TWI717182B - 纖維複合結構 - Google Patents

纖維複合結構 Download PDF

Info

Publication number
TWI717182B
TWI717182B TW109100051A TW109100051A TWI717182B TW I717182 B TWI717182 B TW I717182B TW 109100051 A TW109100051 A TW 109100051A TW 109100051 A TW109100051 A TW 109100051A TW I717182 B TWI717182 B TW I717182B
Authority
TW
Taiwan
Prior art keywords
fiber
layer
strip
composite structure
hollow tube
Prior art date
Application number
TW109100051A
Other languages
English (en)
Other versions
TW202037484A (zh
Inventor
劉時州
葉日翔
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN202010269288.8A priority Critical patent/CN111805935B/zh
Priority to US16/845,194 priority patent/US10919272B2/en
Publication of TW202037484A publication Critical patent/TW202037484A/zh
Application granted granted Critical
Publication of TWI717182B publication Critical patent/TWI717182B/zh

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

一種纖維複合結構,包括複數纖維預浸布層以及至少一複合樹脂層。纖維預浸布層包括第一樹脂和含浸第一樹脂之複數纖維,複合樹脂層包括複數多層奈米碳管及第二樹脂,且設置在二纖維預浸布層之間,並與纖維預浸布層共同圍繞形成一中空管體,其中複合樹脂層與纖維預浸布層的層數比例為1:4至1:7,且每一複合樹脂層包覆相鄰的纖維預浸布層之面積的40%至60%。

Description

纖維複合結構
本發明係關於一種纖維複合結構,尤指一種具有制振特性之纖維複合結構。
由於高分子纖維複合材料相關產品配合人類在輕量化、高強度及高設計自由度等要求下,結合各種功能特性及用途於輕量化的各種結構物用品中已是現今必然的發展趨勢。而複材產品朝輕薄短小發展,結構設計以高強度為重點,而物性強度越高的材料常會伴隨脆性增加,所以當材料受力後會因脆性而斷裂,為解決此一問題則必須改善材料的阻尼特性,以增加吸收受力後的制振效果。
運輸用機械手臂在高速移動或旋轉時會產生位移、變形與震動,高分子纖維複合材料製成之機械手臂因運動而產生形變之振幅擺動至停止的時間若過長時,需待較長的時間至擺動靜止或振幅降低至可接受之程度,方得再進行下一動作,如此勢必使產能受到影響,所以必須縮短振動的衰減時間,其產能才不致於降低。
已有文獻指出纖維複合材料具制振之效果,惟仍有制振縮減比例不足、硬度特性不佳及原料成本高之問題待解決。
本發明提供一種纖維複合結構,包括:複數纖維預浸布層,包括第一樹脂和含浸第一樹脂之複數纖維;以及包括複數多層奈米碳管及第二樹脂之至少一複合樹脂層,係設置在二纖維預浸布層之間,並與複數纖維預浸布層共同圍繞形成中空管體,其中,複合樹脂層與纖維預浸布層的層數比例為1:4至1:7,且每一複合樹脂層包覆相鄰的纖維預浸布層之面積的40%至60%。
以下的具體實施例用以說明本發明之揭露內容,在閱讀本說明書之揭露內容以後,本技術領域中具有通常知識者能輕易地理解其優點及功效。
須知,本說明書所附圖式所繪示之結構、比例、尺寸等,僅為配合說明書所揭示之內容,以便本技術領域中具有通常知識者得以理解及閱讀,而非意圖將本發明限制於特定條件之中,故不具有技術上之實質意義。任何結構之修改、比例關係之改變,或尺寸之的調整,在不影響本說明書所能產生之功效及所能達成之目的下,均應包含在本說明書所揭露之範圍內。在無實質變更技術內容的情況下,其相對關係之改變或調整,亦當被視為本發明可實施之範疇內。
在本發明之纖維複合結構中,當複合樹脂層與纖維預浸布層具有特定層數比例時,可大幅提升制振效果並維持材料硬度特性。此外,本發明之複合樹脂層只需部分包覆纖維預浸布層就能達到相似或更好的制振效果,同時可減少40%至60%的使用面積,並具有相似或更好的機械強度,使得本發明之纖維複合結構在各類產品上有更大的應用空間與產品競爭力。
第1圖及第2圖分別係本發明一實施例之纖維複合結構圍繞前後的截面圖。如圖所示,本發明提供一種纖維複合結構100,包括複數纖維預浸布層101以及至少一複合樹脂層102。每一纖維預浸布層101包括第一樹脂和浸於第一樹脂之複數纖維,每一複合樹脂層102包括複數多層奈米碳管及第二樹脂,且設置在二纖維預浸布層101之間,並與所有纖維預浸布層101共同圍繞形成中空管體200,其中複合樹脂層102與纖維預浸布層101的層數比例為1:4至1:7,且每一複合樹脂層102包覆相鄰的纖維預浸布層101之面積的40%至60%。在圖示中,複合樹脂層102與纖維預浸布層101的層數比例係以1:4作舉例,中空管體200總共有五層結構,其中複合樹脂層102設置在第三層,其餘為纖維預浸布層101。在其他實施例中,複合樹脂層102與纖維預浸布層101的層數比例可為1:5、2:11、1:6、2:13或1:7,且複合樹脂層102可設置於任一層,但本發明不以此為限。在本實施例中,將具有特定層數比例的纖維複合結構100圍繞形成中空管體200,第2圖為圍繞一圈的態樣,實際上可依需求圍繞成多圏形成中空管體200,但本發明不以此為限。
本發明所提及“共同圍繞形成中空管體”係指纖維預浸布層101與複合樹脂層102彼此堆疊形成中空管體200的多層結構殼體。本發明所提及“層數比例”係指以纖維預浸布層101或複合樹脂層102圍繞一圈作為一層數計算,在中空管體200上之纖維預浸布層101與複合樹脂層102的總層數比例。
在本發明中,當複合樹脂層102與纖維預浸布層101的層數比例為1:4至1:7時,可大幅提升制振效果,同時維持材料硬度特性,可參考美國專利申請號16/129,931以及美國專利公開號US20140154456A1,其全文皆視為本說明書的一部分。在一實施例中,中空管體200的總層數至少有五層,當總層數不超過八層時,會有一至二層複合樹脂層102;當總層數超過八層時,在彼此相鄰的五至八個層數中會有至少一層複合樹脂層102,可以固定或不同層位置設置,例如:複合樹脂層102設置在固定第二層或隨機任一層。在其他實施例中,也可以不同層數組合堆疊搭配,例如:一開始以五個層數堆疊(複合樹脂層102設置在第二層),後面以八個層數堆疊(複合樹脂層102設置在第四層或第六層),最後複合樹脂層102與纖維預浸布層101的層數比例(2:11)也會落在本發明範圍內,但本發明不以此為限。一般而言,中空管體200之複合樹脂層102與纖維預浸布層101的層數比例會落在1:4至1:7的範圍,但如果中空管體200的總層數並非是五至八之間整數的加總、倍數或倍數加總時,可能會多出一些層數(複合樹脂層102或纖維預浸布層101),因此,只要九成以上的總層數依本發明層數比例排列,且不影響原有中空管體(依本發明層數比例的部分)之整體制振效果及結構剛性(效能影響5%內),也應屬於本發明範疇。
如第1圖至第3圖所示,每一複合樹脂層102包括複數條狀結構102a,而這些條狀結構102a的面積總和佔相鄰的纖維預浸布層101之面積的40%至60%。在本發明中,每一條狀結構102a具有長度L及寬度W,彼此可為相同或不同。在一實施例中,每一複合樹脂層102具有二至八片之條狀結構102a,但本發明不以此為限。在一實施例中,每一條狀結構102a的寬度W為中空管體200之管周長的10%至30%,而每一條狀結構102a的長度L大於或等於中空管體200之長度,其中每一條狀結構102a沿著中空管體200本身由中空管體200的一開口端連接至相對的另一開口端。在一實施例中,每一條狀結構102a的長度延伸方向與中空管體200的中心軸方向具有0度至45度的夾角,例如:0度、5度、10度、15度、20度、25度、30度、35度、40度或45度。
本發明所提及“管周長”係指複合樹脂層102或纖維預浸布層101圍繞一圈的距離作為中空管體200中當層的管周長,其會依設置的層數位置而改變其距離,例如:當複合樹脂層102的位置設置越外層時,該層的管周長就會越大。本發明所提及“長度延伸方向”係指條狀結構102a在中空管體200上往長度方向(L)的切線方向或延伸方向。
在本發明中,相鄰的二條狀結構102a之間具有間距S,可為相同或不同。在一實施例中,這些條狀結構102a之間可為等分排列、對稱排列或不規則排列,在複數條狀結構於中空管體之截面圖中,這些條狀結構102a可呈現對稱輻射分布、間隔交錯分布或不規則分布,但本發明不以此為限。在一實施例中,這些條狀結構102a的寬度W與間距S為相同,彼此呈一等分排列,例如:條狀結構102a的寬度W與間距S皆為1/4、1/6、1/8或1/10的管周長,複數條狀結構於中空管體之截面圖中可呈現一對稱輻射分布或間隔交錯分布。在其他實施例中,這些條狀結構102a的寬度W與間距S可部分相同或皆不同,彼此呈一等分排列或不規則排列,但本發明不以此為限。
在一實施例中,每一複合樹脂層102係由彼此間隔排列的複數條狀結構102a所組成,其中間距S可以相同或不同。在其他實施例中,每一複合樹脂層102除了包括條狀結構外,還可包括其他圖案結構,例如:圓形、橢圓形、三角或多角形等,其中這些條狀結構102a及其他圖案結構的面積總和佔相鄰的纖維預浸布層101之面積的40%至60%。相較於整層設置的複合樹脂層,本發明之複合樹脂層102僅需部分設置即可達到相似或更好的制振效果,同時兼具相似或更好的剛性結構以及節省用料成本的優勢。
在本發明中,纖維預浸布層101之複數纖維係經第一樹脂含浸,其中複數纖維之材質包括碳纖維、玻璃纖維、芳香族聚醯胺纖維(例如:特威隆(Twaron)或克維拉(Kevlar))、硼纖維、耐綸纖維、特多龍纖維、棉纖維、羊毛纖維、鋼纖維、鋁纖維、陶瓷鬚絲(Ceramics Whisker)纖維或其組合;複合樹脂層102係經複數多層奈米碳管及第二樹脂混成,其中第一樹脂及第二樹脂可為相同或不同,且可包括熱塑性樹脂、熱固性樹脂或其組合。在一實施例中,熱塑性可舉例包括聚碳酸脂(Polycarbonate,PC)、尼龍(Nylon)、聚丙烯(Polypropylene,PP)、聚苯硫醚(Polyphenylene sulfide,PPS)或聚醚醚酮(polyetheretherketone,PEEK);熱固性樹脂可舉例包括環氧樹脂(Epoxy)。
通常,纖維預浸布層101的製備方法包括手工積層、噴佈、積層、連續積層、樹脂轉注成型、纏繞成型、片狀模造(SMC)、塊狀模造(BMC)、預浸成型、壓力釜成型等。此外,每一纖維預浸布層101可調整其內部複數纖維之排列角度,以達成所欲的機械或物理特性。
在本發明中,複合樹脂層102係經複數多層奈米碳管及第二樹脂混成,其中複數多層奈米碳管之表面具有胺基、羧基、羥基或醯氯基之反應性官能基。咸信,當外力使第二樹脂與複數多層奈米碳管管壁間產生相對位移(滑動)時,其位移差值與介面間剪力的積分等於所產生的能量損耗,即可產生減振效果。相較於單層奈米碳管,多層奈米碳管之多層管壁能夠提供更多微滑動現象,累積的阻尼特性可快速地被放大,更能有效抑制振動。此外,經改質後的複數多層奈米碳管與第二樹脂有更好的相容性,其中改質的方法可參考J. Mater. Chem., 2011, 21, 7337-7342所揭露之方法。
在一實施例中,複數多層奈米碳管之比表面積為100 m 2/g至300 m 2/g,更具體地,複數多層奈米碳管之比表面積可為100 m 2/g、110 m 2/g、120 m 2/g、130 m 2/g、140 m 2/g、150 m 2/g、160 m 2/g、170 m 2/g、180 m 2/g、190 m 2/g、200 m 2/g、210 m 2/g、220 m 2/g、230 m 2/g、240 m 2/g、250 m 2/g、260 m 2/g、270 m 2/g、280 m 2/g、290 m 2/g或300 m 2/g,使得複數多層奈米碳管與第二樹脂有較佳混合效果,且每一複合樹脂層102中之複數多層奈米碳管的含量為0.5 wt%至8 wt%,更具體地,複數多層奈米碳管的含量可為0.5 wt%、0.6 wt%、0.7 wt%、0.8 wt%、0.9 wt%、1.0 wt%、2 wt%、3 wt%、4 wt%、5 wt%、6 wt%、7 wt%或8 wt%。相對地,在每一複合樹脂層102中之第二樹脂的含量為92 wt%至99.5 wt%,更具體地,第二樹脂的含量可為92 wt%、93 wt%、94 wt%、95 wt%、96 wt%、97 wt%、98 wt%、99 wt%或99.5 wt%。
在一實施例中,纖維預浸布層101的厚度可為50 μm至200 μm,例如:50 μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200 μm。複合樹脂層102的厚度可為5 μm至200 μm,此處的厚度可依所製備之構件剛性強度需求作調整例如:5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm、50 μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200 μm。
根據本發明之方法,纖維複合結構100(中空管體200)係經加熱而塑形,在加熱過程中,複數多層奈米碳管的反應性官能基與第一樹脂及第二樹脂鍵結而硬化定型。
第3圖係本發明一實施例之纖維複合結構製備方法的示意圖。如圖所示,本發明提供一種纖維複合結構100之製備方法,其步驟包括:
步驟(A1):將複合樹脂層102的複數條狀結構102a以間距S鋪墊於纖維預浸布層101上,暴露出部分纖維預浸布層101,其中這些條狀結構102a的覆蓋纖維預浸布層101之總面積為40%至60%。在本實施例中,纖維預浸布層101的長度L1即為中空管體200的長度,寬度W1即為中空管體200的管周長。在一實施例中,每一條狀結構102a的鋪墊方式由纖維預浸布層101的第一端101a延伸至第二端101b,其中每一條狀結構102a的長度方向與捲曲方向D具有45度至90度的夾角ϴ。因此,每一條狀結構102a的長度L大於或等於中空管體200的長度,每一條狀結構102a的寬度W為中空管體200之管周長的10%至30%。
步驟(B1):將另一纖維預浸布層101鋪墊在這些條狀結構102a上,使一複合樹脂層102設置在二纖維預浸布層101之間。接著,將複合樹脂層102與纖維預浸布層101依1:4至1:7的層數比例進行堆疊,以形成圍繞前的纖維複合結構100。
步驟(C1):沿著捲曲方向D捲繞纖維預浸布層101及複合樹脂層102,以共同圍繞成一中空管體200,最後進行塑形。在這個步驟中,利用一管狀芯模直接圍繞成一圈即可形成如第2圖的中空管體200。在其他實施例中,當纖維預浸布層101的寬度W1超過中空管體200的管周長時,在圍繞一圈後可以繼續往外堆疊形成中空管體200,但本發明不以此為限。在本發明中,這些條狀結構102a經捲繞後會呈一立體結構,其中每一條狀結構102a的長度延伸方向與中空管體200的中心軸方向具有0度至45度的夾角。
第4圖係本發明另一實施例之纖維複合結構製備方法的示意圖。與第3圖的製備方法相似,主要差異在步驟(A1):每一條狀結構102a的鋪墊角度ϴ’不同。
一般而言,形成纖維複合結構之製法係使用疊合方式,亦即,將所欲達到各層層數比例的不同材料層疊合後,經捲曲再塑形,如第3及第4圖。但此種製法於工業上大量製造時較不經濟。
第5圖係本發明再一實施例之纖維複合結構製備方法的示意圖。如圖所示,本發明另提供一種纖維複合結構100之製備方法,其中,第5(a)圖為纖維預浸布層及複合樹脂層疊合後之俯視圖,第5(b)圖為纖維預浸布層及複合樹脂層疊合後之側視圖,其步驟包括:
步驟(A2):提供一層纖維預浸布層101,具有長度L2及寬度W2,其中長度L2即為中空管體200的長度,寬度W2即為中空管體200之所有纖維預浸布層101的管周長總和,例如:第一層之纖維預浸布層101的寬度為管周長C1、第二層之纖維預浸布層101的寬度為管周長C2、第三層之纖維預浸布層101的寬度為管周長C3、第四層之纖維預浸布層101的寬度為管周長C4,以此類推,依據中空管體200中預設纖維預浸布層101之總層數的管周長總和來決定寬度W2。接著,將複合樹脂層102的複數條狀結構102a間隔鋪墊於纖維預浸布層101上,其中這些條狀結構102a可選擇性鋪墊於預設的層數區域內(例如:C1、C2、C3或C4),暴露出該區域中部分纖維預浸布層101,其中這些條狀結構102a在該區域的覆蓋總面積為40%至60%。在一實施例中,每一條狀結構102a的鋪墊方式由纖維預浸布層101的第一端101a延伸至第二端101b,其中每一條狀結構102a的長度方向與捲曲方向D具有45度至90度的夾角ϴ。
步驟(B2):沿著捲曲方向D捲繞纖維預浸布層101及複合樹脂層102,以共同圍繞成一中空管體200,最後進行塑形。在這個步驟中,利用一管狀芯模進行捲繞,完成第一圈(C1)後繼續往上捲繞,直到纖維預浸布層101的寬度W2結束為止,使得複合樹脂層102與纖維預浸布層101具有1:4至1:7的層數比例。在本實施例中,當捲繞到C4區域後,中空管體的總層數就有5層,其中複合樹脂層102會設置於第3層,而複合樹脂層102的位置可依需求調整。由於捲繞方式是由內向外進行,因此,越外層的管周長會越大(即C4>C3>C2>C1)。在本發明中,這些條狀結構102a經過捲繞後會呈一立體結構,其中每一條狀結構102a的長度延伸方向與中空管體200的中心軸方向具有0度至45度的夾角。
因此,本發明透過上述之製備方法,可更經濟地一次大量生產多個纖維複合結構100。
根據本發明之製法,所形成之中空管體200的形狀包括圓形、橢圓形、方形、矩形、多邊形等,但本發明不以此為限。
本發明透過實施例之示例來說明細節。不過,本發明之詮釋不應當被限制於以下實施例之闡述。 第一實施例
本發明第一實施例(編號:E1)的製法與條件如下敘述,各材料說明如下,纖維:碳纖維(購自於Toray,型號T700SC,12K);樹脂:環氧樹脂(購自於Dow Chemical,型號Epon 828);複數多層奈米碳管(購自於辛耘企業,型號A-MWCNT1020);改質的官能基:胺基(根據J. Mater. Chem., 2011, 21, 7337-7342之方法)。
參考第5圖所示的製備方法,先將2片呈條狀結構102a之複合樹脂層102(其複數多層奈米碳管於整體之複合樹脂102層重量百分比為5 wt%,厚度為70 μm)平行貼覆於纖維預浸布層101(厚度為100 μm)之第5圈的層數位置上,使得複合樹脂層102覆蓋相鄰纖維預浸布層101之面積的50%,其中條狀結構102a的寬度W為中空管體200的1/4管周長,二相鄰之條狀結構102a的間距S為中空管體200的1/4管周長,貼覆的夾角ϴ為90度,纖維預浸布層101的寬度W2為20層之管周長總和,長度L2為中空管體200的長度,以上述組合為一重複單元(即複合樹脂層102與纖維預浸布層101的層數比例為1:5),延伸重複4次施作,形成一複合體。
於塑形時,先準備一芯模,其外表套上一塑膠氣袋,依箭頭方向D捲曲複合體,再將覆有複合體之芯模置入另一鋁質模具中固定,之後留下塑膠氣袋並抽出芯模,在芯模的空間中充氣(25 psi至30 psi)以撐住所形成之中空管體200,同時,在鋁質模具側施以20 psi至25 psi的壓力,並以160 ℃加熱40分鐘,待降至室溫,即可取出纖維複合結構100,塑形後4層複合樹脂層102分別位於纖維預浸布層101之第4層和第5層間、第9層和第10層間、第14層和第15層間以及第19層和第20層間。
如第6(a)圖所示,纖維複合結構100係呈一中空管體200,包括纖維預浸布層101及複合樹脂層102,其截面圖可看出這些條狀結構102a呈一對稱輻射分布。所製備之中空管體為中空圓管,其尺寸為:長度450 mm,直徑20 mm,厚度4.0 mm。 第二實施例
本發明第二實施例(編號:E2)的製法與條件如第一實施例所敘述,主要差異在於複合樹脂層102中條狀結構102a的寬度W、間隔S及數量,其中每一複合樹脂層102具有3片條狀結構102a,條狀結構102a的寬度W為中空管體200的1/6管周長,二相鄰之條狀結構102a的間距S為中空管體200的1/6管周長。第二實施例之纖維複合結構100的截面圖如第6(b)圖所示。 第三實施例
本發明第三實施例(編號:E3)的製法與條件如第一實施例所敘述,主要差異在於複合樹脂層102中條狀結構102a的寬度W、間隔S及數量,其中每一複合樹脂層102具有4片條狀結構102a,條狀結構102a的寬度W為中空管體200的1/8管周長,二相鄰之條狀結構102a的間距S為中空管體200的1/8管周長。第三實施例之纖維複合結構100的截面圖如第6(c)圖所示。如第7圖所示,可看出纖維複合結構100內的條狀結構102a呈現一非連續狀態,彼此間隔分離。 比較例一
比較例一(編號:C1)的製法與條件如第一實施例所敘述,主要差異在於纖維預浸布層101上不鋪墊複合樹脂層102,直接捲曲形成具有20層之纖維預浸布層101的纖維複合結構100。 比較例二
比較例二(編號:C2)的製法與條件如第一實施例所敘述,主要差異在於複合樹脂層102為整層鋪墊,其中每一複合樹脂層102僅具有1片條狀結構102a,即條狀結構102a的寬度W為中空管體200的全管周長。此外,塑形後4層複合樹脂層102分別位於纖維預浸布層101之第4層和第5層間、第8層和第9層間、第12層和第13層間以及第16層和第17層間。 性能測試
振動衰減時間(秒,S)之測量係使用雷射位移計(Polytec OFV 350 Sensor hand),測量自振動開始(樣品之一端固定,另一端施加2Kg載重後釋放)至靜止之時間。所測到的訊號經由軟體計算後,即可獲得自然頻率與損失因子之數值。
將第一實施例、第二實施例、第三實施例、比較例一及比較例二的這些纖維複合結構進行性能測試,並獲得其振動衰減情形、自然頻率以及損失因子,如表1所示。
Figure 02_image001
根據表1,相較於未添加複合樹脂層之比較例一,本發明之實施例(E1至E3)可產生78 %至86.9 %的全振幅縮減效果。相較於整層鋪墊之比較例二,本發明部分包覆之實施例(E1至E3)能夠提供更好的制振效果,同時還能維持剛性強度。 第四實施例
本發明第四實施例(編號:E4)的製法與條件如第三實施例所敘述,主要差異在於這些條狀結構102a呈一間隔交錯分布,第四實施例之纖維複合結構100的截面圖如第6(d)圖所示。 第五實施例
本發明第五實施例(編號:E5)的製法與條件如第一實施例所敘述,主要差異在於複合樹脂層102中條狀結構102a的寬度W、間隔S及數量,其中每一複合樹脂層102具有4片條狀結構102a,其寬度W與間距S不完全相同且呈不規格分布。第五實施例之纖維複合結構100的截面圖如第6(e)圖所示。 比較例三
比較例三(編號:C3)的製法與條件如第一實施例所敘述,主要差異在於複合樹脂層102中條狀結構102a的寬度W及間隔S,其中條狀結構102a的寬度W為中空管體200的1/8管周長,二相鄰之條狀結構102a的間距S為中空管體200之3/8管周長,使得複合樹脂層102覆蓋相鄰纖維預浸布層101之面積的25%。比較例三之纖維複合結構100的截面圖如第6(f)圖所示。 性能模擬測試
用有限元素軟體Ansys進行結構動力暫態分析,由振幅衰減的包絡線衰減換算系統阻尼係數。分析過程中採用solid185元素,材料性質採用非等向性碳纖維複材,最後運算預設時間內的振動變化。 將第三實施例、第四實施例、第五實施例、比較例一及比較例三的這些纖維複合結構進行性能模擬測試,並獲得其振動衰減情形以及結構阻尼比,如表2所示。
Figure 02_image003
根據表2,相較於比較例一,本發明之實施例(E3至E5)可產生69 %至76 %的全振幅縮減效果。雖然比較例三之複合樹脂層也屬於部分包覆(覆蓋面積僅25%),但其制振效果及結構阻尼比明顯偏低。由本發明之實施例(E3至E5)可知,在相同的覆蓋面積下,這些複合樹脂層的條狀結構呈間隔交錯分布或不規則分布時會有更好的制振效果。
上述實施例係用以例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修改。因此本發明之權利保護範圍,應如後述之申請專利範圍所列。
100         纖維複合結構                     101         纖維預浸布層 101a       第一端                               101b       第二端 102         複合樹脂層                        102a       條狀結構 200         中空管體                            C1、C2、C3、C4   管周長(層數區域) D            捲曲方向                            L            條狀結構之長度 L1、L2   纖維預浸布層之長度           W           條狀結構之寬度 W1、W2 纖維預浸布層之寬度           S            間距 ϴ、ϴ’      條狀結構的長度方向與捲曲方向D之夾角
第1圖係本發明一實施例之纖維複合結構圍繞前的截面圖;
第2圖係本發明一實施例之纖維複合結構的截面圖;
第3圖係本發明一實施例之纖維複合結構製備方法的示意圖;
第4圖係本發明另一實施例之纖維複合結構製備方法的示意圖;
第5(a)圖及第5(b)圖係分別為本發明再一實施例之纖維複合結構製備方法的俯視圖和側視圖;
第6(a)圖至第6(f)圖分別係本發明第一實施例至第五實施例與比較例三之纖維複合結構的截面示意圖;以及
第7圖係本發明第三實施例之纖維複合結構的局部掃描電子顯微鏡(SEM)圖。
100          纖維複合結構 200          中空管體 101          纖維預浸布層 102          複合樹脂層 102a        條狀結構

Claims (13)

  1. 一種纖維複合結構,包括: 複數纖維預浸布層,包括第一樹脂和含浸該第一樹脂之複數纖維;以及 至少一複合樹脂層,包括複數多層奈米碳管及第二樹脂,且設置在二該纖維預浸布層之間,並與該複數纖維預浸布層共同圍繞形成一中空管體,其中,該複合樹脂層與該纖維預浸布層的層數比例為1:4至1:7,且每一該複合樹脂層包覆相鄰的該纖維預浸布層之面積的40%至60%。
  2. 如申請專利範圍第1項所述之纖維複合結構,其中,每一該複合樹脂層包括複數條狀結構,且該複數條狀結構的面積總和佔相鄰的該纖維預浸布層之面積的40%至60%。
  3. 如申請專利範圍第2項所述之纖維複合結構,其中,每一該條狀結構的寬度為該中空管體之管周長的10%至30%。
  4. 如申請專利範圍第2項所述之纖維複合結構,其中,每一該條狀結構的長度大於或等於該中空管體之長度。
  5. 如申請專利範圍第2項所述之纖維複合結構,其中,每一該條狀結構的長度延伸方向與該中空管體的中心軸方向具有0度至45度的夾角。
  6. 如申請專利範圍第2項所述之纖維複合結構,其中,該複數條狀結構於該中空管體之截面圖中呈對稱輻射分布、間隔交錯分布或不規則分布。
  7. 如申請專利範圍第2項至第6項中任一項所述之纖維複合結構,其中,每一該條狀結構係由該中空管體的一開口端連接至相對的另一開口端。
  8. 如申請專利範圍第1項所述之纖維複合結構,其中,該複數纖維之材質包括碳纖維、玻璃纖維、芳香族聚醯胺纖維、硼纖維、耐綸纖維、特多龍纖維、棉纖維、羊毛纖維、鋼纖維、鋁纖維、陶瓷鬚絲纖維或其組合。
  9. 如申請專利範圍第1項所述之纖維複合結構,其中,該第一樹脂及該第二樹脂為相同或不同,且該第一樹脂及該第二樹脂包括熱塑性樹脂、熱固性樹脂或其組合。
  10. 如申請專利範圍第1項所述之纖維複合結構,其中,該複數多層奈米碳管之表面具有胺基、羧基、羥基或醯氯基之反應性官能基。
  11. 如申請專利範圍第1或10項所述之纖維複合結構,其中,該複合樹脂層中之該複數多層奈米碳管的含量為0.5 wt%至8 wt%。
  12. 如申請專利範圍第11項所述之纖維複合結構,其中,該複數多層奈米碳管之比表面積為100 m 2/g至300 m 2/g。
  13. 如申請專利範圍第1項所述之纖維複合結構,其中,每一該纖維預浸布層的厚度為50 μm至200 μm,每一該複合樹脂層的厚度為5 μm至200 μm。
TW109100051A 2019-04-11 2020-01-02 纖維複合結構 TWI717182B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010269288.8A CN111805935B (zh) 2019-04-11 2020-04-08 纤维复合结构
US16/845,194 US10919272B2 (en) 2019-04-11 2020-04-10 Fiber composition structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962832324P 2019-04-11 2019-04-11
US62/832,324 2019-04-11

Publications (2)

Publication Number Publication Date
TW202037484A TW202037484A (zh) 2020-10-16
TWI717182B true TWI717182B (zh) 2021-01-21

Family

ID=74091170

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100051A TWI717182B (zh) 2019-04-11 2020-01-02 纖維複合結構

Country Status (1)

Country Link
TW (1) TWI717182B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201422862A (zh) * 2012-12-03 2014-06-16 Ind Tech Res Inst 碳纖維複合材料及其製法
CN104742384A (zh) * 2013-11-04 2015-07-01 宝马股份公司 用于制造整体纤维复合构件的方法和相应的纤维复合构件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201422862A (zh) * 2012-12-03 2014-06-16 Ind Tech Res Inst 碳纖維複合材料及其製法
CN104742384A (zh) * 2013-11-04 2015-07-01 宝马股份公司 用于制造整体纤维复合构件的方法和相应的纤维复合构件

Also Published As

Publication number Publication date
TW202037484A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP7345671B2 (ja) 耐衝撃性構造物
US4697324A (en) Filamentary structural module for composites
TWI509119B (zh) 碳纖維複合材料及其製法
JPH03503044A (ja) 直交異方性の制御された熱膨脹特性のボビンを持つ光ファイバー・カニスター
EP0370148A1 (en) Impact resistent composites
JP2004502577A (ja) 賦形複合構造部材及びその製造方法
US6592979B1 (en) Hybrid matrix fiber composites
TWI717182B (zh) 纖維複合結構
CN109660919A (zh) 一种发声装置
JP2008162281A (ja) 固縛型コーナ部及びフランジ並びにそれらを備えた物品
JP6238168B2 (ja) 複合材構造
JPS6146891B2 (zh)
CN111805935B (zh) 纤维复合结构
JP6407275B2 (ja) エネルギー保存用フライホイールおよびその製造方法
CN109672965A (zh) 一种发声装置
JP2004298357A (ja) ゴルフシャフト
JP7337509B2 (ja) 繊維強化樹脂シート
CN109676951B (zh) 纤维复合材料及其制法
RU2698695C2 (ru) Гибридный многослойный композиционный материал с керамической матрицей
TWI668104B (zh) 纖維複合材料及其製法
WO2023120151A1 (ja) フライホイール蓄電装置用の中空円盤ロータ及びその製造方法
US10272651B1 (en) Fiber composite and manufacturing method thereof
JP2002357284A (ja) 複合パイプ
JP3370977B2 (ja) 繊維強化プラスチック製荷重伝達軸
TWI849269B (zh) 纖維補強樹脂中空成形體及其製造方法