TWI630189B - 固態燃料電池及其製備方法 - Google Patents

固態燃料電池及其製備方法 Download PDF

Info

Publication number
TWI630189B
TWI630189B TW105135423A TW105135423A TWI630189B TW I630189 B TWI630189 B TW I630189B TW 105135423 A TW105135423 A TW 105135423A TW 105135423 A TW105135423 A TW 105135423A TW I630189 B TWI630189 B TW I630189B
Authority
TW
Taiwan
Prior art keywords
fuel cell
sodium
potassium
alkali metal
solid fuel
Prior art date
Application number
TW105135423A
Other languages
English (en)
Other versions
TW201817695A (zh
Inventor
王錫福
劉怡心
楊婷婷
Original Assignee
國立臺北科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺北科技大學 filed Critical 國立臺北科技大學
Priority to TW105135423A priority Critical patent/TWI630189B/zh
Priority to US15/366,834 priority patent/US10483580B2/en
Publication of TW201817695A publication Critical patent/TW201817695A/zh
Application granted granted Critical
Publication of TWI630189B publication Critical patent/TWI630189B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一種固態燃料電池,包含:一陽極、一陰極及一陶瓷電解質,該陶瓷電解質包括如RE y-xM xSi 6O 27± δ所示的矽酸鹽氧磷灰石,其中,RE表示稀土元素,M表示鹼金屬元素,y表示9.3~10,x是大於0且小於2,δ表示0~2。本發明亦提供一種製備固態燃料電池的方法,包含:將稀土元素氧化物、二氧化矽及鹼金屬化合物混合並進行煆燒,得到一包括上述矽酸鹽氧磷灰石的前驅物;將該前驅物與一有機聚合物混合後壓出,得到一生胚;將該生胚進行燒結,得到一陶瓷電解質;及組合該陶瓷電解質與一陽極、一陰極。本發明固態燃料電池的陶瓷電解質有助於提高燃料電池的發電效率。

Description

固態燃料電池及其製備方法
本發明是有關於一種固態燃料電池,特別是指一種包含一陶瓷電解質的固態氧化物燃料電池及其製備方法。
固態氧化物燃料電池(solid oxide fuel cell, SOFC)中的固態電解質一般是使用螢石(fluorite)結構或磷灰石(apatite)型態的陶瓷材料,例如釔安定氧化鋯(yttria-stabilized zirconia, YSZ)或矽酸鑭(lanthanum silicate)、鍺酸鑭(lanthanum germanate),其結構具有供氧離子擴散的通道,且可提供良好的化學穩定性及熱穩定性。由於固態電解質的阻抗主導了固態氧化物燃料電池的整體阻抗,因此,提高固態電解質材料的導電性對於固態氧化物燃料電池的發電效率有顯著的助益。
J. Eur. Ceram. Soc., 2007, 27, 1187–1192揭示一種鋇摻雜的矽酸鑭[La 10 x Ba x (SiO 4) 6O 3 x /2, x=0.25–2],其導電性優於矽酸鑭及等量鍶或鈣摻雜的矽酸鑭,然而,其在製程中需要相當高的煆燒(calcining)溫度(1500℃),因而需要較高的能源消耗。
J. Power Sources, 2014, 271, 203–212揭示一種鋁摻雜的矽酸鑭[La 9.33Si 6 x Al x O 26 x /2, x=0, 0.4, 0.8, 1],其中La 9.33Si 5AlO 25.5在700℃時的電導率(conductivity)為2.75×10 –3S/cm。
Solid State Ionics, 2012, 220, 7−11揭示一種銦摻雜的矽酸鑭[La 10Si 5.5In 0.5O 26.75],其在500℃時的電導率為8.92×10 –4S/cm,在800℃時的電導率為1.75×10 –2S/cm。
因此,本發明之目的,即在提供一種固態燃料電池,可以避免上述問題。
於是,本發明固態燃料電池,包含:一陽極、一陰極及一陶瓷電解質,該陶瓷電解質包括如RE y-xM xSi 6O 27± δ所示的矽酸鹽氧磷灰石(silicate oxyapatite),其中,RE表示稀土元素,M表示鹼金屬元素,y表示9.3~10,x是大於0且小於2,δ表示0~2。
因此,本發明之另一目的,即在提供一種製備固態燃料電池的方法,包含:將稀土元素氧化物、二氧化矽及鹼金屬化合物混合並進行煆燒(calcining),得到一前驅物,其中,該前驅物包括如RE y-xM xSi 6O 27± δ所示的矽酸鹽氧磷灰石,其中,RE表示稀土元素,M表示鹼金屬元素,y表示9.3~10,x是大於0且小於2,δ表示0~2;將該前驅物與一有機聚合物混合後壓出(extruding),得到一生胚(green compact);將該生胚進行燒結(sintering),得到一陶瓷電解質;及組合該陶瓷電解質與一陽極、一陰極。
本發明之功效在於:本發明固態燃料電池的陶瓷電解質具有較高的電導率,有助於提高其製得之固態氧化物燃料電池的發電效率。
以下將就本發明內容進行詳細說明:
較佳地,x是大於0且小於1。
較佳地,該鹼金屬元素是選自於鈉或鉀。更佳地,該鹼金屬元素為鈉,且x是不小於0.5且小於1。更佳地,該鹼金屬元素為鉀,且x是不小於0.2且小於1。
較佳地,該稀土元素為鑭。
本發明製備固態燃料電池的方法中的陶瓷電解質可透過固態反應法(solid-state reaction)、溶膠-凝膠法(sol-gel process)、水熱法(hydrothermal method)或共沉澱法(co-precipitation method)所製得。在本發明的具體實施例中,該陶瓷電解質是以固態合成法所製得。
較佳地,該鹼金屬化合物是選自於含鈉化合物或含鉀化合物。更佳地,該含鈉化合物是選自於碳酸鈉、硝酸鈉、氫氧化鈉、乙醇鈉、碳酸氫鈉或過氧化鈉。在本發明的具體實施例中,該含鈉化合物是碳酸鈉。更佳地,該含鉀化合物是選自於碳酸鉀、硝酸鉀、氫氧化鉀、亞硝酸鉀或氯化鉀。在本發明的具體實施例中,該含鉀化合物是碳酸鉀。
較佳地,該鹼金屬化合物是選自於鹼金屬碳酸鹽。
較佳地,該稀土元素氧化物為氧化鑭(III)。
較佳地,該有機聚合物是選自於聚乙烯醇(PVA)、石蠟(paraffin wax)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、乙烯-醋酸乙烯酯共聚物(EVA)或乙烯-丙烯酸乙酯共聚物(EEA)。
本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。
<實施例 1 La 9.5Na 0.5Si 6O 26.5
將La 2O 3在1100℃中進行預燒(precalcining) 2 h,以移除水氣,取La 2O 3粉末(經預燒)、SiO 2粉末、Na 2CO 3粉末(莫耳比為4.75:6:0.25)與足量乙醇混合,以氧化鋯球(ZrO 2)研磨24 h並烘乾,接著在900~1300℃中進行煆燒8 h,得到一前驅物。
於研缽中研磨該前驅物以破除部分團聚,再加入足量乙醇,以氧化鋯球研磨24 h並烘乾。隨後取1.5 g加入5 wt%(以烘乾後的前驅物為100 wt%) PVA混合並過篩(80 mesh),以單軸螺桿壓出機壓出(150 MPa) 30秒,得到一30 mm×4 mm×2 mm的生胚。
將該生胚置於坩鍋中,以5℃/min之速率升溫至550℃並維持4 h,以除去PVA與雜質,之後在1550℃中維持4 h進行燒結,以得到一緻密的塊材E1。
<實施例 2 La 9.3Na 0.7Si 6O 26.3
實施例2的製程與實施例1類似,差異之處在於將La 2O 3粉末(經預燒)、SiO 2粉末、Na 2CO 3粉末用量的莫耳比改為4.65:6:0.35,並將生胚燒結溫度改為1575℃,以得到一緻密的塊材E2。
<實施例 3 La 9NaSi 6O 26
實施例3的製程與實施例1類似,差異之處在於將La 2O 3粉末(經預燒)、SiO 2粉末、Na 2CO 3粉末用量的莫耳比改為4.5:6:0.5,生胚燒結溫度為1550℃,以得到一緻密的塊材E3。
<實施例 4 La 9.8K 0.2Si 6O 26.8
實施例4的製程與實施例1類似,差異之處在於將Na 2CO 3粉末替換為K 2CO 3粉末,將La 2O 3粉末(經預燒)、SiO 2粉末、K 2CO 3粉末用量的莫耳比改為4.9:6:0.1,並將生胚燒結溫度改為1575℃,以得到一緻密的塊材E4。
<實施例 5~7 La 9.5K 0.5Si 6O 26.5 La 9.3K 0.7Si 6O 26.3 La 9KSi 6O 26
實施例5~7的製程分別與實施例1~3類似,差異之處在於將Na 2CO 3粉末替換為K 2CO 3粉末,並將生胚燒結溫度分別改為1575、1625、1475℃,以分別得到緻密的塊材E5~E7。
<比較例 1 La 10Si 6O 27
比較例1的製程與實施例1類似,差異之處在於將La 2O 3粉末(經預燒)、SiO 2粉末用量的莫耳比改為5:6,且無添加Na 2CO 3粉末,生胚燒結溫度為1550℃,以得到一緻密的塊材CE1。
<比較例 2 La 9.33Si 6O 26
比較例2的塊材CE2是依據 Mater. Res. Bull., 2001, 36, 1245–1258以溶膠-凝膠法所製得的La 9.33Si 6O 26(燒結溫度為1400℃,燒結20 h)。
[ 晶相鑑定 ]
上述實施例2~3及5~7之塊材E2~E3及E5~E7經XRD鑑定顯示其晶相主要為單一相(single phase),僅存在微量的二次相(secondary phase),而比較例1之塊材CE1經XRD鑑定顯示其存在明顯大量的二次相,顯示本發明實施例之塊材較適於作為固態燃料電池的電解質。
[ 電導率 (Conductivity) 測量 ]
分別在上述實施例1~7及比較例1之塊材E1~E7及CE1上綁上4條銀線(銀線間距分別為5 mm、10 mm、5mm),並塗上銀膏以填補銀線與塊材之縫隙,之後分別在500、600、700及800℃中維持溫度1 h,並以四點式直流電性量測分析(固定電壓)測量其電流值,計算得其電導率,結果分別如下表1所示。 【表1】 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 塊材 </td><td> 電導率(10<sup>–4</sup> S/cm) </td></tr><tr><td> 500℃ </td><td> 600℃ </td><td> 700℃ </td><td> 800℃ </td></tr><tr><td> E1 </td><td> 2.79 </td><td> 14.1 </td><td> 41.7 </td><td> 89.1 </td></tr><tr><td> E2 </td><td> 5.62 </td><td> 58.1 </td><td> 58.2 </td><td> 122 </td></tr><tr><td> E3 </td><td> 0.00551 </td><td> 0.0365 </td><td> 0.144 </td><td> 0.373 </td></tr><tr><td> E4 </td><td> 2.42 </td><td> 9.23 </td><td> 24.4 </td><td> 52.7 </td></tr><tr><td> E5 </td><td> 9.52 </td><td> 37.3 </td><td> 98.4 </td><td> 208 </td></tr><tr><td> E6 </td><td> 6.80 </td><td> 24.1 </td><td> 61.2 </td><td> 128 </td></tr><tr><td> E7 </td><td> 0.0244 </td><td> 0.0842 </td><td> 0.257 </td><td> 55.3 </td></tr><tr><td> CE1 </td><td> 1.91 </td><td> 7.14 </td><td> 19.4 </td><td> 42.2 </td></tr></TBODY></TABLE>
由表1可以得知,實施例1~7之塊材E1~E7在500~800℃中的電導率多數高於比較例1之塊材CE1的電導率,在500℃中的電導率亦多數高於比較例2之塊材CE2在 Mater. Res. Bull., 2001, 36, 1245–1258中記載的電導率(7.31×10 –5S/cm),其中尤以含鈉的實施例2之塊材E2及含鉀的實施例5之塊材E5的效果最為明顯,對於與陽極、陰極組合製得的固態燃料電池極具提高發電效率的潛力。
綜上所述,本發明固態燃料電池的陶瓷電解質包括如RE y-xM xSi 6O 27± δ所示的矽酸鹽氧磷灰石,具有較高的電導率,有助於提高其製得之固態氧化物燃料電池的發電效率,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。

Claims (6)

  1. 一種固態燃料電池,包含:一陽極、一陰極及一陶瓷電解質,該陶瓷電解質包括如REy-xMxSi6O27±δ所示的矽酸鹽氧磷灰石,其中,RE表示稀土元素,M表示鹼金屬元素,y表示9.3~10,x是大於0且小於2,δ表示0~2,該鹼金屬元素是選自於鈉或鉀,該稀土元素為鑭。
  2. 如請求項1所述的固態燃料電池,其中,x是大於0且小於1。
  3. 如請求項1所述的固態燃料電池,其中,該鹼金屬元素為鈉,且x是不小於0.5且小於1。
  4. 如請求項1所述的固態燃料電池,其中,該鹼金屬元素為鉀,且x是不小於0.2且小於1。
  5. 一種製備固態燃料電池的方法,包含:將稀土元素氧化物、二氧化矽及鹼金屬化合物混合並進行煆燒,得到一前驅物,其中,該前驅物包括如REy-xMxSi6O27±δ所示的矽酸鹽氧磷灰石,其中,RE表示稀土元素,M表示鹼金屬元素,y表示9.3~10,x是大於0且小於2,δ表示0~2,該鹼金屬化合物是選自於含鈉化合物或含鉀化合物,該稀土元素氧化物為氧化鑭(III);將該前驅物與一有機聚合物混合後壓出,得到一生胚;將該生胚進行燒結,得到一陶瓷電解質;及組合該陶瓷電解質與一陽極、一陰極。
  6. 如請求項5所述的製備固態燃料電池的方法,其中,該含鈉化合物是選自於碳酸鈉、硝酸鈉、氫氧化鈉、乙醇鈉、 碳酸氫鈉或過氧化鈉,該含鉀化合物是選自於碳酸鉀、硝酸鉀、氫氧化鉀、亞硝酸鉀或氯化鉀。
TW105135423A 2016-11-02 2016-11-02 固態燃料電池及其製備方法 TWI630189B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105135423A TWI630189B (zh) 2016-11-02 2016-11-02 固態燃料電池及其製備方法
US15/366,834 US10483580B2 (en) 2016-11-02 2016-12-01 Solid state fuel cell and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105135423A TWI630189B (zh) 2016-11-02 2016-11-02 固態燃料電池及其製備方法

Publications (2)

Publication Number Publication Date
TW201817695A TW201817695A (zh) 2018-05-16
TWI630189B true TWI630189B (zh) 2018-07-21

Family

ID=62022573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135423A TWI630189B (zh) 2016-11-02 2016-11-02 固態燃料電池及其製備方法

Country Status (2)

Country Link
US (1) US10483580B2 (zh)
TW (1) TWI630189B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572322A (zh) * 2009-06-04 2009-11-04 武汉工程大学 一种稀土掺杂硅酸镧氧基磷灰石型固体电解质及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968956B2 (en) * 2010-09-20 2015-03-03 Nextech Materials, Ltd Fuel cell repeat unit and fuel cell stack

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572322A (zh) * 2009-06-04 2009-11-04 武汉工程大学 一种稀土掺杂硅酸镧氧基磷灰石型固体电解质及其制备方法

Also Published As

Publication number Publication date
US20180123157A1 (en) 2018-05-03
TW201817695A (zh) 2018-05-16
US10483580B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6441531B1 (ja) 配向性アパタイト型酸化物イオン伝導体及びその製造方法
RU2009109346A (ru) Оксид циркония и способ его получения
CN102584195B (zh) 一种铋基钙钛矿型无铅压电陶瓷及其低温制备方法
JP2009231075A (ja) ペロブスカイト型複合酸化物薄膜
Bu et al. Sintering behaviour of the protonic conductors BaZrxCe0. 8-xLn0. 2O3-δ (x= 0.8, 0.5, 0.1; Ln= Y, Sm, Gd, Dy) during the solid-state reactive-sintering process
JP6288035B2 (ja) 固体電解質
Li et al. Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO3 based perovskites
JP6100050B2 (ja) 燃料電池用空気極
TWI630189B (zh) 固態燃料電池及其製備方法
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
Cheng et al. Electrical and mechanical properties of Sm2O3 doped Y-TZP electrolyte ceramics
KR101559942B1 (ko) 칼슘-바나듐계 페롭스카이트 단일상 합성에 의한 열전물성과 전기전도도 향상방법
JP6715133B2 (ja) 配向性アパタイト型複合酸化物の製造方法
JP5172076B2 (ja) 高導電性ジルコニア質焼結体
JP5617865B2 (ja) 固体電解質
Imashuku et al. Effect of isovalent cation substitution on conductivity and microstructure of sintered yttrium-doped barium zirconate
KR101579874B1 (ko) 고체 산화물 연료 전지용 전해질 조성물 및 고체 산화물 연료 전지
Hariharan et al. Effect of A-site substitution on electrical conductivity and microstructure of YAlO3
Sugimoto et al. Preparation of Dense Ba1− xSrxZr1− yYyO3− δ (y= 0.0, 0.1) Ceramics by Pechini Method
JP2017214231A (ja) 複合酸化物前駆体の製造方法
Johar et al. Elemental, thermal, and structural characterization of ZnO doped 8 mol% yttria-stabilized zirconia (8YSZ) ceramics
TW201925138A (zh) 用於固態氧化物燃料電池的陰極材料及其製法
Misso et al. Low temperature synthesis of lanthanum silicate apatite type by modified sol gel process
Araujo et al. Correlation between Powder Characteristic and Microstructure Development of Y-Doped BaCeO3
KR101582551B1 (ko) 희토류가 저감된 고온환경 열차폐용 저열전도성 복합산화물 세라믹스 및 그 제조방법