TWI628669B - 減少非所需渦電流之系統及方法 - Google Patents

減少非所需渦電流之系統及方法 Download PDF

Info

Publication number
TWI628669B
TWI628669B TW105114777A TW105114777A TWI628669B TW I628669 B TWI628669 B TW I628669B TW 105114777 A TW105114777 A TW 105114777A TW 105114777 A TW105114777 A TW 105114777A TW I628669 B TWI628669 B TW I628669B
Authority
TW
Taiwan
Prior art keywords
container
eddy currents
wall
plasma
conductive structure
Prior art date
Application number
TW105114777A
Other languages
English (en)
Other versions
TW201707007A (zh
Inventor
尼可拉斯 萊斯
Original Assignee
美商堤艾億科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商堤艾億科技公司 filed Critical 美商堤艾億科技公司
Publication of TW201707007A publication Critical patent/TW201707007A/zh
Application granted granted Critical
Publication of TWI628669B publication Critical patent/TWI628669B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/052Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本發明揭示減少導電結構中之非所需渦電流(例如,藉由將一場反轉型組態(FRC)平移至一侷限室中而誘發)之振幅而使有益渦電流不受影響之系統及方法。此藉由在電漿平移至該侷限室中之前在該等相同導電結構中誘發相反電流而達成。

Description

減少非所需渦電流之系統及方法
本文所闡述之標的物大體而言係關於磁電漿侷限系統且更特定而言係關於促進非所需渦電流之相消之系統及方法。
場反轉型組態(FRC)屬於稱為緊湊環體(CT)之磁電漿侷限拓撲類別。其主要展現極向磁場且擁有零或小的自生環形場(參見M.Tuszewski之Nucl.Fusion 28,2033(1988))。形成一FRC之傳統方法係使用場反轉型θ捏縮技術,從而產生熱的高密度電漿(參見A.L.Hoffman等人之Nucl.Fusion 33,27(1993))。關於此方法之一變化形式係平移-陷獲(translation-trapping)方法,其中在一θ捏縮「源」中形成之電漿或多或少地立即射出一個端部至一侷限室中。平移電漿團然後陷獲在室之端部處之兩個強鏡之間(舉例而言,參見H.Himura等人之Phys.Plasmas 2,191(1995))。
在過去十年中已取得顯著進步,開發出其他FRC形成方法:合併具有反向螺旋性之電漿粒團(spheromaks)(例如,參見Y.Ono等人之Nucl.Fusion 39,2001(1999))及藉由驅動具有旋轉磁場(RMF)之電流(例如,參見I.R.Jones之Phys.Plasmas 6,1950(1999)),其亦提供額外穩定性。最近,已顯著地進一步開發早已提議之碰撞-合併技術(例如,參見D.R.Wells,Phys.Fluids 9,1010(1966)):在一侷限室之相 對端部處之兩個單獨θ捏縮同時產生兩個電漿團,且將該等電漿團高速地朝向彼此加速;然後其在侷限室之中心處碰撞且合併以形成一複合FRC。在迄今最大FRC實驗中之一者之構造及成功操作中,展示習用碰撞-合併方法以產生穩定、長壽命、高通量、高溫FRC(例如,參見M.Binderbauer等人之Phys.Rev.Lett.105,045003(2010))。
當一FRC平移至侷限區段中時,FRC在其附近區域(例如容器壁或導電容器內組件)內之任何導電結構中誘發渦電流。此等渦電流影響電漿狀態並隨時間衰減,藉此促進電漿之一連續演變且阻止任何穩定狀態直至渦電流已衰減至可忽略量值為止。若導電結構並非係軸對稱的(此係通常情形),則渦電流使FRC之軸對稱破裂。總體而言,此等平移誘發之渦電流係非所需的。其初始激發強加約束於電漿形狀並藉此限制導電結構提供電漿不穩定性之被動穩定化之能力,且其隨時間之衰減甚至在不存在電漿不穩定性之情況下因需要連續補償而使電漿控制複雜化。此外,亦可藉由對平衡磁場之適合調整提供平移誘發之渦電流之任何有益效應。
平移誘發之渦電流並非在實驗期間出現之唯一類型之渦電流。電漿不穩定性可激發渦電流,該等渦電流減少不穩定性之增長速率且因此係所需的。渦電流亦將回應於中性束電流斜升而出現。
在其他FRC實驗中之電漿壽命通常已限制於顯著低於導電壁之電阻時序表之值,使得時變渦電流不會造成任何實際問題且未受到過多關注。
阻止平移誘發之渦電流之激發之一種相關技術係在容器中使用絕緣軸向「間隙」以阻止軸對稱渦電流之激發。此方法之缺點在於其需要對導電容器做結構性改變,且渦電流不受抑制但軸對稱電流經變換成3D電流。此因此加劇來自3D場之不利效應且亦使壁不適合於軸對稱電漿不穩定性之被動穩定化。
三維誤差場通常藉由其本身並非軸對稱之誤差場校正線圈校正。在最佳情形中,此等線圈可消除與所存在之線圈一樣多之諧波,但其往往引入新誤差於剩餘諧波中且需要能夠在實驗期間沿循誤差場之任何時變。
因此,需要提供促進減少或消除非所需渦電流之系統及方法。
本文所提供之實施例係針對促進減少非所需渦電流(壁電流)(例如,平移誘發之渦電流,諸如藉由平移FRC電漿而誘發之渦電流)之振幅而使有益渦電流不受影響之系統及方法。減少非所需渦電流之振幅係藉由在電漿平移之前在相同結構中(舉例而言)使用主動線圈誘發相反電流而達成。若在將電漿與導電結構分離之一表面上之總磁場的切向分量及正常分量兩者皆被量測,則該場可分解成由電漿產生之分量及由外部電流(例如平衡線圈電流)產生之分量。藉由自外部線圈減去已知場,由於渦電流所致之場則保留下來。對應渦電流分佈可根據此場之時間演變重建。在渦電流分佈已知之情況下,使用主動線圈以在電漿平移至室中之預誘發具有一相反正負號之一類似分佈。計算必要線圈電流僅需要主動線圈及被動結構之幾何形狀之知識。當電漿平移至侷限室中時,兩個渦電流分佈重疊並相消。再現之渦電流分佈愈精確,相消愈完全。
本文所闡述之系統及方法有利地:‧減少由於干擾電漿控制之衰減之渦電流所致之時變外部場;‧減少一非軸對稱壁之對稱破裂效應;由於經預誘發渦電流及平移誘發之渦電流兩者皆具有相同3D結構,因此在不需要非軸對稱線圈之情況下減少3D場;且‧達成緊密配接、軸對稱、容器內結構之安裝以增加軸對稱及非軸對稱不穩定性之被動穩定化。
在審查以下圖及詳細說明之後,熟習此項技術者旋即將明瞭或將變得明瞭該實例性實施例之其他系統、方法、特徵及優勢。
10‧‧‧容器/壁
12‧‧‧形成管
14‧‧‧形成管
20‧‧‧軸對稱主動線圈/主動線圈/線圈
100‧‧‧控制系統
200‧‧‧主動線圈系統
實例性實施例之細節(包含結構及操作)可藉由研究附圖而部分查明,在附圖中相同元件符號指代相同零件。圖中之組件未必按比例繪製,而是強調圖解說明本發明之原理。此外,所有圖解說明意欲傳達概念,其中相對大小、形狀及其他詳細屬性可示意性地而非按字面或精確地圖解說明。
圖1係一室或容器之一示意圖,該室或容器具有附接至室之相對端部之形成管及圍繞室之壁定位以用於在室之壁中誘發渦電流(壁電流)之軸對稱線圈。
圖1A係展示耦合至一主動線圈系統及一形成系統之一控制系統之一示意圖。
圖2係圖1中之室及形成管之一示意圖,其中一電漿存在於該形成管中。
圖3係在電漿平移至室中之後的圖1中之室及形成管之一示意圖,其展示在室之壁中形成之平移誘發之渦電流(平移誘發之壁電流)。
圖4係在電漿平移至室中之前的圖1中之室及形成管,其中經預誘發渦電流在室之壁中形成(經預誘發壁電流)。
圖5係在電漿平移至室中之後的圖1中之室及形成管,其展示在室之壁中之經預誘發渦電流及平移誘發之渦電流(經預誘發壁電流及平移誘發之壁電流)。
圖6係在電漿平移至室中之後的圖1中之室及形成管,其展示由室之壁中之經預誘發渦電流(經預誘發壁電流)抵消的室之壁中之平移誘發之渦電流(平移誘發之壁電流)。
圖7係針對三個(3)情形展示之室之一軸對稱壁中之模擬渦電流分佈(模擬壁電流分佈)之一曲線圖:(1)無經預誘發,(2)經預誘發及(3)經預誘發與經調整之真空場。
應注意,出於說明目的貫穿各圖具有類似結構或功能之元件大體而言係由相同元件符號表示。亦應注意,該等圖僅意欲促進對較佳實施例之闡述。
下文所揭示之額外特徵及教示中之每一者可單獨地或結合其他特徵及教示用於提供促進減少非所需渦電流(壁電流)(例如,平移誘發之渦電流)之振幅而使有益渦電流不受影響之系統及方法。現在將參考附圖進一步詳細闡述本文所闡述之實施例之代表性實例,該等實例既單獨地又以組合方式利用諸多此等額外特徵及教示。此詳細說明僅意欲教示熟習此項技術者進一步細節以用於實踐本發明教示之較佳態樣且並不意欲限制本發明之範疇。因此,以下細節說明中所揭示之特徵及步驟之組合未必在最寬廣意義上實踐本發明,而是其僅經教示以尤其闡述本發明教示之代表性實例。
此外,該等代表性實例及隨附申請專利範圍之各種特徵可以非特定且明確列舉之方式組合以便提供本發明教示之額外有用實施例。另外,應特別注意,闡述及/或申請專利範圍中所揭示之所有特徵意欲出於原始揭示內容之目的以及出於限定獨立於實施例及/或申請專利範圍中之特徵之組合之所主張標的物之目的而單獨地且彼此獨立地予以揭示。亦應特別注意,實體群組之所有值範圍或指示皆出於原始揭示內容之目的以及出於限定所主張標的物之目的而揭示每一可能中間值或中間實體。
本文所提供之實施例係針對促進減少非所需渦電流(例如,平移誘發之渦電流,諸如藉由平移FRC電漿而誘發之渦電流)之振幅而使 有益渦電流不受影響之系統及方法。藉由平移FRC電漿所誘發之渦電流不取決於先前場組態亦不取決於先前電流之存在。因此,若藉由電漿平移所誘發之電流係非所需的,則可在電漿平移之前藉由形成一相等且相反電流型樣將其消除。
在實務中,如圖1中所展示,此可藉助圍繞容器10之內側或外側定位之軸對稱主動線圈20而達成。電漿(諸如,例如FRC電漿)在容器10之中平面中形成且自定位於容器10之相對端部上之形成管12及14朝向容器10之中平面平移。在已公開之PCT申請案第WO 2015048092號中提供對用於形成並維持一FRC電漿之系統及方法之一詳細論述,該PCT申請案主張美國臨時專利申請案第61/881874號及美國臨時專利申請案第62/001583號之優先權,該等申請案如完全陳述一般以引用方式併入本文中。
如圖1A中所展示,一控制系統100耦合至一主動線圈系統200及一形成系統,該主動線圈系統包括主動線圈20、電源供應器及諸如此類,且該形成系統300包括形成管12及14、線圈或綁帶、電源供應器及諸如此類。
在電漿自形成管12及14平移之前,線圈20經斜升並保持於恆定電流處直至容器10之壁中之所有渦電流皆已衰減為止。此時,中斷至線圈20之電流且開始電漿形成序列。至線圈20之電流之中斷將在容器10之壁中激發一特定渦電流分佈以節約通過容器10之通量,直至自平移電漿之一後續通量注入將容器10之壁中之渦電流減少回至零為止。另一選擇係,可在電漿平移之前正好將線圈20快速斜升。在此情形中,快速斜升將在容器10之壁中產生所需渦電流分佈,且自經平移電漿之後續通量注入將使渦電流返回至零。在平移之後,線圈20中之電流保持恆定。若與線圈20可斜升之速率相比,壁10之特性渦電流衰減時間充分緩慢,則可使用此方法。大體而言可藉由使主動線圈之幾何 形狀最佳化而增加相消,但甚至在規定主動線圈幾何形狀之情況下,亦可減少渦電流振幅。
為判定將使渦電流相消最大化之主動線圈中之電流,必須量測藉由電漿所誘發之渦電流分佈。此可藉由量測導電結構與電漿之間的區域中之磁場之至少兩個分量而進行。在磁場之兩個分量已知之情況下,磁場可然後經分離成由於電漿所致之分量及由於外部電流所致之分量。此在一圓柱形幾何形狀中容易見到,亦即,針對一給定模數m及相位,磁純量位勢係藉由兩個振幅判定,一個用於與rm成比例之項且另一個用於與r-m成比例之項。具有相同空間點處之磁場之兩個量測允許對兩個係數求解,且藉助與rm成比例之項輕而易舉地識別來自電漿之場。在較複雜幾何形狀中,數學運算並非那樣簡單但可使用相同程序。在內部磁場及外部磁場兩者之時間演變皆已知之情況下,導電結構中之電流分佈可藉由相對於一有限元素電路模型之最小平方擬合而計算。
圖2至圖6圖解說明減少平移誘發之渦電流之基本理念。在圖中展示兩個階段(亦即,1)在平移之前及2)在平移之後)中之電漿電流(填充白色)、電漿誘發之壁電流(填充灰色)及經預誘發壁電流(填充交叉陰影)。在圖2及圖3中,在容器10之壁中無壁電流經預誘發,因此壁中之淨電流在電漿自形成管12及14平移之後係一非零值。在圖4至圖6中,已在容器10之壁中預誘發某些電流。在電漿自形成管12及14平移之後,壁中之淨電流變為零。
已使用LamyRidge(一2流體模擬碼)來模擬所提議技術之應用以評估其對電漿形成及平移之效應。圖7針對三個不同情形展示在形成之後兩百微秒(200ms)之一軸對稱壁中之渦電流分佈:
1)在情形1中(--),無渦電流補償被利用,從而導致具有分界面(separatrix)半徑39cm及伸長率2.5之一電漿。
2)在情形2中(-),在形成開始之前,將一(完全)相反電流型樣放置於壁上。如所預料,渦電流之振幅在模擬結束時減少。電流並未完全相消,此乃因經預誘發電流之存在導致電漿之一膨脹,使得電漿達到46cm之一半徑且具有2.0之一伸長率。
3)在情形3中(------),除室壁中之經預誘發渦電流外,侷限線圈中之電流亦經調整以補償經抑制渦電流。換言之,在情形3中之t=0處由侷限線圈產生之場現在等於在情形1中之t=200us處由侷限線圈及渦電流兩者產生之場。此導致極類似於情形1(半徑38cm,伸長率2.5)之一電漿,但渦電流已減少至1/10。因此此電漿之後續演變較不受壁渦電流之影響且因此更容易控制及預測。此外,藉由調整經預誘發壁電流以及侷限線圈,可直接控制電漿分界面半徑。
其他優勢
為穩定FRC位置或形狀,可使用軸對稱、導電、容器內被動結構。若以如上文所闡述之一方式在容器內被動結構中預誘發渦電流,則可在不影響初始電漿形狀及組態之情況下安裝容器內被動結構。另一方面,若無電流經預誘發,則容器內被動結構之安裝將減小FRC半徑且因此將容器內被動結構與電漿之間的耦合減少至近似先前在容器之壁與電漿之間的相同耦合強度,從而忽略在容器中安裝額外組件之諸多優勢。
一類似問題適用於控制線圈。在容器外線圈具有不充分電漿耦合以使電漿不穩定性穩定化且使用容器內線圈之情況下,通常需要藉助一額外內部壁保護容器內線圈免受電漿之影響。若此容器內線圈壁中之渦電流未消除,則其將減小電漿半徑且線圈-電漿耦合中之既定增加將減少。因此,消除渦電流增加線圈與電漿之間的耦合,且因此減少用於控制線圈之電流及電壓要求兩者。
由於容器之3D形狀,任何誘發之壁電流將使軸對稱破裂並潛在 地減少侷限、激發不穩定性或以其他方式減少效能。誤差場校正線圈可用於減少特定諧波之一固定數目,但其本身係非軸對稱的且因此進一步放大其他旁頻帶諧波。相比而言,如上文所闡述之渦電流之消除僅需要軸對稱線圈,導致較少旁頻帶諧波,且在電漿形成之後不需要線圈中之任何電流。
總之,本文所提供之所提議系統及方法增加使電漿不穩定性穩定化之可能性,藉由改良至壁之耦合提高電漿控制系統之效率,減少使3D場對稱破裂之振幅且降低實時系統之複雜性。至某種程度,亦可藉由再使用現有線圈系統為以極小代價實現所有此等優勢。可藉由針對線圈放置及設計考慮到渦電流消除而達成最佳結果。
本文所提供之實例性實施例有利地減少由於干擾電漿控制之衰減之渦電流所致之時變外部場,減少一非軸對稱壁之對稱破裂效應(由於經預誘發渦電流及平移誘發之渦電流兩者皆具有相同3D結構,因此在不需要非軸對稱線圈之情況下減少3D場)且達成緊密配接、軸對稱、容器內結構之安裝以增加軸對稱及非軸對稱不穩定性之被動穩定化。
然而,本文所提供之實例性實施例僅意欲作為說明性實例而非絕非係限制性的。
在前述說明書中,已參考本發明之特定實施例闡述了本發明。然而,很明顯將在不脫離本發明之更寬廣精神及範疇之情況下對本發明做出各種修改及改變。舉例而言,讀者將理解本文所闡述之程序流程圖中所展示之程序行為之特定次序及組合僅係說明性的(除非另做陳述)且可使用不同或額外程序行為或程序行為之一不同組合或次序來執行本發明。作為另一實例,一項實施例之每一特徵可與其他實施例中展示之其他特徵混合及匹配。可如所期望而類似地併入熟習此項技術者已知之特徵及程序。另外且明顯地,可如所期望地添加或減去 若干特徵。因此,本發明不受除隨附申請專利範圍及其等效內容之外的限制。

Claims (20)

  1. 一種用於減少在一導電結構中誘發之非所需渦電流之方法,該方法包括以下步驟:在於一導電結構中誘發一一第一組渦電流;及將電漿平移進入該導電結構中,其中平移進入該導電結構中之電漿在該導電結構中誘發一第二組渦電流,其中該第一組渦電流在該第二組渦電流之前誘發且具有基本上等於該第二組渦電流之分佈且在正負號上與其相反之一分佈以在於該導電結構中誘發該第二組渦電流之後旋即基本上與該第二組渦電流相消。
  2. 如請求項1之方法,其中該導電結構係一電漿侷限容器之一壁。
  3. 如請求項1之方法,其中在一導電結構中誘發渦電流之該步驟包含以下步驟使圍繞該導電結構之線圈斜升並將其保持於一恆定電流處直至該導電結構中之所有渦電流皆已衰減為止,及中斷至該等線圈之電流以允許該第一組渦電流在該等導電結構中激發,從而節約通過該等結構之磁通量。
  4. 如請求項1之方法,其中該平移之電漿將一通量注入至該導電結構中,此在該導電結構中誘發該第二組渦電流,從而將該導電結構中之渦電流之振幅減少回至零。
  5. 如請求項3之方法,其中該平移之電漿將一通量注入至該導電結構中,此在該導電結構中誘發該第二組渦電流,從而將該導電結構中之渦電流之該振幅減少回至零。
  6. 如請求項1之方法,其中在一導電結構中誘發一第一組渦電流之步驟包含以下步驟使圍繞該導電結構之線圈斜升並將其保持於一恆定電流處以在該導電結構中產生該第一組渦電流,且其中該平移之電漿將一通量注入至該導電結構中,此在該導電結構中誘發該第二組渦電流,從而將該導電結構中之渦電流之該振幅減少回至零。
  7. 一種用於減少在一容器壁中誘發之非所需渦電流之系統,該系統包括:一容器,其具有一壁及一內部,一形成區段,其附接至該容器之一端,複數個線圈,其圍繞該容器定位,及一控制系統,其耦合至該複數個線圈且經組態以在一第二組渦電流於該容器之該壁中被誘發之前在該容器之該壁中誘發一第一組渦電流,其中該第一組渦電流具有基本上等於該第二組渦電流之分佈且在正負號上與其相反之一分佈以在於室之該壁中誘發該第二組渦電流之後旋即基本上與該第二組渦電流相消,其中該控制系統進一步建構以將電漿由該形成區段平移進入該容器之內部,其中該平移之電漿在該容器之壁中誘該第二組渦電流。
  8. 如請求項7之系統,其中該控制系統進一步經組態以使該複數個線圈斜升並將其保持於一恆定電流處直至該容器之該壁中之所有渦電流皆已衰減為止,且然後中斷至該複數個線圈之該電流以允許該第一組渦電流在該容器之該壁中激發,從而節約通過該容器之通量。
  9. 如請求項8之系統,其中該平移之電漿將一通量注入至該容器之該壁中,此在該容器之該壁中誘發該第二組渦電流,從而將該容器之該壁中之渦電流之振幅減少回至零。
  10. 如請求項7之系統,其中該控制系統進一步經組態以使該複數個線圈斜升並將其保持於一恆定電流處以在該導電結構中產生該第一組渦電流。
  11. 如請求項10之系統,其中該平移之電漿將一通量注入至該容器之該壁中,此在該容器之該壁中誘發該第二組渦電流,從而將該容器之該壁中之渦電流之該振幅減少回至零。
  12. 一種用於減少在一導電結構中誘發之非所需渦電流之方法,該方法包括以下步驟:在於具有一壁及一內部之一容器之一壁中誘發一第二組渦電流之前在該容器之該壁中誘發一第一組渦電流,及將電漿平移進入一容器中,其中平移進入該容器中之電漿在該容器之壁中誘發一第二組渦電流,其中該第一組渦電流具有基本上等於該第二組渦電流之分佈且在正負號上與其相反之一分佈以在於該容器之壁中誘發該第二組渦電流之後旋即基本上與該第二組渦電流相消。
  13. 如請求項12之方法,其中在該容器之該壁中誘發渦電流之該步驟包含以下步驟使圍繞該容器之壁定位之複數個線圈斜升並將其保持於一恆定電流處直至該容器之壁中之所有渦電流皆已衰減為止,及中斷至該複數個線圈之電流以允許該第一組渦電流在該容器之該壁中激發,從而節約通過該容器之該壁之磁通量。
  14. 如請求項12之方法,其中該平移之電漿將一通量注入至該等容器之該壁中,此在該容器之該壁中誘發該第二組渦電流,從而將該容器之該壁中之渦電流之振幅減少回至零。
  15. 如請求項13之方法,其中該平移之電漿將一通量注入至該等容器之該壁中,此在該容器之該壁中誘發該第二組渦電流,從而將該容器之該壁中之渦電流之該振幅減少回至零。
  16. 如請求項12之方法,其中自附接至該容器之相對端部之相對形成區段平移該電漿。
  17. 如請求項16之方法,進一步包括在該等相對形成區段中形成一場反轉型組態(FRC)電漿之步驟且其中將電漿平移至該容器中的步驟包括將該場反轉型組態電漿平移至該容器內。
  18. 如請求項12之方法,其中在該容器之該壁中誘發一第一組渦電流之該步驟包含以下步驟使圍繞該容器之該壁定位之複數個線圈斜升並將其保持於一恆定電流處以在該容器之該壁中產生該第一組渦電流,及其中該平移之電漿將一通量注入至該容器之該壁中,此在該容器之該壁中誘發該第二組渦電流,從而將該容器之該壁中之渦電流之該振幅減少回至零。
  19. 如請求項18之方法,其中自附接至該容器之相對端部之相對形成區段平移該電漿。
  20. 如請求項19之方法,進一步包括在該等相對形成區段中形成一場反轉型組態(FRC)電漿步驟且其中將電漿平移至該容器中的步驟包括將該場反轉型組態電漿平移至該容器內。
TW105114777A 2015-05-12 2016-05-12 減少非所需渦電流之系統及方法 TWI628669B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562160421P 2015-05-12 2015-05-12
US62/160,421 2015-05-12

Publications (2)

Publication Number Publication Date
TW201707007A TW201707007A (zh) 2017-02-16
TWI628669B true TWI628669B (zh) 2018-07-01

Family

ID=57249041

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105114777A TWI628669B (zh) 2015-05-12 2016-05-12 減少非所需渦電流之系統及方法

Country Status (34)

Country Link
US (2) US10418170B2 (zh)
EP (1) EP3295459B1 (zh)
JP (1) JP6771774B2 (zh)
KR (1) KR102598740B1 (zh)
CN (2) CN107851466B (zh)
AR (1) AR104616A1 (zh)
AU (1) AU2016261503B2 (zh)
BR (1) BR112017024267B1 (zh)
CA (1) CA2983344A1 (zh)
CL (1) CL2017002829A1 (zh)
CY (1) CY1123634T1 (zh)
DK (1) DK3295459T3 (zh)
EA (1) EA036012B1 (zh)
ES (1) ES2837256T3 (zh)
HK (1) HK1253007A1 (zh)
HR (1) HRP20210007T1 (zh)
HU (1) HUE052181T2 (zh)
IL (1) IL255409B (zh)
LT (1) LT3295459T (zh)
MX (2) MX2017014466A (zh)
MY (1) MY186425A (zh)
NZ (1) NZ738196A (zh)
PE (1) PE20180334A1 (zh)
PH (1) PH12017502018A1 (zh)
PL (1) PL3295459T3 (zh)
PT (1) PT3295459T (zh)
RS (1) RS61313B1 (zh)
SA (1) SA517390268B1 (zh)
SG (1) SG11201708790VA (zh)
SI (1) SI3295459T1 (zh)
TW (1) TWI628669B (zh)
UA (1) UA124492C2 (zh)
WO (1) WO2016183036A1 (zh)
ZA (1) ZA201707113B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2887930T3 (es) * 2014-10-13 2021-12-29 Tae Tech Inc Procedimiento para fusión y compresión de toros compactos
KR102590200B1 (ko) * 2014-10-30 2023-10-16 티에이이 테크놀로지스, 인크. 고성능 frc를 형성하고 유지하는 시스템 및 방법
JP6771774B2 (ja) * 2015-05-12 2020-10-21 ティーエーイー テクノロジーズ, インコーポレイテッド 不所望の渦電流を低減するシステムおよび方法
PT3357067T (pt) 2015-11-13 2021-11-15 Tae Tech Inc Sistemas e processo para a estabilização da posição de um plasma frc
US11049619B1 (en) * 2019-12-23 2021-06-29 Lockheed Martin Corporation Plasma creation and heating via magnetic reconnection in an encapsulated linear ring cusp
WO2021146329A1 (en) * 2020-01-13 2021-07-22 Tae Technologies, Inc. System and methods for forming and maintaining high energy and temperature frc plasma via spheromak merging and neutral beam injection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451877A (en) * 1993-04-23 1995-09-19 Siemens Aktiengesellschaft Method for the compensation of eddy currents caused by gradients in a nuclear magnetic resonance apparatus
WO2013074666A2 (en) * 2011-11-14 2013-05-23 The Regents Of The University Of California Systems and methods for forming and maintaining a high performance frc

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869074A (en) * 1953-10-26 1959-01-13 Gen Electric Single-turn coil for metal detector
US3120470A (en) 1954-04-13 1964-02-04 Donald H Imhoff Method of producing neutrons
US3170841A (en) 1954-07-14 1965-02-23 Richard F Post Pyrotron thermonuclear reactor and process
US3015618A (en) 1958-06-30 1962-01-02 Thomas H Stix Apparatus for heating a plasma
US3071525A (en) 1958-08-19 1963-01-01 Nicholas C Christofilos Method and apparatus for producing thermonuclear reactions
US3052617A (en) 1959-06-23 1962-09-04 Richard F Post Stellarator injector
US3036963A (en) 1960-01-25 1962-05-29 Nicholas C Christofilos Method and apparatus for injecting and trapping electrons in a magnetic field
NL287706A (zh) 1960-02-26
US3182213A (en) 1961-06-01 1965-05-04 Avco Corp Magnetohydrodynamic generator
US3132996A (en) 1962-12-10 1964-05-12 William R Baker Contra-rotating plasma system
US3386883A (en) 1966-05-13 1968-06-04 Itt Method and apparatus for producing nuclear-fusion reactions
US3530036A (en) 1967-12-15 1970-09-22 Itt Apparatus for generating fusion reactions
US3530497A (en) 1968-04-24 1970-09-22 Itt Apparatus for generating fusion reactions
US3527977A (en) 1968-06-03 1970-09-08 Atomic Energy Commission Moving electrons as an aid to initiating reactions in thermonuclear devices
US3577317A (en) 1969-05-01 1971-05-04 Atomic Energy Commission Controlled fusion reactor
US3621310A (en) 1969-05-30 1971-11-16 Hitachi Ltd Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus
US3664921A (en) 1969-10-16 1972-05-23 Atomic Energy Commission Proton e-layer astron for producing controlled fusion reactions
AT340010B (de) 1970-05-21 1977-11-25 Nowak Karl Ing Einrichtung zur erzielung einer nuklearen reaktion mittels kunstlichem plasma vorzugsweise zur kontrollierten atomkernfusion
US3668065A (en) 1970-09-15 1972-06-06 Atomic Energy Commission Apparatus for the conversion of high temperature plasma energy into electrical energy
US3663362A (en) 1970-12-22 1972-05-16 Atomic Energy Commission Controlled fusion reactor
LU65432A1 (zh) 1972-05-29 1972-08-24
US4233537A (en) 1972-09-18 1980-11-11 Rudolf Limpaecher Multicusp plasma containment apparatus
US4182650A (en) 1973-05-17 1980-01-08 Fischer Albert G Pulsed nuclear fusion reactor
US5015432A (en) 1973-10-24 1991-05-14 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US5041760A (en) 1973-10-24 1991-08-20 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US4010396A (en) 1973-11-26 1977-03-01 Kreidl Chemico Physical K.G. Direct acting plasma accelerator
FR2270733A1 (en) 1974-02-08 1975-12-05 Thomson Csf Magnetic field vehicle detector unit - receiver detects changes produced in an emitted magnetic field
US4098643A (en) 1974-07-09 1978-07-04 The United States Of America As Represented By The United States Department Of Energy Dual-function magnetic structure for toroidal plasma devices
US4057462A (en) 1975-02-26 1977-11-08 The United States Of America As Represented By The United States Energy Research And Development Administration Radio frequency sustained ion energy
US4054846A (en) 1975-04-02 1977-10-18 Bell Telephone Laboratories, Incorporated Transverse-excitation laser with preionization
US4065351A (en) 1976-03-25 1977-12-27 The United States Of America As Represented By The United States Energy Research And Development Administration Particle beam injection system
US4166760A (en) 1977-10-04 1979-09-04 The United States Of America As Represented By The United States Department Of Energy Plasma confinement apparatus using solenoidal and mirror coils
US4347621A (en) 1977-10-25 1982-08-31 Environmental Institute Of Michigan Trochoidal nuclear fusion reactor
US4303467A (en) 1977-11-11 1981-12-01 Branson International Plasma Corporation Process and gas for treatment of semiconductor devices
US4274919A (en) 1977-11-14 1981-06-23 General Atomic Company Systems for merging of toroidal plasmas
US4202725A (en) 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4189346A (en) 1978-03-16 1980-02-19 Jarnagin William S Operationally confined nuclear fusion system
US4246067A (en) 1978-08-30 1981-01-20 Linlor William I Thermonuclear fusion system
US4267488A (en) 1979-01-05 1981-05-12 Trisops, Inc. Containment of plasmas at thermonuclear temperatures
US4397810A (en) 1979-03-16 1983-08-09 Energy Profiles, Inc. Compressed beam directed particle nuclear energy generator
US4314879A (en) 1979-03-22 1982-02-09 The United States Of America As Represented By The United States Department Of Energy Production of field-reversed mirror plasma with a coaxial plasma gun
US4416845A (en) 1979-08-02 1983-11-22 Energy Profiles, Inc. Control for orbiting charged particles
JPS5829568B2 (ja) 1979-12-07 1983-06-23 岩崎通信機株式会社 2ビ−ム1電子銃陰極線管
US4548782A (en) 1980-03-27 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Tokamak plasma heating with intense, pulsed ion beams
US4390494A (en) 1980-04-07 1983-06-28 Energy Profiles, Inc. Directed beam fusion reaction with ion spin alignment
US4350927A (en) 1980-05-23 1982-09-21 The United States Of America As Represented By The United States Department Of Energy Means for the focusing and acceleration of parallel beams of charged particles
US4317057A (en) 1980-06-16 1982-02-23 Bazarov Georgy P Channel of series-type magnetohydrodynamic generator
US4434130A (en) 1980-11-03 1984-02-28 Energy Profiles, Inc. Electron space charge channeling for focusing ion beams
US4584160A (en) 1981-09-30 1986-04-22 Tokyo Shibaura Denki Kabushiki Kaisha Plasma devices
US4543231A (en) 1981-12-14 1985-09-24 Ga Technologies Inc. Multiple pinch method and apparatus for producing average magnetic well in plasma confinement
US4560528A (en) 1982-04-12 1985-12-24 Ga Technologies Inc. Method and apparatus for producing average magnetic well in a reversed field pinch
JPH06105597B2 (ja) 1982-08-30 1994-12-21 株式会社日立製作所 マイクロ波プラズマ源
JPS5960899A (ja) 1982-09-29 1984-04-06 株式会社東芝 イオン・エネルギ−回収装置
US4618470A (en) 1982-12-01 1986-10-21 Austin N. Stanton Magnetic confinement nuclear energy generator
US4483737A (en) 1983-01-31 1984-11-20 University Of Cincinnati Method and apparatus for plasma etching a substrate
US4601871A (en) 1983-05-17 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Steady state compact toroidal plasma production
US4650631A (en) 1984-05-14 1987-03-17 The University Of Iowa Research Foundation Injection, containment and heating device for fusion plasmas
US4639348A (en) 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4615755A (en) 1985-08-07 1986-10-07 The Perkin-Elmer Corporation Wafer cooling and temperature control for a plasma etching system
US4826646A (en) 1985-10-29 1989-05-02 Energy/Matter Conversion Corporation, Inc. Method and apparatus for controlling charged particles
US4630939A (en) 1985-11-15 1986-12-23 The Dow Chemical Company Temperature measuring apparatus
SE450060B (sv) 1985-11-27 1987-06-01 Rolf Lennart Stenbacka Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor
US4687616A (en) 1986-01-15 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
US4894199A (en) 1986-06-11 1990-01-16 Norman Rostoker Beam fusion device and method
DK556887D0 (da) 1987-10-23 1987-10-23 Risoe Forskningscenter Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille
US4928063A (en) * 1987-11-09 1990-05-22 Picker International, Inc. Automatic eddy current correction
JPH01153994A (ja) * 1987-12-11 1989-06-16 Mitsubishi Electric Corp プラズマ制御装置
US4922800A (en) * 1988-10-07 1990-05-08 Amoco Corporation Magnetic slingshot accelerator
ATE137880T1 (de) 1990-01-22 1996-05-15 Steudtner Werner K Dipl Ing Kernfusionsreaktor
US5160695A (en) 1990-02-08 1992-11-03 Qed, Inc. Method and apparatus for creating and controlling nuclear fusion reactions
US5311028A (en) 1990-08-29 1994-05-10 Nissin Electric Co., Ltd. System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
US5122662A (en) 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging
US5206516A (en) 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5207760A (en) 1991-07-23 1993-05-04 Trw Inc. Multi-megawatt pulsed inductive thruster
US5323442A (en) 1992-02-28 1994-06-21 Ruxam, Inc. Microwave X-ray source and methods of use
US5502354A (en) 1992-07-31 1996-03-26 Correa; Paulo N. Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
RU2056649C1 (ru) 1992-10-29 1996-03-20 Сергей Николаевич Столбов Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для его осуществления
US5339336A (en) 1993-02-17 1994-08-16 Cornell Research Foundation, Inc. High current ion ring accelerator
FR2705584B1 (fr) 1993-05-26 1995-06-30 Commissariat Energie Atomique Dispositif de séparation isotopique par résonance cyclotronique ionique.
US5532495A (en) * 1993-11-16 1996-07-02 Sandia Corporation Methods and apparatus for altering material using ion beams
US5473165A (en) 1993-11-16 1995-12-05 Stinnett; Regan W. Method and apparatus for altering material
EP0660372B1 (en) 1993-12-21 1999-10-13 Sumitomo Heavy Industries, Ltd. Plasma beam generating method and apparatus which can generate a high-power plasma beam
US5537005A (en) 1994-05-13 1996-07-16 Hughes Aircraft High-current, low-pressure plasma-cathode electron gun
US5420425A (en) 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5656819A (en) * 1994-11-16 1997-08-12 Sandia Corporation Pulsed ion beam source
US5656519A (en) 1995-02-14 1997-08-12 Nec Corporation Method for manufacturing salicide semiconductor device
US5653811A (en) 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US20020080904A1 (en) * 1995-09-11 2002-06-27 The Regents Of The University Of California Magnetic and electrostatic confinement of plasma in a field reversed configuration
US20040213368A1 (en) 1995-09-11 2004-10-28 Norman Rostoker Fusion reactor that produces net power from the p-b11 reaction
ATE254333T1 (de) 1995-09-25 2003-11-15 Paul M Koloc Vorrichtung zur erzeugung eines plasmas
JP3385327B2 (ja) 1995-12-13 2003-03-10 株式会社日立製作所 三次元四重極質量分析装置
US5764715A (en) 1996-02-20 1998-06-09 Sandia Corporation Method and apparatus for transmutation of atomic nuclei
KR100275597B1 (ko) 1996-02-23 2000-12-15 나카네 히사시 플리즈마처리장치
US6000360A (en) 1996-07-03 1999-12-14 Tokyo Electron Limited Plasma processing apparatus
US5811201A (en) 1996-08-16 1998-09-22 Southern California Edison Company Power generation system utilizing turbine and fuel cell
US5923716A (en) 1996-11-07 1999-07-13 Meacham; G. B. Kirby Plasma extrusion dynamo and methods related thereto
US5770943A (en) * 1996-12-30 1998-06-23 General Electric Company Method for measuring and compensating for spatially and temporally varying magnetic fields induced by eddy currents
JP3582287B2 (ja) 1997-03-26 2004-10-27 株式会社日立製作所 エッチング装置
JPH10335096A (ja) 1997-06-03 1998-12-18 Hitachi Ltd プラズマ処理装置
JP3218504B2 (ja) * 1997-07-22 2001-10-15 株式会社日立製作所 核融合装置
US6894446B2 (en) 1997-10-17 2005-05-17 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6628740B2 (en) 1997-10-17 2003-09-30 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6271529B1 (en) 1997-12-01 2001-08-07 Ebara Corporation Ion implantation with charge neutralization
GB2334139B (en) * 1998-02-05 2001-12-19 Elekta Ab Linear accelerator
JPH11326568A (ja) * 1998-05-15 1999-11-26 Sumitomo Electric Ind Ltd プラズマ安定化装置
US6390019B1 (en) 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
FR2780499B1 (fr) 1998-06-25 2000-08-18 Schlumberger Services Petrol Dispositifs de caracterisation de l'ecoulement d'un fluide polyphasique
US6335535B1 (en) 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US6255648B1 (en) 1998-10-16 2001-07-03 Applied Automation, Inc. Programmed electron flux
US6248251B1 (en) 1999-02-19 2001-06-19 Tokyo Electron Limited Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma
US20010043661A1 (en) * 1999-06-16 2001-11-22 Emrich William J. Method and system for reducing plasma loss in a magnetic mirror fusion reactor
US6755086B2 (en) 1999-06-17 2004-06-29 Schlumberger Technology Corporation Flow meter for multi-phase mixtures
US6322706B1 (en) 1999-07-14 2001-11-27 Archimedes Technology Group, Inc. Radial plasma mass filter
US6452168B1 (en) 1999-09-15 2002-09-17 Ut-Battelle, Llc Apparatus and methods for continuous beam fourier transform mass spectrometry
US6466017B1 (en) * 1999-12-02 2002-10-15 Ge Medical Systems Global Technology Company, Llc MRI system with modular gradient system
DE10060002B4 (de) 1999-12-07 2016-01-28 Komatsu Ltd. Vorrichtung zur Oberflächenbehandlung
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
US6408052B1 (en) 2000-04-06 2002-06-18 Mcgeoch Malcolm W. Z-pinch plasma X-ray source using surface discharge preionization
US6593570B2 (en) 2000-05-24 2003-07-15 Agilent Technologies, Inc. Ion optic components for mass spectrometers
US20020101949A1 (en) * 2000-08-25 2002-08-01 Nordberg John T. Nuclear fusion reactor incorporating spherical electromagnetic fields to contain and extract energy
US6664740B2 (en) 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
GB0131097D0 (en) 2001-12-31 2002-02-13 Applied Materials Inc Ion sources
ITSV20020030A1 (it) 2002-07-01 2004-01-02 Esaote Spa Metodo di compensazione di correnti parassite causate da gradienti nelle macchine per il rilevametno d'immagini in risonanza magnetica nucle
JP3930439B2 (ja) * 2003-02-06 2007-06-13 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 渦電流補正方法および磁気共鳴撮影装置
DE10306017A1 (de) * 2003-02-13 2004-09-09 Siemens Ag Verfahren zum Ermitteln einer Kompensationseinstellung für ein Wirbelstromfeld
US20050194099A1 (en) * 2004-03-03 2005-09-08 Jewett Russell F.Jr. Inductively coupled plasma source using induced eddy currents
US20050249324A1 (en) * 2004-04-21 2005-11-10 Meacham George B K Rotating plasma current drive
US20060198486A1 (en) * 2005-03-04 2006-09-07 Laberge Michel G Pressure wave generator and controller for generating a pressure wave in a fusion reactor
US8031824B2 (en) 2005-03-07 2011-10-04 Regents Of The University Of California Inductive plasma source for plasma electric generation system
US20060198485A1 (en) 2005-03-07 2006-09-07 Michl Binderbauer Plasma electric generation and propulsion system
BRPI0609290B1 (pt) 2005-03-07 2018-03-13 The Regents Of The University Of California Sistema de geração elétrica via plasma
US7518359B2 (en) * 2005-03-09 2009-04-14 General Electric Company Inspection of non-planar parts using multifrequency eddy current with phase analysis
US7115887B1 (en) 2005-03-15 2006-10-03 The United States Of America As Represented By The United States Department Of Energy Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography
US20080226011A1 (en) 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
US7786675B2 (en) * 2005-11-17 2010-08-31 Omega-P, Inc. Fast ferroelectric phase shift controller for accelerator cavities
US7816870B2 (en) * 2005-11-17 2010-10-19 Omega-P, Inc. Fast ferroelectric phase shift controller for accelerator cavities
FR2915053B1 (fr) * 2007-04-13 2009-07-17 Roctool Sa Procede et dispositif de chauffage de pieces tubulaires ou pleines par induction.
CN101320599A (zh) 2007-06-06 2008-12-10 高晓达 通过极限环螺旋扇形注入区的束流连续注入方法
US20100020913A1 (en) * 2008-07-22 2010-01-28 Alexander Mozgovoy Method for obtainging plasma
JP5416960B2 (ja) * 2008-12-17 2014-02-12 株式会社東芝 磁気共鳴イメージング装置
EP3002761B1 (en) 2009-02-12 2018-05-16 Msnw, Llc Method and apparatus for the generation, heating and/or compression of plasmoids and/or recovery of energy therefrom
US20110142185A1 (en) * 2009-12-16 2011-06-16 Woodruff Scientific, Inc. Device for compressing a compact toroidal plasma for use as a neutron source and fusion reactor
DE102010035539B4 (de) * 2010-08-26 2012-04-05 Siemens Aktiengesellschaft Verfahren zur Kompensation von Wirbelstromfeldern in Magnetresonanzaufnahmen und Magnetresonanzeinrichtung
JP2012183233A (ja) * 2011-03-07 2012-09-27 Toshiba Corp 磁気共鳴イメージング装置
WO2012143597A1 (en) 2011-04-21 2012-10-26 Aalto University Foundation System and method for prepolarizing magnetic resonance- or relaxation-based measurements
KR101811504B1 (ko) 2012-08-29 2018-01-25 제너럴 퓨전 아이엔씨. 플라스마를 가속 및 압축하기 위한 장치
US8836248B2 (en) * 2012-11-28 2014-09-16 Xerox Corporation Monitoring a condition of a solid state charge device in electrostatic printing
WO2014114986A1 (en) 2013-01-25 2014-07-31 L Ferreira Jr Moacir Multiphase nuclear fusion reactor
AU2014214568B2 (en) 2013-02-11 2017-10-05 The Regents Of The University Of California Fractional turn coil winding
US9591740B2 (en) 2013-03-08 2017-03-07 Tri Alpha Energy, Inc. Negative ion-based neutral beam injector
US9072156B2 (en) * 2013-03-15 2015-06-30 Lawrence Livermore National Security, Llc Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices
PT3312843T (pt) 2013-09-24 2019-11-27 Tae Tech Inc Sistemas de formação e manutenção de uma frc de elevado desempenho
CN104051028B (zh) * 2014-06-05 2017-01-18 中国科学院等离子体物理研究所 一种适用于未来聚变堆快速控制等离子体的被动反馈结构
ES2887930T3 (es) * 2014-10-13 2021-12-29 Tae Tech Inc Procedimiento para fusión y compresión de toros compactos
KR102590200B1 (ko) 2014-10-30 2023-10-16 티에이이 테크놀로지스, 인크. 고성능 frc를 형성하고 유지하는 시스템 및 방법
JP6771774B2 (ja) * 2015-05-12 2020-10-21 ティーエーイー テクノロジーズ, インコーポレイテッド 不所望の渦電流を低減するシステムおよび方法
UA126673C2 (uk) * 2016-11-15 2023-01-11 Тае Текнолоджіз, Інк. Системи і способи поліпшеної підтримки високоефективної конфігурації з оберненим полем і нагрівання електронів за допомогою вищих гармонік швидких хвиль у високоефективній конфігурації з оберненим полем

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451877A (en) * 1993-04-23 1995-09-19 Siemens Aktiengesellschaft Method for the compensation of eddy currents caused by gradients in a nuclear magnetic resonance apparatus
WO2013074666A2 (en) * 2011-11-14 2013-05-23 The Regents Of The University Of California Systems and methods for forming and maintaining a high performance frc
TW201332401A (zh) * 2011-11-14 2013-08-01 Univ California 形成及維持高效能場反轉型磁場結構的系統及方法

Also Published As

Publication number Publication date
IL255409A0 (en) 2017-12-31
BR112017024267A2 (pt) 2018-07-24
CN107851466A (zh) 2018-03-27
SG11201708790VA (en) 2017-11-29
AU2016261503B2 (en) 2021-08-12
KR20180017010A (ko) 2018-02-20
JP6771774B2 (ja) 2020-10-21
PE20180334A1 (es) 2018-02-16
JP2018523258A (ja) 2018-08-16
PL3295459T3 (pl) 2021-06-28
MY186425A (en) 2021-07-22
PH12017502018A1 (en) 2018-03-26
CL2017002829A1 (es) 2018-04-06
BR112017024267B1 (pt) 2022-08-16
AU2016261503A1 (en) 2018-01-04
DK3295459T3 (da) 2020-11-16
EA201792489A1 (ru) 2018-02-28
MX2019014731A (es) 2020-02-07
US10910149B2 (en) 2021-02-02
LT3295459T (lt) 2021-02-25
HUE052181T2 (hu) 2021-04-28
PT3295459T (pt) 2020-11-19
CN107851466B (zh) 2021-08-10
EP3295459A4 (en) 2018-12-19
EP3295459A1 (en) 2018-03-21
KR102598740B1 (ko) 2023-11-03
WO2016183036A1 (en) 2016-11-17
EA036012B1 (ru) 2020-09-14
CY1123634T1 (el) 2022-03-24
HK1253007A1 (zh) 2019-06-06
IL255409B (en) 2022-03-01
ES2837256T3 (es) 2021-06-29
CA2983344A1 (en) 2016-11-17
US20200161044A1 (en) 2020-05-21
TW201707007A (zh) 2017-02-16
US10418170B2 (en) 2019-09-17
CN113593860A (zh) 2021-11-02
NZ738196A (en) 2022-12-23
SI3295459T1 (sl) 2021-04-30
AR104616A1 (es) 2017-08-02
RS61313B1 (sr) 2021-02-26
MX2017014466A (es) 2018-04-10
SA517390268B1 (ar) 2021-07-12
ZA201707113B (en) 2019-02-27
US20180323007A1 (en) 2018-11-08
HRP20210007T1 (hr) 2021-02-19
EP3295459B1 (en) 2020-10-28
UA124492C2 (uk) 2021-09-29

Similar Documents

Publication Publication Date Title
TWI628669B (zh) 減少非所需渦電流之系統及方法
JP2018523258A5 (zh)
JPWO2015133352A1 (ja) 磁気共鳴イメージングシステム、静磁場均一度調整システム、磁場均一度調整方法および、磁場均一度調整プログラム
US11125842B2 (en) Magnetic resonance imaging switching power amplifier system and methods
Chung et al. Initial plasma start-up using partial solenoid coils in Versatile Experiment Spherical Torus (VEST)
Piejak et al. Magnetic field distribution measurements in a low‐pressure inductive discharge
US9541617B2 (en) Gradient coil device and magnetic resonance imaging device
Markovič et al. Evaluation of applicability of 2D iron core model for two-limb configuration of GOLEM tokamak
Shang et al. The new Injection System of the HLS II
Seletskiy et al. Magnetic shielding of LEReC cooling section
Mc Carthy et al. Signatures of ring currents in a magnetic mirror plasma experiment
CN112444761B (zh) 一种八边形轴向匀场线圈设计方法
Gupta et al. Iron Shims Outside the Helium Vessel to Adjust Field Quality at High Fields
Miyajima et al. Development of a pulsed octupole magnet system for studying the dynamics of transverse beam instabilities in electron storage rings
Yamagishi et al. Shape effect of the outermost flux surface on effective helical ripple and zonal flow response in an L= 2 heliotron
Tanikawa et al. Large-volume, helicon-plasma source for simulation experiments of space plasmas
양정훈 Development of Internal Magnetic Probe Array with Dual Sensors in Versatile Experiment Spherical Torus (VEST)
RU2472324C2 (ru) Способ оптимизации конструкции ускорителя плазмы с осесимметричным магнитным полем
Lemmer et al. Complex Plasma Structure Observed in the Inlet of an Argon Radio-Frequency Discharge
JP2008194539A (ja) 磁気共鳴診断装置用コイル装置
Khayrutdinov et al. Development and inclusion of Iron Model into evolution codes.
JP2019118781A (ja) 磁気共鳴イメージング装置
JP2006346234A (ja) 磁気共鳴イメージング装置
Jeon et al. Equilibrium Reconstruction of KSTAR Plasmas with Large Uncertainty on Magnetics
JPH1090452A (ja) 核融合装置