TWI639206B - Detecting system and method for dtecting through-hole electrodes of semiconductor device - Google Patents

Detecting system and method for dtecting through-hole electrodes of semiconductor device Download PDF

Info

Publication number
TWI639206B
TWI639206B TW107101565A TW107101565A TWI639206B TW I639206 B TWI639206 B TW I639206B TW 107101565 A TW107101565 A TW 107101565A TW 107101565 A TW107101565 A TW 107101565A TW I639206 B TWI639206 B TW I639206B
Authority
TW
Taiwan
Prior art keywords
probe
display
carrier
light
detecting
Prior art date
Application number
TW107101565A
Other languages
Chinese (zh)
Other versions
TW201933502A (en
Inventor
郭盛輝
黃浚維
Original Assignee
中美矽晶製品股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中美矽晶製品股份有限公司 filed Critical 中美矽晶製品股份有限公司
Priority to TW107101565A priority Critical patent/TWI639206B/en
Application granted granted Critical
Publication of TWI639206B publication Critical patent/TWI639206B/en
Publication of TW201933502A publication Critical patent/TW201933502A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本發明揭露一種檢測系統及檢測方法,用以檢測半導體元件之M個通孔電極的導通狀態,其中M係自然數。根據本發明之檢測系統包含M根探針以及M個顯示單元。每一根探針對應一個發光元件以及一個通孔電極。當每一根探針被致動以接觸其對應的通孔電極時,其對應的顯示單元選擇性地顯示一光或一訊號以表示其對應的通孔電極的導通狀態。 The invention discloses a detection system and a detection method for detecting the conduction state of M through-hole electrodes of a semiconductor component, wherein M is a natural number. The detection system according to the invention comprises M probes and M display units. Each probe corresponds to one light emitting element and one through hole electrode. When each probe is actuated to contact its corresponding via electrode, its corresponding display unit selectively displays a light or a signal to indicate the conductive state of its corresponding via electrode.

Description

用以檢測半導體元件之通孔電極的導通狀態之檢測系統及檢測方法 Detection system and detection method for detecting conduction state of through-hole electrodes of semiconductor elements

本發明係關於一種檢測系統以及檢測方法,用以檢測半導體元件之通孔電極的導通狀態。 The present invention relates to a detection system and a detection method for detecting a conduction state of a via electrode of a semiconductor element.

隨著半導體元件的發展,已有半導體元件其上形成通孔電極,也就是在半導體元件上先形成貫穿的孔洞,再將導電材料填入以形成通孔電極。 With the development of semiconductor devices, existing semiconductor devices have via electrodes formed thereon, that is, through holes are formed in the semiconductor devices, and conductive materials are filled in to form via electrodes.

以矽基太陽能電池為例,傳統的矽基太陽能電池的正極、負極是分別位於矽晶圓的受光面和背光面。但是,位於電池片正面的電極會對受光面造成遮擋,減少了受光面積,影響矽基太陽能電池的光電轉換效率。傳統的矽基太陽能電池其受光面上的柵線電極會提供焊接區域,與其他電池串焊為模組。 Taking a bismuth-based solar cell as an example, the positive and negative electrodes of a conventional bismuth-based solar cell are respectively located on the light receiving surface and the backlight surface of the ruthenium wafer. However, the electrode located on the front side of the battery sheet will block the light receiving surface, reduce the light receiving area, and affect the photoelectric conversion efficiency of the silicon-based solar cell. Conventional germanium-based solar cells provide a soldering area on the light-receiving surface of the grid electrode, and are soldered to other modules as a module.

金屬貫穿式(metal wrap through,MWT)矽基太陽能電池,是為解決傳統的矽基太陽能電池受光面被遮擋問題的一種矽基太陽能電池。MWT矽基太陽能電池是藉由將金屬導電膠填充貫穿的孔洞且經燒結而成通孔電極。通孔電極將位於矽基太陽能電池正面的柵線電極引至矽基太陽能電池的背光面,在受光面通過面積較小的正面電極實現通孔電極之間的耦合,進而減小少了柵線對受光面的遮擋。MWT矽基太陽能電池的正面不會有焊接區域。現有的MWT矽基太陽能電 池雖然減小柵線遮光面積,在一定程度上提高了光電轉換效率。但是,若通孔電極導通不良,會導致MWT矽基太陽能電池其填充因數下降,降低其光電轉換效率。 A metal-wrap-through (MWT) silicon-based solar cell is a silicon-based solar cell that solves the problem that the light-receiving surface of a conventional germanium-based solar cell is blocked. The MWT germanium-based solar cell is formed by filling a through hole with a metal conductive paste and sintering it to form a via electrode. The via electrode leads the gate electrode on the front side of the germanium-based solar cell to the backlight surface of the germanium-based solar cell, and the coupling between the via electrodes is realized by the front surface of the light-receiving surface having a smaller area, thereby reducing the gate line. Occlusion of the light-receiving surface. There is no soldered area on the front side of the MWT germanium-based solar cell. Existing MWT 矽 based solar power Although the pool reduces the shading area of the grid line, the photoelectric conversion efficiency is improved to some extent. However, if the via electrode is poorly conducted, the filling factor of the MWT germanium-based solar cell is lowered, and the photoelectric conversion efficiency is lowered.

現有的MWT矽基太陽能電池在其通孔電極形成程後,皆會對通孔電極的導通狀態進行檢測。目前大多利用電致發光(electroluminescence,EL)檢測方法來檢測通孔電極的導通狀態。然而,EL檢測所得影像僅僅讓操作者看到明暗灰階的顯示,但卻無法確認出矽晶圓上哪一個孔洞內沒有導通,無法做出定量的檢測。 The existing MWT germanium-based solar cells detect the conduction state of the via electrodes after the formation of the via electrodes. At present, electroluminescence (EL) detection methods are mostly used to detect the conduction state of the via electrodes. However, the image detected by the EL detection only allows the operator to see the display of the light gray scale, but it is impossible to confirm which hole in the wafer is not turned on, and quantitative detection cannot be performed.

目前亟需更佳的檢測系統及方法,能在MWT矽基太陽能電池製造過程中將異常孔洞填充金屬導電膠不完全的矽晶圓篩選淘汰,能縮短通孔電極檢測時間,進而輔助量產快速調整製程參數。 At present, there is a need for better detection systems and methods, which can eliminate the incomplete ruthenium wafers with incomplete hole-filled metal conductive adhesives in the manufacturing process of MWT-based solar cells, which can shorten the detection time of through-hole electrodes and assist in mass production. Adjust process parameters.

因此,本發明所欲解決之一技術問題在於提供一種用以檢測半導體元件之通孔電極的導通狀態之檢測系統以及檢測方法。根據本發明之檢測系統以及檢測方法能在MWT矽基太陽能電池製造過程中將異常孔洞填膠不完全的矽晶圓篩選淘汰,能縮短通孔電極檢測時間,進而輔助量產快速調整製程參數。根據本發明之檢測系統以及檢測方法也能檢測各類半導體元件之通孔電極的導通狀態。 Therefore, one technical problem to be solved by the present invention is to provide a detection system and a detection method for detecting a conduction state of a via electrode of a semiconductor element. The detection system and the detection method according to the invention can eliminate the incomplete 矽 wafer screening of the abnormal hole filling in the manufacturing process of the MWT 矽-based solar cell, can shorten the detection time of the through-hole electrode, and further assist the mass production to quickly adjust the process parameters. The detection system and the detection method according to the present invention can also detect the conduction state of the via electrodes of various types of semiconductor elements.

根據本發明之一較佳具體實施例之檢測系統用以檢測半導體元件之M個通孔電極的導通狀態,其中M係自然數。每一個通孔電極係從半導體元件的第一表面貫通至半導體元件的第二表面。根據本發明之檢測系統包含載板、探針裝置、顯示裝置以及電源。載板至少其上表面係導電的。半導體元件係置於載板的上表面上。探針裝置包含M根探針。每一根探針對應一個通孔電極。顯示裝置包含M個顯示單元。 每一個顯示單元對應一根探針,並且串聯電連接至該根探針。電源係分別電連接至顯示裝置以及載板。電源用以供應電力給顯示裝置、探針裝置以及載板。當探針裝置被致動使每一根探針接觸其對應的通孔電極時,每一個顯示單元選擇性地顯示一光或一訊號以表示其對應的通孔電極的導通狀態。 A detection system according to a preferred embodiment of the present invention is for detecting a conduction state of M through-hole electrodes of a semiconductor element, wherein M is a natural number. Each of the via electrodes penetrates from the first surface of the semiconductor element to the second surface of the semiconductor element. A detection system in accordance with the present invention includes a carrier, a probe device, a display device, and a power source. At least the upper surface of the carrier is electrically conductive. The semiconductor component is placed on the upper surface of the carrier. The probe device contains M probes. Each probe corresponds to a through hole electrode. The display device includes M display units. Each display unit corresponds to a probe and is electrically connected in series to the root probe. The power supply is electrically connected to the display device and the carrier, respectively. The power source is used to supply power to the display device, the probe device, and the carrier. When the probe device is actuated such that each probe contacts its corresponding via electrode, each display unit selectively displays a light or a signal to indicate the conductive state of its corresponding via electrode.

根據本發明之一較佳具體實施例之檢測方法用以檢測半導體元件之M個通孔電極的導通狀態,其中M係自然數。每一個通孔電極係從半導體元件的第一表面貫通至半導體元件的第二表面。首先,根據本發明之檢測方法係提供載板。載板至少其上表面係導電的。半導體元件係置於載板的上表面上。接著,根據本發明之檢測方法係提供M根探針。每一根探針對應一個通孔電極。接著,根據本發明之檢測方法係提供M個顯示單元。每一個顯示單元對應一根探針,並且串聯電連接至該根探針。接著,根據本發明之檢測方法係將每一個顯示單元與其對應的探針、其對應的通孔電極以及載板構成迴路並提供電力。最後,根據本發明之檢測方法係藉由每一個顯示單元選擇性地顯示一光或一訊號,表示每一個顯示單元其對應的通孔電極的導通狀態。 A detecting method according to a preferred embodiment of the present invention is for detecting a conduction state of M through-hole electrodes of a semiconductor element, wherein M is a natural number. Each of the via electrodes penetrates from the first surface of the semiconductor element to the second surface of the semiconductor element. First, the detection method according to the present invention provides a carrier. At least the upper surface of the carrier is electrically conductive. The semiconductor component is placed on the upper surface of the carrier. Next, the detection method according to the present invention provides M probes. Each probe corresponds to a through hole electrode. Next, the detection method according to the present invention provides M display units. Each display unit corresponds to a probe and is electrically connected in series to the root probe. Next, according to the detection method of the present invention, each display unit and its corresponding probe, its corresponding via electrode and carrier plate form a loop and provide power. Finally, the detecting method according to the present invention selectively displays a light or a signal by each display unit to indicate the conduction state of the corresponding via electrode of each display unit.

於一具體實施例中,顯示裝置可以是液晶顯示器、有機發光二極體顯示器、半導體發光二極體顯示器,或其他型式的顯示裝置。 In one embodiment, the display device can be a liquid crystal display, an organic light emitting diode display, a semiconductor light emitting diode display, or other types of display devices.

於一具體實施例中,每一個顯示單元係由至少一發光元件所構成。每一個發光元件可以是半導體發光二極體元件、有機發光二極體元件、電致發光元件、冷陰極螢光發光元件,或其他型式的發光元件。 In one embodiment, each display unit is comprised of at least one light emitting element. Each of the light-emitting elements may be a semiconductor light-emitting diode element, an organic light-emitting diode element, an electroluminescent element, a cold cathode fluorescent light-emitting element, or other types of light-emitting elements.

於一具體實施例中,載板可以由金屬或導電高分子材料所形成。 In a specific embodiment, the carrier plate may be formed of a metal or a conductive polymer material.

於一具體實施例中,載板包含軟性基板以及被覆 於該軟性基板上之金屬薄膜。金屬薄膜提供載板的上表面。 In one embodiment, the carrier comprises a flexible substrate and a cover a metal film on the flexible substrate. The metal film provides the upper surface of the carrier.

於一具體實施例中,每一個通孔電極之填充孔洞外徑的範圍為50~500μm。 In one embodiment, the outer diameter of the filling hole of each of the via electrodes ranges from 50 to 500 μm.

與先前技術不同,根據本發明之檢測系統包含可以做出定量檢測,能在MWT矽基太陽能電池製造過程中將異常孔洞填膠不完全的元件篩選淘汰,能縮短通孔電極檢測時間,進而輔助量產快速調整製程參數。並且,根據本發明之檢測系統以及檢測方法也能檢測各類半導體元件之通孔電極的導通狀態。 Different from the prior art, the detection system according to the present invention includes quantitative detection, which can eliminate the component incomplete filling of the abnormal hole in the manufacturing process of the MWT-based solar cell, and can shorten the detection time of the through-hole electrode, thereby assisting Mass production quickly adjusts process parameters. Further, the detection system and the detection method according to the present invention can also detect the conduction state of the via electrodes of various types of semiconductor elements.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

1‧‧‧檢測系統 1‧‧‧Detection system

10‧‧‧載板 10‧‧‧ Carrier Board

102‧‧‧上表面 102‧‧‧ upper surface

104‧‧‧軟性基板 104‧‧‧Soft substrate

106‧‧‧金屬薄膜 106‧‧‧Metal film

12‧‧‧探針裝置 12‧‧‧ probe device

122‧‧‧探針 122‧‧‧Probe

124‧‧‧收容板 124‧‧‧ containment board

14‧‧‧顯示裝置 14‧‧‧Display device

142‧‧‧顯示單元 142‧‧‧Display unit

144‧‧‧發光元件 144‧‧‧Lighting elements

16‧‧‧電源 16‧‧‧Power supply

1222‧‧‧套管 1222‧‧‧ casing

1224‧‧‧彈簧 1224‧‧ Spring

1226‧‧‧可移動棒 1226‧‧‧ movable stick

2‧‧‧半導體元件 2‧‧‧Semiconductor components

22‧‧‧通孔電極 22‧‧‧through hole electrode

24‧‧‧第一表面 24‧‧‧ first surface

26‧‧‧第二表面 26‧‧‧ second surface

圖1係根據本發明之較佳具體實施例的檢測系統的架構示意圖。 1 is a block diagram showing the architecture of a detection system in accordance with a preferred embodiment of the present invention.

圖2係本發明之探針的展開與組裝視圖。 Figure 2 is a view showing the unfolded and assembled view of the probe of the present invention.

圖3係本發明之載板之一具體實施例的局部截面視圖。 Figure 3 is a partial cross-sectional view of one embodiment of a carrier of the present invention.

圖4係數個晶圓以傳統的EL檢測方法以及本發明之檢測系統做檢測結果的照片。 Fig. 4 is a photograph of the results of the detection of the wafers by the conventional EL detection method and the detection system of the present invention.

請參閱圖1,圖1係據本發明之較佳具體實施例之檢測系統1的架構之示意圖。受測試的半導體元件2的局部截面視圖也繪示於圖1中。 Please refer to FIG. 1. FIG. 1 is a schematic diagram showing the architecture of a detection system 1 according to a preferred embodiment of the present invention. A partial cross-sectional view of the semiconductor component 2 under test is also shown in FIG.

如圖1,根據本發明之一較佳具體實施例之檢測 系統1用以檢測半導體元件2之M個通孔電極22的導通狀態,其中M係自然數。每一個通孔電極22係從半導體元件2的第一表面24貫通至半導體元件的第二表面26。 1, a detection according to a preferred embodiment of the present invention The system 1 is for detecting the conduction state of the M through-hole electrodes 22 of the semiconductor element 2, wherein M is a natural number. Each via electrode 22 extends from the first surface 24 of the semiconductor component 2 to the second surface 26 of the semiconductor component.

於一具體實施例中,半導體元件2可以是MWT矽基太陽能電池,也可以是製造其他類型半導體元件。以MWT矽基太陽能電池為例,半導體元件2製造完善的通孔電極22除了填滿貫穿的孔洞,還分別超出半導體元件2的第一表面24與第二表面26。並且,半導體元件2上的通孔電極22成陣列排列,於圖1中,僅繪示兩個通孔電極22做為代表。 In one embodiment, the semiconductor component 2 can be an MWT germanium based solar cell or other types of semiconductor components. Taking the MWT germanium-based solar cell as an example, the well-made via electrode 22 of the semiconductor element 2, in addition to filling the through hole, also extends beyond the first surface 24 and the second surface 26 of the semiconductor component 2, respectively. Further, the via electrodes 22 on the semiconductor element 2 are arranged in an array. In FIG. 1, only two via electrodes 22 are shown as a representative.

根據本發明之檢測系統1包含載板10、探針裝置12、顯示裝置14以及電源16。 The detection system 1 according to the present invention includes a carrier 10, a probe device 12, a display device 14, and a power source 16.

載板10至少其上表面102係導電的。半導體元件2係置於載板10的上表面102上。 The carrier 10 is at least electrically conductive to its upper surface 102. The semiconductor component 2 is placed on the upper surface 102 of the carrier 10.

探針裝置12包含M根探針122。每一根探針122對應一個通孔電極22。於圖1中,僅繪示兩根探針122做為代表。 The probe device 12 includes M probes 122. Each probe 122 corresponds to one via electrode 22. In Figure 1, only two probes 122 are shown as representative.

於一具體實施例中,如圖2所示,探針122係由套管1222、彈簧1224以及可移動棒1226所組成。彈簧1224即在探針122與通孔電極22接觸時做為緩衝裝置。可移動棒1226包含部分裝設於套管1222內,部分外露。 In one embodiment, as shown in FIG. 2, the probe 122 is comprised of a sleeve 1222, a spring 1224, and a movable rod 1226. The spring 1224 acts as a buffer when the probe 122 is in contact with the via electrode 22. The movable bar 1226 includes a portion that is partially mounted within the sleeve 1222 and partially exposed.

顯示裝置14包含M個顯示單元142。每一個顯示單元142對應一根探針122,並且串聯電連接至該根探針122。 The display device 14 includes M display units 142. Each display unit 142 corresponds to a probe 122 and is electrically connected in series to the root probe 122.

電源16係分別電連接至顯示裝置14以及載板10。電源16用以供應電力給顯示裝置14、探針裝置12以及載板10。於圖1中,僅繪示兩個顯示單元142做為代表。 The power source 16 is electrically connected to the display device 14 and the carrier 10, respectively. The power source 16 is for supplying power to the display device 14, the probe device 12, and the carrier 10. In FIG. 1, only two display units 142 are shown as representative.

當探針裝置12被致動使每一根探針122接觸其 對應的通孔電極22時,每一個顯示單元142選擇性地顯示一光或一訊號以表示其對應的通孔電極22的導通狀態。也就是說,加載在每一個顯示單元142與其對應的探針122、其對應的通孔電極22以及載板10構成迴路的電壓高於該個顯示單元142的驅動電壓,該個顯示單元142顯示一光或一訊號,即表示其對應的通孔電極22的阻抗低於門檻值,亦即其導通性良好。藉此,根據本發明之檢測系統包含可以做出定量檢測。 When the probe device 12 is actuated, each probe 122 is contacted When the via electrodes 22 are corresponding, each display unit 142 selectively displays a light or a signal to indicate the conduction state of its corresponding via electrode 22. That is to say, the voltage applied to each of the display unit 142 and its corresponding probe 122, its corresponding via electrode 22 and the carrier 10 constitutes a circuit higher than the driving voltage of the display unit 142, and the display unit 142 displays A light or a signal indicates that the impedance of the corresponding via electrode 22 is lower than the threshold value, that is, its conductivity is good. Thereby, the detection system according to the invention comprises a quantitative detection that can be made.

於一具體實施例中,探針裝置12包含收容板124。收容板124用以收容及支撐M根探針122。於實際應用中,探針裝置12可以操作性地固定在壓床(未繪示於圖1中)上。藉由壓床的動力,在檢測期間探針裝置12被致動使每一根探針122接觸其對應的通孔電極22,在檢測完畢後每一根探針122則與其對應的通孔電極22分離。 In one embodiment, the probe device 12 includes a receiving plate 124. The receiving plate 124 is for receiving and supporting the M probes 122. In practical applications, the probe device 12 can be operatively secured to a press (not shown in Figure 1). By the power of the press, the probe device 12 is actuated during the test so that each probe 122 contacts its corresponding via electrode 22, and each probe 122 has its corresponding through-hole electrode after the detection is completed. 22 separation.

根據本發明之一較佳具體實施例之檢測方法用以檢測半導體元件2之M個通孔電極22的導通狀態,其中M係自然數。每一個通孔電極22係從半導體元件2的第一表面24貫通至半導體元件的第二表面26。 The detecting method according to a preferred embodiment of the present invention is for detecting the conduction state of the M through-hole electrodes 22 of the semiconductor element 2, wherein M is a natural number. Each via electrode 22 extends from the first surface 24 of the semiconductor component 2 to the second surface 26 of the semiconductor component.

首先,根據本發明之檢測方法係提供載板10。載板10至少其上表面102係導電的。半導體元件2係置於載板10的上表面102上。 First, the test method according to the present invention provides the carrier 10 . The carrier 10 is at least electrically conductive to its upper surface 102. The semiconductor component 2 is placed on the upper surface 102 of the carrier 10.

接著,根據本發明之檢測方法係提供M根探針122。每一根探針122對應一個通孔電極22。接著,根據本發明之檢測方法係提供M個顯示單元142。每一個顯示單元142對應一根探針122,並且串聯電連接至該根探針122。 Next, the M probe 122 is provided in accordance with the detection method of the present invention. Each probe 122 corresponds to one via electrode 22. Next, the detection method according to the present invention provides M display units 142. Each display unit 142 corresponds to a probe 122 and is electrically connected in series to the root probe 122.

接著,根據本發明之檢測方法係將每一個顯示單元142與其對應的探針122、其對應的通孔電極22以及載板10構成迴路並提供電力。 Next, according to the detection method of the present invention, each display unit 142 and its corresponding probe 122, its corresponding via electrode 22, and carrier 10 are looped and supplied with electric power.

最後,根據本發明之檢測方法係藉由每一個顯示單元142選擇性地顯示一光或一訊號,表示每一個顯示單元142其對應的通孔電極22的導通狀態。 Finally, the detecting method according to the present invention selectively displays a light or a signal by each display unit 142, indicating the conductive state of the corresponding via electrode 22 of each display unit 142.

於一具體實施例中,M個顯示單元142構成顯示裝置14。顯示裝置14可以是液晶顯示器、有機發光二極體顯示器、半導體發光二極體顯示器,或其他型式的顯示裝置。 In one embodiment, the M display units 142 constitute the display device 14. Display device 14 can be a liquid crystal display, an organic light emitting diode display, a semiconductor light emitting diode display, or other type of display device.

於一具體實施例中,每一個顯示單元142係由至少一發光元件144所構成。於圖1中,做為代表。每一個顯示單元142係由一個發光元件144所構成。每一個發光元件144可以是半導體發光二極體元件、有機發光二極體元件、電致發光元件、冷陰極螢光發光元件,或其他型式的發光元件。 In one embodiment, each display unit 142 is comprised of at least one light emitting element 144. In Figure 1, as a representative. Each display unit 142 is composed of one light emitting element 144. Each of the light-emitting elements 144 may be a semiconductor light-emitting diode element, an organic light-emitting diode element, an electroluminescent element, a cold cathode fluorescent light-emitting element, or other types of light-emitting elements.

於一具體實施例中,載板10可以由金屬或導電高分子材料所形成。 In one embodiment, the carrier 10 can be formed of a metal or conductive polymer material.

於一具體實施例中,如圖3所示,載板10包含軟性基板104以及被覆於軟性基板104上之金屬薄膜106。金屬薄膜106提供載板10的上表面102。 In one embodiment, as shown in FIG. 3, the carrier 10 includes a flexible substrate 104 and a metal film 106 coated on the flexible substrate 104. Metal film 106 provides upper surface 102 of carrier 10.

於一具體實施例中,每一個通孔電極22之填充孔洞外徑的範圍,也就是原貫穿的孔洞的孔徑的範圍為50~500μm。 In one embodiment, the outer diameter of the filled hole of each of the via electrodes 22, that is, the aperture of the original through hole ranges from 50 to 500 μm.

以下將列舉標準半導體元件、對照半導體元件A、對照半導體元件B以及對照半導體元件C其通孔電極導通檢測結果。這些半導體元件皆是MWT矽基太陽能電池,並利用傳統的EL檢測方法以及本發明之檢測系統做檢測,其檢測結果示於圖4。在此,本發明之檢測系統中每一個顯示單元係由一個發光元件所構成。於圖4中,左邊欄的照片是所有半導體元件的頂視照片,照片中以圓圈標示所有半導體元件實際導通不良之通孔電極的位置。標準半導體元件所有通孔電極皆導通良好,對照半導體元件A、對照半導體元件B以及對 照半導體元件C皆有導通不良的通孔電極。中間欄的照片顯示EL檢測結果,無法確認所有半導體元件是否存有導通不良的通孔電極,遑論確認導通不良的通孔電極的位置。右邊欄的照片顯示本發明之檢測系統做檢測的結果,可以確認標準半導體元件所有通孔電極皆導通良好,對照半導體元件A、對照半導體元件B以及對照半導體元件C皆有導通不良的通孔電極,能確認導通不良的通孔電極的位置(圖4中箭頭標示處)。 The results of the via-hole conduction detection of the standard semiconductor element, the comparison semiconductor element A, the comparison semiconductor element B, and the comparison semiconductor element C will be listed below. These semiconductor elements are all MWT germanium-based solar cells, and are tested by a conventional EL detection method and the detection system of the present invention, and the detection results are shown in FIG. Here, each display unit in the detection system of the present invention is constituted by one light-emitting element. In Fig. 4, the photo on the left side of the column is a top view of all the semiconductor elements, and the positions of the via electrodes in which all of the semiconductor elements are actually turned on are indicated by circles. All through-hole electrodes of the standard semiconductor device are well-conducted, and the semiconductor element A, the comparison semiconductor element B, and the pair are Each of the semiconductor elements C has a via electrode having poor conduction. The photograph of the middle column shows the result of the EL detection, and it is impossible to confirm whether or not all of the semiconductor elements have via electrodes having poor conduction, and the position of the via electrodes having poor conduction is confirmed. The photograph on the right side of the column shows the result of the detection by the detection system of the present invention, and it can be confirmed that all the via electrodes of the standard semiconductor element are well-conducted, and the through-hole electrodes having poor conduction are controlled by the comparison semiconductor element A, the comparison semiconductor element B, and the comparison semiconductor element C. The position of the via electrode which is poorly turned on can be confirmed (marked by an arrow in FIG. 4).

藉由以上對本發明之詳述,可以清楚了解根據本發明之檢測系統包含可以做出定量檢測,能在MWT矽基太陽能電池製造過程中將異常孔洞填膠不完全的矽晶圓篩選淘汰能縮短通孔電極檢測時間,進而輔助量產快速調整製程參數。並且,根據本發明之檢測系統以及檢測方法也能檢測各類半導體元件之通孔電極的導通狀態。 Based on the above detailed description of the present invention, it can be clearly understood that the detection system according to the present invention includes quantitative detection, and the screening of the defective wafer can be shortened in the MMW-based solar cell manufacturing process. The through-hole electrode detects the time, thereby assisting the mass production to quickly adjust the process parameters. Further, the detection system and the detection method according to the present invention can also detect the conduction state of the via electrodes of various types of semiconductor elements.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之面向加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的面向內。因此,本發明所申請之專利範圍的面向應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。 The features and spirit of the present invention are intended to be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents that are within the scope of the invention as claimed. Therefore, the scope of the patent application of the present invention should be construed broadly in the light of the above description, so that it covers all possible changes and arrangements.

Claims (12)

一種檢測系統,用以檢測一半導體元件之M個通孔電極的導通狀態,每一個通孔電極係從該半導體元件之一第一表面貫通至一第二表面,M係一自然數,該檢測系統包含:一載板,該載板至少其一上表面係導電的,該半導體元件係置於該載板之該上表面上;一探針裝置,包含M根探針,每一根探針對應一個通孔電極;一顯示裝置,包含M個顯示單元,每一個顯示單元對應一根探針且串聯電連接至該根探針;以及一電源,係分別電連接至該顯示裝置以及該載板,用以供應一電力給該顯示裝置、該探針裝置以及該載板;其中當該探針裝置被致動使每一根探針接觸其對應的通孔電極時,每一個顯示單元選擇性地顯示一光以表示其對應的通孔電極的導通狀態。 A detection system for detecting an on state of M through-hole electrodes of a semiconductor component, each via electrode extending from a first surface of the semiconductor component to a second surface, M being a natural number, the detecting The system comprises: a carrier board having at least one upper surface thereof electrically conductive, the semiconductor component being disposed on the upper surface of the carrier; a probe device comprising M probes, each probe Corresponding to a through-hole electrode; a display device comprising M display units, each display unit corresponding to a probe and electrically connected in series to the probe; and a power source electrically connected to the display device and the load a board for supplying a power to the display device, the probe device, and the carrier; wherein each display unit is selected when the probe device is actuated to contact each probe with its corresponding via electrode A light is displayed to indicate the conduction state of its corresponding via electrode. 請求項1所述之檢測系統,其中該顯示裝置係選自由一液晶顯示器、一有機發光二極體顯示器以及一半導體發光二極體顯示器所組成之群組中之其一。 The detection system of claim 1, wherein the display device is selected from the group consisting of a liquid crystal display, an organic light emitting diode display, and a semiconductor light emitting diode display. 如請求項1所述之檢測系統,其中每一個顯示單元係由至少一發光元件所構成,每一個發光元件係選自由一半導體發光二極體元件、一有機發光二極體元件、一電致發光元件以及一冷陰極螢光發光元件所組成之群組中之其一。 The detection system of claim 1, wherein each of the display units is composed of at least one light-emitting element, each of the light-emitting elements being selected from a semiconductor light-emitting diode element, an organic light-emitting diode element, and an electro-optical element. One of a group consisting of a light-emitting element and a cold cathode fluorescent light-emitting element. 如請求項1所述之檢測系統,其中該載板係由一金屬或一導電高分子材料所形成。 The detection system of claim 1, wherein the carrier is formed of a metal or a conductive polymer material. 如請求項1所述之檢測系統,其中該載板包含一軟性基板以及被覆於該軟性基板上之一金屬薄膜,該金屬薄膜提供該上表面。 The detection system of claim 1, wherein the carrier comprises a flexible substrate and a metal film coated on the flexible substrate, the metal film providing the upper surface. 如請求項1所述之檢測系統,其中每一個通孔電極之一填充孔洞外徑的範圍為50~500μm。 The detecting system according to claim 1, wherein one of the through hole electrodes has a hole outer diameter ranging from 50 to 500 μm. 一種檢測方法,用以檢測一半導體元件之M個通孔電極的導通狀態,每一個通孔電極係從該半導體元件之一第一表面貫通至一第二表面,M係一自然數,該檢測方法包含下列步驟:提供一載板,該載板至少其一上表面係導電的,該半導體元件係置於該載板之該上表面上;提供M根探針,每一根探針對應一個通孔電極;提供M個顯示單元,每一個顯示單元對應一根探針且串聯電連接至該根探針;將每一個顯示單元與其對應的探針、其對應的通孔電極以及該載板構成一迴路並提供一電力;以及藉由每一個顯示單元選擇性地發出一光,表示每一個顯示單元其對應的通孔電極的導通狀態。 A detecting method for detecting a conduction state of M through-hole electrodes of a semiconductor component, each through-hole electrode extending from a first surface of the semiconductor component to a second surface, M being a natural number, the detecting The method comprises the steps of: providing a carrier board having at least one of its upper surfaces electrically conductive, the semiconductor component being disposed on the upper surface of the carrier; providing M probes, one for each probe a via electrode; providing M display units, each of which corresponds to a probe and electrically connected in series to the probe; each display unit and its corresponding probe, its corresponding via electrode, and the carrier Forming a loop and providing a power; and selectively emitting a light by each display unit to indicate the conduction state of the corresponding via electrode of each display unit. 如請求項7所述之檢測方法,其中該M個顯示單元係構成一顯示裝置,該顯示裝置係選自由一液晶顯示器、一有機發光二極體顯示器以及一半導體發光二極體顯示器所組成之群組中之其一。 The detection method of claim 7, wherein the M display units comprise a display device, wherein the display device is selected from the group consisting of a liquid crystal display, an organic light emitting diode display, and a semiconductor light emitting diode display. One of the groups. 如請求項7所述之檢測方法,其中每一個顯示單元係由至少一發光元件所構成,每一個發光元件係選自由一半導體 發光二極體元件、一有機發光二極體元件、一電致發光元件以及一冷陰極螢光發光元件所組成之群組中之其一。 The detecting method of claim 7, wherein each of the display units is composed of at least one light emitting element, each of the light emitting elements being selected from a semiconductor One of a group consisting of a light emitting diode element, an organic light emitting diode element, an electroluminescent element, and a cold cathode fluorescent light emitting element. 如請求項7所述之檢測方法,其中該載板係由一金屬或一導電高分子材料所形成。 The method of detecting according to claim 7, wherein the carrier is formed of a metal or a conductive polymer material. 如請求項7所述之檢測方法,其中該載板包含一軟性基板以及被覆於該軟性基板上之一金屬薄膜,該金屬薄膜提供該上表面。 The method of claim 7, wherein the carrier comprises a flexible substrate and a metal film coated on the flexible substrate, the metal film providing the upper surface. 如請求項7所述之檢測方法,其中每一個通孔電極之一填充孔洞外徑的範圍為50~500μm。 The detecting method according to claim 7, wherein one of the through hole electrodes has a hole outer diameter ranging from 50 to 500 μm.
TW107101565A 2018-01-16 2018-01-16 Detecting system and method for dtecting through-hole electrodes of semiconductor device TWI639206B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107101565A TWI639206B (en) 2018-01-16 2018-01-16 Detecting system and method for dtecting through-hole electrodes of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107101565A TWI639206B (en) 2018-01-16 2018-01-16 Detecting system and method for dtecting through-hole electrodes of semiconductor device

