have a linear shape or a zigzag shape. 如申請專利範圍第1項所述的可調式光投射器,其中該第一電極層與該第二電極層具有橫向電場切換或邊緣場切換的電極設計。 The adjustable light projector of claim 1, wherein the first electrode layer and the second electrode layer have electrode designs of lateral electric field switching or fringe field switching. 如申請專利範圍第1項所述的可調式光投射器,其中該第一電極層與該第二電極層為二圖案化層,分別配置於該第一基板與該第二基板,且該二圖案化層的圖案彼此不同。 The adjustable light projector as claimed in claim 1, wherein the first electrode layer and the second electrode layer are two patterned layers, respectively disposed on the first substrate and the second substrate, and the two The patterns of the patterned layers are different from each other. 如申請專利範圍第1項所述的可調式光投射器,其中該第一電極層與該第二電極層為二圖案化層,分別配置於該第一基板與該第二基板,且該二圖案化層的圖案彼此相同。 The adjustable light projector as claimed in claim 1, wherein the first electrode layer and the second electrode layer are two patterned layers, respectively disposed on the first substrate and the second substrate, and the two The patterns of the patterned layers are the same as each other.
TW108116925A 2019-02-13 2019-05-16 Tunable light projector TWI778262B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962804757P 2019-02-13 2019-02-13
US62/804,757 2019-02-13
US16/371,127 2019-04-01
US16/371,127 US11126060B2 (en) 2017-10-02 2019-04-01 Tunable light projector

Publications (2)

Publication Number Publication Date
TW202030456A TW202030456A (en) 2020-08-16
TWI778262B true TWI778262B (en) 2022-09-21

Family

ID=72067709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116925A TWI778262B (en) 2019-02-13 2019-05-16 Tunable light projector

Country Status (2)

Country Link
CN (1) CN111562690B (en)
TW (1) TWI778262B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361870A (en) * 2019-07-29 2019-10-22 深圳阜时科技有限公司 A kind of optical module, transmitting unit, sensing mould group and electronic equipment
CN112769039A (en) * 2020-11-03 2021-05-07 深圳阜时科技有限公司 Light source, emission module, optical sensing device and electronic equipment
US11474410B2 (en) 2020-12-03 2022-10-18 Liqxtal Technology Inc. Tunable illuminator
WO2022198376A1 (en) * 2021-03-22 2022-09-29 深圳市大疆创新科技有限公司 Distance measuring apparatus, imaging apparatus, and gimbal

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825448A (en) * 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US7058252B2 (en) * 2001-08-06 2006-06-06 Ocuity Limited Optical switching apparatus
US7388679B2 (en) * 2005-09-21 2008-06-17 Omron Corporation Pattern light irradiation device, three dimensional shape measuring device, and method pattern light irradiation
US20100091354A1 (en) * 2008-10-09 2010-04-15 Dong Kyung Nam Apparatus and method for 2D and 3D image switchable display
US8224133B2 (en) * 2007-07-26 2012-07-17 Sbg Labs Inc. Laser illumination device
US20130128201A1 (en) * 2010-07-30 2013-05-23 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing same
US20140240642A1 (en) * 2011-10-05 2014-08-28 Sony Corporation Illumination unit, display, and electronic apparatus
US9081239B2 (en) * 2000-09-27 2015-07-14 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US20150271482A1 (en) * 2014-03-19 2015-09-24 Innolux Corporation Display device
US9325973B1 (en) * 2014-07-08 2016-04-26 Aquifi, Inc. Dynamically reconfigurable optical pattern generator module useable with a system to rapidly reconstruct three-dimensional data
US9488877B2 (en) * 2013-09-13 2016-11-08 Boe Technology Group Co., Ltd. Electrically-driven liquid crystal lens, display device and 3D liquid crystal display method
US20170038647A1 (en) * 2014-04-18 2017-02-09 Boe Technology Group Co., Ltd. A slit electrode, array substrate and display device
CN108332082A (en) * 2018-01-15 2018-07-27 深圳奥比中光科技有限公司 Illumination module

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362157B1 (en) * 2007-07-05 2014-02-13 엘지디스플레이 주식회사 Liquid Crystal Lens Electrically Driven and Display Device Using the Same
TWI370265B (en) * 2007-12-18 2012-08-11 Univ Nat Chunghsing Liquid crystal optical element with switchable focus modes
TW201017290A (en) * 2008-10-23 2010-05-01 Coretronic Corp Light source module
EP2309320A1 (en) * 2009-09-22 2011-04-13 Koninklijke Philips Electronics N.V. Lighting apparatus for generating a light pattern
CN101968595B (en) * 2010-10-13 2013-12-25 深圳市华星光电技术有限公司 2D/3D switching liquid crystal lens assembly and display device
CN102540487B (en) * 2012-02-08 2014-07-23 陈超平 Two-dimensional (2D)/three-dimensional (3D) switchable display device
CN102879911B (en) * 2012-04-24 2015-10-21 上海群英软件有限公司 2d/3d switchable display device
CN102854694B (en) * 2012-09-25 2016-12-21 深圳市华星光电技术有限公司 The liquid crystal lens assembly of 2D/3D switching
CN102866556A (en) * 2012-09-29 2013-01-09 苏州大学 Liquid crystal zoom lens and zoom control method thereof
CN103926748B (en) * 2013-06-28 2016-12-07 天马微电子股份有限公司 Liquid crystal lens and preparation method thereof, 3 d display device and preparation method thereof
TWI490557B (en) * 2013-11-15 2015-07-01 Ligxtal Technology Inc Liquid crystal lens
CN105675150A (en) * 2016-01-15 2016-06-15 中国科学技术大学 Method for real-time detection of diffraction phase of structure light field
US10890707B2 (en) * 2016-04-11 2021-01-12 Digilens Inc. Holographic waveguide apparatus for structured light projection
US10168586B2 (en) * 2016-08-24 2019-01-01 Liqxtal Technology Inc. Electrically tunable optical phase modulation element
JP6920797B2 (en) * 2016-08-25 2021-08-18 スタンレー電気株式会社 Liquid crystal element, optical control device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825448A (en) * 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
US9081239B2 (en) * 2000-09-27 2015-07-14 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US7058252B2 (en) * 2001-08-06 2006-06-06 Ocuity Limited Optical switching apparatus
US7388679B2 (en) * 2005-09-21 2008-06-17 Omron Corporation Pattern light irradiation device, three dimensional shape measuring device, and method pattern light irradiation
US8224133B2 (en) * 2007-07-26 2012-07-17 Sbg Labs Inc. Laser illumination device
US20100091354A1 (en) * 2008-10-09 2010-04-15 Dong Kyung Nam Apparatus and method for 2D and 3D image switchable display
US20130128201A1 (en) * 2010-07-30 2013-05-23 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing same
US20140240642A1 (en) * 2011-10-05 2014-08-28 Sony Corporation Illumination unit, display, and electronic apparatus
US9488877B2 (en) * 2013-09-13 2016-11-08 Boe Technology Group Co., Ltd. Electrically-driven liquid crystal lens, display device and 3D liquid crystal display method
US20150271482A1 (en) * 2014-03-19 2015-09-24 Innolux Corporation Display device
US20170038647A1 (en) * 2014-04-18 2017-02-09 Boe Technology Group Co., Ltd. A slit electrode, array substrate and display device
US9325973B1 (en) * 2014-07-08 2016-04-26 Aquifi, Inc. Dynamically reconfigurable optical pattern generator module useable with a system to rapidly reconstruct three-dimensional data
CN108332082A (en) * 2018-01-15 2018-07-27 深圳奥比中光科技有限公司 Illumination module

Also Published As

Publication number Publication date
CN111562690B (en) 2023-02-28
CN111562690A (en) 2020-08-21
TW202030456A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
TWI778262B (en) Tunable light projector
US11126060B2 (en) Tunable light projector
US20230140294A1 (en) Tunable light projector
TW201915563A (en) Optical sensing device and structured light projector
TWI747224B (en) Tunable light projector
TWI683156B (en) Optical sensing device and structured light projector
JP7132748B2 (en) lighting equipment, light projection system
TW202020401A (en) Adjustable light distribution for active depth sensing systems
US10914444B2 (en) Lamp unit, vehicular lamp system
JP7436369B2 (en) Microstructure that converts light with Lambertian distribution into batwing distribution
US11287712B2 (en) Pattern generation device
CN113767249A (en) Lighting device
KR20210150389A (en) Multi-function light projector with multi-stage adjustable diffractive optical elements
KR102417877B1 (en) Backlight unit and display device comprising the same
JP2013073715A (en) Lighting system and driving method of lighting system
WO2018120573A1 (en) Lens and manufacturing method therefor, backlight panel and display apparatus
WO2022244736A1 (en) Illumination device and vehicle lamp system
CN112904629B (en) Adjustable light projector and adjustable light detector
US11543696B2 (en) Optical surface mapping system
US11256011B2 (en) Pattern generation device
CN112445004A (en) Light emitting module and electronic device
WO2023120128A1 (en) Lighting device, and vehicle lamp fitting system
JP2022183786A (en) Liquid crystal element and lighting device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent