TWI637177B - System and method for testing semiconductor elements - Google Patents

System and method for testing semiconductor elements Download PDF

Info

Publication number
TWI637177B
TWI637177B TW105143111A TW105143111A TWI637177B TW I637177 B TWI637177 B TW I637177B TW 105143111 A TW105143111 A TW 105143111A TW 105143111 A TW105143111 A TW 105143111A TW I637177 B TWI637177 B TW I637177B
Authority
TW
Taiwan
Prior art keywords
data
test
processing device
data processing
command
Prior art date
Application number
TW105143111A
Other languages
Chinese (zh)
Other versions
TW201823743A (en
Inventor
孫俊宏
Original Assignee
台灣福雷電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣福雷電子股份有限公司 filed Critical 台灣福雷電子股份有限公司
Priority to TW105143111A priority Critical patent/TWI637177B/en
Priority to CN201710062839.1A priority patent/CN108241117B/en
Publication of TW201823743A publication Critical patent/TW201823743A/en
Application granted granted Critical
Publication of TWI637177B publication Critical patent/TWI637177B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3172Optimisation aspects, e.g. using functional pin as test pin, pin multiplexing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本揭露提供一種用於測試半導體元件之系統,其包含一資料產生裝置、一資料測試裝置、及一資料處理裝置。資料處理裝置經組態以傳送一第一命令至資料測試裝置並在傳送第一命令後傳送一第一回應至資料產生裝置。在接收第一回應之後,資料產生裝置傳送一第一資料至該資料處理裝置。The disclosure provides a system for testing a semiconductor device, which includes a data generating device, a data testing device, and a data processing device. The data processing device is configured to send a first command to the data testing device and send a first response to the data generating device after sending the first command. After receiving the first response, the data generating device sends a first data to the data processing device.

Description

用於測試半導體元件之系統及方法System and method for testing semiconductor components

本揭露係關於一種用於測試半導體元件之系統及一種用於測試半導體元件之方法。The present disclosure relates to a system for testing semiconductor devices and a method for testing semiconductor devices.

一般而言,晶片(例如積體電路晶片)在製作完成後會進行電性測試,判定晶片是否為電性正常的良品,以確保晶片在出貨時的品質。在半導體測試領域中,測試時間是自動測試中重要且影響產能的關鍵因素。一般而言,產能以每小時所能完成的單位數量(unit per hour)作為衡量標準。測試時間受到三種因素影響:測試方法的設計、測試程式的最佳化程度、以及測試系統的效能。而測試系統的效能主要取決於:硬體的執行速度、軟體的執行效率、以及軟硬體間溝通時間的長短。 在傳統的晶片測試流程中,每當硬體測試端執行完一筆測試後,必須等待測試機電腦內的應用程式介面(Application Programming Interface,API)產生下一筆測試命令,並將測試命令寫入機台控制單元的記憶體後,硬體測試端才能經由機台控制單元獲得下一筆測試命令。因此,在進行大量的測試時,硬體測試端等待下一筆測試命令的時間將導致測試效率降低。 為了減少軟硬體間溝通時間的耗費,現有開發一種嵌入式系統測試方式,其在嵌入式系統測試流程中,所有測試程式碼皆預先燒入至硬體測試端的硬碟內,故每當硬體測試端執行完一筆測試命令後,可立即從硬體測試端的記憶體中擷取下一筆測試命令。 然而,嵌入式系統雖能減少指令傳輸時間,卻也帶來其他的問題。隨著越來越多功能嵌入至硬體中執行,造成測試流程的修改彈性變小。因為所有程式碼皆預先燒入至硬體測試端的硬碟內,當程式碼存在異常,或測試結果產生異常時,無法直接中斷測試並對測試程式碼進行除錯,造成了研發人員修正及調整測試程式碼的不便,因此嵌入式系統測試方式未被大量運用。故,亟需一種半導體測試系統及方法,可以改善傳統晶片測試流程的效率,亦能有效率地排除測試程式之異常。In general, after a wafer (such as a integrated circuit wafer) is manufactured, an electrical test is performed to determine whether the wafer is a good electrical product to ensure the quality of the wafer at the time of shipment. In the field of semiconductor testing, test time is an important factor in automated testing and a key factor affecting productivity. Generally speaking, capacity is measured by unit per hour. The test time is affected by three factors: the design of the test method, the degree of optimization of the test program, and the performance of the test system. The performance of the test system mainly depends on: the execution speed of the hardware, the execution efficiency of the software, and the length of the communication time between the software and the hardware. In the traditional chip test process, after the hardware test end executes a test, it must wait for the application programming interface (API) in the tester computer to generate the next test command and write the test command to the machine. After testing the memory of the control unit, the hardware test terminal can obtain the next test command through the machine control unit. Therefore, when performing a large number of tests, the waiting time of the hardware test end for the next test command will cause the test efficiency to decrease. In order to reduce the cost of communication time between hardware and software, an embedded system test method has been developed. In the embedded system test process, all test code is pre-burned into the hard disk on the hardware test end. After the physical test terminal executes a test command, it can immediately retrieve the next test command from the memory of the hardware test terminal. However, although the embedded system can reduce the instruction transmission time, it also brings other problems. As more and more functions are embedded in the hardware for execution, the flexibility to modify the test process becomes smaller. Because all the code is pre-burned into the hard disk of the hardware test end, when the code is abnormal or the test result is abnormal, the test cannot be directly interrupted and the test code is debugged, which causes the R & D staff to correct and adjust The test code is inconvenient, so the embedded system test method is not widely used. Therefore, there is an urgent need for a semiconductor test system and method that can improve the efficiency of the traditional wafer test process, and can also effectively rule out abnormalities in the test program.

本揭露之一實施例提供一種用於測試半導體元件之系統,其包含一資料產生裝置、一資料測試裝置、及一資料處理裝置。資料處理裝置經組態以傳送一第一命令至資料測試裝置並在傳送第一命令後傳送一第一回應至資料產生裝置。在接收第一回應之後,資料產生裝置傳送一第一資料至該資料處理裝置。 本揭露之另一實施例提供一種用於測試半導體元件之方法,其包含提供一資料產生裝置,提供一資料處理裝置,及提供一資料測試裝置。該方法進一步包含:由該資料處理裝置在一第一時間傳送一第一命令至該資料測試裝置,使該資料測試裝置根據該第一命令進行測試;及在該第一命令傳送至該資料測試裝置後,由該資料處理裝置傳送一第一回應至該資料產生裝置。其中該資料產生裝置根據所接收之該第一回應傳送一第一資料至該資料處理裝置。 本揭露所描述的半導體測試系統及半導體測試方法可以提升半導體測試的效率,減少半導體測試系統中記憶體的使用量,並增加測試程式異常之排除效率。An embodiment of the present disclosure provides a system for testing a semiconductor device, which includes a data generating device, a data testing device, and a data processing device. The data processing device is configured to send a first command to the data testing device and send a first response to the data generating device after sending the first command. After receiving the first response, the data generating device sends a first data to the data processing device. Another embodiment of the present disclosure provides a method for testing a semiconductor device, which includes providing a data generating device, providing a data processing device, and providing a data testing device. The method further includes: transmitting, by the data processing device, a first command to the data test device at a first time, so that the data test device performs a test according to the first command; and transmitting the first command to the data test After the device, the data processing device sends a first response to the data generating device. The data generating device sends a first data to the data processing device according to the received first response. The semiconductor test system and semiconductor test method described in this disclosure can improve the efficiency of semiconductor testing, reduce the amount of memory used in the semiconductor test system, and increase the efficiency of eliminating test program abnormalities.

本揭露提供了數個不同的實施方法或實施例,可用於實現本發明的不同特徵。為簡化說明起見,本揭露也同時描述了特定零組件與佈置的範例。請注意提供這些特定範例的目的僅在於示範,而非予以任何限制。 在本文中所使用的“第一”、“第二”、“第三”以及“第四”語詞係描述各種元件、組件、步驟、信號或命令,這些元件、組件、步驟、信號以或命令應不受限於這些語詞。這些語詞僅用於分別一元件、組件、步驟、信號或命令與另一元件、組件、步驟、信號或命令。除非內文中清楚指明,否則當於本文中使用例如“第一”、“第二”、“第三”以及“第四”語詞時,並非意指序列或順序。 圖1繪示一半導體測試系統之示意圖。如圖1所示,半導體測試系統包含測試電腦100、機台控制單元120、硬體測試機140及負載板180。測試電腦100、機台控制單元120、硬體測試機140及負載板180彼此間具有可以傳輸信號及指令的電連接,待測裝置160則安裝於負載板180上。一般言之,待測裝置可為一積體電路晶片。 測試電腦100包含處理器102及記憶體104。測試電腦100藉由安裝於其上的API產生測試資料並儲存於記憶體104中。機台控制單元120包含處理器122、記憶體124以及輸入/輸出埠126。機台控制單元120可接收來自測試電腦100之測試資料,並將測試資料處理後產生測試命令。測試命令可儲存於記憶體124中,並經由輸入/輸出埠126送至硬體測試機140。 硬體測試機140可包含多個用於測試半導體元件之模組。舉例言之,硬體測試機140可包含直流電模組142、精確量測單元(Precision Measurement Unit,PMU)144、數位模組146以及中繼板148。根據所產生測試命令的內容,機台控制單元120經由輸入/輸出埠126將測試命令分別傳送至硬體測試機140相應之模組。 直流電模組142提供半導體元件直流參數的量測。舉例言之,直流電模組142可以提供測試電流至待測試之半導體元件,並量測半導體元件之相應電壓。或者,直流電模組142可以提供測試電壓至待測試之半導體元件並量測半導體元件之相應電流。 精確量測單元144亦提供半導體元件直流參數的量測。然而,相較於直流電模組142,精確量測單元144可以提供更高精準度(accuracy)的量測。一般而言,精確量測單元144係針對小電流及小電壓的測試。因為其所提供之電壓及電流較小,故必須具有更佳的精準度。 在積體電路晶片的測試中,除了上述針對直流電的電性量測外,亦需針對積體電路晶片的不同功能進行測試。數位模組146可針對積體電路之多種數位功能進行信號的收發測試。舉例言之,數位模組146可針對積體電路之數位控制I2C匯流排(Inter-Integrated Circuit Bus)、TTL(Transistor-transistor logic)、SPI(Serial Peripheral Interface)以及基頻的Tx/Rx進行信號收發測試。為了能進行上述測試,數位模組146除了能設定電壓準位及電流值以外,還能設定信號切換頻率、電壓上升/下降邊緣、接收/發送時間之同步等。一般而言,數位模組146可以提供之電壓範圍較小,大約與精確量測單元144接近。在一實施例中,數位模組146亦可提供精確量測單元144之所有功能。 中繼版148可提供硬體測試機140路徑切換功能。在半導體元件測試中,常因成本限制或者待測裝置的針腳(pin)數過多,使得硬體測試機140可用的測試頻道數目不足。在此情況下必須有針腳共用相同的測試頻道,便可透過中繼板148進行控制切換。 圖2繪示本發明一實施例之半導體測試系統200的示意圖。如圖2所示,半導體測試系統200包含資料產生裝置220、資料處理裝置240及資料測試裝置260。資料產生裝置220、資料處理裝置240及資料測試裝置260彼此間具有可以傳輸信號及指令的電連接。待測裝置280安裝於資料測試裝置260上。資料處理裝置240包含處理器242及記憶體244。 資料產生裝置220可產生一測試資料,資料處理裝置240從資料產生裝置220接收了測試資料後,會將測試資料處理並產生一測試命令。測試資料的處理以及測試命令的產生由處理器242執行。資料測試裝置260可根據來自資料處理裝置240之測試命令對待測裝置280進行測試。在本發明之一實施例中,在資料處理裝置240將測試命令傳送至資料測試裝置260後,資料處理裝置240隨即產生一回應至資料產生裝置220。資料產生裝置220在收到回應後便產生下一筆測試資料並傳送至資料處理裝置240。 資料處理裝置240將接收之下一筆測試資料進行處理並產生下一筆測試命令。當資料測試裝置260根據當前的測試命令完成測試後,會產生一回應給資料處理裝置240,此時資料處理裝置240便可將下一筆測試命令發送給資料測試裝置260。 需注意的是,在此實施例中,資料產生裝置220並不需要等待資料測試裝置260完成當前的測試命令,便可產生用於下一筆測試之測試資料。資料處理裝置240在資料測試裝置260完成當前的測試命令之前,便已完成下一測試資料之處理並已產生下一筆測試命令。依此方式,在資料測試裝置260進行的多個測試便可不中斷地持續進行,大幅減少半導體測試系統中軟硬體之間溝通所耗費的等待時間。 此外,資料處理裝置240可根據資料測試裝置260所回傳之回應來判斷測試命令是否正確地執行。若資料處理裝置240判斷資料測試裝置260所回傳之回應產生異常,可產生相應警告訊息,使研發人員能即時修正及調整測試程式碼,如此可增加異常排除的效率。 圖3繪示本發明一實施例之半導體測試方法的示意圖。如圖3所示,本實施例之半導體測試方法包括下列步驟: 步驟302:資料處理裝置240處理來自資料產生裝置220之第一資料,產生第一命令並將第一命令傳送至資料測試裝置260; 步驟304:資料測試裝置260根據第一命令對待測裝置280進行測試; 步驟306:資料處理裝置240傳送第一回應至資料產生裝置220; 步驟308:在接收了來自資料處理裝置240之第一回應後,資料產生裝置220產生用於下一筆測試之第二資料,並將第二資料傳送至資料處理裝置240; 步驟310:資料處理裝置240處理第二資料並產生用於下一筆測試之第二命令; 步驟312:當資料測試裝置260完成了第一命令的測試後,資料處理裝置240將第二命令傳送至資料測試裝置260;以及 步驟314:資料測試裝置260根據第二命令對待測裝置280進行測試。 需注意的是,步驟304與步驟306並不必然存在時間上先後的區別,也就是說,步驟304與步驟306可以同時開始進行。 圖4繪示本發明一實施例之半導體測試系統400的示意圖。如圖4所示,半導體測試系統400包含資料產生裝置420、資料處理裝置440及資料測試裝置460。資料產生裝置420、資料處理裝置440及資料測試裝置460彼此間具有可以傳輸信號及指令的電連接。待測裝置480安裝於資料測試裝置460上。資料產生裝置420包含記憶體422。資料處理裝置440包含處理器442及記憶體444。 在此實施例中,資料產生裝置420根據資料處理裝置440傳送之第一回應而產生一筆測試資料。每當資料產生裝置420產生一筆測試資料後,並不直接將測試資料傳送至資料處理裝置440,而是先將測試資料存入記憶體422中。在收到資料處理裝置440傳送之一第二回應後,資料產生裝置420才將測試資料傳送至資料處理裝置440。 當資料處理裝置440將一筆測試命令傳送至資料測試裝置460後,便發送第一回應至資料產生裝置。而資料處理裝置440可根據不同情況傳送第二回應。一般言之,當資料處理裝置440完成了當前測試資料的處理,而可以處理下一筆測試資料時,將傳送第二回應至資料產生裝置420。 在此實施例中,資料產生裝置420根據資料處理裝置440傳送之第一回應而產生測試資料,可避免資料產生裝置420持續不斷產生測試資料,並因此降低了資料產生裝置420之記憶體使用量。此外,資料處理裝置440可根據資料測試裝置460所回傳之回應來判斷測試命令是否正確地執行。第一回應及第二回應的傳送以及異常的判斷由處理器442執行。若資料處理裝置440判斷資料測試裝置460所回傳之回應產生異常,可產生相應警告訊息,使研發人員能即時修正及調整測試程式碼,如此可增加異常排除的效率。 圖5繪示本發明一實施例之半導體測試方法的示意圖。圖5中所示之半導體測試方法對應於圖4中所示之半導體測試系統400之一部分操作步驟。如圖5所示,本實施例之半導體測試方法包括下列步驟: 步驟502:資料處理裝置440傳送第一回應至資料產生裝置420; 步驟504:回應於第一回應,資料產生裝置420產生第一資料並將第一資料儲存於記憶體422中; 步驟506:資料處理裝置440傳送第二回應至資料產生裝置420;以及 步驟508:回應於第二回應,資料產生裝置420將儲存於記憶體422中的第一資料傳送至資料處理裝置440。 步驟510:資料處理裝置440將第一資料儲存於記憶體444中。 圖6繪示本發明一實施例之半導體測試方法的示意圖。圖6中所示之半導體測試方法可對應於圖2、圖4、圖7及圖9中所示之半導體測試系統之一部分操作步驟。為了說明的方便,現以圖2中所示之半導體測試系統200為例進行說明。 如圖6所示,本實施例之半導體測試方法包括下列步驟: 步驟602:資料處理裝置240處理來自資料產生裝置220的第二資料並產生第二命令; 步驟604:資料測試裝置260完成根據第一命令之測試; 步驟606:資料測試裝置260傳送第三回應至資料處理裝置 240; 步驟608:資料處理裝置240傳送第二命令至資料測試裝置260;以及 步驟610:資料測試裝置260進行根據第二命令之測試。 需注意的是,在此實施例中,步驟602於時間上必定早於步驟606,如此一來,在資料測試裝置260完成根據第一命令的測試之前,資料處理裝置240便已完成第二資料之處理並已產生第二命令。依此方式,在資料測試裝置260進行的多個測試便可不中斷地持續進行,大幅減少半導體測試系統中軟硬體之間溝通所耗費的等待時間。 圖7繪示本發明一實施例之半導體測試系統700的示意圖。如圖7所示,半導體測試系統700包含資料產生裝置720、資料處理裝置740及資料測試裝置760。資料產生裝置720、資料處理裝置740及資料測試裝置760彼此間具有可以傳輸信號及指令的電連接。待測裝置780安裝於資料測試裝置760上。資料處理裝置740包含處理器742、第一記憶體744以及第二記憶體746。 在此實施例中,資料產生裝置720將經過編碼之測試資料傳送至資料處理裝置740。資料處理裝置740接收了經編碼之測試資料後,先將其儲存於第一記憶體744中。在經編碼之測試資料儲存至第一記憶體744之後,資料處理裝置740會回傳一回應至資料產生裝置720,使資料產生裝置720產生下一筆測試資料。資料處理裝置740之處理器742會將儲存於第一記憶體744中的測試資料進行解碼,並處理產生測試命令。產生之測試命令會儲存至第二記憶體746中。此時資料處理裝置740會傳送一回應至資料產生裝置720,使資料產生裝置720將下一筆經編碼之測試資料傳送到資料處理裝置740並儲存於第一記憶體744中。 每當完成一筆測試,資料測試裝置760會傳送一回應至資料處理裝置740,隨後資料處理裝置740便將儲存在第二記憶體746中的測試命令傳送至資料測試裝置760。在第二記憶體746中的測試命令傳送至資料測試裝置760之後,資料處理裝置740將儲存於第一記憶體744中的測試資料進行解碼,並處理產生下一筆測試命令。產生之下一筆測試命令會儲存至第二記憶體746中。 圖8繪示本發明一實施例之半導體測試方法的示意圖。圖8中所示之半導體測試方法對應於圖7中所示之半導體測試系統700之一部分操作步驟。如圖8所示,本實施例之半導體測試方法包括下列步驟: 步驟802:資料產生裝置720將經過編碼之第一資料傳送至資料處理裝置740,資料處理裝置740將經編碼之第一資料儲存於第一記憶體744; 步驟804:資料處理裝置740傳送第一回應至資料產生裝置720,使資料產生裝置720產生經編碼之第二資料; 步驟806:資料處理裝置740解碼經編碼之第一資料,處理產生第一命令並將第一命令儲存於第二記憶體746; 步驟808:資料處理裝置740傳送第二回應至資料產生裝置720,使資料產生裝置720將經編碼之第二資料傳送到資料處理裝置740並儲存於第一記憶體744中;以及 步驟810:資料測試裝置760傳送第三回應至資料處理裝置740,使資料處理裝置740將第一命令傳送至資料測試裝置760。 需注意的是,在此實施例中,資料產生裝置720在資料測試裝置760完成當前的測試命令之前,便已將下一筆測試之資料傳送至資料處理裝置740並儲存於第一記憶體中。且資料處理裝置740在資料測試裝置760完成當前的測試命令之前,便已解碼並產生下一筆測試之命令且儲存於第二記憶體中。依此方式,每當資料測試裝置760完成一筆測試,回傳一回應至資料處理裝置740後便可立即獲得下一筆測試的命令。因此,進行的多個測試便可不中斷地持續進行,大幅減少半導體測試系統中軟硬體之間溝通所耗費的等待時間。 圖9繪示本發明一實施例之半導體測試系統的示意圖。如圖9所示,半導體測試系統900包含資料產生裝置920、資料處理裝置940及資料測試裝置960。資料產生裝置920、資料處理裝置940及資料測試裝置960彼此間具有可以傳輸信號及指令的電連接。待測裝置980安裝於資料測試裝置960上。資料處理裝置940包含處理器942、記憶體944以及暫存器946。 在此實施例中,資料產生裝置920將經過編碼之測試資料傳送至資料處理裝置940。資料處理裝置940接收了經編碼之測試資料後,先將其儲存於記憶體944中。當資料處理裝置940接收到資料測試裝置960之一回應,告知已完成當前測試後,資料處理裝置940之處理器942將儲存於記憶體944中的測試資料進行解碼,並同時經由暫存器946同步傳送至資料測試裝置960。亦即,資料處理裝置940不需將產生之下一筆測試命令儲存於記憶體中。可以節省資料處理裝置940的記憶體使用量。 圖10繪示本發明一實施例之半導體測試方法的示意圖。圖10中所示之半導體測試方法對應於圖9中所示之半導體測試系統900之一部分操作步驟。如圖10所示,本實施例之半導體測試方法包括下列步驟: 步驟1002:資料產生裝置920將經過編碼之測試資料傳送至資料處理裝置940; 步驟1004:資料處理裝置940將經編碼之測試資料儲存於記憶體944; 步驟1006:資料測試裝置960傳送一回應至資料處理裝置940 ; 步驟1008:資料處理裝置940將記憶體944中經編碼之測試資料解碼產生測試命令,並經由暫存器946同步傳送至資料測試裝置 960。 儘管已參考本發明之特定實施例描述並說明本發明,但此等描述及說明並不限制本發明。熟習此項技術者應理解,在不脫離如由所附申請專利範圍界定的本發明之真實精神及範疇的情況下,可作出各種改變且可用等效物取代。應將本說明書及圖式視為說明性而非限制性的。可作出修改,以使特定情形、方法或元件適應於本發明之目標、精神及範疇。所有該等修改均意欲處於此處隨附之申請專利範圍之範疇內。儘管已參看按特定次序執行之特定操作描述本文中所揭示之方法,但應理解,在不脫離本發明之教示的情況下,可組合、再分或重新定序此等操作以形成等效方法。因此,除非本文中具體指示,否則操作之次序及分組並非對本發明之限制。This disclosure provides several different implementation methods or embodiments that can be used to implement different features of the present invention. To simplify the description, this disclosure also describes examples of specific components and arrangements. Please note that these specific examples are provided for demonstration purposes only and not for any limitation. The terms "first", "second", "third", and "fourth" as used herein describe various elements, components, steps, signals, or commands, and these elements, components, steps, signals, or commands Should not be limited to these words. These terms are only used to distinguish one element, component, step, signal or command from another element, component, step, signal or command. Unless the context clearly indicates otherwise, the terms "first," "second," "third," and "fourth" when used herein do not imply a sequence or order. FIG. 1 is a schematic diagram of a semiconductor test system. As shown in FIG. 1, the semiconductor test system includes a test computer 100, a machine control unit 120, a hardware test machine 140, and a load board 180. The test computer 100, the machine control unit 120, the hardware test machine 140, and the load board 180 have electrical connections that can transmit signals and instructions to each other. The device under test 160 is mounted on the load board 180. Generally speaking, the device under test can be an integrated circuit chip. The test computer 100 includes a processor 102 and a memory 104. The test computer 100 generates test data by using an API installed on the test computer 100 and stores the test data in the memory 104. The machine control unit 120 includes a processor 122, a memory 124 and an input / output port 126. The machine control unit 120 can receive the test data from the test computer 100 and process the test data to generate a test command. The test command can be stored in the memory 124 and sent to the hardware testing machine 140 through the input / output port 126. The hardware testing machine 140 may include a plurality of modules for testing semiconductor components. For example, the hardware testing machine 140 may include a DC power module 142, a Precision Measurement Unit (PMU) 144, a digital module 146, and a relay board 148. According to the content of the generated test command, the machine control unit 120 transmits the test command to the corresponding module of the hardware test machine 140 through the input / output port 126 respectively. The DC power module 142 provides a measurement of a DC parameter of a semiconductor element. For example, the DC power module 142 can provide a test current to the semiconductor device to be tested, and measure the corresponding voltage of the semiconductor device. Alternatively, the DC power module 142 may provide a test voltage to the semiconductor device to be tested and measure a corresponding current of the semiconductor device. The precise measurement unit 144 also provides measurement of DC parameters of semiconductor components. However, compared to the DC power module 142, the accurate measurement unit 144 can provide a higher accuracy measurement. Generally speaking, the accurate measurement unit 144 is a test for small current and small voltage. Because it provides less voltage and current, it must have better accuracy. In the test of integrated circuit chips, in addition to the above-mentioned electrical measurement for direct current, different functions of the integrated circuit chip need to be tested. The digital module 146 can perform signal transmission and reception tests for various digital functions of the integrated circuit. For example, the digital module 146 can signal the digital control I2C bus (Inter-Integrated Circuit Bus), TTL (Transistor-transistor logic), SPI (Serial Peripheral Interface), and Tx / Rx of the fundamental frequency for the integrated circuit. Send and receive tests. In order to perform the above tests, in addition to being able to set the voltage level and current value, the digital module 146 can also set the signal switching frequency, voltage rising / falling edges, and synchronization of receiving / transmitting time. Generally speaking, the voltage range that the digital module 146 can provide is relatively small, which is approximately close to the accurate measurement unit 144. In one embodiment, the digital module 146 can also provide all the functions of the accurate measurement unit 144. The relay version 148 can provide the path switching function of the hardware testing machine 140. In semiconductor device testing, the number of test channels available to the hardware tester 140 is often insufficient due to cost constraints or too many pins of the device under test. In this case, the pins must share the same test channel, and control switching can be performed through the relay board 148. FIG. 2 is a schematic diagram of a semiconductor test system 200 according to an embodiment of the present invention. As shown in FIG. 2, the semiconductor test system 200 includes a data generating device 220, a data processing device 240, and a data testing device 260. The data generating device 220, the data processing device 240, and the data testing device 260 have electrical connections with each other that can transmit signals and instructions. The device under test 280 is mounted on the data testing device 260. The data processing device 240 includes a processor 242 and a memory 244. The data generating device 220 can generate a test data. After receiving the test data from the data generating device 220, the data processing device 240 processes the test data and generates a test command. Processing of test data and generation of test commands are performed by the processor 242. The data testing device 260 may test the device under test 280 according to a test command from the data processing device 240. In one embodiment of the present invention, after the data processing device 240 transmits the test command to the data testing device 260, the data processing device 240 then generates a response to the data generating device 220. After receiving the response, the data generating device 220 generates the next test data and sends it to the data processing device 240. The data processing device 240 will receive the next test data for processing and generate the next test command. After the data testing device 260 completes the test according to the current test command, a response is generated to the data processing device 240. At this time, the data processing device 240 can send the next test command to the data testing device 260. It should be noted that, in this embodiment, the data generating device 220 does not need to wait for the data testing device 260 to complete the current test command, and can generate test data for the next test. The data processing device 240 has completed the processing of the next test data and generated the next test command before the data test device 260 completes the current test command. In this way, multiple tests performed in the data testing device 260 can be continuously performed without interruption, which greatly reduces the waiting time required for communication between software and hardware in the semiconductor test system. In addition, the data processing device 240 can determine whether the test command is executed correctly according to the response returned by the data testing device 260. If the data processing device 240 judges that the response returned by the data testing device 260 is abnormal, a corresponding warning message can be generated, so that the R & D personnel can correct and adjust the test code in real time, which can increase the efficiency of exception elimination. FIG. 3 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. As shown in FIG. 3, the semiconductor testing method of this embodiment includes the following steps: Step 302: The data processing device 240 processes the first data from the data generating device 220, generates a first command, and transmits the first command to the data testing device 260. Step 304: the data testing device 260 tests the device under test 280 according to the first command; step 306: the data processing device 240 sends a first response to the data generating device 220; step 308: upon receiving the first from the data processing device 240 After the response, the data generating device 220 generates second data for the next test, and transmits the second data to the data processing device 240; Step 310: The data processing device 240 processes the second data and generates the first data for the next test. Two commands; step 312: after the data test device 260 completes the test of the first command, the data processing device 240 transmits the second command to the data test device 260; and step 314: the data test device 260 performs the test on the device under test according to the second command 280 for testing. It should be noted that step 304 and step 306 are not necessarily different in time sequence, that is, step 304 and step 306 can be started at the same time. FIG. 4 is a schematic diagram of a semiconductor test system 400 according to an embodiment of the present invention. As shown in FIG. 4, the semiconductor test system 400 includes a data generating device 420, a data processing device 440, and a data testing device 460. The data generating device 420, the data processing device 440, and the data testing device 460 have electrical connections with each other that can transmit signals and instructions. The device under test 480 is mounted on the data testing device 460. The data generating device 420 includes a memory 422. The data processing device 440 includes a processor 442 and a memory 444. In this embodiment, the data generating device 420 generates a piece of test data according to the first response sent by the data processing device 440. Whenever the data generating device 420 generates a piece of test data, the test data is not directly transmitted to the data processing device 440, but the test data is first stored in the memory 422. After receiving a second response transmitted by the data processing device 440, the data generating device 420 transmits the test data to the data processing device 440. After the data processing device 440 sends a test command to the data testing device 460, it sends a first response to the data generating device. The data processing device 440 may transmit a second response according to different situations. Generally speaking, when the data processing device 440 finishes processing the current test data and can process the next test data, it will send a second response to the data generating device 420. In this embodiment, the data generating device 420 generates test data according to the first response sent by the data processing device 440, which can prevent the data generating device 420 from continuously generating test data, and therefore reduces the memory usage of the data generating device 420. . In addition, the data processing device 440 may determine whether the test command is executed correctly according to the response returned by the data testing device 460. The transmission of the first response and the second response and the determination of the abnormality are executed by the processor 442. If the data processing device 440 determines that the response returned by the data testing device 460 is abnormal, a corresponding warning message can be generated, so that the R & D personnel can correct and adjust the test code in real time, which can increase the efficiency of exception removal. FIG. 5 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. The semiconductor test method shown in FIG. 5 corresponds to a part of the operation steps of the semiconductor test system 400 shown in FIG. 4. As shown in FIG. 5, the semiconductor test method of this embodiment includes the following steps: Step 502: The data processing device 440 sends a first response to the data generating device 420; Step 504: In response to the first response, the data generating device 420 generates a first response The data and stores the first data in the memory 422; step 506: the data processing device 440 sends a second response to the data generating device 420; and step 508: in response to the second response, the data generating device 420 will be stored in the memory 422 The first data in is transmitted to the data processing device 440. Step 510: The data processing device 440 stores the first data in the memory 444. FIG. 6 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. The semiconductor test method shown in FIG. 6 may correspond to a part of the operation steps of the semiconductor test system shown in FIGS. 2, 4, 7, and 9. For convenience of description, the semiconductor test system 200 shown in FIG. 2 is taken as an example for description. As shown in FIG. 6, the semiconductor testing method of this embodiment includes the following steps: Step 602: The data processing device 240 processes the second data from the data generating device 220 and generates a second command; Step 604: The data testing device 260 finishes A command test; step 606: the data testing device 260 sends a third response to the data processing device 240; step 608: the data processing device 240 sends a second command to the data testing device 260; and step 610: the data testing device 260 performs Test of Second Order. It should be noted that, in this embodiment, step 602 must be earlier than step 606 in time. In this way, the data processing device 240 has completed the second data before the data testing device 260 completes the test according to the first command. Processing and has generated a second command. In this way, multiple tests performed in the data testing device 260 can be continuously performed without interruption, which greatly reduces the waiting time required for communication between software and hardware in the semiconductor test system. FIG. 7 is a schematic diagram of a semiconductor test system 700 according to an embodiment of the present invention. As shown in FIG. 7, the semiconductor test system 700 includes a data generating device 720, a data processing device 740, and a data testing device 760. The data generating device 720, the data processing device 740, and the data testing device 760 have electrical connections with each other that can transmit signals and instructions. The device under test 780 is mounted on the data testing device 760. The data processing device 740 includes a processor 742, a first memory 744 and a second memory 746. In this embodiment, the data generating device 720 transmits the encoded test data to the data processing device 740. After receiving the encoded test data, the data processing device 740 stores it in the first memory 744. After the encoded test data is stored in the first memory 744, the data processing device 740 returns a response to the data generating device 720, so that the data generating device 720 generates the next test data. The processor 742 of the data processing device 740 decodes the test data stored in the first memory 744 and processes to generate a test command. The generated test command is stored in the second memory 746. At this time, the data processing device 740 sends a response to the data generating device 720, so that the data generating device 720 sends the next encoded test data to the data processing device 740 and stores it in the first memory 744. Each time a test is completed, the data testing device 760 sends a response to the data processing device 740, and then the data processing device 740 sends a test command stored in the second memory 746 to the data testing device 760. After the test command in the second memory 746 is transmitted to the data testing device 760, the data processing device 740 decodes the test data stored in the first memory 744 and processes it to generate a next test command. The next test command generated is stored in the second memory 746. FIG. 8 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. The semiconductor test method shown in FIG. 8 corresponds to a part of the operation steps of the semiconductor test system 700 shown in FIG. 7. As shown in FIG. 8, the semiconductor testing method of this embodiment includes the following steps: Step 802: The data generating device 720 transmits the encoded first data to the data processing device 740, and the data processing device 740 stores the encoded first data In the first memory 744; step 804: the data processing device 740 sends a first response to the data generating device 720, so that the data generating device 720 generates the encoded second data; step 806: the data processing device 740 decodes the encoded first Data, processing generates a first command and stores the first command in the second memory 746; step 808: the data processing device 740 sends a second response to the data generating device 720, so that the data generating device 720 transmits the encoded second data Go to the data processing device 740 and store it in the first memory 744; and step 810: the data testing device 760 sends a third response to the data processing device 740, so that the data processing device 740 sends the first command to the data testing device 760. It should be noted that, in this embodiment, before the data testing device 760 completes the current test command, the data generating device 720 has transmitted the data of the next test to the data processing device 740 and stored in the first memory. And before the data testing device 760 completes the current test command, the data processing device 740 decodes and generates the next test command and stores it in the second memory. In this way, whenever the data testing device 760 completes a test, a response is returned to the data processing device 740 to obtain the command for the next test immediately. Therefore, multiple tests can be performed continuously without interruption, which greatly reduces the waiting time for communication between software and hardware in a semiconductor test system. FIG. 9 is a schematic diagram of a semiconductor test system according to an embodiment of the present invention. As shown in FIG. 9, the semiconductor test system 900 includes a data generating device 920, a data processing device 940, and a data testing device 960. The data generating device 920, the data processing device 940, and the data testing device 960 have electrical connections with each other that can transmit signals and instructions. The device under test 980 is mounted on the data testing device 960. The data processing device 940 includes a processor 942, a memory 944, and a register 946. In this embodiment, the data generating device 920 transmits the encoded test data to the data processing device 940. After the data processing device 940 receives the encoded test data, it stores it in the memory 944 first. When the data processing device 940 receives a response from one of the data testing devices 960 informing that the current test has been completed, the processor 942 of the data processing device 940 decodes the test data stored in the memory 944 and simultaneously passes the temporary register 946 Synchronized to the data testing device 960. That is, the data processing device 940 does not need to store the next test command generated in the memory. The memory usage of the data processing device 940 can be saved. FIG. 10 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. The semiconductor test method shown in FIG. 10 corresponds to a part of the operation steps of the semiconductor test system 900 shown in FIG. 9. As shown in FIG. 10, the semiconductor test method of this embodiment includes the following steps: Step 1002: The data generating device 920 transmits the encoded test data to the data processing device 940; Step 1004: The data processing device 940 transmits the encoded test data Stored in the memory 944; step 1006: the data testing device 960 sends a response to the data processing device 940; step 1008: the data processing device 940 decodes the encoded test data in the memory 944 to generate a test command, and passes the register 946 Synchronized to the data testing device 960. Although the invention has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations do not limit the invention. Those skilled in the art should understand that various changes can be made and replaced with equivalents without departing from the true spirit and scope of the invention as defined by the scope of the appended patent applications. This specification and drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, method, or element to the objectives, spirit, and scope of the invention. All such modifications are intended to be within the scope of the patentable applications attached hereto. Although the methods disclosed herein have been described with reference to specific operations performed in a specific order, it should be understood that such operations may be combined, subdivided, or reordered to form equivalent methods without departing from the teachings of the present invention. . Therefore, unless specifically indicated herein, the order and grouping of operations is not a limitation of the present invention.

100 測試電腦 102 處理器 104 記憶體 120 機台控制單元 122 處理器 124 記憶體 126 輸入/輸出埠 140 硬體測試機 142 直流電模組 144 精確量測單元 146 數位模組 148 中繼板 160 待測裝置 180 負載板 200 半導體測試系統 220 資料產生裝置 240 資料處理裝置 242 處理器 244 記憶體 260 資料測試裝置 280 待測裝置 302、304、306、308 步驟 310、312、314 步驟 400 半導體測試系統 420 資料產生裝置 422 記憶體 440 資料處理裝置 442 處理器 444 記憶體 460 資料測試裝置 480 待測裝置 502、504、506、508、510 步驟 602、604、606、608、610 步驟 700 半導體測試系統 720 資料產生裝置 740 資料處理裝置 742 處理器 744 第一記憶體 746 第二記憶體 760 資料測試裝置 780 待測裝置 802、804、806、808、810 步驟 900 半導體測試系統 920 資料產生裝置 940 資料處理裝置 942 處理器 944 記憶體 946 暫存器 960 資料測試裝置 980 待測裝置 1002、1004、1006、1008 步驟100 test computer 102 processor 104 memory 120 machine control unit 122 processor 124 memory 126 input / output port 140 hardware test machine 142 DC module 144 precision measurement unit 146 digital module 148 relay board 160 to be tested Device 180 Load board 200 Semiconductor test system 220 Data generating device 240 Data processing device 242 Processor 244 Memory 260 Data test device 280 Device under test 302, 304, 306, 308 Step 310, 312, 314 Step 400 Semiconductor test system 420 Data generation device 422 Memory 440 Data processing device 442 Processor 444 Memory 460 data Test device 480 Device under test 502, 504, 506, 508, 510 Step 602, 604, 606, 608, 610 Step 700 Semiconductor test system 720 Data generation device 740 Data processing device 742 Processor 744 First memory 746 Second memory 760 Data test device 780 Device under test 802, 804, 806, 808, 810 Step 900 Semiconductor test system 920 Data generation device 940 Data processing device 942 Processor 944 Memory 946 temporarily Register 960 Data test device 980 Device under test 1002, 1004, 1006, 1008 Steps

由以下詳細說明與附隨圖式得以最佳了解本申請案揭示內容之各方面。 圖1繪示一半導體測試系統的示意圖。 圖2繪示本發明一實施例之半導體測試系統的示意圖。 圖3繪示本發明一實施例之半導體測試方法的示意圖。 圖4繪示本發明一實施例之半導體測試系統的示意圖。 圖5繪示本發明一實施例之半導體測試方法的示意圖。 圖6繪示本發明一實施例之半導體測試方法的示意圖。 圖7繪示本發明一實施例之半導體測試系統的示意圖。 圖8繪示本發明一實施例之半導體測試方法的示意圖。 圖9繪示本發明一實施例之半導體測試系統的示意圖。 圖10繪示本發明一實施例之半導體測試方法的示意圖。The aspects of the disclosure of this application can be best understood from the following detailed description and accompanying drawings. FIG. 1 is a schematic diagram of a semiconductor test system. FIG. 2 is a schematic diagram of a semiconductor test system according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a semiconductor test system according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. FIG. 6 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. FIG. 7 is a schematic diagram of a semiconductor test system according to an embodiment of the present invention. FIG. 8 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention. FIG. 9 is a schematic diagram of a semiconductor test system according to an embodiment of the present invention. FIG. 10 is a schematic diagram of a semiconductor testing method according to an embodiment of the present invention.

Claims (17)

一種用於測試半導體元件之系統,其包含:一資料產生裝置;一資料測試裝置;及具有一處理器及一第一記憶體之一資料處理裝置,該資料處理裝置經組態以傳送一第一命令至該資料測試裝置並在傳送該第一命令後傳送一第一回應至該資料產生裝置,其中在接收該第一回應之後,該資料產生裝置傳送一第一資料至該資料處理裝置。A system for testing semiconductor components includes: a data generating device; a data testing device; and a data processing device having a processor and a first memory, the data processing device is configured to transmit a first A command is sent to the data testing device and a first response is sent to the data generating device after the first command is sent. After receiving the first response, the data generating device sends a first data to the data processing device. 如請求項1之系統,其中該處理器經組態以處理該第一資料並產生一第二命令,並將該第二命令儲存至該第一記憶體中。The system of claim 1, wherein the processor is configured to process the first data and generate a second command, and store the second command in the first memory. 如請求項2之系統,其中該資料產生裝置回應於該第一回應以產生該第一資料。The system of claim 2, wherein the data generating device responds to the first response to generate the first data. 如請求項2之系統,其中該資料產生裝置回應於來自該資料處理裝置之一第二回應將該第一資料傳送至該資料處理裝置。As in the system of claim 2, wherein the data generating device transmits the first data to the data processing device in response to a second response from the data processing device. 如請求項4之系統,其中該資料處理裝置經組態以回應於一第三回應以將儲存於該第一記憶體中之該第二命令傳送至該資料測試裝置。The system of claim 4, wherein the data processing device is configured to respond to a third response to transmit the second command stored in the first memory to the data testing device. 如請求項5之系統,其中該第一資料之傳送在該資料處理裝置接收該第三回應之前完成。As in the system of claim 5, wherein the transmission of the first data is completed before the data processing device receives the third response. 如請求項2之系統,其中該資料處理裝置進一步包含一暫存器;且該資料處理裝置經組態以回應於一第三回應,在處理該第一資料之同時將該第二命令經由該暫存器同步傳送至該資料測試裝置。If the system of claim 2, wherein the data processing device further includes a register; and the data processing device is configured to respond to a third response, while processing the first data, the second command is passed through the second command. The register is synchronously transmitted to the data testing device. 如請求項2之系統,其中該資料處理裝置進一步包含:一第二記憶體,其中該資料處理裝置經組態以在傳送該第一回應至該資料產生裝置之前,將該第二命令從該第一記憶體轉存至該第二記憶體中。As in the system of claim 2, wherein the data processing device further comprises: a second memory, wherein the data processing device is configured to remove the second command from the first command before transmitting the first response to the data generating device. The first memory is transferred to the second memory. 如請求項8之系統,其中該資料處理裝置經組態以回應於一第三回應將儲存於該第二記憶體中之該第二命令傳送至該資料測試裝置。The system of claim 8, wherein the data processing device is configured to transmit the second command stored in the second memory to the data testing device in response to a third response. 如請求項2之系統,其中:該第一資料經編碼,且該處理器經組態以解碼該第一資料並產生該第二命令。The system of claim 2, wherein: the first data is encoded, and the processor is configured to decode the first data and generate the second command. 一種用於測試半導體元件之方法,其包含:提供一資料產生裝置;提供具有一處理器及一第一記憶體之一資料處理裝置;及提供一資料測試裝置;由該資料處理裝置在一第一時間傳送一第一命令至該資料測試裝置,使該資料測試裝置根據該第一命令進行測試;在該第一命令傳送至該資料測試裝置後,該資料處理裝置傳送一第一回應至該資料產生裝置;該資料產生裝置根據所接收之該第一回應傳送一第一資料至該資料處理裝置。A method for testing a semiconductor device includes: providing a data generating device; providing a data processing device having a processor and a first memory; and providing a data testing device; the data processing device is provided in a first Send a first command to the data test device at a time, so that the data test device performs a test according to the first command; after the first command is sent to the data test device, the data processing device sends a first response to the data test device A data generating device; the data generating device sends a first data to the data processing device according to the received first response. 如請求項11之方法,其進一步包含由該資料處理裝置之該處理器處理該第一資料並產生一第二命令,並將該第二命令儲存至該第一記憶體中。The method of claim 11, further comprising processing the first data by the processor of the data processing device and generating a second command, and storing the second command in the first memory. 如請求項11之方法,其中該資料產生裝置回應於該第一回應而產生該第一資料,並回應於來自該資料處理裝置之一第二回應將該第一資料傳送至該資料處理裝置。The method of claim 11, wherein the data generating device generates the first data in response to the first response, and transmits the first data to the data processing device in response to a second response from the data processing device. 如請求項12之方法,其中該資料處理裝置回應於一第三回應,在處理該第一資料之同時將該第二命令同步傳送至該資料測試裝置。The method of claim 12, wherein the data processing device responds to a third response, and simultaneously transmits the second command to the data testing device while processing the first data. 如請求項14之方法,其中該第一資料之傳送在該資料處理裝置接收該第三回應之前完成。The method of claim 14, wherein the transmission of the first data is completed before the data processing device receives the third response. 如請求項12之方法,其中該資料處理裝置進一步包含一第二記憶體,且該方法進一步包含:由該資料處理裝置在傳送該第一回應至該資料產生裝置之前,將該第二命令從該第一記憶體轉存至該第二記憶體中。The method of claim 12, wherein the data processing device further includes a second memory, and the method further includes: before transmitting the first response to the data generating device, the data processing device sends the second command from The first memory is transferred to the second memory. 如請求項12之方法,其進一步包含由該處理器解碼該第一資料並產生該第二命令。The method of claim 12, further comprising the processor decoding the first data and generating the second command.
TW105143111A 2016-12-23 2016-12-23 System and method for testing semiconductor elements TWI637177B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105143111A TWI637177B (en) 2016-12-23 2016-12-23 System and method for testing semiconductor elements
CN201710062839.1A CN108241117B (en) 2016-12-23 2017-01-26 System and method for testing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105143111A TWI637177B (en) 2016-12-23 2016-12-23 System and method for testing semiconductor elements

Publications (2)

Publication Number Publication Date
TW201823743A TW201823743A (en) 2018-07-01
TWI637177B true TWI637177B (en) 2018-10-01

Family

ID=62702914

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143111A TWI637177B (en) 2016-12-23 2016-12-23 System and method for testing semiconductor elements

Country Status (2)

Country Link
CN (1) CN108241117B (en)
TW (1) TWI637177B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856246B (en) * 2020-07-13 2024-07-09 胜达克半导体科技(上海)股份有限公司 High-speed synchronous trigger bus circuit and synchronous trigger method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW263617B (en) * 1994-03-22 1995-11-21 Ibm
US20050182588A1 (en) * 2004-02-12 2005-08-18 Chenoweth Gordon E. Test system for integrated circuits with serdes ports
JP2007523350A (en) * 2004-02-18 2007-08-16 フォームファクター, インコーポレイテッド Probing equipment
CN101512359A (en) * 2006-07-10 2009-08-19 阿斯特瑞昂公司 System and method for performing processing in a testing system
TWI424176B (en) * 2008-06-09 2014-01-21 Kingtiger Technology Canada Inc Systems and methods for testing integrated circuit devices
TWM491837U (en) * 2014-04-14 2014-12-11 Chun-Yi Lu Testing apparatus and testing system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7657810B2 (en) * 2006-02-03 2010-02-02 Texas Instruments Incorporated Scan testing using scan frames with embedded commands
US6404218B1 (en) * 2000-04-24 2002-06-11 Advantest Corp. Multiple end of test signal for event based test system
US7265570B2 (en) * 2001-09-28 2007-09-04 Inapac Technology, Inc. Integrated circuit testing module
US20030152111A1 (en) * 2002-02-14 2003-08-14 Sony Computer Entertainment Inc. System for verifying operations of system LSI
CN100392420C (en) * 2005-03-17 2008-06-04 上海华虹集成电路有限责任公司 Multi-channel analyzer of non-contact applied chip
US7208969B2 (en) * 2005-07-06 2007-04-24 Optimaltest Ltd. Optimize parallel testing
CN101059546A (en) * 2006-04-18 2007-10-24 盛群半导体股份有限公司 System chip with multiple test mode and the test method
JP2008275407A (en) * 2007-04-27 2008-11-13 Nec Electronics Corp Semiconductor integrated circuit and method of inspecting semiconductor integrated circuit
CN101576603B (en) * 2008-05-07 2011-06-01 环旭电子股份有限公司 Testing device
CN103185859B (en) * 2011-12-27 2016-05-18 国民技术股份有限公司 Hybrid test apparatus and method in a kind of sheet
CN103048610B (en) * 2012-12-24 2015-12-23 上海金东唐科技股份有限公司 The PCB Auto-Test System of no-carry stand-by period
US9003253B2 (en) * 2013-08-21 2015-04-07 Litepoint Corporation Method for testing data packet signal transceiver using coordinated transmitted data packet signal power
CN104678982A (en) * 2013-11-28 2015-06-03 英业达科技有限公司 Test device using independent control module to test, and method of test device
CN104515951A (en) * 2014-11-27 2015-04-15 北京航天测控技术有限公司 Board-level embedded test controller and board-level embedded test method
CN105004984A (en) * 2015-06-25 2015-10-28 深圳市芯海科技有限公司 Automatic chip testing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW263617B (en) * 1994-03-22 1995-11-21 Ibm
US20050182588A1 (en) * 2004-02-12 2005-08-18 Chenoweth Gordon E. Test system for integrated circuits with serdes ports
JP2007523350A (en) * 2004-02-18 2007-08-16 フォームファクター, インコーポレイテッド Probing equipment
CN101512359A (en) * 2006-07-10 2009-08-19 阿斯特瑞昂公司 System and method for performing processing in a testing system
TWI424176B (en) * 2008-06-09 2014-01-21 Kingtiger Technology Canada Inc Systems and methods for testing integrated circuit devices
TWM491837U (en) * 2014-04-14 2014-12-11 Chun-Yi Lu Testing apparatus and testing system

Also Published As

Publication number Publication date
TW201823743A (en) 2018-07-01
CN108241117A (en) 2018-07-03
CN108241117B (en) 2021-02-05

Similar Documents

Publication Publication Date Title
US10502783B2 (en) Blade centric automatic test equipment system
JP5732464B2 (en) Programmable protocol generator
JP4885316B2 (en) Test apparatus and test method
US20120131403A1 (en) Multi-chip test system and test method thereof
JP2013507610A5 (en)
US12025659B2 (en) Lockstep comparators and related methods
CN109164374B (en) Chip and chip test system
US10684930B2 (en) Functional testing of high-speed serial links
WO2019218466A1 (en) Application program testing method and apparatus, terminal device, and medium
CN114584228A (en) Wifi production test calibration system and method and electronic equipment
CN110502382B (en) TYPE-C interface testing method and device, storage medium and electronic equipment
US9267965B2 (en) Flexible test site synchronization
TWI637177B (en) System and method for testing semiconductor elements
TWI676040B (en) Semiconductor integrated circuit test system and semiconductor integrated circuit test device thereof
US9621339B1 (en) Host devices and data transmission methods
CN113160875B (en) Chip test system and test method
TWI708954B (en) Boundary scan test system and method thereof
GB2443541A (en) Serializer/De-serializer bus and controller for a ASIC with a method for testing the ASIC.
JP2014215178A (en) Semiconductor device
JP2019056630A (en) BIST circuit and control method in BIST circuit
CN117269718A (en) Test method, device and test equipment
US9261557B1 (en) Semiconductor apparatus and test device therefor
KR101856658B1 (en) Semiconductor Apparatus
JP2009186352A (en) Measuring system
JP2019040336A (en) Bus connection device and bus connection method