Publications (2)

Publication Number Publication Date
TWI639206B true TWI639206B (en) 2018-10-21
TW201933502A TW201933502A (en) 2019-08-16

Family

ID=64802959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107101565A TWI639206B (en) 2018-01-16 2018-01-16 Detecting system and method for dtecting through-hole electrodes of semiconductor device

Country Status (1)

Country Link
TW (1) TWI639206B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW366492B (en) 1997-07-14 1999-08-11 Mitsubishi Electric Corp Semiconductor having contact checking circuits
TW449847B (en) 1999-03-12 2001-08-11 Oki Electric Ind Co Ltd Semiconductor device testing device
TWI237122B (en) 1998-11-19 2005-08-01 Oht Inc Method and apparatus for circuit board continuity test, tool for continuity test, and recording medium
TW201243338A (en) 2011-03-29 2012-11-01 Yamaichi Electronics Co Ltd Contact probe and semiconductor device socket including contact probe
TW201331600A (en) 2012-01-20 2013-08-01 Nihon Micronics Kk Inspection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW366492B (en) 1997-07-14 1999-08-11 Mitsubishi Electric Corp Semiconductor having contact checking circuits
TWI237122B (en) 1998-11-19 2005-08-01 Oht Inc Method and apparatus for circuit board continuity test, tool for continuity test, and recording medium
TW449847B (en) 1999-03-12 2001-08-11 Oki Electric Ind Co Ltd Semiconductor device testing device
TW201243338A (en) 2011-03-29 2012-11-01 Yamaichi Electronics Co Ltd Contact probe and semiconductor device socket including contact probe
TW201331600A (en) 2012-01-20 2013-08-01 Nihon Micronics Kk Inspection apparatus

Also Published As

Publication number Publication date
TW201933502A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
CN110634840B (en) Detection substrate, preparation method thereof, detection device and detection method
CN109377922B (en) Circuit detection jig and method for micro light-emitting diode substrate
US20100034455A1 (en) Solar battery module evaluation apparatus, solar battery module evaluating method, and solar battery module manufacturing method
CN110828364A (en) Mass transfer method, manufacturing method of display device and display device
TW201643843A (en) Display panel and repairing method thereof
US10817089B2 (en) Display component and method for manufacturing the same, display device
TWI723417B (en) Method for fabricating micro light emitting diode display
JP5540736B2 (en) Manufacturing method of solar cell module
CN111463230A (en) Repairing device for Micro L ED array substrate and repairing method for Micro L ED array substrate
CN207339793U (en) A kind of double-sided solar battery test equipment
CN112309884B (en) LED display back plate detection device and detection method thereof
KR102688092B1 (en) Detection device and method for micro light emitting diode
JP2000243995A (en) Method for inspecting solar cell module and manufacture of solar cell module
CN110676368B (en) Manufacturing method of detection device and detection method
US20160293100A1 (en) Organic light-emitting diode display apparatus, display device, and method for testing the organic light-emitting diode display apparatus
CN113380849A (en) Display panel and manufacturing method thereof
CN100479184C (en) Wiring method for detection wire of organic electroluminescent display device
TWI639206B (en) Detecting system and method for dtecting through-hole electrodes of semiconductor device
KR20150042573A (en) System and method of testing organic light emitting display device capable of testing automatically contact between probe and pad
CN110070814A (en) OLED display panel and its optical attenuation detection method, display device
CN114447173A (en) Light-emitting device, preparation method thereof and light-emitting device
CN114400237A (en) Array substrate, testing device thereof and display panel
KR101902603B1 (en) Method of inspecting display cells
CN107863319B (en) Array substrate and manufacturing method thereof
JP4386783B2 (en) Solar cell characteristic measurement device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees