TWI633677B - Metallization of solar cells using metal foils - Google Patents

Metallization of solar cells using metal foils Download PDF

Info

Publication number
TWI633677B
TWI633677B TW103132752A TW103132752A TWI633677B TW I633677 B TWI633677 B TW I633677B TW 103132752 A TW103132752 A TW 103132752A TW 103132752 A TW103132752 A TW 103132752A TW I633677 B TWI633677 B TW I633677B
Authority
TW
Taiwan
Prior art keywords
metal
metal foil
metal layer
solar cell
type doped
Prior art date
Application number
TW103132752A
Other languages
Chinese (zh)
Other versions
TW201521220A (en
Inventor
湯馬斯 帕斯
Original Assignee
美商太陽電子公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商太陽電子公司 filed Critical 美商太陽電子公司
Publication of TW201521220A publication Critical patent/TW201521220A/en
Application granted granted Critical
Publication of TWI633677B publication Critical patent/TWI633677B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

一種太陽能電池結構包含P型摻雜區域及N型摻雜區域。介電質間隔物形成在太陽能電池結構的表面上。金屬層形成在介電質間隔物及由介電質間隔物露出的太陽能電池結構的表面上。金屬箔放置在金屬層上。使用雷射光束焊接金屬箔至金屬層。也使用雷射光束圖案化金屬箔。雷射光束剝蝕在介電質間隔物上的金屬箔及金屬層部分。金屬箔的雷射剝蝕切割金屬箔成分離的P型金屬指及N型金屬指。 A solar cell structure includes P-type doped regions and N-type doped regions. Dielectric spacers are formed on the surface of the solar cell structure. The metal layer is formed on the surface of the dielectric spacer and the solar cell structure exposed by the dielectric spacer. The metal foil is placed on the metal layer. Use a laser beam to weld the metal foil to the metal layer. A laser beam is also used to pattern the metal foil. The laser beam erodes the metal foil and metal layer on the dielectric spacer. Laser ablation of metal foil cuts the metal foil into separate P-type metal fingers and N-type metal fingers.

Description

使用金屬箔的太陽能電池的金屬化 Metallization of solar cells using metal foil

在本文中所描述的專利標的(subject matter)之實施例通常關於一種太陽能電池。更具體地,專利標的之實施例係關於一種太陽能電池製備製程及結構。 The embodiments of the patent subject matter described herein generally relate to a solar cell. More specifically, the embodiments of the patent subject matter relate to a manufacturing process and structure of a solar cell.

太陽能電池為習知用於轉化太陽能輻射至電能的裝置。太陽能電池具有在正常操作期間面向太陽以收集太陽能輻射的正面以及相反於正面的背面。衝射(impinging)在太陽能電池上的太陽能輻射產生了可利用以供電給外部電路之電荷,如負載(load)。外部電路可通過連接至太陽能電池的摻雜區域的金屬指接收來自太陽能電池的電流。 Solar cells are conventional devices used to convert solar radiation into electrical energy. The solar cell has a front side facing the sun to collect solar radiation during normal operation and a back side opposite to the front side. The solar radiation impinging on the solar cell generates a charge that can be used to power an external circuit, such as a load. The external circuit may receive current from the solar cell through a metal finger connected to the doped region of the solar cell.

在本發明的一實施態樣中,揭露一種製備太陽能電池之方法。該方法包含:在太陽能電池結構的表面上形成介電質間隔物;在介電質間隔物、N型摻雜區域及P型摻雜區域上形成金屬層,其中金屬層電性連接N型摻雜區域至P型摻雜區域;在金屬 層上放置金屬箔;以及在金屬層上放置金屬箔之後,圖案化金屬箔,其中圖案化金屬箔包含移除在介電質間隔物上的金屬箔及金屬層之部分。 In one embodiment of the present invention, a method for preparing a solar cell is disclosed. The method includes: forming a dielectric spacer on the surface of the solar cell structure; forming a metal layer on the dielectric spacer, the N-type doped region and the P-type doped region, wherein the metal layer is electrically connected to the N-type Doped region to P-type doped region; in metal Metal foil is placed on the layer; and after the metal foil is placed on the metal layer, the metal foil is patterned, wherein the patterned metal foil includes a portion of the metal foil and the metal layer removed on the dielectric spacer.

在本發明的又一實施態樣中,揭露一種太陽能電池結構。該太陽能電池結構包含N型摻雜區域及P型摻雜區域;位在N型摻雜區域及P型摻雜區域上之介電質間隔物;在介電質間隔物及N型摻雜區域上的第一金屬層,其中第一金屬層係電性連接至N型摻雜區域;在介電質間隔物及P型摻雜區域上的第二金屬層,其中第二金屬層係電性連接至P型摻雜區域;電性接合至第一金屬層之第一金屬箔指;以及電性接合至第二金屬層之第二金屬箔指。 In yet another embodiment of the present invention, a solar cell structure is disclosed. The solar cell structure includes N-type doped regions and P-type doped regions; dielectric spacers located on N-type doped regions and P-type doped regions; On the first metal layer, wherein the first metal layer is electrically connected to the N-type doped region; the second metal layer on the dielectric spacer and the P-type doped region, wherein the second metal layer is electrically Connected to the P-type doped region; first metal foil fingers electrically bonded to the first metal layer; and second metal foil fingers electrically bonded to the second metal layer.

在本發明的再一實施態樣中,揭露一種製備太陽能電池的方法。該方法包含在太陽能電池結構的表面上形成介電質間隔物;在由介電質間隔物露出的太陽能電池結構的表面的部分上沉積金屬層;安裝金屬箔至金屬層;以及在安裝金屬箔至金屬層之後圖案化金屬箔。 In still another embodiment of the present invention, a method for preparing a solar cell is disclosed. The method includes forming a dielectric spacer on the surface of the solar cell structure; depositing a metal layer on a portion of the surface of the solar cell structure exposed by the dielectric spacer; mounting the metal foil to the metal layer; and mounting the metal foil After the metal layer, the metal foil is patterned.

在一實施例中,介電質間隔物形成在太陽能電池結構的表面上。金屬層形成在介電質間隔物上且在由介電質間隔物露出的太陽能電池結構的表面上。金屬箔放置在金屬層上。使用雷射光束焊接金屬箔至金屬層。也使用雷射光束圖案化金屬箔。雷射光束剝蝕(ablate)在介電質間隔物上的金屬箔及金屬層之部分。金屬箔的雷射剝蝕切割金屬箔成分離的P型金屬指及N型金屬指。 In one embodiment, dielectric spacers are formed on the surface of the solar cell structure. The metal layer is formed on the dielectric spacer and on the surface of the solar cell structure exposed by the dielectric spacer. The metal foil is placed on the metal layer. Use a laser beam to weld the metal foil to the metal layer. A laser beam is also used to pattern the metal foil. The laser beam ablate parts of the metal foil and metal layer on the dielectric spacer. Laser ablation of metal foil cuts the metal foil into separate P-type metal fingers and N-type metal fingers.

對所屬技術領域具有通常知識者而言本揭露的這些及其他特徵藉由參閱其中包含附圖及申請專利範圍的本揭露全文將 更容易地顯而易見。 These and other features of the present disclosure to those of ordinary skill in the art by referring to the full text of the present disclosure, which includes drawings and patent application scope, It's easier to see.

100‧‧‧太陽能電池結構 100‧‧‧Solar battery structure

101‧‧‧太陽能電池基板 101‧‧‧Solar cell substrate

103‧‧‧介電質間隔物 103‧‧‧Dielectric spacer

104‧‧‧金屬層 104‧‧‧Metal layer

105、105A‧‧‧金屬箔 105、105A‧‧‧Metal foil

106‧‧‧焊接接點 106‧‧‧welding contact

107‧‧‧切割 107‧‧‧Cutting

108、109‧‧‧金屬指 108, 109‧‧‧ metal finger

201、202、203、204、205‧‧‧步驟 201, 202, 203, 204, 205‧‧‧ steps

當考量搭配下列圖式時,經由參照詳細描述及申請專利範圍可衍生專利標的之更完整的理解,其中在整個圖式中相同參考符號代表相似元件。圖式不按照比例繪製。 When considering the following drawings, a more complete understanding of the patentable subject matter can be derived by referring to the detailed description and the scope of the patent application, wherein the same reference symbols represent similar elements throughout the drawings. The drawing is not to scale.

第1圖至第7圖為示意性地繪示根據本揭露的實施例製備太陽能電池的方法的截面圖。 FIGS. 1 to 7 are cross-sectional views schematically illustrating a method of manufacturing a solar cell according to an embodiment of the present disclosure.

第8圖為根據本揭露的實施例的未圖案化金屬箔的平面圖。 FIG. 8 is a plan view of an unpatterned metal foil according to an embodiment of the present disclosure.

第9圖為在根據本揭露的實施例的圖案化之後的第8圖的金屬箔的平面圖。 FIG. 9 is a plan view of the metal foil of FIG. 8 after patterning according to an embodiment of the present disclosure.

第10圖為根據本揭露的實施例製備太陽能電池的方法之流程圖。 FIG. 10 is a flowchart of a method of manufacturing a solar cell according to an embodiment of the present disclosure.

第11圖及第12圖為示意性地繪示根據本揭露的實施例以模組層級(module level)的金屬箔的圖案化的截面圖。 FIG. 11 and FIG. 12 are schematic cross-sectional views schematically showing a patterned metal foil at a module level according to an embodiment of the present disclosure.

第13圖及第14圖為示意性地繪示根據本揭露的實施例具圖案化金屬層的金屬箔的使用的截面圖。 13 and 14 are cross-sectional views schematically illustrating the use of a metal foil with a patterned metal layer according to an embodiment of the present disclosure.

下列詳細描述在本質上僅為說明性的且非旨在限制專利標的之實施例或這樣的實施例的申請及使用。如在本文中所使用的,文字「例示性的(exemplary)」表示「作為一個示例(example)、 實例(instance)或說明(illustration)」。在本文中所描述的作為例示性的任何實施方式不需要被詮釋為較佳於或優於其他實施方式。此外,沒有意圖以在先前技術領域、背景、發明內容或下列實施方式提出的任何明示或暗示的理論所限制。 The following detailed description is merely illustrative in nature and is not intended to limit the patented embodiments or the application and use of such embodiments. As used in this article, the text "exemplary" means "as an example, Instance (instance) or illustration (illustration) ". Any exemplary embodiments described herein need not be interpreted as being better or better than other embodiments. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, summary or the following embodiments.

此說明書包含參照「一個實施例(one embodiment)」或「一實施例(an embodiment)」。片語「在一個實施例(in one embodiment)」或「在一實施例(in an embodiment)」的表述不必然表示相同實施例。特別的特徵、結構或特性可以任何與本揭露相符的合適方式結合。 This specification includes references to "one embodiment" or "an embodiment." The expression "in one embodiment" or "in an embodiment" does not necessarily mean the same embodiment. Special features, structures, or characteristics may be combined in any suitable manner consistent with the present disclosure.

在本揭露中,提供了許多特定細節,如結構及方法的實施例,以提供實施例的徹底理解。然而,所屬技術領域具有通常知識者將認知的是,實施例可在不具一或多個特定細節下實現。在其他實例中,不示出或描述習知的細節,以避免模糊了實施例的態樣。 In this disclosure, many specific details are provided, such as structure and method embodiments, to provide a thorough understanding of the embodiments. However, those of ordinary skill in the art will recognize that embodiments can be implemented without one or more specific details. In other instances, conventional details are not shown or described to avoid obscuring the appearance of the embodiments.

第1圖至第7圖為示意性地繪示根據本揭露的實施例製備太陽能電池的方法的截面圖。所製備之太陽能電池為全背面接觸太陽能電池(all back contact solar cell),其中N型摻雜區域及P型摻雜區域以及耦合至N型摻雜區域及P型摻雜區域的金屬指為在太陽能電池的背面上。 FIGS. 1 to 7 are cross-sectional views schematically illustrating a method of manufacturing a solar cell according to an embodiment of the present disclosure. The prepared solar cell is an all back contact solar cell, wherein the N-type doped region and the P-type doped region and the metal coupled to the N-type doped region and the P-type doped region refer to On the back of the solar cell.

首先參照第1圖,示出了根據本揭露的實施例的太陽能電池結構100。在第1圖的實施例中,太陽能電池結構100包含可形成在太陽能電池基板101內或太陽能電池基板101外的交替之複數個N型摻雜區域及P型摻雜區域。例如,N型摻雜區域及P型摻雜區域可藉由分別擴散N型摻雜物及P型摻雜物至太陽能 電池基板101而形成。在另一實施例中,N型摻雜區域及P型摻雜區域形成在材料,如在太陽能電池基板101上形成的多晶矽的另外層(separate layer)中。在該實施例中,N型摻雜物及P型摻雜物擴散至多晶矽(其可為或可不為溝槽式(trench))以在多晶矽而非在太陽能電池基板101中形成N型摻雜區域及P型摻雜區域。太陽能電池基板101可包含例如單晶矽晶圓(monocrystalline silicon wafer)。 Referring first to FIG. 1, a solar cell structure 100 according to an embodiment of the present disclosure is shown. In the embodiment of FIG. 1, the solar cell structure 100 includes a plurality of alternating N-type doped regions and P-type doped regions that can be formed in the solar cell substrate 101 or outside the solar cell substrate 101. For example, the N-type doped region and the P-type doped region can be diffused into the solar energy by N-type dopant and P-type dopant, respectively. The battery substrate 101 is formed. In another embodiment, the N-type doped region and the P-type doped region are formed in a separate layer of material such as polysilicon formed on the solar cell substrate 101. In this embodiment, N-type dopants and P-type dopants are diffused into polysilicon (which may or may not be trench) to form N-type doping in polysilicon rather than in solar cell substrate 101 Region and P-type doped region. The solar cell substrate 101 may include, for example, a monocrystalline silicon wafer.

在第1圖的實施例中,標號「N」及「P」示意性地代表N型摻雜區域及P型摻雜區域或電性連接至N型摻雜區域及P型摻雜區域。更特別地,標號「N」示意性地代表露出的N型摻雜區域或至N型摻雜區域之露出的金屬連接。類似地,標號「P」示意性地代表露出的P型摻雜區域或至P型摻雜區域之露出的金屬連接。太陽能電池結構100可因此代表在聯至N型摻雜區域及P型摻雜區域之接觸孔形成之後,但在用以形成聯至N型摻雜區域及P型摻雜區域的金屬接觸指之金屬化製程(metallization process)之前所製備的太陽能電池的結構。 In the embodiment of FIG. 1, the symbols “N” and “P” schematically represent N-type doped regions and P-type doped regions or are electrically connected to the N-type doped regions and the P-type doped regions. More specifically, the reference "N" schematically represents the exposed N-type doped region or the exposed metal connection to the N-type doped region. Similarly, the reference "P" schematically represents the exposed P-type doped region or the exposed metal connection to the P-type doped region. The solar cell structure 100 may therefore represent after the formation of the contact holes connected to the N-type doped region and the P-type doped region, but the metal contact used to form the N-type doped region and the P-type doped region The structure of the solar cell prepared before the metallization process.

在第1圖的實施例中,N型摻雜區域及P型摻雜區域在太陽能電池結構100的背面上。太陽能電池結構100的背面相反於直接朝向太陽以在正常操作期間收集太陽能輻射的正面。 In the embodiment of FIG. 1, the N-type doped region and the P-type doped region are on the back of the solar cell structure 100. The back side of the solar cell structure 100 is opposite to the front side directly facing the sun to collect solar radiation during normal operation.

其次參照第2圖,複數個介電質間隔物103形成在太陽能電池結構100的表面上。在第2圖的實施例中,介電質間隔物103形成在於相鄰的P型摻雜區域及N型摻雜區域之間的界面上的太陽能電池結構100的表面上的區域上。如同可理解的,介電質間隔物103也可根據太陽能電池結構100的詳細情況而形成在其他區域上。 Next, referring to FIG. 2, a plurality of dielectric spacers 103 are formed on the surface of the solar cell structure 100. In the embodiment of FIG. 2, the dielectric spacer 103 is formed on a region on the surface of the solar cell structure 100 on the interface between adjacent P-type doped regions and N-type doped regions. As can be understood, the dielectric spacer 103 may also be formed on other regions according to the details of the solar cell structure 100.

在一實施例中,介電質間隔物103藉由網版印刷印刷在太陽能電池結構100上。介電質間隔物103也可使用其他介電質形成製程來形成,包含藉由旋轉塗佈及藉由沉積(例如,化學氣相沉積)接續圖案化(例如,遮罩(masking)及蝕刻)。介電質間隔物103可包含具光能吸收器(optical absorber)、可燒結介電質(fireable dieletric)等的介電質材料。作為特定實施例,介電質間隔物103可包含網版印刷在太陽能電池結構100上成1-10微米厚度的聚亞醯胺(例如,具氧化鈦濾光片(titanium oxide filter))。一般而言,介電質間隔物103可配置以具有將阻擋(例如,藉由吸收或反射)在金屬箔105的圖案化中所使用的雷射光束的厚度及組成(參見第5圖),且與使用的製程相容以形成重疊金屬層(例如,第3圖,金屬層104)。 In one embodiment, the dielectric spacer 103 is printed on the solar cell structure 100 by screen printing. The dielectric spacer 103 can also be formed using other dielectric forming processes, including by spin coating and by deposition (eg, chemical vapor deposition) followed by patterning (eg, masking and etching) . The dielectric spacer 103 may include a dielectric material with an optical absorber, a fireable dieletric, and the like. As a specific example, the dielectric spacer 103 may include polyimide (eg, with a titanium oxide filter) screen-printed on the solar cell structure 100 to a thickness of 1-10 microns. In general, the dielectric spacer 103 may be configured to have a thickness and composition that will block (for example, by absorption or reflection) the laser beam used in the patterning of the metal foil 105 (see FIG. 5), It is compatible with the process used to form an overlapping metal layer (eg, metal layer 104 in FIG. 3).

在第2圖的實施例中,各介電質間隔物103形成在太陽能電池結構100的N型摻雜區域及P型摻雜區域上。如同下面更顯而易見的是,在隨後的金屬化製程中,在金屬箔在太陽能電池結構100上時金屬箔係使用雷射圖案化。介電質間隔物103在金屬箔105的圖案化期間有利地阻擋可穿透至太陽能電池結構100的雷射光束。 In the embodiment of FIG. 2, each dielectric spacer 103 is formed on the N-type doped region and the P-type doped region of the solar cell structure 100. As is more obvious below, in the subsequent metallization process, the metal foil is patterned using laser when the metal foil is on the solar cell structure 100. The dielectric spacer 103 advantageously blocks the laser beam that can penetrate into the solar cell structure 100 during the patterning of the metal foil 105.

如同在第3圖所示出的,金屬層104形成在太陽能電池結構100上。金屬層104提供電性連接至N型摻雜區域及P型摻雜區域以隨後形成金屬指。在一實施例中,金屬層104包含在介電質間隔物103上共形的(conformal)連續覆蓋金屬塗層(continuous blanket metal coating)。例如,金屬層104可包含藉由濺鍍、沉積或一些其他製程形成在介電質間隔物103、N型摻雜區域及P型摻雜區域上成10埃(Angstrom)至5微米(例如,0.3微 米至1微米)之厚度的鋁。一般而言,金屬層104包含可接合至金屬箔105的材料。例如,金屬層104可包含鋁以促進焊接至鋁金屬箔105。在第3圖中金屬層104仍然電性連接N型摻雜區域至P型摻雜區域。金屬層104隨後在金屬箔105的圖案化期間圖案化以從P型摻雜區域分離N型摻雜區域。 As shown in FIG. 3, the metal layer 104 is formed on the solar cell structure 100. The metal layer 104 provides electrical connection to the N-type doped region and the P-type doped region to subsequently form metal fingers. In one embodiment, the metal layer 104 includes a conformal continuous blanket metal coating on the dielectric spacer 103. For example, the metal layer 104 may be formed on the dielectric spacer 103, the N-type doped region, and the P-type doped region by sputtering, deposition, or some other process to form 10 Angstroms to 5 microns (eg, 0.3 micro Meters to 1 micron) of aluminum. In general, the metal layer 104 includes a material that can be bonded to the metal foil 105. For example, the metal layer 104 may include aluminum to facilitate welding to the aluminum metal foil 105. In FIG. 3, the metal layer 104 is still electrically connected to the N-type doped region to the P-type doped region. The metal layer 104 is then patterned during the patterning of the metal foil 105 to separate the N-type doped regions from the P-type doped regions.

其次參照第4圖,金屬箔105大致地位在太陽能電池結構100之上。金屬箔105為「金屬箔」,其中包含了預先製備的金屬薄板。第8圖為在製備製程的此階段的金屬箔105的平面圖。如同在第8圖所示出的,金屬箔105未圖案化。如同下面將更顯而易見的,在金屬箔105安裝至金屬層104之後金屬箔105隨後圖案化以形成太陽能電池的金屬指。 Referring next to FIG. 4, the metal foil 105 is roughly placed on the solar cell structure 100. The metal foil 105 is a "metal foil", which contains a metal sheet prepared in advance. FIG. 8 is a plan view of the metal foil 105 at this stage of the manufacturing process. As shown in Fig. 8, the metal foil 105 is not patterned. As will be more apparent below, after the metal foil 105 is mounted to the metal layer 104, the metal foil 105 is subsequently patterned to form the metal fingers of the solar cell.

接著在第5圖中,金屬箔105放置在太陽能電池結構100上。不像沉積或塗佈在太陽能電池結構100上的金屬,金屬箔105為預先製備的板。在一實施例,金屬箔105包含鋁板。金屬箔105在其中其未形成在太陽能電池結構100上處放置在太陽能電池結構100上。在一實施例,金屬箔105為藉由安裝至金屬層104而放置在太陽能電池結構100上。安裝過程可包含擠壓金屬箔105至金屬層104以使金屬箔105得以與金屬層104密切接觸。安裝過程可導致金屬箔105在金屬層104的特徵(例如,凸塊(bump))上為共形的。可使用真空對著金屬層104擠壓金屬箔105,以在焊接期間於其間得到小於10微米的間隙。也可在焊接期間使用壓板對著金屬層104擠壓金屬箔105;為了雷射剝蝕而移除壓板。 Next, in FIG. 5, the metal foil 105 is placed on the solar cell structure 100. Unlike the metal deposited or coated on the solar cell structure 100, the metal foil 105 is a plate prepared in advance. In one embodiment, the metal foil 105 includes an aluminum plate. The metal foil 105 is placed on the solar cell structure 100 where it is not formed on the solar cell structure 100. In one embodiment, the metal foil 105 is placed on the solar cell structure 100 by being mounted to the metal layer 104. The installation process may include squeezing the metal foil 105 to the metal layer 104 so that the metal foil 105 is in close contact with the metal layer 104. The installation process may cause the metal foil 105 to be conformal on the features (eg, bumps) of the metal layer 104. A vacuum may be used to squeeze the metal foil 105 against the metal layer 104 to obtain a gap of less than 10 microns between them during welding. It is also possible to press the metal foil 105 against the metal layer 104 using a pressing plate during welding; the pressing plate is removed for laser ablation.

第6圖示出在金屬箔105電性接合至金屬層104之後的太陽能電池結構100。在第6圖的實施例中,在金屬箔105對著金屬層104擠壓時金屬箔105藉由導向雷射光束在金屬箔105上 而焊接至金屬層104。雷射焊接製程產生電性接合金屬箔105至金屬層104的焊接接點106。因為金屬箔105在製備製程的此階段為未圖案化,故金屬箔105仍然電性連接太陽能電池結構100的N型摻雜區域及P型摻雜區域。 FIG. 6 shows the solar cell structure 100 after the metal foil 105 is electrically bonded to the metal layer 104. In the embodiment of FIG. 6, when the metal foil 105 is pressed against the metal layer 104, the metal foil 105 is directed onto the metal foil 105 by the guided laser beam While welding to the metal layer 104. The laser welding process produces solder joints 106 that electrically connect the metal foil 105 to the metal layer 104. Because the metal foil 105 is not patterned at this stage of the manufacturing process, the metal foil 105 is still electrically connected to the N-type doped region and the P-type doped region of the solar cell structure 100.

接著在第7圖中,金屬箔105係圖案化以形成金屬指108及金屬指109。在一實施例中,金屬箔105藉由剝蝕在介電質間隔物103上的金屬箔105及金屬層104的部分而圖案化。金屬箔105及金屬層104可使用雷射光束剝蝕。雷射剝蝕製程可切割(參見107)金屬箔105成至少兩個分離片段(piece),有一片段為電性連接至N型摻雜區域的金屬指108且另一片段為電性連接至P型摻雜區域的金屬指109。雷射剝蝕製程截斷了N型摻雜區域及P型摻雜區域通過金屬層104及金屬箔105的電性連接。金屬箔105及金屬層104係因此在相同步驟圖案化,有利地減少製備成本。 Next in FIG. 7, the metal foil 105 is patterned to form metal fingers 108 and metal fingers 109. In one embodiment, the metal foil 105 is patterned by ablating portions of the metal foil 105 and the metal layer 104 on the dielectric spacer 103. The metal foil 105 and the metal layer 104 can be ablated using a laser beam. The laser ablation process can cut (see 107) the metal foil 105 into at least two separate pieces, one piece is a metal finger 108 electrically connected to the N-type doped region and the other piece is electrically connected to the P-type The metal finger 109 of the doped region. The laser ablation process interrupts the electrical connection between the N-type doped region and the P-type doped region through the metal layer 104 and the metal foil 105. The metal foil 105 and the metal layer 104 are thus patterned in the same step, which advantageously reduces the manufacturing cost.

第9圖為根據本揭露的實施例的第7圖的圖案化金屬箔105的平面圖。第9圖示出切割107物理性地從金屬指109分離金屬指108。在第9圖的實施例中,金屬箔105係圖案化以形成交指型(interdigitated)金屬指108及交指型金屬指109。也可根據太陽能電池使用其他金屬指圖案(design)。 FIG. 9 is a plan view of the patterned metal foil 105 of FIG. 7 according to an embodiment of the present disclosure. FIG. 9 shows that the cutting 107 physically separates the metal finger 108 from the metal finger 109. In the embodiment of FIG. 9, the metal foil 105 is patterned to form interdigitated metal fingers 108 and interdigitated metal fingers 109. Other metal finger designs can also be used depending on the solar cell.

回到第7圖,雷射剝蝕製程使用逐步切割金屬箔105及金屬層104的雷射光束。根據雷射剝蝕製程的製程窗口(process window),雷射光束也可切割其部分,但不通過介電質間隔物103。介電質間隔物103有利地阻擋可以其他方式達到且損壞太陽能電池結構100的雷射光束。介電質間隔物103也有利地保護太陽能電池結構100免於機械性損壞(mechanical damage),如在金屬箔105至金屬層104的安裝期間。介電質間隔物103在完成 的太陽能電池中可留下,所以其使用不需要涉及在金屬箔105的圖案化之後添加的移除步驟。 Returning to FIG. 7, the laser ablation process uses a laser beam that gradually cuts the metal foil 105 and the metal layer 104. According to the process window of the laser ablation process, the laser beam can also cut its part, but does not pass through the dielectric spacer 103. The dielectric spacer 103 advantageously blocks the laser beam that can be reached and damages the solar cell structure 100 in other ways. The dielectric spacer 103 also advantageously protects the solar cell structure 100 from mechanical damage, such as during the installation of the metal foil 105 to the metal layer 104. Dielectric spacer 103 is completing Can be left in the solar cell, so its use does not need to involve a removal step added after the patterning of the metal foil 105.

鑑於前述,所屬技術領域具有通常知識者將理解的是,本揭露的實施例提供迄今為止未實現的額外益處。金屬箔的使用以形成金屬指相較於涉及金屬指的沉積或電鍍(plating)的金屬化製程為相對地具成本效益的。介電質間隔物103允許雷射焊接製程及雷射剝蝕製程在原位進行,即接連在相同製程平台(station)。介電質間隔物103也使雷射光束的使用能夠在金屬箔105位於太陽能電池結構100上時圖案化金屬箔105。如同能理解的,放置及對準金屬箔板相較於放置及對準金屬指的個別條帶係為更容易的,具微米尺度之精密度。不像蝕刻及其他化學根據的圖案化製程,使用雷射圖案化金屬箔105減少了可能形成在所製備的太陽能電池上的殘留物的量。 In view of the foregoing, those of ordinary skill in the art will understand that the embodiments of the present disclosure provide additional benefits that have not been realized so far. The use of metal foil to form metal fingers is relatively cost-effective compared to metallization processes that involve the deposition or plating of metal fingers. The dielectric spacer 103 allows the laser welding process and the laser ablation process to be performed in situ, that is, successively on the same process station. The dielectric spacer 103 also enables the use of laser beams to pattern the metal foil 105 when the metal foil 105 is on the solar cell structure 100. As can be understood, it is easier to place and align the metal foil plate than to place and align the individual strips of metal fingers, with precision on the micrometer scale. Unlike etching and other chemically-based patterning processes, the use of laser to pattern metal foil 105 reduces the amount of residue that may be formed on the prepared solar cell.

進一步注意的是在第9圖的實施例中,金屬層104與金屬箔105為同時地圖案化。這有利地在雷射焊接及剝蝕之前消除用以圖案化金屬層104而分離P型摻雜區域及N型摻雜區域之多餘步驟。 It is further noted that in the embodiment of FIG. 9, the metal layer 104 and the metal foil 105 are simultaneously patterned. This advantageously eliminates unnecessary steps for patterning the metal layer 104 to separate the P-type doped region and the N-type doped region before laser welding and ablation.

第10圖示出根據本揭露的實施例製備太陽能電池的方法之流程圖。第10圖的方法可在具N型摻雜區域及P型摻雜區域的太陽能電池結構上進行。第10圖的方法可在太陽能電池的製備期間以電池層級(cell level)進行或當太陽能電池與其他太陽能電池連接及封裝時以模組層級(module level)進行。注意的是在各種實施例中,第10圖的方法可包含比繪示的更多的或更少的方塊。 FIG. 10 shows a flowchart of a method of manufacturing a solar cell according to an embodiment of the present disclosure. The method of FIG. 10 can be performed on a solar cell structure having N-type doped regions and P-type doped regions. The method of FIG. 10 may be performed at the cell level during the preparation of the solar cell or at the module level when the solar cell is connected and packaged with other solar cells. Note that in various embodiments, the method of FIG. 10 may include more or fewer blocks than shown.

在第10圖的方法中,複數個介電質間隔物形成在太陽能電池結構的表面上(步驟201)。各介電質間隔物可形成在太陽能電池結構的N型摻雜區域及P型摻雜區域上。介電質間隔物可例如經由網版印刷、旋轉塗佈或由沉積及圖案化形成。金屬層在此後形成在介電質間隔物上且在介電質間隔物之間露出的太陽能電池結構的表面上(步驟202)。在一實施例中,金屬層為經由覆蓋沉積(blanket deposition)形成的連續且共形的層。金屬箔安裝至金屬層(步驟203)。在一實施例中,金屬箔使用雷射光束焊接至金屬層(步驟204)。注意的是也可進行非雷射根據的焊接技術來焊接金屬箔至金屬層。也可使用雷射光束剝蝕在介電質間隔物上的金屬箔及金屬層部分(步驟205)。雷射剝蝕製程係圖案化金屬箔成分離的金屬指,且圖案化金屬層以分離P型摻雜區域及N型摻雜區域。 In the method of FIG. 10, a plurality of dielectric spacers are formed on the surface of the solar cell structure (step 201). Each dielectric spacer may be formed on the N-type doped region and the P-type doped region of the solar cell structure. The dielectric spacer may be formed by screen printing, spin coating, or by deposition and patterning, for example. The metal layer is thereafter formed on the dielectric spacers and exposed on the surface of the solar cell structure between the dielectric spacers (step 202). In one embodiment, the metal layer is a continuous and conformal layer formed by blanket deposition. The metal foil is mounted to the metal layer (step 203). In one embodiment, the metal foil is welded to the metal layer using a laser beam (step 204). Note that non-laser based welding techniques can also be used to weld the metal foil to the metal layer. A laser beam can also be used to ablate the metal foil and metal layer portions on the dielectric spacer (step 205). The laser ablation process is to pattern the metal foil into separate metal fingers, and pattern the metal layer to separate the P-type doped region and the N-type doped region.

當所製造的太陽能電池與其他太陽能電池封裝時可以模組層級進行金屬箔105的圖案化。在該實施例中,金屬箔105可安裝至複數個太陽能電池結構100的金屬層104。這示意性地繪示在第11圖,其中金屬箔105A安裝至二或多個太陽能電池結構100的金屬層104。除了金屬箔105A跨越超過一個太陽能電池結構100以外,金屬箔105A係相同於先前討論的金屬箔105。如同在第12圖所示出的,金屬箔105A在太陽能電池結構100上時可藉由雷射剝蝕圖案化。雷射剝蝕製程可圖案化金屬箔105A成如同先前討論的金屬指108及金屬指109。在圖案化之後可切割金屬箔105A以物理性地分開太陽能電池結構100。在圖案化之後,金屬箔105A的部分也可保留在原位以將相鄰的太陽能電池結構100串在一起。 When the manufactured solar cell is packaged with other solar cells, the metal foil 105 can be patterned at the module level. In this embodiment, the metal foil 105 can be mounted to the metal layers 104 of the plurality of solar cell structures 100. This is schematically shown in FIG. 11 in which the metal foil 105A is mounted to the metal layer 104 of two or more solar cell structures 100. The metal foil 105A is the same as the metal foil 105 previously discussed except that the metal foil 105A spans more than one solar cell structure 100. As shown in FIG. 12, the metal foil 105A can be patterned by laser ablation when it is on the solar cell structure 100. The laser ablation process can pattern the metal foil 105A into metal fingers 108 and metal fingers 109 as previously discussed. After patterning, the metal foil 105A may be cut to physically separate the solar cell structure 100. After patterning, a portion of the metal foil 105A may also be left in place to string adjacent solar cell structures 100 together.

在一實施例中,金屬箔105A的雷射剝蝕保留了相鄰的 太陽能電池結構100的相反型金屬指之間的連接。這為示意性地繪示在第12圖的實施例,其中金屬箔105係圖案化,以使一個太陽能電池結構100的P型金屬指109保留連接至相鄰的太陽能電池結構100的N型金屬指108,從而電性連接串聯的太陽能電池結構100。因為金屬箔105A的圖案化可與太陽能電池結構100串結合,這有利地省下在模組層級的製備步驟。 In one embodiment, the laser ablation of the metal foil 105A retains the adjacent The connection between the opposite metal fingers of the solar cell structure 100. This is the embodiment shown schematically in FIG. 12, in which the metal foil 105 is patterned so that the P-type metal fingers 109 of one solar cell structure 100 retain the N-type metal connected to the adjacent solar cell structure 100 Refers to 108 to electrically connect the solar cell structure 100 in series. Because the patterning of the metal foil 105A can be combined with the solar cell structure 100 in series, this advantageously saves the preparation steps at the module level.

如同解釋的,金屬層104可形成作為電性連接P型摻雜區域及N型摻雜區域的金屬的覆蓋層,且在此後金屬箔105的圖案化期間圖案化以分離P型摻雜區域及N型摻雜區域。在其他實施例中,根據製備製程之詳細情況,金屬層104可在雷射焊接及剝蝕之前圖案化。這為示意性地繪示在第13圖,其中金屬層104形成在其未電性連接的P型摻雜區域及N型摻雜區域上。例如,金屬層104可藉由覆蓋沉積而沉積在介電質間隔物103、N型摻雜區域及P型摻雜區域上,且然後如同在第13圖所示出的圖案化(例如,經由遮罩及蝕刻)以從P型摻雜區域分離N型摻雜區域。如同先前描述的,金屬箔105然後可放置在圖案化的金屬層104及介電質間隔物103上,雷射焊接至金屬層104,且藉由雷射剝蝕而圖案化。第14圖示意性地示出在該實施例中的雷射剝蝕製程之後的N型金屬指108及P型金屬指109。雷射剝蝕製程通過金屬箔105切割但在介電質間隔物103終止。 As explained, the metal layer 104 may form a cap layer that is a metal that electrically connects the P-type doped region and the N-type doped region, and is then patterned to separate the P-type doped region and during patterning of the metal foil 105 N-type doped region. In other embodiments, according to the details of the manufacturing process, the metal layer 104 may be patterned before laser welding and ablation. This is schematically shown in FIG. 13 in which the metal layer 104 is formed on the P-type doped region and the N-type doped region which are not electrically connected. For example, the metal layer 104 may be deposited on the dielectric spacer 103, the N-type doped region, and the P-type doped region by overlay deposition, and then patterned as shown in FIG. 13 (eg, via Masking and etching) to separate N-type doped regions from P-type doped regions. As previously described, the metal foil 105 can then be placed on the patterned metal layer 104 and the dielectric spacer 103, laser welded to the metal layer 104, and patterned by laser ablation. FIG. 14 schematically shows the N-type metal fingers 108 and the P-type metal fingers 109 after the laser ablation process in this embodiment. The laser ablation process is cut through the metal foil 105 but terminated at the dielectric spacer 103.

揭露了製備太陽能電池的方法及結構。雖然提供了特定實施例,要了解的是這些實施例為用於描述目的而非限制性的。在參閱本揭露下許多添加的實施例對所屬技術領域具有通常知識者而言將為顯而易見的。 The method and structure for preparing solar cells are disclosed. Although specific embodiments are provided, it is understood that these embodiments are for descriptive purposes and not limiting. Many additional embodiments will be apparent to those of ordinary skill in the art after referring to this disclosure.

本揭露的範圍包含本文中所揭露的任何特徵或特徵的組 合(明顯地或隱含地)或其任何通則,而不管其是否減輕了在本文中所解決的任何或所有問題。據此,在本申請的審查(或主張優先權的本申請)期間可以任何這樣的特徵組合製訂新的申請專利範圍。特別是,參照所附的申請專利範圍,附屬項的特徵可與獨立項的特徵組合且各獨立項的特徵可以任何適當的方式組合而不僅為在所附的申請專利範圍中所列舉的特定組合。 The scope of this disclosure includes any features or groups of features disclosed herein Together (obviously or implicitly) or any of its general rules, regardless of whether it alleviates any or all of the problems addressed in this article. Accordingly, during the examination of this application (or this application claiming priority), any such combination of features can be used to formulate a new patent application scope. In particular, referring to the scope of the attached patent application, the features of the dependent items can be combined with the features of the independent items and the features of the individual items can be combined in any suitable way and not just the specific combinations listed in the appended patent application .

Claims (17)

一種製備太陽能電池之方法,該方法包含:在一太陽能電池結構的表面上形成一介電質間隔物;在該介電質間隔物、一N型摻雜區域及一P型摻雜區域上形成一金屬層,其中該金屬層電性連接該N型摻雜區域至該P型摻雜區域;在該金屬層上放置一金屬箔;以及在該金屬層上放置該金屬箔之後,圖案化該金屬箔,其中圖案化該金屬箔包含移除在該介電質間隔物上的該金屬箔及該金屬層之部分,且其中該方法進一步包含焊接該金屬箔至該金屬層。A method for preparing a solar cell, the method comprising: forming a dielectric spacer on a surface of a solar cell structure; forming on the dielectric spacer, an N-type doped region and a P-type doped region A metal layer, wherein the metal layer electrically connects the N-type doped region to the P-type doped region; placing a metal foil on the metal layer; and after placing the metal foil on the metal layer, patterning the Metal foil, wherein patterning the metal foil includes removing portions of the metal foil and the metal layer on the dielectric spacer, and wherein the method further includes welding the metal foil to the metal layer. 如申請專利範圍第1項所述之方法,其中圖案化該金屬箔包含導向一雷射光束在該金屬箔上以剝蝕該金屬箔。The method as described in item 1 of the patent application scope, wherein patterning the metal foil includes directing a laser beam on the metal foil to ablate the metal foil. 如申請專利範圍第2項所述之方法,其中該雷射光束也剝蝕至少一部分在該金屬層之下的該介電質間隔物。The method as described in item 2 of the patent application range, wherein the laser beam also ablate at least a portion of the dielectric spacer below the metal layer. 如申請專利範圍第1項所述之方法,其進一步包含:藉由導引一雷射光束在該金屬箔上來焊接該金屬箔至該金屬層。The method as described in item 1 of the patent application scope further includes: welding the metal foil to the metal layer by guiding a laser beam on the metal foil. 如申請專利範圍第1項所述之方法,其中該金屬層藉由覆蓋沉積而形成在該介電質間隔物上。The method as described in item 1 of the patent application range, wherein the metal layer is formed on the dielectric spacer by overlay deposition. 如申請專利範圍第1項所述之方法,其中圖案化該金屬箔成一P型金屬指及一N型金屬指,且該P型金屬指為物理性地及電性地從該N型金屬指分離。The method as described in item 1 of the patent application scope, wherein the metal foil is patterned into a P-type metal finger and an N-type metal finger, and the P-type metal finger is physically and electrically derived from the N-type metal finger Separate. 如申請專利範圍第1項所述之方法,其中該金屬箔放置在該太陽能電池結構的該金屬層及另一太陽能電池結構的另一金屬層上。The method as described in item 1 of the patent application scope, wherein the metal foil is placed on the metal layer of the solar cell structure and another metal layer of another solar cell structure. 如申請專利範圍第7項所述之方法,其中圖案化該金屬箔包含保留該太陽能電池結構及該另一太陽能電池結構的金屬指之間的電性連接。The method as recited in item 7 of the patent application range, wherein patterning the metal foil includes retaining electrical connections between the metal fingers of the solar cell structure and the another solar cell structure. 一種太陽能電池結構,其包含:一N型摻雜區域及一P型摻雜區域;一介電質間隔物,在該N型摻雜區域及該P型摻雜區域上;一第一金屬層,在該介電質間隔物及該N型摻雜區域上,其中該第一金屬層係電性連接至該N型摻雜區域;一第二金屬層,在該介電質間隔物及該P型摻雜區域上,其中該第二金屬層係電性連接至該P型摻雜區域;一第一金屬箔指,係電性接合至該第一金屬層;一第二金屬箔指,係電性接合至該第二金屬層;以及一焊接接點,係連接該第一金屬箔指至該第一金屬層且連接該第二金屬箔指至該第二金屬層。A solar cell structure includes: an N-type doped region and a P-type doped region; a dielectric spacer on the N-type doped region and the P-type doped region; a first metal layer , On the dielectric spacer and the N-type doped region, wherein the first metal layer is electrically connected to the N-type doped region; a second metal layer, on the dielectric spacer and the On the P-type doped region, wherein the second metal layer is electrically connected to the P-type doped region; a first metal foil finger is electrically bonded to the first metal layer; a second metal foil finger, It is electrically connected to the second metal layer; and a soldering joint connects the first metal foil finger to the first metal layer and connects the second metal foil finger to the second metal layer. 如申請專利範圍第9項所述之太陽能電池結構,其中該太陽能電池包含一全背面接觸太陽能電池。The solar cell structure as described in item 9 of the patent application scope, wherein the solar cell includes a full back contact solar cell. 如申請專利範圍第9項所述之太陽能電池結構,其中該第一金屬箔指及該第二金屬箔指包含鋁。The solar cell structure as described in item 9 of the patent application range, wherein the first metal foil finger and the second metal foil finger include aluminum. 一種製備太陽能電池的方法,該方法包含:在一太陽能電池結構的一表面上形成一介電質間隔物;在由該介電質間隔物露出的該太陽能電池結構的該表面的部分上沉積一金屬層;安裝一金屬箔至該金屬層;在安裝該金屬箔至該金屬層之後圖案化該金屬箔;以及在安裝該金屬箔至該金屬層之後但在圖案化該金屬箔之前焊接該金屬箔至該金屬層。A method of preparing a solar cell, the method comprising: forming a dielectric spacer on a surface of a solar cell structure; depositing a on a portion of the surface of the solar cell structure exposed by the dielectric spacer Metal layer; mounting a metal foil to the metal layer; patterning the metal foil after installing the metal foil to the metal layer; and welding the metal after mounting the metal foil to the metal layer but before patterning the metal foil Foil to the metal layer. 如申請專利範圍第12項所述之方法,其中安裝該金屬箔至該金屬層包含在該金屬層上放置一鋁箔板。The method as described in item 12 of the patent application range, wherein mounting the metal foil to the metal layer includes placing an aluminum foil plate on the metal layer. 如申請專利範圍第12項所述之方法,其中圖案化該金屬箔包含導向一雷射光束在該金屬箔上以剝蝕該金屬箔及該金屬層。The method as described in item 12 of the patent application range, wherein patterning the metal foil includes directing a laser beam on the metal foil to ablate the metal foil and the metal layer. 如申請專利範圍第12項所述之方法,其中在該介電質間隔物上沉積該金屬層包含在該介電質間隔物上沉積一金屬覆蓋層。The method of item 12 of the scope of the patent application, wherein depositing the metal layer on the dielectric spacer comprises depositing a metal capping layer on the dielectric spacer. 如申請專利範圍第12項所述之方法,其中在該太陽能電池結構的該表面上形成該介電質間隔物係包含在該太陽能電池結構的該表面上印刷該介電質間隔物。The method as described in item 12 of the patent application range, wherein forming the dielectric spacer on the surface of the solar cell structure comprises printing the dielectric spacer on the surface of the solar cell structure. 如申請專利範圍第12項所述之方法,其進一步包含:在安裝該金屬箔至該金屬層之後但在圖案化該金屬箔之前,導向一雷射光束在該金屬箔上以焊接該金屬箔至該金屬層。The method as described in item 12 of the patent application scope, further comprising: after mounting the metal foil to the metal layer but before patterning the metal foil, directing a laser beam on the metal foil to weld the metal foil To the metal layer.
TW103132752A 2013-09-27 2014-09-23 Metallization of solar cells using metal foils TWI633677B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/040,047 2013-09-27
US14/040,047 US9437756B2 (en) 2013-09-27 2013-09-27 Metallization of solar cells using metal foils

Publications (2)

Publication Number Publication Date
TW201521220A TW201521220A (en) 2015-06-01
TWI633677B true TWI633677B (en) 2018-08-21

Family

ID=52738910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103132752A TWI633677B (en) 2013-09-27 2014-09-23 Metallization of solar cells using metal foils

Country Status (14)

Country Link
US (3) US9437756B2 (en)
EP (1) EP3050122B1 (en)
JP (1) JP6526020B2 (en)
KR (1) KR102313263B1 (en)
CN (2) CN108039380B (en)
AU (1) AU2014327036B2 (en)
BR (1) BR112016006585B1 (en)
CL (1) CL2016000712A1 (en)
MX (1) MX356833B (en)
MY (1) MY175353A (en)
SA (1) SA516370630B1 (en)
SG (1) SG11201601079QA (en)
TW (1) TWI633677B (en)
WO (1) WO2015047952A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620431B1 (en) * 2014-01-29 2016-05-12 엘지전자 주식회사 Solar cell and method for manufacturing the same
US9911874B2 (en) * 2014-05-30 2018-03-06 Sunpower Corporation Alignment free solar cell metallization
CN106687617B (en) * 2014-07-15 2020-04-07 奈特考尔技术公司 Laser transfer IBC solar cell
US9461192B2 (en) 2014-12-16 2016-10-04 Sunpower Corporation Thick damage buffer for foil-based metallization of solar cells
US9620661B2 (en) * 2014-12-19 2017-04-11 Sunpower Corporation Laser beam shaping for foil-based metallization of solar cells
US9997651B2 (en) 2015-02-19 2018-06-12 Sunpower Corporation Damage buffer for solar cell metallization
US9722103B2 (en) * 2015-06-26 2017-08-01 Sunpower Corporation Thermal compression bonding approaches for foil-based metallization of solar cells
US20160380120A1 (en) * 2015-06-26 2016-12-29 Akira Terao Metallization and stringing for back-contact solar cells
US9634178B1 (en) * 2015-12-16 2017-04-25 Sunpower Corporation Method of using laser welding to ohmic contact of metallic thermal and diffusion barrier layer for foil-based metallization of solar cells
US9831377B2 (en) 2016-02-29 2017-11-28 Sunpower Corporation Die-cutting approaches for foil-based metallization of solar cells
US11424373B2 (en) * 2016-04-01 2022-08-23 Sunpower Corporation Thermocompression bonding approaches for foil-based metallization of non-metal surfaces of solar cells
DE102016107802A1 (en) 2016-04-27 2017-11-02 Universität Stuttgart Process for the preparation of back-contacted solar cells made of crystalline silicon
US9871150B1 (en) * 2016-07-01 2018-01-16 Sunpower Corporation Protective region for metallization of solar cells
US9882071B2 (en) * 2016-07-01 2018-01-30 Sunpower Corporation Laser techniques for foil-based metallization of solar cells
US20180006172A1 (en) * 2016-07-01 2018-01-04 Sunpower Corporation Metallization structures for solar cells
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
US10115855B2 (en) * 2016-09-30 2018-10-30 Sunpower Corporation Conductive foil based metallization of solar cells
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
CN111954935A (en) * 2018-04-06 2020-11-17 太阳能公司 Laser-assisted metallization process for solar cell fabrication
WO2019195803A1 (en) 2018-04-06 2019-10-10 Sunpower Corporation Laser assisted metallization process for solar cell fabrication
WO2019195793A1 (en) * 2018-04-06 2019-10-10 Sunpower Corporation Laser assisted metallization process for solar cell stringing
US11646387B2 (en) * 2018-04-06 2023-05-09 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell circuit formation
WO2019195806A2 (en) 2018-04-06 2019-10-10 Sunpower Corporation Local patterning and metallization of semiconductor structures using a laser beam
CN108873172A (en) * 2018-06-29 2018-11-23 中国科学院上海光学精密机械研究所 A kind of powering on the preparation method of adjustable height quality thin film micro-optical device
EP3588584A1 (en) 2018-06-29 2020-01-01 Total SA Solar cells and metallization process and device
AU2020253392B2 (en) * 2019-04-01 2023-10-19 Stinger Advanced Manufacturing Corporation Systems and methods for non-continuous deposition of a component
US11527611B2 (en) 2020-11-09 2022-12-13 The Aerospace Corporation Method of forming nanowire connects on (photovoltiac) PV cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200520A1 (en) * 2003-04-10 2004-10-14 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
TW201027766A (en) * 2008-08-27 2010-07-16 Applied Materials Inc Back contact solar cells using printed dielectric barrier

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058418A (en) 1974-04-01 1977-11-15 Solarex Corporation Fabrication of thin film solar cells utilizing epitaxial deposition onto a liquid surface to obtain lateral growth
US3993533A (en) 1975-04-09 1976-11-23 Carnegie-Mellon University Method for making semiconductors for solar cells
US4318938A (en) 1979-05-29 1982-03-09 The University Of Delaware Method for the continuous manufacture of thin film solar cells
DE3036260A1 (en) 1980-09-26 1982-04-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR PRODUCING ELECTRICAL CONTACTS ON A SILICON SOLAR CELL
US4400577A (en) 1981-07-16 1983-08-23 Spear Reginald G Thin solar cells
US4433200A (en) 1981-10-02 1984-02-21 Atlantic Richfield Company Roll formed pan solar module
US4482780A (en) 1982-11-30 1984-11-13 The United States Of America As Represented By The United States Department Of Energy Solar cells with low cost substrates and process of making same
US4461922A (en) 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
US4511600A (en) 1984-02-10 1985-04-16 Solarex Corporation Solar cell metal spray process
US4581103A (en) 1984-09-04 1986-04-08 Texas Instruments Incorporated Method of etching semiconductor material
US4917752A (en) 1984-09-04 1990-04-17 Texas Instruments Incorporated Method of forming contacts on semiconductor members
US4582588A (en) 1984-09-04 1986-04-15 Texas Instruments Incorporated Method of anodizing and sealing aluminum
US4691076A (en) 1984-09-04 1987-09-01 Texas Instruments Incorporated Solar array with aluminum foil matrix
US4957601A (en) 1984-09-04 1990-09-18 Texas Instruments Incorporated Method of forming an array of apertures in an aluminum foil
US4697041A (en) 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US4617421A (en) 1985-04-01 1986-10-14 Sovonics Solar Systems Photovoltaic cell having increased active area and method for producing same
US4695674A (en) 1985-08-30 1987-09-22 The Standard Oil Company Preformed, thin-film front contact current collector grid for photovoltaic cells
DE3725269A1 (en) 1987-07-30 1989-02-09 Messerschmitt Boelkow Blohm METHOD FOR ENCODING MICROELECTRONIC SEMICONDUCTOR AND LAYER CIRCUITS
US5010040A (en) 1988-12-30 1991-04-23 Mobil Solar Energy Corporation Method of fabricating solar cells
US5091319A (en) 1989-07-31 1992-02-25 Hotchkiss Gregory B Method of affixing silicon spheres to a foil matrix
US5011567A (en) 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Method of fabricating solar cells
US5032233A (en) 1990-09-05 1991-07-16 Micron Technology, Inc. Method for improving step coverage of a metallization layer on an integrated circuit by use of a high melting point metal as an anti-reflective coating during laser planarization
US5093279A (en) 1991-02-01 1992-03-03 International Business Machines Corporation Laser ablation damascene process
AU651486B2 (en) 1991-08-30 1994-07-21 Canon Kabushiki Kaisha Photoelectric conversion element and fabrication method thereof
US5472772A (en) 1994-04-18 1995-12-05 General Electric Company Method for welding stacker laminations and article therefrom
US6141497A (en) 1995-06-09 2000-10-31 Marotta Scientific Controls, Inc. Multilayer micro-gas rheostat with electrical-heater control of gas flow
US6387803B2 (en) 1997-01-29 2002-05-14 Ultratech Stepper, Inc. Method for forming a silicide region on a silicon body
WO1998037740A1 (en) 1997-02-21 1998-08-27 Koninklijke Philips Electronics N.V. A method of selectively metallizing a substrate using a hot foil embossing technique
US5951786A (en) 1997-12-19 1999-09-14 Sandia Corporation Laminated photovoltaic modules using back-contact solar cells
JPH11243224A (en) 1997-12-26 1999-09-07 Canon Inc Photovoltaic element module, manufacture thereof and non-contact treatment
EP1051885A1 (en) 1998-02-06 2000-11-15 FLEXcon Company, Inc. Thin film transferable electric components
US6159832A (en) 1998-03-18 2000-12-12 Mayer; Frederick J. Precision laser metallization
US6175075B1 (en) 1998-04-21 2001-01-16 Canon Kabushiki Kaisha Solar cell module excelling in reliability
DE60034840T3 (en) 1999-03-23 2011-02-24 Kaneka Corp., Osaka-shi Photovoltaic module
JP2001007362A (en) 1999-06-17 2001-01-12 Canon Inc Semiconductor substrate and manufacture of solar cell
US6825550B2 (en) 1999-09-02 2004-11-30 Micron Technology, Inc. Board-on-chip packages with conductive foil on the chip surface
AU2001282581A1 (en) 2000-09-01 2002-03-13 Showa Denko K K Apparatus for producing capacitor element member
JP3838979B2 (en) 2001-03-19 2006-10-25 信越半導体株式会社 Solar cell
EP1399135B1 (en) 2001-06-28 2004-12-29 Microchips, Inc. Methods for hermetically sealing microchip reservoir devices
JP3809353B2 (en) 2001-08-02 2006-08-16 キヤノン株式会社 Manufacturing method of workpiece with ID
US7106939B2 (en) 2001-09-19 2006-09-12 3M Innovative Properties Company Optical and optoelectronic articles
US6635307B2 (en) 2001-12-12 2003-10-21 Nanotek Instruments, Inc. Manufacturing method for thin-film solar cells
DE10393252T5 (en) 2002-09-06 2005-09-08 Dai Nippon Printing Co., Ltd. Backside protective layer for a solar cell module and solar cell module using the same
JP2004103959A (en) 2002-09-11 2004-04-02 Matsushita Electric Ind Co Ltd Solar cell and its manufacturing method
DE10245928B4 (en) 2002-09-30 2006-03-23 Infineon Technologies Ag Process for the structured, selective metallization of a surface of a substrate
US8222072B2 (en) * 2002-12-20 2012-07-17 The Trustees Of Princeton University Methods of fabricating devices by low pressure cold welding
WO2004096483A1 (en) 2003-04-25 2004-11-11 Nitto Denko Corporation Method of producing laser-processed product and adhesive sheet, for laser processing used therefor
US7494896B2 (en) 2003-06-12 2009-02-24 International Business Machines Corporation Method of forming magnetic random access memory (MRAM) devices on thermally-sensitive substrates using laser transfer
DE10349749B3 (en) 2003-10-23 2005-05-25 Infineon Technologies Ag Anti-fuse connection for integrated circuits and method for producing anti-fuse connections
JP4059842B2 (en) * 2003-12-05 2008-03-12 シャープ株式会社 Solar cell and solar cell module
KR100610462B1 (en) 2004-02-20 2006-08-08 엔이씨 도낀 가부시끼가이샤 Solid electrolytic capacitor, transmission-line device, method of producing the same, and composite electronic component using the same
KR100594277B1 (en) * 2004-05-25 2006-06-30 삼성전자주식회사 Photo diode and method of manufacturing the same
JP2006040938A (en) 2004-07-22 2006-02-09 Nec Tokin Corp Solid electrolytic capacitor, laminated capacitor using the same and its manufacturing method
US20080223429A1 (en) 2004-08-09 2008-09-18 The Australian National University Solar Cell (Sliver) Sub-Module Formation
DE102004050269A1 (en) * 2004-10-14 2006-04-20 Institut Für Solarenergieforschung Gmbh Process for the contact separation of electrically conductive layers on back-contacted solar cells and solar cell
US7358151B2 (en) 2004-12-21 2008-04-15 Sony Corporation Microelectromechanical system microphone fabrication including signal processing circuitry on common substrate
US7554055B2 (en) 2005-05-03 2009-06-30 Hitachi Global Storage Technologies Netherlands B.V. Method for making ohmic contact to silicon structures with low thermal loads
JP2006324555A (en) 2005-05-20 2006-11-30 Nec Tokin Corp Laminated capacitor and its manufacturing method
DE102005041099A1 (en) 2005-08-30 2007-03-29 Osram Opto Semiconductors Gmbh LED chip with glass coating and planar assembly and connection technology
US20070295399A1 (en) * 2005-12-16 2007-12-27 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
JP4842118B2 (en) 2006-01-24 2011-12-21 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US7795600B2 (en) 2006-03-24 2010-09-14 Goldeneye, Inc. Wavelength conversion chip for use with light emitting diodes and method for making same
DE102006040352B3 (en) 2006-08-29 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrical contact applying method for e.g. solar cell, involves applying layer of metallic powder on substrate, and guiding laser beam over substrate for local sintering and/or fusing metallic powder in inert atmosphere or in vacuum
DE102006044936B4 (en) 2006-09-22 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the metallization of solar cells and its use
US20080128019A1 (en) 2006-12-01 2008-06-05 Applied Materials, Inc. Method of metallizing a solar cell substrate
WO2008069456A1 (en) 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute Planar lightwave circuit(plc) device, wavelength tunable light source comprising the same device and wavelength division multiplexing-passive optical network(wdm-pon) using the same light source
WO2008080160A1 (en) 2006-12-22 2008-07-03 Advent Solar, Inc. Interconnect technologies for back contact solar cells and modules
US7755292B1 (en) 2007-01-22 2010-07-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ultraminiature broadband light source and method of manufacturing same
US8066840B2 (en) * 2007-01-22 2011-11-29 Solopower, Inc. Finger pattern formation for thin film solar cells
US20100084009A1 (en) 2007-03-16 2010-04-08 Bp Corporation North America Inc. Solar Cells
US7804022B2 (en) 2007-03-16 2010-09-28 Sunpower Corporation Solar cell contact fingers and solder pad arrangement for enhanced efficiency
WO2008137966A2 (en) * 2007-05-07 2008-11-13 Robert Stancel Structures for low cost, reliable solar roofing
US8866150B2 (en) 2007-05-31 2014-10-21 Cree, Inc. Silicon carbide power devices including P-type epitaxial layers and direct ohmic contacts
TWI450401B (en) 2007-08-28 2014-08-21 Mosel Vitelic Inc Solar cell and method for manufacturing the same
JP5252472B2 (en) 2007-09-28 2013-07-31 シャープ株式会社 Solar cell, method for manufacturing solar cell, method for manufacturing solar cell module, and solar cell module
US20120125256A1 (en) 2007-10-06 2012-05-24 Solexel, Inc. Apparatus and method for repeatedly fabricating thin film semiconductor substrates using a template
JP2009130116A (en) 2007-11-22 2009-06-11 Sharp Corp Inter-element wiring member, photoelectric conversion element, photoelectric conversion element connector using these, and photoelectric conversion module
JP4870100B2 (en) 2008-01-30 2012-02-08 日清紡ホールディングス株式会社 Tape-like body arrangement device
EP2239788A4 (en) * 2008-01-30 2017-07-12 Kyocera Corporation Solar battery element and solar battery element manufacturing method
US8481845B2 (en) 2008-02-05 2013-07-09 Gtat Corporation Method to form a photovoltaic cell comprising a thin lamina
DE102008013446A1 (en) * 2008-02-15 2009-08-27 Ersol Solar Energy Ag Process for producing monocrystalline n-silicon solar cells and solar cell, produced by such a process
US20110192445A1 (en) 2008-03-13 2011-08-11 Florian Solzbacher High precision, high speed solar cell arrangement to a concentrator lens array and methods of making the same
US8309388B2 (en) 2008-04-25 2012-11-13 Texas Instruments Incorporated MEMS package having formed metal lid
DE102008021167B3 (en) 2008-04-28 2010-01-21 Siemens Aktiengesellschaft Method for producing a hermetically sealed, electrical feedthrough by means of exothermic nanofoil and device produced therewith
US7851698B2 (en) * 2008-06-12 2010-12-14 Sunpower Corporation Trench process and structure for backside contact solar cells with polysilicon doped regions
JP2010028017A (en) 2008-07-24 2010-02-04 Fuji Electric Device Technology Co Ltd Thin inductor, manufacturing method thereof, and ultra small size power converter using the thin inductor
DE102008062591A1 (en) 2008-08-08 2010-03-04 Deutsche Cell Gmbh Semiconductor device
JP2012501551A (en) 2008-08-27 2012-01-19 アプライド マテリアルズ インコーポレイテッド Back contact solar cell module
KR101639786B1 (en) 2009-01-14 2016-07-15 코닌클리케 필립스 엔.브이. A method for deposition of at least one electrically conducting film on a substrate
US8207443B2 (en) 2009-01-27 2012-06-26 Applied Materials, Inc. Point contacts for polysilicon emitter solar cell
CN102428565A (en) 2009-03-26 2012-04-25 Bp北美公司 Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions
US8021919B2 (en) 2009-03-31 2011-09-20 Infineon Technologies Ag Method of manufacturing a semiconductor device
JP2011054831A (en) 2009-09-03 2011-03-17 Sharp Corp Back contact type solar cell, solar cell string, and solar cell module
KR20110047861A (en) * 2009-10-30 2011-05-09 삼성전자주식회사 Solar cell and method of manufacturing the same
FR2957479B1 (en) 2010-03-12 2012-04-27 Commissariat Energie Atomique PROCESS FOR TREATING A METAL CONTACT REALIZED ON A SUBSTRATE
US8946547B2 (en) 2010-08-05 2015-02-03 Solexel, Inc. Backplane reinforcement and interconnects for solar cells
KR101172195B1 (en) 2010-09-16 2012-08-07 엘지이노텍 주식회사 Solar cell apparatus and method of fabricating the same
US8975510B2 (en) 2011-03-25 2015-03-10 Cellink Corporation Foil-based interconnect for rear-contact solar cells
US20130137244A1 (en) 2011-05-26 2013-05-30 Solexel, Inc. Method and apparatus for reconditioning a carrier wafer for reuse
DE102011104159A1 (en) 2011-06-14 2012-12-20 Institut Für Solarenergieforschung Gmbh METHOD FOR THE ELECTRICAL CONNECTION OF SEVERAL SOLAR CELLS AND PHOTOVOLTAIC MODULE
US20130228221A1 (en) 2011-08-05 2013-09-05 Solexel, Inc. Manufacturing methods and structures for large-area thin-film solar cells and other semiconductor devices
US8563364B2 (en) 2011-09-29 2013-10-22 Infineon Technologies Ag Method for producing a power semiconductor arrangement
US20130160825A1 (en) 2011-12-22 2013-06-27 E I Du Pont De Nemours And Company Back contact photovoltaic module with glass back-sheet
CN104011882A (en) 2012-01-12 2014-08-27 应用材料公司 Methods of manufacturing solar cell devices
US8513045B1 (en) * 2012-01-31 2013-08-20 Sunpower Corporation Laser system with multiple laser pulses for fabrication of solar cells
CN104170095B (en) * 2012-03-14 2016-10-19 Imec非营利协会 For the method manufacturing the photovoltaic cell with plating contact
US9293635B2 (en) 2012-03-19 2016-03-22 Rec Solar Pte. Ltd. Back junction back contact solar cell module and method of manufacturing the same
US9040409B2 (en) 2013-03-15 2015-05-26 Applied Materials, Inc. Methods of forming solar cells and solar cell modules

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200520A1 (en) * 2003-04-10 2004-10-14 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
TW201027766A (en) * 2008-08-27 2010-07-16 Applied Materials Inc Back contact solar cells using printed dielectric barrier

Also Published As

Publication number Publication date
SG11201601079QA (en) 2016-03-30
AU2014327036A1 (en) 2015-12-17
US9437756B2 (en) 2016-09-06
KR20160061368A (en) 2016-05-31
CN108039380A (en) 2018-05-15
JP2016536808A (en) 2016-11-24
US9865753B2 (en) 2018-01-09
US20160343888A1 (en) 2016-11-24
EP3050122B1 (en) 2020-06-17
US20150090329A1 (en) 2015-04-02
BR112016006585B1 (en) 2021-08-03
CL2016000712A1 (en) 2016-12-16
EP3050122A4 (en) 2016-09-21
AU2014327036B2 (en) 2018-07-05
TW201521220A (en) 2015-06-01
CN108039380B (en) 2020-07-10
CN105474412A (en) 2016-04-06
BR112016006585A2 (en) 2017-08-01
EP3050122A1 (en) 2016-08-03
US10930804B2 (en) 2021-02-23
WO2015047952A1 (en) 2015-04-02
MY175353A (en) 2020-06-22
SA516370630B1 (en) 2019-04-11
MX2016003561A (en) 2016-06-02
KR102313263B1 (en) 2021-10-14
US20180097129A1 (en) 2018-04-05
MX356833B (en) 2018-06-15
JP6526020B2 (en) 2019-06-05
CN105474412B (en) 2018-01-02

Similar Documents

Publication Publication Date Title
TWI633677B (en) Metallization of solar cells using metal foils
US11784264B2 (en) Single-step metal bond and contact formation for solar cells
US10453976B2 (en) Systems and methods for forming foil contact rear emitter solar cells with carrier selective contacts
KR20140027188A (en) Active backplane for thin silicon solar cells
KR102605136B1 (en) Damage buffer for solar cell metallization
JP2010062186A (en) Photoelectric converter and method of manufacturing the same
US20150179866A1 (en) Metal bond and contact formation for solar cells
TWI645575B (en) Single-step metal bond and contact formation for solar cells