TWI624835B - Puf circuit, magnetoresistive device and puf control method - Google Patents

Puf circuit, magnetoresistive device and puf control method Download PDF

Info

Publication number
TWI624835B
TWI624835B TW106113250A TW106113250A TWI624835B TW I624835 B TWI624835 B TW I624835B TW 106113250 A TW106113250 A TW 106113250A TW 106113250 A TW106113250 A TW 106113250A TW I624835 B TWI624835 B TW I624835B
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic tunneling
variable resistance
magnetoresistive
circuit
Prior art date
Application number
TW106113250A
Other languages
Chinese (zh)
Other versions
TW201814706A (en
Inventor
鄧端理
陳佑昇
王丁勇
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201710367962.4A priority Critical patent/CN107919375B/en
Priority to US15/659,572 priority patent/US10090033B2/en
Publication of TW201814706A publication Critical patent/TW201814706A/en
Application granted granted Critical
Publication of TWI624835B publication Critical patent/TWI624835B/en

Links

Abstract

本發明實施例提供一種物理性不可複製功能電路之控制方法,可應用於物理性不可複製功能電路與磁阻式可變電阻裝置。方法包括將複數磁阻式可變電阻電路之磁穿隧接面元件初始化至一電阻狀態後,施加一第一能量至磁穿隧接面元件,以及判斷具有一預定電阻狀態的上述磁穿隧接面元件的一漢明權重是否在一預定數值範圍內。 Embodiments of the present invention provide a control method of a physical non-reproducible function circuit, which can be applied to a physical non-reproducible function circuit and a magnetoresistive variable resistance device. The method includes initializing a magnetic tunneling interface component of a plurality of magnetoresistive variable resistance circuits to a resistance state, applying a first energy to the magnetic tunneling junction component, and determining the magnetic tunneling having a predetermined resistance state Whether a Hamming weight of the junction element is within a predetermined range of values.

Description

物理性不可複製功能電路、磁阻式可變電阻裝置 與物理性不可複製功能電路之控制方法 Physical non-replicable function circuit, magnetoresistive variable resistance device Control method with physical non-reproducible function circuit

本發明是有關於物理性不可複製功能電路,特別是有關於使用磁穿隧接面元件的物理性不可複製功能電路。 The present invention relates to physical non-reproducible functional circuits, and more particularly to physical non-reproducible functional circuits using magnetic tunneling junction elements.

物理性不可複製功能(Physically Unclonable Function,PUF)可使用於資料加密,藉由元件的本質特性來提供出色的隨機性。在PUF的應用中,磁阻式隨機存取記憶體(Magnetoresistive Random Access Memory,MRAM)元件具有本質的雙向電阻特性、快速與非揮發特性、隨機變化的磁異向性、操作參數的分佈特性,使得MRAM元件可適用於PUF的應用。 Physical Unclonable Function (PUF) can be used for data encryption, providing excellent randomness through the essential characteristics of components. In the application of PUF, Magnetoresistive Random Access Memory (MRAM) components have essential bidirectional resistance characteristics, fast and non-volatile characteristics, randomly varying magnetic anisotropy, and distribution characteristics of operating parameters. Makes MRAM components suitable for PUF applications.

隨著科技的進步,各種電子裝置(包含隨身與固定式裝置)皆可透過網際網路與雲端儲存來分享與交換資訊。在此情況下,資料安全儼然成為一項必須重視的課題。因此,需要一種PUF電路與控制方法,使PUF功能可實現於資料的編碼與加密應用中。 With the advancement of technology, various electronic devices (both portable and fixed devices) can share and exchange information through the Internet and cloud storage. Under this circumstance, data security has become a topic that must be taken seriously. Therefore, there is a need for a PUF circuit and control method that enables the PUF function to be implemented in data encoding and encryption applications.

本發明實施例提供一種物理性不可複製功能電 路。物理性不可複製功能電路包括控制裝置與第一磁阻式可變電阻電路陣列。控制裝置包括能量產生電路與控制器。第一磁阻式可變電阻電路陣列耦接控制裝置,且第一磁阻式可變電阻電路陣列包括複數磁阻式可變電阻電路。每一個磁阻式可變電阻電路包括磁穿隧接面元件。控制裝置將磁穿隧接面元件初始化至一電阻狀態後,控制裝置提供第一能量至磁穿隧接面元件,且控制裝置判斷具有預定電阻狀態的磁穿隧接面元件的漢明權重是否在預定數值範圍內。 Embodiments of the present invention provide a physical non-reproducible function road. The physical non-reproducible functional circuit includes a control device and a first magnetoresistive variable resistance circuit array. The control device includes an energy generating circuit and a controller. The first magnetoresistive variable resistance circuit array is coupled to the control device, and the first magnetoresistive variable resistance circuit array includes a complex magnetoresistive variable resistance circuit. Each magnetoresistive variable resistance circuit includes a magnetic tunneling junction element. After the control device initializes the magnetic tunneling interface component to a resistance state, the control device provides the first energy to the magnetic tunneling junction component, and the control device determines whether the Hamming weight of the magnetic tunneling junction component having the predetermined resistance state is Within the predetermined range of values.

本發明實施例提供一種磁阻式可變電阻裝置,包括物理性不可複製功能電路以及第二磁阻式可變電阻電路陣列。物理性不可複製功能電路包括控制裝置與第一磁阻式可變電阻電路陣列。控制裝置包括能量產生電路與控制器。第一磁阻式可變電阻電路陣列耦接控制裝置,且第一磁阻式可變電阻電路陣列包括複數磁阻式可變電阻電路。每一個磁阻式可變電阻電路包括磁穿隧接面元件。控制裝置將磁穿隧接面元件初始化至一電阻狀態後,控制裝置提供第一能量至磁穿隧接面元件,且控制裝置判斷具有預定電阻狀態的磁穿隧接面元件的漢明權重是否在預定數值範圍內。第二磁阻式可變電阻電路陣列包括第一磁阻式可變電阻電路陣列以及磁阻式隨機存取記憶體單元陣列。 Embodiments of the present invention provide a magnetoresistive variable resistance device including a physical non-reproducible functional circuit and a second magnetoresistive variable resistance circuit array. The physical non-reproducible functional circuit includes a control device and a first magnetoresistive variable resistance circuit array. The control device includes an energy generating circuit and a controller. The first magnetoresistive variable resistance circuit array is coupled to the control device, and the first magnetoresistive variable resistance circuit array includes a complex magnetoresistive variable resistance circuit. Each magnetoresistive variable resistance circuit includes a magnetic tunneling junction element. After the control device initializes the magnetic tunneling interface component to a resistance state, the control device provides the first energy to the magnetic tunneling junction component, and the control device determines whether the Hamming weight of the magnetic tunneling junction component having the predetermined resistance state is Within the predetermined range of values. The second magnetoresistive variable resistance circuit array includes a first magnetoresistive variable resistance circuit array and a magnetoresistive random access memory cell array.

本發明實施例提供一種物理性不可複製功能電路之控制方法。方法包括:將複數磁阻式可變電阻電路之磁穿隧接面元件初始化至一電阻狀態後,施加第一能量至磁穿隧接面元件;以及判斷具有預定電阻狀態的磁穿隧接面元件的漢明權 重是否在預定數值範圍內。 Embodiments of the present invention provide a method for controlling a physical non-reproducible function circuit. The method includes: initializing a magnetic tunneling interface component of a plurality of magnetoresistive variable resistance circuits to a resistance state, applying a first energy to the magnetic tunneling junction component; and determining a magnetic tunneling junction surface having a predetermined resistance state Hamming right of the component Whether the weight is within the predetermined value range.

本發明實施例提供關於物理性不可複製功能之電路與控制方法,使物理性不可複製功能可實現於資料的編碼與加密應用中。 Embodiments of the present invention provide a circuit and a control method for a physical non-reproducible function, so that a physical non-reproducible function can be implemented in an encoding and encryption application of data.

100‧‧‧物理性不可複製功能電路 100‧‧‧Physical non-replicable function circuit

CD‧‧‧控制裝置 CD‧‧‧ control device

C‧‧‧控制器 C‧‧‧ controller

E、E2‧‧‧能量產生電路 E, E2‧‧‧ energy generation circuit

MCX、MCX2、MCX3、MCX8‧‧‧磁阻式可變電阻電路陣列 MCX, MCX2, MCX3, MCX8‧‧‧Magnetoresistive Variable Resistor Circuit Array

MC11-MCmn、MC‧‧‧磁阻式可變電阻電路 MC 11 -MC mn , MC‧‧‧Reluctance variable resistance circuit

M11-Mmn、M‧‧‧磁穿隧接面元件 M 11 -M mn , M‧‧‧ magnetic tunneling interface components

T1-T3、TA、TB、CA、CB、TO‧‧‧端點 T1-T3, TA, TB, CA, CB, TO‧‧‧ endpoints

FL1、FL2‧‧‧自由層 FL1, FL2‧‧‧ free layer

B1、B2‧‧‧阻障層 B1, B2‧‧‧ barrier layer

PL1、PL2‧‧‧固定層 PL1, PL2‧‧‧ fixed layer

MT‧‧‧金屬 MT‧‧‧Metal

M1-M3‧‧‧電晶體 M1-M3‧‧‧O crystal

FM1、FM2、L1‧‧‧結構層 FM1, FM2, L1‧‧‧ structural layer

VM1-VM4‧‧‧電壓 VM1-VM4‧‧‧ voltage

d1-d4‧‧‧易磁化軸方向 D1-d4‧‧‧ easy magnetization axis direction

H1-H5‧‧‧磁場 H1-H5‧‧‧ magnetic field

I1、I2‧‧‧電流 I1, I2‧‧‧ current

MC81‧‧‧第一行磁阻式可變電阻電路 MC81‧‧‧First row of reluctance variable resistance circuit

MC82‧‧‧第二行磁阻式可變電阻電路 MC82‧‧‧Second row magnetoresistive variable resistance circuit

MC83‧‧‧第三行磁阻式可變電阻電路 MC83‧‧‧ third row magnetoresistive variable resistance circuit

MC84‧‧‧第四行磁阻式可變電阻電路 MC84‧‧‧ fourth row magnetoresistive variable resistance circuit

D、D2‧‧‧磁阻式可變電阻裝置 D, D2‧‧‧Magnetoresistive variable resistance device

MR、MR2‧‧‧磁阻式隨機存取記憶體單元陣列 MR, MR2‧‧‧ magnetoresistive random access memory cell array

101-105‧‧‧步驟 101-105‧‧‧Steps

第1圖是依據本發明實施例之物理性不可複製功能電路的示意圖;第2A、2B圖是依據本發明實施例之磁阻式可變電阻電路的示意圖;第2C、2D圖是依據本發明實施例之磁穿隧接面元件的固定層的示意圖;第3A、3B圖是依據本發明實施例之磁穿隧接面元件的示意圖;第4A、4B圖是依據本發明實施例之磁穿隧接面元件的示意圖;第5A、5B圖是依據本發明實施例之磁阻式可變電阻電路陣列與外加磁場的操作示意圖;第6A-6D圖是依據本發明實施例之對於磁穿隧接面元件,外加磁場的時間與漢明權重的關係圖;第7圖是依據本發明實施例之施加於磁穿隧接面元件的電壓與翻轉磁場的關係圖;第8A-8C圖是依據本發明實施例之磁阻式可變電阻電路陣列與外加磁場的操作示意圖; 第9A、9B圖是依據本發明實施例之磁阻式可變電阻裝置的示意圖;第10圖是依據本發明實施例之物理性不可複製功能電路之控制方法的流程圖。 1 is a schematic diagram of a physical non-reproducible functional circuit according to an embodiment of the present invention; 2A and 2B are schematic views of a magnetoresistive variable resistance circuit according to an embodiment of the present invention; and 2C and 2D are diagrams according to the present invention; 3A and 3B are schematic views of a magnetic tunneling junction element according to an embodiment of the present invention; and FIGS. 4A and 4B are magnetic perforations according to an embodiment of the present invention; FIG. 5A, FIG. 5B are schematic diagrams showing operation of a magnetoresistive variable resistance circuit array and an applied magnetic field according to an embodiment of the present invention; and FIGS. 6A-6D are diagrams showing magnetic tunneling according to an embodiment of the present invention; The junction element, the relationship between the time of the applied magnetic field and the Hamming weight; FIG. 7 is a diagram showing the relationship between the voltage applied to the magnetic tunneling junction element and the flipped magnetic field according to an embodiment of the present invention; FIG. 8A-8C is based on Schematic diagram of the operation of the magnetoresistive variable resistance circuit array and the applied magnetic field in the embodiment of the present invention; 9A and 9B are schematic views of a reluctance type variable resistance device according to an embodiment of the present invention; and Fig. 10 is a flow chart showing a control method of a physical non-reproducible function circuit according to an embodiment of the present invention.

為讓本發明實施例之上述目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,做詳細說明如下。 The above described objects, features and advantages of the embodiments of the present invention will become more apparent and understood.

第1圖是依據本發明實施例之物理性不可複製功能電路100的示意圖。物理性不可複製功能電路100包括控制裝置CD與磁阻式可變電阻電路陣列MCX。控制裝置CD包括能量產生電路E與控制器C。磁阻式可變電阻電路陣列MCX包括複數磁阻式可變電阻電路MC11-MCmn,其中m與n為整數。每一個磁阻式可變電阻電路MC11-MCmn分別包括一個磁穿隧接面(magnetic tunnel junction(MTJ))元件(亦即第1圖所示之磁穿隧接面元件M11-Mmn)。 1 is a schematic diagram of a physical non-reproducible functional circuit 100 in accordance with an embodiment of the present invention. The physical non-reproducible function circuit 100 includes a control device CD and a magnetoresistive variable resistance circuit array MCX. The control device CD includes an energy generating circuit E and a controller C. The magnetoresistive variable resistance circuit array MCX includes a complex magnetoresistive variable resistance circuit MC 11 -MC mn , where m and n are integers. Each of the magnetoresistive variable resistance circuits MC 11 -MC mn includes a magnetic tunnel junction (MTJ) element (that is, the magnetic tunnel junction surface element M 11 -M shown in FIG. 1 ) Mn ).

在一些實施例中,磁阻式可變電阻電路MC11-MCmn個別的電路結構可與磁阻式隨機存取記憶體單元(Magnetoresistive Random Access Memory cell,MRAM cell)相同,如第2A、2B圖所示。 In some embodiments, the individual circuit structures of the magnetoresistive varistor circuits MC 11 -MC mn can be the same as the magnetoresistive random access memory cells (MRAM cells), such as 2A, 2B. The figure shows.

第2A圖是依據本發明實施例之磁阻式可變電阻電路MC11的示意圖。在此實施例中,磁阻式可變電阻電路MC11包括磁穿隧接面元件M11與電晶體M1。磁穿隧接面元件M11包括自由層FL1、阻障層B1、固定層PL1。磁穿隧接面元件M11之 一端連接電晶體M1,而磁穿隧接面元件M11之另一端(亦即端點T1)耦接控制器C。電晶體M1之一端連接磁穿隧接面元件M11,而電晶體M1之端點T2、T3分別耦接控制器C。 Fig. 2A is a schematic view of a magnetoresistive varistor circuit MC 11 according to an embodiment of the present invention. Embodiment, the variable resistor circuit reluctance MC 11 11 and the transistor M1 comprises a magnetic MTJ element M in this embodiment. The magnetic tunneling junction element M 11 includes a free layer FL1, a barrier layer B1, and a fixed layer PL1. One end of the magnetic tunneling interface element M 11 is connected to the transistor M1, and the other end of the magnetic tunneling interface element M 11 (ie, the end point T1) is coupled to the controller C. One end of the transistor M1 is connected to the magnetic tunneling interface element M 11 , and the terminals T2 and T3 of the transistor M1 are respectively coupled to the controller C.

在一些實施例中,第2A圖之磁穿隧接面元件M11可透過自由層FL1連接電晶體M1,且磁穿隧接面元件M11可透過固定層PL1耦接控制器C。在一些實施例中,自由層FL1的材料為鐵磁性金屬,而阻障層B1的材料為絕緣體。 In some embodiments, the magnetic element MTJ of FIG. 2A M 11 may be connected through the transistor M1 FLl free layer, and the magnetic MTJ element M 11 may be coupled through controller pinned layer PL1 C. In some embodiments, the material of the free layer FL1 is a ferromagnetic metal, and the material of the barrier layer B1 is an insulator.

在另一實施例中,磁阻式可變電阻電路MC11的電路結構如第2B圖所示。在此實施例中,磁阻式可變電阻電路MC11包括磁穿隧接面元件M11與電晶體M2、M3,且磁阻式可變電阻電路MC11的電路結構與自旋軌道記憶體單元(spin orbit torque(SOT)MRAM cell)相同。磁穿隧接面元件M11包括自由層FL2、阻障層B2、固定層PL2、金屬MT。金屬MT之一端連接電晶體M3,且金屬MT之另一端(亦即端點TO)耦接控制器C。電晶體M2之一端連接磁穿隧接面元件M11,而電晶體M2之端點TB、CB分別耦接控制器C。電晶體M3之一端連接金屬MT,而電晶體M3之端點TA、CA分別耦接控制器C。 In another embodiment, the circuit configuration of the magnetoresistive variable resistance circuit MC 11 is as shown in FIG. 2B. In this embodiment, the magnetoresistive variable resistance circuit MC 11 includes a magnetic tunneling junction element M 11 and transistors M2, M3, and the circuit structure and spin track memory of the magnetoresistive variable resistance circuit MC 11 The unit (spin orbit torque (SOT) MRAM cell) is the same. The magnetic tunneling junction element M 11 includes a free layer FL2, a barrier layer B2, a fixed layer PL2, and a metal MT. One end of the metal MT is connected to the transistor M3, and the other end of the metal MT (ie, the terminal TO) is coupled to the controller C. One end of the transistor M2 is connected to the magnetic tunneling interface element M 11 , and the terminals TB and CB of the transistor M2 are respectively coupled to the controller C. One end of the transistor M3 is connected to the metal MT, and the terminals TA and CA of the transistor M3 are respectively coupled to the controller C.

在一些實施例中,磁阻式可變電阻電路陣列MCX之磁阻式可變電阻電路MC11-MCmn具有相同的電路結構。在一些實施例中,自由層FL2的材料為鐵磁性金屬、阻障層B2的材料為絕緣體、金屬MT的材料為非鐵磁性金屬。 In some embodiments, the magnetoresistive variable resistance circuits MC 11 -MC mn of the magnetoresistive variable resistance circuit array MCX have the same circuit configuration. In some embodiments, the material of the free layer FL2 is a ferromagnetic metal, the material of the barrier layer B2 is an insulator, and the material of the metal MT is a non-ferromagnetic metal.

在一些實施例中,第2A、2B圖之固定層PL1、固定層PL2的結構如第2C圖或第2D圖所示。第2C、2D圖所示之固定層包括結構層FM1、L1、FM2。如第2C、2D圖所示,結構層FM1 的磁矩方向與結構層FM2的磁矩方向相反。在一些實施例中,結構層FM1、FM2的材料為鐵磁性金屬,而結構層L1的材料為釕(Ru)。 In some embodiments, the structures of the fixed layer PL1 and the fixed layer PL2 of FIGS. 2A and 2B are as shown in FIG. 2C or FIG. 2D. The fixed layers shown in FIGS. 2C and 2D include structural layers FM1, L1, and FM2. As shown in Figures 2C and 2D, the structural layer FM1 The direction of the magnetic moment is opposite to the direction of the magnetic moment of the structural layer FM2. In some embodiments, the material of the structural layers FM1, FM2 is a ferromagnetic metal, and the material of the structural layer L1 is ruthenium (Ru).

第3A圖是依據本發明實施例之磁穿隧接面元件M11的示意圖,其中磁穿隧接面元件M11為水平自旋。在此實施例中,磁穿隧接面元件M11之自由層FL1的磁矩方向與固定層PL1的磁矩方向相反,因此第3A圖之磁穿隧接面元件M11具有高電阻狀態。在一些實施例中,若沿著磁穿隧接面元件M11的易磁化軸(easy axis)方向d1施加與自由層FL1的磁矩方向相反的磁場H1,則在磁場H1的磁場強度或維持時間足夠的情況下,自由層FL1的磁矩方向會被磁場H1反轉而與固定層PL1之磁矩方向相同,進而使磁穿隧接面元件M11具有低電阻狀態。在一些實施例中,將自由層FL1的磁矩方向轉向的磁場可稱為翻轉磁場。 3A is a schematic diagram of FIG M 11 MTJ magnetic element according to embodiments of the present invention, wherein the MTJ magnetic element M 11 is a horizontal spin. In this embodiment, the direction of magnetic moments MTJ free layer 11 of the element M to the direction of the magnetic moment of the fixed FL1 layer PL1 is opposite, so the magnetic element MTJ of FIG. 3A-M 11 having a high resistance state. In some embodiments, if the direction along the magnetic easy axis of magnetization MTJ element (easy axis) M 11 is opposite to the direction d1 is applied to the magnetic moment of the free layer FL1 magnetic field H1, the magnetic field strength in the magnetic field H1 or maintenance under sufficient time, the direction of the magnetic moment of the free layer FL1 will be the same as the magnetic field H1 reversed directions of magnetic moments of the fixed layer PL1, and thus the magnetic MTJ element M 11 has a low resistance state. In some embodiments, the magnetic field that steers the direction of the magnetic moment of the free layer FL1 may be referred to as a flipped magnetic field.

在一些實施例中,亦可施加電壓VM1於磁穿隧接面元件M11的兩端(如第3A圖所示)。不同的電壓VM1可使磁場(例如磁場H1)以不同的磁場強度或不同的維持時間使自由層FL1的磁矩方向發生反轉。在一些實施例中,可施加電壓VM1於磁穿隧接面元件M11的兩端(如第3A圖所示)以及施加某一方向之磁場於磁穿隧接面元件M11使自由層FL1的磁矩方向發生反轉。在一些實施例中,可透過與自由層FL1之磁矩方向相反之磁場(或一磁場與施加於磁穿隧接面元件M11兩端的電壓),將水平自旋的磁穿隧接面元件M11由低電阻狀態轉換為高電阻狀態。 In some embodiments, a voltage VM1 can be applied to both ends of the MTJ magnetic element M 11 (as shown in FIG. 3A). Different voltages VM1 may cause the magnetic field (eg, magnetic field H1) to reverse the direction of the magnetic moment of the free layer FL1 with different magnetic field strengths or different sustain times. In some embodiments, the voltage may be applied to the magnetic tunnel junction element VM1 ends M 11 (as shown in FIG. 3A) in one direction and a magnetic field applied to the magnetic element M 11 MTJ free layer FL1 The direction of the magnetic moment is reversed. In some embodiments, the permeable element may be a direction of the magnetic moment of the free layer FL1 magnetic field (or a magnetic field applied to the MTJ element 11 at both ends of the magnetic voltage M), opposite to the horizontal magnetic spin tunnel junction M 11 is switched from a low resistance state to a high resistance state.

第3B圖是依據本發明實施例之磁穿隧接面元件M11的示意圖,其中磁穿隧接面元件M11為垂直自旋。在此實施例中,磁穿隧接面元件M11之自由層FL1的磁矩方向與固定層PL1的磁矩方向相同,因此第3A圖之磁穿隧接面元件M11具有低電阻狀態。在此情況下,若沿著磁穿隧接面元件M11的易磁化軸方向d2施加與自由層FL1的磁矩方向相反的磁場H2,則在磁場H2的磁場強度或維持時間足夠的情況下,自由層FL1的磁矩方向會被磁場H1反轉而與固定層PL1之磁矩方向相反,進而使磁穿隧接面元件M11具有高電阻狀態。 FIG 3B is a schematic diagram of a magnetic M 11 MTJ element according to embodiments of the present invention, wherein the magnetic tunneling junction element M 11 is a vertical spin. In this embodiment, the direction of magnetic moments MTJ free layer 11 of the element M to the direction of the magnetic moment of the fixed FL1 layer PL1 of the same, so the magnetic element MTJ of FIG. 3A-M 11 has a low resistance state. In this case, when d2 is applied to a case where the direction opposite to the magnetic moment of the free magnetic layer FL1 MTJ device along the magnetic easy axis of the H2 M 11, the magnetic field strength is sufficient magnetic field H2 or the duration of , the direction of the magnetic moment of the free layer FL1 will be reversed magnetic field H1 and the direction opposite to the magnetic moment of the pinned layer PL1, and thus the magnetic MTJ element M 11 having a high resistance state.

在一些實施例中,可施加電壓VM2於磁穿隧接面元件M11的兩端(如第3B圖所示)。不同的電壓VM2可使磁場H2以不同的磁場強度或不同的維持時間使自由層FL1的磁矩方向發生反轉。在一些實施例中,可施加電壓VM2於磁穿隧接面元件M11的兩端(如第3B圖所示)以及施加某一方向之磁場於磁穿隧接面元件M11使自由層FL1的磁矩方向發生反轉。在一些實施例中,亦可透過與自由層FL1之磁矩方向相反之磁場(或一磁場與施加於磁穿隧接面元件M11兩端的電壓),將垂直自旋的磁穿隧接面元件M11由高電阻狀態轉換為低電阻狀態。 In some embodiments, the voltage may be applied to the magnetic tunnel junction element VM2 ends M 11 (as shown in FIG. 3B). The different voltages VM2 can cause the magnetic field H2 to reverse the direction of the magnetic moment of the free layer FL1 with different magnetic field strengths or different sustain times. In some embodiments, the voltage may be applied to the magnetic tunnel junction element VM2 ends M 11 (as shown in FIG. 3B) and a magnetic field is applied to a direction of the magnetic element M 11 MTJ free layer FL1 The direction of the magnetic moment is reversed. In some embodiments, the opposite may also be through the direction of the magnetic moment of the free layer FL1 magnetic field (or a magnetic field applied to the magnetic tunnel junction 11 the voltage across the element M), perpendicular to the spin magnetic tunnel junction The element M 11 is switched from a high resistance state to a low resistance state.

第4A圖是依據本發明實施例之磁穿隧接面元件M11的示意圖,其中磁穿隧接面元件M11為水平自旋。在此實施例中,磁穿隧接面元件M11之自由層FL2的磁矩方向與固定層PL2的磁矩方向相同,因此第4A圖之磁穿隧接面元件M11具有低電阻狀態。在此情況下,沿著磁穿隧接面元件M11的易磁化軸方向d3施加與自由層FL2的磁矩方向相反的磁場H3,可使自 由層FL2的磁矩方向反轉而與固定層PL2之磁矩方向相反,進而使磁穿隧接面元件M11具有高電阻狀態。 Figure 4A is a schematic view of a magnetic tunnel junction M 11 embodiment of the element according to embodiments of the present invention, wherein the MTJ magnetic element M 11 is a horizontal spin. In this embodiment, the direction of magnetic moments MTJ free layer 11 of the element M to the direction of the magnetic moment of the fixed FL2 layer PL2 of the same, so the magnetic element MTJ of FIG. 4A M 11 has a low resistance state. In this case, d3 is applied to the direction opposite to the magnetic moment of the free magnetic layer FL2 H3 MTJ element along the magnetic easy axis M 11, the direction of the magnetic moment of the free layer FL2 enable reversal of the fixed layer PL2 opposite direction of the magnetic moment, and thus the magnetic MTJ element M 11 having a high resistance state.

在一些實施例中,可施加電壓VM3於磁穿隧接面元件M11的兩端(如第4A圖所示)。不同的電壓VM3可使磁場H3以不同的磁場強度或不同的維持時間使自由層FL2的磁矩方向發生反轉。在一些實施例中,可施加電壓VM3於磁穿隧接面元件M11的兩端(如第4A圖所示)以及施加某一方向之磁場於磁穿隧接面元件M11使自由層FL2的磁矩方向發生反轉。在一些實施例中,亦可透過與自由層FL2之磁矩方向相反之磁場(或一磁場與施加於磁穿隧接面元件M11兩端的電壓),將水平自旋的磁穿隧接面元件M11由高電阻狀態轉換為低電阻狀態。 In some embodiments, the voltage may be applied to both ends of the magnetic VM3 MTJ element M 11 (as shown in FIG. 4A). The different voltages VM3 can cause the magnetic field H3 to reverse the direction of the magnetic moment of the free layer FL2 with different magnetic field strengths or different sustain times. In some embodiments, the voltage may be applied to the magnetic tunnel junction element VM3 ends M 11 (as shown in FIG. 4A) and a magnetic field is applied to a direction of the magnetic element M 11 MTJ free layer FL2 The direction of the magnetic moment is reversed. In some embodiments, the opposite may also be through the direction of the magnetic moment of the free magnetic layer FL2 (or a magnetic field applied to the MTJ element 11 at both ends of the magnetic voltage M), the horizontal spin magnetic tunnel junction The element M 11 is switched from a high resistance state to a low resistance state.

在一些實施例中,可透過在金屬MT流通之電流I1使自由層FL2的磁矩方向發生反轉。在一些實施例中,可透過電流I1與一磁場使自由層FL2的磁矩方向發生反轉。在一些實施例中,可透過電流I1與電壓VM3使自由層FL2的磁矩方向發生反轉。在一些實施例中,可透過電流I1、一磁場與電壓VM3使自由層FL2的磁矩方向發生反轉。 In some embodiments, the direction of the magnetic moment of the free layer FL2 can be reversed by the current I1 flowing through the metal MT. In some embodiments, the magnetic moment direction of the free layer FL2 is reversed by the current I1 and a magnetic field. In some embodiments, the magnetic moment direction of the free layer FL2 is reversed by the current I1 and the voltage VM3. In some embodiments, the magnetic moment direction of the free layer FL2 is reversed by the current I1, a magnetic field and the voltage VM3.

第4B圖是依據本發明實施例之磁穿隧接面元件M11的示意圖,其中磁穿隧接面元件M11為垂直自旋。在此實施例中,磁穿隧接面元件M11之自由層FL2的磁矩方向與固定層PL2的磁矩方向相反,因此第4B圖之磁穿隧接面元件M11具有高電阻狀態。在此情況下,沿著磁穿隧接面元件M11的易磁化軸方向d4施加與自由層FL2的磁矩方向相反的磁場H4,可使自由層FL2的磁矩方向反轉而與固定層PL2之磁矩方向相同,進而使 磁穿隧接面元件M11具有低電阻狀態。 Figure 4B is a schematic diagram of a magnetic M 11 MTJ element according to embodiments of the present invention, wherein the magnetic tunneling junction element M 11 is a vertical spin. In this embodiment, the direction of magnetic moments MTJ free layer 11 of the element M to the direction of the magnetic moment of the fixed FL2 layer PL2 of the opposite, so the magnetic tunnel junction element 11 of Figure 4B M having a high resistance state. In this case, the magnetic moment is applied opposite to the direction of the free magnetic layer FL2 H4 MTJ element along the magnetic easy axis d4 M 11, the direction of the magnetic moment of the free layer FL2 enable reversal of the fixed layer PL2 of the magnetic moment in the same direction, and thus the magnetic MTJ element M 11 has a low resistance state.

在一些實施例中,可施加電壓VM4於磁穿隧接面元件M11的兩端(如第4B圖所示)。不同的電壓VM4可使磁場H4以不同的磁場強度或不同的維持時間使自由層FL2的磁矩方向發生反轉。在一些實施例中,可施加電壓VM4於磁穿隧接面元件M11的兩端(如第4B圖所示)以及施加某一方向之磁場於磁穿隧接面元件M11使自由層FL2的磁矩方向發生反轉。在一些實施例中,亦可透過與自由層FL2之磁矩方向相反之磁場(或一磁場與施加於磁穿隧接面元件M11兩端的電壓),將垂直自旋的磁穿隧接面元件M11由低電阻狀態轉換為高電阻狀態。 In some embodiments, the voltage may be applied to both ends of the magnetic VM4 MTJ element M 11 (as shown in Figure 4B). The different voltages VM4 can cause the magnetic field H4 to reverse the direction of the magnetic moment of the free layer FL2 with different magnetic field strengths or different sustain times. In some embodiments, the voltage may be applied to the magnetic tunnel junction element VM4 ends M 11 (as shown in Figure 4B) and a magnetic field is applied to a direction of the magnetic element M 11 MTJ free layer FL2 The direction of the magnetic moment is reversed. In some embodiments, the opposite may also be through the direction of the magnetic moment of the free magnetic layer FL2 (or a magnetic field applied to the MTJ element 11 at both ends of the magnetic voltage M), perpendicular to the spin magnetic tunnel junction The element M 11 is switched from a low resistance state to a high resistance state.

在一些實施例中,可透過在金屬MT流通之電流I2使自由層FL2的磁矩方向發生反轉。在一些實施例中,可透過電流I2與一磁場使自由層FL2的磁矩方向發生反轉。在一些實施例中,可透過電流I2與電壓VM4使自由層FL2的磁矩方向發生反轉。在一些實施例中,可透過電流I2、一磁場與電壓VM4使自由層FL2的磁矩方向發生反轉。 In some embodiments, the direction of the magnetic moment of the free layer FL2 can be reversed by the current I2 flowing through the metal MT. In some embodiments, the magnetic moment direction of the free layer FL2 is reversed by the current I2 and a magnetic field. In some embodiments, the magnetic moment direction of the free layer FL2 is reversed by the current I2 and the voltage VM4. In some embodiments, the permeable current I2, a magnetic field, and the voltage VM4 reverse the direction of the magnetic moment of the free layer FL2.

基於第3A、3B、4A、4B圖所述之內容,控制裝置CD可透過能量產生電路E施加磁場、電流之至少一者(或磁場、電流、電壓之至少二者)至磁阻式可變電阻電路陣列MCX的磁穿隧接面元件M11-Mmn,藉以改變磁穿隧接面元件M11-Mmn個別的電阻狀態。在一些實施例中,能量產生電路E可包括電壓源、電流源、電磁鐵或可流通電流之導線。 Based on the contents of FIGS. 3A, 3B, 4A, and 4B, the control device CD can apply at least one of a magnetic field and a current (or at least two of a magnetic field, a current, and a voltage) to the magnetoresistive type through the energy generating circuit E. The magnetic tunneling interface elements M 11 -M mn of the resistor circuit array MCX are used to change the individual resistance states of the magnetic tunneling junction elements M 11 -M mn . In some embodiments, the energy generating circuit E can include a voltage source, a current source, an electromagnet, or a wire that can flow current.

在一些實施例中,控制器C控制磁阻式可變電阻電路MC11-MCmn之開關元件(例如電晶體M1或電晶體M2-M3)以 啟動磁阻式可變電阻電路MC11-MCmn。繼之,控制裝置CD透過能量產生電路E提供之能量(例如包括磁場、電流或電壓之能量)將磁阻式可變電阻電路MC11-MCmn初始化至一種電阻狀態(例如高電阻狀態或低電阻狀態)。 In some embodiments, the controller C controls the switching elements of the magnetoresistive variable resistance circuits MC 11 -MC mn (eg, the transistor M1 or the transistors M2-M3) to activate the magnetoresistive variable resistance circuit MC 11 -MC Mn . Then, the control device CD initializes the magnetoresistive varistor circuits MC 11 -MC mn to a resistive state (for example, a high resistance state or low) through energy supplied from the energy generating circuit E (for example, energy including a magnetic field, a current, or a voltage). Resistance state).

基於磁穿隧接面元件M11-Mmn的隨機變化的磁異向性與操作參數的分佈特性(例如因製程飄移使磁穿隧接面元件M11-Mmn個別之自由層的磁矩具有不同的反轉條件),在上述初始化操作完成後,當控制裝置CD將能量產生電路E所產生之第一能量(例如包括磁場、電流或電壓之能量)提供至磁阻式可變電阻電路MC11-MCmn的磁穿隧接面元件M11-Mmn時,磁穿隧接面元件M11-Mmn個別之電阻狀態會隨機地改變(或未改變)且較不受溫度影響,進而達成物理性不可複製功能。 Randomly varying magnetic anisotropy based on magnetic tunneling interface elements M 11 -M mn and distribution characteristics of operating parameters (eg, magnetic moments of individual free layers of magnetic tunneling interface elements M 11 -M mn due to process drift) Having different inversion conditions), after the initialization operation is completed, when the control device CD supplies the first energy generated by the energy generating circuit E (for example, energy including a magnetic field, a current or a voltage) to the reluctance variable resistance circuit When the magnetic tunneling interface elements M 11 -M mn of the MC 11 -MC mn , the individual resistance states of the magnetic tunneling interface elements M 11 -M mn are randomly changed (or unchanged) and are less affected by temperature, In turn, a physical non-reproducible function is achieved.

第5A圖是依據本發明實施例之磁阻式可變電阻電路陣列MCX與磁場H5的操作示意圖。在此實施例中,物理性不可複製功能電路100的m與n等於4。為求簡潔明瞭之目的,第5A圖之磁穿隧接面元件M11-M44的箭頭表示自由層的磁矩方向。 Fig. 5A is a view showing the operation of the magnetoresistive varistor circuit array MCX and the magnetic field H5 according to an embodiment of the present invention. In this embodiment, m and n of the physical non-reproducible functional circuit 100 are equal to four. For the sake of brevity and clarity, the arrows of the magnetic tunneling junction elements M 11 -M 44 of Fig. 5A indicate the direction of the magnetic moment of the free layer.

在此實施例中,控制裝置CD已將磁穿隧接面元件M11-M44初始化至相同的電阻裝態。換句話說,控制裝置CD已將磁穿隧接面元件M11-M44之個別自由層的磁矩方向極化至相同的方向。 In this embodiment, the control device CD has initialized the magnetic tunneling interface elements M 11 -M 44 to the same resistive state. In other words, the control device CD has polarized the magnetic moment directions of the individual free layers of the magnetic tunneling interface elements M 11 -M 44 to the same direction.

如第5A圖所示,控制裝置CD將能量產生電路E所產生之第一能量(亦即磁場H5)提供至磁穿隧接面元件M11-M44,其中第5A圖所示之磁場H5的方向是用以說明之目的,並 不對本發明實施例產生限制。在一些實施例中,磁場H5是沿著與磁穿隧接面元件M11-M44之易磁化軸平行的方向(或沿著與磁穿隧接面元件M11-M44之至少一者的易磁化軸平行的方向),且磁場H5的方向與磁穿隧接面元件M11-M44之自由層的磁矩方向相反。控制裝置CD將磁場H5提供至磁穿隧接面元件M11-M44,藉以基於磁穿隧接面元件M11-M44的隨機變化的磁異向性與操作參數的分佈特性,在磁阻式可變電阻電路陣列MCX產生隨機化分佈的電阻狀態。 As shown in FIG. 5A, the control device CD supplies the first energy (ie, the magnetic field H5) generated by the energy generating circuit E to the magnetic tunneling interface elements M 11 -M 44 , wherein the magnetic field H5 shown in FIG. 5A The direction is for illustrative purposes and does not impose limitations on embodiments of the invention. In some embodiments, the magnetic field H5 is along a direction parallel to the easy axis of magnetization of the magnetic tunneling junction elements M 11 -M 44 (or along at least one of the magnetic tunneling junction elements M 11 -M 44 The axis of the easy magnetization axis is parallel, and the direction of the magnetic field H5 is opposite to the direction of the magnetic moment of the free layer of the magnetic tunneling interface elements M 11 -M 44 . The control device CD supplies the magnetic field H5 to the magnetic tunneling junction elements M 11 -M 44 , whereby the magnetic anisotropy based on the random variation of the magnetic tunneling interface elements M 11 -M 44 and the distribution characteristics of the operational parameters are in the magnetic The resistive variable resistance circuit array MCX produces a randomly distributed resistance state.

在一些實施例中,控制裝置CD將磁場H5提供至磁穿隧接面元件M11-M44後,控制裝置CD判斷具有預定電阻狀態(例如對應邏輯「1」的高電阻狀態或對應邏輯「0」的低電阻狀態)的上述磁穿隧接面元件的漢明權重(Hamming weight)是否在預定數值範圍內。上述漢明權重等於「具有上述預定電阻狀態的上述磁穿隧接面元件的數量」除以「磁穿隧接面元件的總數量」。舉例而言,若上述預定電阻狀態為高電阻狀態且磁穿隧接面元件M11-M44中有8個磁穿隧接面元件為高電阻狀態,則磁穿隧接面元件M11-M44的漢明權重為50%。在一些實施例中,上述預定數值範圍可為40%~60%,藉以確保磁阻式可變電阻電路陣列MCX之磁穿隧接面元件M11-M44的電阻狀態具有隨機性。 In some embodiments, after the control device CD supplies the magnetic field H5 to the magnetic tunneling interface elements M 11 -M 44 , the control device CD determines that it has a predetermined resistance state (eg, a high resistance state corresponding to a logic "1" or a corresponding logic" Whether the Hamming weight of the above-mentioned magnetic tunneling junction element of the low resistance state of 0" is within a predetermined value range. The Hamming weight is equal to "the number of the above-mentioned magnetic tunneling junction elements having the predetermined resistance state" divided by the "total number of magnetic tunneling junction elements". For example, if the predetermined resistance state is a high resistance state and 8 of the magnetic tunneling interface elements M 11 -M 44 are in a high resistance state, the magnetic tunneling interface element M 11 - The Hamming weight of the M 44 is 50%. In some embodiments, the predetermined value may range from 40% to 60%, thereby ensuring a variable resistance circuit reluctance of the magnetic array MCX MTJ device the resistance state of M 11 -M 44 having randomness.

在一些實施例中,若控制裝置CD判斷上述漢明權重是在上述預定範圍之內,則控制裝置CD停止提供磁場H5至磁穿隧接面元件M11-M44。舉例而言,當上述預定範圍是45%~55%且控制裝置CD判斷上述漢明權重是50%時(如第5B圖 所示),控制裝置CD停止提供磁場H5至磁穿隧接面元件M11-M44In some embodiments, if the control device CD determines that the Hamming weight is within the predetermined range, the control device CD stops providing the magnetic field H5 to the magnetic tunneling junction elements M 11 -M 44 . For example, when the predetermined range is 45% to 55% and the control device CD determines that the Hamming weight is 50% (as shown in FIG. 5B), the control device CD stops providing the magnetic field H5 to the magnetic tunneling interface component. M 11 -M 44 .

在一些實施例中,若控制裝置CD判斷上述漢明權重不在上述預定範圍之內,則控制裝置CD提供第二能量(例如磁場、電流之至少一者或磁場、電流、電壓之至少二者)至磁穿隧接面元件M11-M44。在一些實施例中,上述第二能量與上述第一能量相同。在一些實施例中,上述第二能量與上述第一能量不同。在一些實施例中,若控制裝置CD判斷上述漢明權重不在上述預定範圍之內,則控制裝置CD提供不同(或相同)的能量(例如磁場、電流之至少一者或磁場、電流、電壓之至少二者)至磁穿隧接面元件M11-M44,直到控制裝置CD判斷上述漢明權重已在上述預定範圍之內。 In some embodiments, if the control device CD determines that the Hamming weight is not within the predetermined range, the control device CD provides the second energy (eg, at least one of a magnetic field, a current, or at least two of a magnetic field, a current, and a voltage) To the magnetic tunneling junction elements M 11 -M 44 . In some embodiments, the second energy is the same as the first energy. In some embodiments, the second energy is different from the first energy. In some embodiments, if the control device CD determines that the Hamming weight is not within the predetermined range, the control device CD provides different (or the same) energy (eg, at least one of a magnetic field, a current, or a magnetic field, a current, or a voltage). At least two) to the magnetic tunneling junction elements M 11 -M 44 until the control device CD determines that the Hamming weights are within the predetermined range.

在一些實施例中,控制裝置CD在將磁場H5提供至磁穿隧接面元件M11-M44時,隨即判斷上述漢明權重是否在上述預定範圍之內。在一些實施例中,控制裝置CD在將磁場H5提供至磁穿隧接面元件M11-M44並將磁場H5維持一既定時間後,判斷上述漢明權重是否在上述預定範圍之內。 In some embodiments, the control device CD determines whether the Hamming weight is within the predetermined range when the magnetic field H5 is supplied to the magnetic tunneling interface elements M 11 -M 44 . In some embodiments, the control device CD determines whether the Hamming weight is within the predetermined range after the magnetic field H5 is supplied to the magnetic tunneling junction elements M 11 -M 44 and the magnetic field H5 is maintained for a predetermined time.

在一些實施例中,基於磁穿隧接面元件M11-Mmn隨機變化的磁異向性與操作參數的分佈特性,在經過如第5A圖所述之隨機化操作後,不同的物理性不可複製功能電路100之間的漢明距離(Hamming distance)亦可接近50%。上述漢明距離代表不同的物理性不可複製功能電路100之間,「在相對位置的磁阻式可變電阻電路的磁穿隧接面元件中,電阻狀態不同的磁穿隧接面元件的數量」除以「磁穿隧接面元件的總數量」。舉例 而言,若物理性不可複製功能電路100的m與n等於2,在第一個物理性不可複製功能電路100與第二個物理性不可複製功能電路100之間,若第一個物理性不可複製功能電路100之磁穿隧接面元件M11、M12、M21的電阻狀態與第二個物理性不可複製功能電路100之磁穿隧接面元件M11、M12、M21的電阻狀態不同,而第一、第二個物理性不可複製功能電路100個別之磁穿隧接面元件M22的電阻狀態相同,則第一、第二個物理性不可複製功能電路100之間的漢明距離為75%。 In some embodiments, based on the magnetic anisotropy of the magnetic tunneling junction elements M 11 -M mn and the distribution characteristics of the operational parameters, different physical properties after the randomization operation as described in FIG. 5A The Hamming distance between the non-reproducible functional circuits 100 can also be close to 50%. The above Hamming distance represents between the different physical non-reproducible functional circuits 100, "the number of magnetic tunneling interface elements having different resistance states in the magnetic tunneling interface elements of the relative position reluctance type variable resistance circuit Divide by "the total number of magnetic tunneling junction elements". For example, if m and n of the physical non-reproducible functional circuit 100 are equal to 2, between the first physical non-reproducible functional circuit 100 and the second physical non-reproducible functional circuit 100, if the first physical the magnetic circuit is not replication MTJ element of M 11 100, M 12, M 21 and the second resistance state of the physical unclonable function of the magnetic circuit 100 of the MTJ element M 11, M 12, M 21 of The resistance states are different, and the resistance states of the individual magnetic tunneling interface elements M 22 of the first and second physical non-reproducible functional circuits 100 are the same, and the first and second physical non-reproducible functional circuits 100 are Hamming distance is 75%.

在一些實施例中,磁阻式可變電阻電路MC11-MC44之結構如第2A圖所示,且磁穿隧接面元件M11-M44之結構如第3A圖或第3B圖所示,控制電路CD可透過能量產生電路E提供磁場或磁場與電壓至磁阻式可變電阻電路陣列MCX的磁穿隧接面元件M11-M44,藉以在磁阻式可變電阻電路陣列MCX產生隨機化分佈的電阻狀態。在一些實施例中,磁阻式可變電阻電路MC11-MC44之結構如第2B圖所示,且磁穿隧接面元件M11-M44之結構如第4A圖或第4B圖所示,控制電路CD可透過能量產生電路E提供電流或電流、磁場、電壓之至少二者至磁阻式可變電阻電路陣列MCX的磁穿隧接面元件M11-M44,藉以在磁阻式可變電阻電路陣列MCX產生隨機化分佈的電阻狀態。 In some embodiments, the structure of the magnetoresistive varistor circuit MC 11 -MC 44 is as shown in FIG. 2A, and the structure of the magnetic tunneling interface elements M 11 -M 44 is as shown in FIG. 3A or FIG. 3B. The control circuit CD can provide a magnetic field or a magnetic field and a voltage to the magnetic tunneling interface elements M 11 -M 44 of the magnetoresistive variable resistance circuit array MCX through the energy generating circuit E, thereby forming a magnetoresistive variable resistance circuit array. The MCX produces a randomly distributed resistance state. In some embodiments, the structure of the magnetoresistive varistor circuit MC 11 -MC 44 is as shown in FIG. 2B, and the structure of the magnetic tunneling interface elements M 11 -M 44 is as shown in FIG. 4A or FIG. 4B. The control circuit CD can provide at least two currents or currents, magnetic fields, and voltages through the energy generating circuit E to the magnetic tunneling interface elements M 11 -M 44 of the magnetoresistive variable resistance circuit array MCX, thereby making the magnetoresistance The varistor circuit array MCX produces a randomly distributed resistance state.

第6A-6D圖描繪本發明實施例之磁場的維持時間、測試次數與上述磁穿隧接面元件之漢明權重的關係圖。上述磁場是施加在已初始化至一電阻狀態之複數磁穿隧接面元件上,且方向平行於上述磁穿隧接面元件的易磁化軸方向(例如第5A圖)。由第6A-6D圖可知,隨著外加的上述磁場的維持時 間增加,每次施加上述磁場於上述磁穿隧接面元件後,具有一預定電阻狀態(例如高電阻狀態)的上述磁穿隧接面元件的漢明權重具亦隨之增加。 6A-6D are graphs showing the relationship between the sustain time of the magnetic field, the number of tests, and the Hamming weight of the magnetic tunneling junction element in the embodiment of the present invention. The magnetic field is applied to a plurality of magnetic tunneling junction elements that have been initialized to a resistive state and are oriented parallel to the direction of the easy axis of magnetization of the magnetic tunneling junction elements (e.g., Figure 5A). It can be seen from Fig. 6A-6D that with the addition of the above-mentioned magnetic field Increasingly, each time the magnetic field is applied to the magnetic tunneling junction element, the Hamming weight of the magnetic tunneling junction element having a predetermined resistance state (for example, a high resistance state) is also increased.

第7圖是依據本發明實施例之施加於磁穿隧接面元件的電壓(例如VM1-VM4)與翻轉磁場的關係圖。如第7圖所示,將不同的電壓施加於磁穿隧接面元件可改變翻轉磁場的大小。因此在一些實施例中,當施加固定磁場大小至複數磁穿隧接面元件的情況下,電壓(例如VM1-VM4)可改變上述磁穿隧接面元件的漢明權重。 Figure 7 is a graph of voltage applied to a magnetic tunneling junction element (e.g., VM1-VM4) versus a flipped magnetic field in accordance with an embodiment of the present invention. As shown in Fig. 7, applying different voltages to the magnetic tunneling junction elements can change the magnitude of the flipping magnetic field. Thus, in some embodiments, the voltage (e.g., VM1-VM4) may change the Hamming weight of the magnetic tunneling junction element when a fixed magnetic field magnitude is applied to the plurality of magnetic tunneling junction elements.

本發明之部分實施例將磁場方向施加於物理性不可複製功能電路100之磁穿隧接面元件M11-Mmn的易磁化軸。相較於將磁場方向施加於磁穿隧接面元件M11-Mmn的難磁化軸(hard axis)以進行隨機化的實施例,本發明在易磁化軸上施加磁場的實施例可減少在磁阻式可變電阻電路陣列MCX產生隨機化分佈的電阻狀態所需的磁場能量。 Some embodiments of the present invention apply a magnetic field direction to the easy magnetization axis of the magnetic tunneling junction elements M 11 -M mn of the physical non-reproducible functional circuit 100. Embodiments of the present invention for applying a magnetic field on an easy magnetization axis can be reduced in comparison to embodiments in which a magnetic field direction is applied to the hard axis of the magnetic tunneling interface elements M 11 -M mn for randomization. The magnetoresistive variable resistance circuit array MCX generates magnetic field energy required for randomized distribution of resistance states.

舉例而言,在一些實施例中(如第8A-8C圖所示),磁阻式可變電阻電路陣列MCX8具有第一行磁阻式可變電阻電路MC81、第二行磁阻式可變電阻電路MC82、第三行磁阻式可變電阻電路MC83、第四行磁阻式可變電阻電路MC84。第一至第四行磁阻式可變電阻電路MC81-MC84分別具有4個磁阻式可變電阻電路MC,且每一個磁阻式可變電阻電路MC包括一個磁穿隧接面元件M。為求簡潔明瞭之目的,第8A-8C圖之磁穿隧接面元件M的箭頭表示自由層的磁矩方向。 For example, in some embodiments (as shown in Figures 8A-8C), the magnetoresistive varistor circuit array MCX8 has a first row of reluctance varistor circuit MC81, and a second row of reluctance type variable The resistor circuit MC82, the third row magnetoresistive variable resistor circuit MC83, and the fourth row magnetoresistive variable resistor circuit MC84. The first to fourth rows of magnetoresistive variable resistance circuits MC81-MC84 respectively have four magnetoresistive variable resistance circuits MC, and each of the magnetoresistive variable resistance circuits MC includes a magnetic tunneling junction element M. For the sake of brevity and clarity, the arrows of the magnetic tunneling junction element M of Figures 8A-8C represent the direction of the magnetic moment of the free layer.

在第8A圖中,磁阻式可變電阻電路陣列MCX8的磁 穿隧接面元件M皆已被初始化至相同的電阻狀態。在第8B圖中,能量產生電路E2(例如一電磁鐵)提供大部分沿著磁穿隧接面元件M之難磁化軸方向的磁場H8。施加磁場H8的目的是將每個磁穿隧接面元件M之自由層的磁矩方向轉向,使每個磁穿隧接面元件M之自由層的磁矩在磁場H8移除後可隨機地恢復至易磁化軸的方向(可與初始狀態同向或反向),藉此執行磁阻式可變電阻電路陣列MCX8的隨機化操作。 In Figure 8A, the magnetism of the magnetoresistive varistor circuit array MCX8 The tunneling junction elements M have all been initialized to the same resistance state. In Fig. 8B, the energy generating circuit E2 (e.g., an electromagnet) provides a magnetic field H8 that is mostly along the direction of the hard magnetization axis of the magnetic tunneling interface element M. The purpose of applying the magnetic field H8 is to steer the magnetic moment direction of each free layer of the tunneling interface element M so that the magnetic moment of the free layer of each of the magnetic tunneling interface elements M can be randomly after the magnetic field H8 is removed. The direction to the easy magnetization axis (which may be the same or opposite to the initial state) is restored, whereby the randomization operation of the magnetoresistive variable resistance circuit array MCX8 is performed.

本發明之另一些實施例是在易磁化軸上以磁場將部分磁穿隧接面元件的磁矩反轉以進行隨機化的操作,相較於第8B圖之磁場H8必須確保將每個磁穿隧接面元件M之自由層的磁矩方向轉向的操作方式,本發明在易磁化軸上施加磁場的實施例可減少在磁阻式可變電阻電路陣列產生隨機化分佈的電阻狀態所需的磁場能量。 Further embodiments of the present invention are those in which the magnetic moment of a portion of the magnetic tunneling interface element is reversed by a magnetic field on the easy axis to be randomized, and each magnetic field must be ensured compared to the magnetic field H8 of Fig. 8B. The embodiment of the present invention for applying a magnetic field on the easy axis of magnetization of the free layer of the tunneling junction element M can reduce the need to generate a randomly distributed resistance state in the magnetoresistive varistor circuit array. Magnetic field energy.

另一方面,如第8B、8C圖所示,施加沿著磁穿隧接面元件M之難磁化軸方向的磁場以進行隨機化的操作,可能因磁場的方向偏移或誤差,而使隨機化後的磁阻式可變電阻電路陣列MCX8在特定區域具有特定電阻狀態。如第8B、8C圖所示,由於難磁化軸方向的磁場的方向偏移或誤差,磁阻式可變電阻電路陣列MCX8在隨機化(例如第8B圖之內容)完成後,第一行磁阻式可變電阻電路MC81容易出現自由層的磁矩方向反轉,而第四行磁阻式可變電阻電路MC84容易出現自由層的磁矩方向未反轉。由於第8A-8C圖所示之隨機化操作方式對於不同的磁阻式可變電阻電路陣列MCX8皆會造成相似的影響,因此不同的磁阻式可變電阻電路陣列MCX8在使用第8A-8C圖所 示之隨機化操作方式後,不同的磁阻式可變電阻電路陣列MCX8彼此的漢明距離可能會偏低(因不同的磁阻式可變電阻電路陣列MCX8的第一、第四行磁阻式可變電阻電路MN81、MC84容易出現相似的電阻狀態分佈)。 On the other hand, as shown in FIGS. 8B and 8C, the magnetic field in the direction of the hard magnetization axis of the magnetic tunneling interface element M is applied to perform randomization operation, which may be random due to the direction shift or error of the magnetic field. The magnetoresistive variable resistance circuit array MCX8 has a specific resistance state in a specific region. As shown in FIGS. 8B and 8C, the magnetic field of the magnetoresistive varistor circuit array MCX8 is completed after randomization (for example, the content of FIG. 8B), due to the direction shift or error of the magnetic field in the direction of the hard magnetization axis. The resistive variable resistance circuit MC81 is prone to reverse the magnetic moment direction of the free layer, and the fourth row of the magnetoresistive variable resistance circuit MC84 is prone to the fact that the magnetic moment direction of the free layer is not reversed. Since the randomized operation mode shown in FIG. 8A-8C has a similar effect on different magnetoresistive variable resistance circuit arrays MCX8, different magnetoresistive variable resistance circuit arrays MCX8 are in use of the 8A-8C. Map After the randomized operation mode, the Hamming distances of different magnetoresistive variable resistance circuit arrays MCX8 may be low (because of the first and fourth rows of magnetoresistance of different magnetoresistive variable resistance circuit array MCX8) The variable resistance circuits MN81, MC84 are prone to similar resistance state distributions).

由此可知,相較於將磁場方向施加於磁穿隧接面元件M11-Mmn之難磁化軸的實施例,本發明之部分實施例將磁場方向施加於磁穿隧接面元件M11-Mmn的易磁化軸的操作方式,可減少在磁阻式可變電阻電路陣列MCX產生隨機化分佈的電阻狀態所需的磁場能量,並且在多個物理性不可複製功能電路100之間產生較佳的漢明距離。 It can be seen that some embodiments of the present invention apply a magnetic field direction to the magnetic tunneling interface element M 11 as compared to the embodiment in which the magnetic field direction is applied to the hard magnetization axis of the magnetic tunneling interface elements M 11 -M mn . The operation mode of the easy magnetization axis of -M mn can reduce the magnetic field energy required to generate a randomly distributed resistance state in the magnetoresistive variable resistance circuit array MCX, and is generated between the plurality of physical non-reproducible functional circuits 100 The preferred Hamming distance.

在一些實施例中,可同時施加磁場H8至磁阻式可變電阻電路陣列MCX8以及施加電壓至磁阻式可變電阻電路陣列MCX8之個別的磁穿隧接面元件M,使每個磁穿隧接面元件M之自由層的磁矩在磁場H8移除後可隨機地恢復至易磁化軸的方向(可與初始狀態同向或反向),藉此執行磁阻式可變電阻電路陣列MCX8的隨機化操作。 In some embodiments, the magnetic field H8 can be simultaneously applied to the magnetoresistive variable resistance circuit array MCX8 and the individual magnetic tunneling interface elements M applied to the magnetoresistive variable resistance circuit array MCX8 for each magnetic wear. The magnetic moment of the free layer of the tunnel face element M can be randomly restored to the direction of the easy magnetization axis (which can be in the same direction or opposite to the initial state) after the magnetic field H8 is removed, thereby performing the magnetoresistive variable resistance circuit array Randomization of MCX8.

第9A圖是依據本發明實施例之磁阻式可變電阻裝置D的示意圖。磁阻式可變電阻裝置D包括控制裝置CD與磁阻式可變電阻電路陣列MCX2。磁阻式可變電阻電路陣列MCX2包括磁阻式可變電阻電路陣列MCX與磁阻式隨機存取記憶體(MRAM)單元陣列MR。控制裝置CD與磁阻式連接可變電阻電路陣列MCX且構成物理性不可複製功能電路100。 Fig. 9A is a schematic view of a magnetoresistive type variable resistance device D according to an embodiment of the present invention. The magnetoresistive variable resistance device D includes a control device CD and a magnetoresistive variable resistance circuit array MCX2. The magnetoresistive variable resistance circuit array MCX2 includes a magnetoresistive variable resistance circuit array MCX and a magnetoresistive random access memory (MRAM) cell array MR. The control device CD and the magnetoresistive type are connected to the variable resistance circuit array MCX and constitute a physical non-reproducible function circuit 100.

如第9A圖所示,物理性不可複製功能電路100之磁阻式可變電阻電路陣列MCX可與磁阻式隨機存取記憶體單元 陣列整合(例如使用相同的電路架構),藉此減少電路尺寸。 As shown in FIG. 9A, the magnetoresistive variable resistance circuit array MCX of the physical non-reproducible functional circuit 100 can be connected with the magnetoresistive random access memory unit. Array integration (eg using the same circuit architecture), thereby reducing circuit size.

第9B圖是依據本發明實施例之磁阻式可變電阻裝置D2的示意圖。磁阻式可變電阻裝置D2包括兩個控制裝置CD與磁阻式可變電阻電路陣列MCX3。磁阻式可變電阻電路陣列MCX3包括兩個磁阻式可變電阻電路陣列MCX與磁阻式隨機存取記憶體單元陣列MR2。兩個控制裝置CD分別與兩個磁阻式可變電阻電路陣列MCX以構成兩個物理性不可複製功能電路100。 Fig. 9B is a schematic view of a magnetoresistive type variable resistance device D2 according to an embodiment of the present invention. The magnetoresistive variable resistance device D2 includes two control devices CD and a magnetoresistive variable resistance circuit array MCX3. The magnetoresistive variable resistance circuit array MCX3 includes two magnetoresistive variable resistance circuit arrays MCX and a magnetoresistive random access memory cell array MR2. The two control devices CD and the two magnetoresistive variable resistance circuit arrays MCX respectively constitute two physical non-reproducible functional circuits 100.

在一些實施例中,其中一個物理性不可複製功能電路100用以產生一次性的物理性不可複製功能金鑰(key),而另一個物理性不可複製功能電路100用以在每次傳輸資料時產生識別碼。如第9B圖所示,兩個物理性不可複製功能電路100之磁阻式可變電阻電路陣列MCX皆可與磁阻式隨機存取記憶體單元陣列MR2整合(例如使用相同的電路架構),藉此減少電路尺寸。 In some embodiments, one of the physical non-reproducible functional circuits 100 is used to generate a one-time physical non-reproducible function key, and the other physical non-reproducible functional circuit 100 is used to transmit data each time. Generate an identification code. As shown in FIG. 9B, the magnetoresistive variable resistance circuit array MCX of the two physical non-reproducible functional circuits 100 can be integrated with the magnetoresistive random access memory cell array MR2 (for example, using the same circuit architecture). This reduces the circuit size.

第10圖是依據本發明實施例之物理性不可複製功能電路之控制方法的流程圖。在步驟101中,將複數磁阻式可變電阻電路之磁穿隧接面元件初始化至一電阻狀態。在步驟102中,施加一第一能量(例如包括磁場、電流或電壓之能量)至該等磁穿隧接面元件。在步驟103中,判斷具有一預定電阻狀態的上述磁穿隧接面元件的一漢明權重是否在一預定數值範圍內。若是,方法結束於步驟105;若不是,方法進入步驟104。在步驟104中,施加一第二能量(例如包括磁場、電流或電壓之能量)至該等磁穿隧接面元件。在步驟105中,停止施加 該第一能量至該等磁穿隧接面元件。 Figure 10 is a flow chart showing a method of controlling a physical non-reproducible function circuit in accordance with an embodiment of the present invention. In step 101, the magnetic tunneling interface component of the complex magnetoresistive varistor circuit is initialized to a resistive state. In step 102, a first energy (eg, energy including a magnetic field, current, or voltage) is applied to the magnetic tunneling junction elements. In step 103, it is determined whether a Hamming weight of the magnetic tunneling junction element having a predetermined resistance state is within a predetermined range of values. If so, the method ends at step 105; if not, the method proceeds to step 104. In step 104, a second energy (eg, energy including a magnetic field, current, or voltage) is applied to the magnetic tunneling junction elements. In step 105, the application is stopped. The first energy is to the magnetic tunneling junction elements.

在一些實施例中,上述第二能量與上述第一能量相同。在一些實施例中,上述第二能量與上述第一能量不同。 In some embodiments, the second energy is the same as the first energy. In some embodiments, the second energy is different from the first energy.

在一些實施例中,該第一能量包括維持一既定時間的一磁場。該磁場之方向與該等磁穿隧接面元件之至少一個磁穿隧接面元件的易磁化軸的方向平行。 In some embodiments, the first energy comprises a magnetic field that is maintained for a predetermined time. The direction of the magnetic field is parallel to the direction of the easy axis of magnetization of at least one of the magnetic tunneling interface elements.

在一些實施例中,該等磁阻式可變電阻電路為自旋軌道記憶體單元,且每一個上述磁穿隧接面元件各自連接一金屬導線。該第一能量包括流經該金屬導線的一電流。 In some embodiments, the magnetoresistive variable resistance circuits are spin-orbit memory cells, and each of the magnetic tunneling junction elements is connected to a metal wire. The first energy includes a current flowing through the metal wire.

本發明實施例雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The embodiments of the present invention are disclosed in the above preferred embodiments, and are not intended to limit the scope of the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

Claims (12)

一種物理性不可複製功能電路,包括:一控制裝置,包括一能量產生電路與一控制器;以及一第一磁阻式可變電阻電路陣列,耦接該控制裝置,且該第一磁阻式可變電阻電路陣列包括複數磁阻式可變電阻電路,每一個上述磁阻式可變電阻電路包括一磁穿隧接面元件;其中,該控制裝置將該等磁穿隧接面元件初始化至一電阻狀態後,該控制裝置提供一第一能量至該等磁穿隧接面元件,且該控制裝置判斷具有一預定電阻狀態的上述磁穿隧接面元件的一漢明權重是否在一預定數值範圍內,其中該漢明權重為具有該預定電阻狀態的該等磁穿隧接面元件的數量 除以 該等磁穿隧接面元件的總數量 。 A physical non-reproducible function circuit includes: a control device including an energy generating circuit and a controller; and a first magnetoresistive variable resistance circuit array coupled to the control device, and the first magnetoresistive type The variable resistance circuit array includes a plurality of magnetoresistive variable resistance circuits, each of the magnetoresistive variable resistance circuits including a magnetic tunneling junction element; wherein the control device initializes the magnetic tunneling interface elements to After a resistance state, the control device provides a first energy to the magnetic tunneling junction elements, and the control device determines whether a Hamming weight of the magnetic tunneling junction element having a predetermined resistance state is at a predetermined time Within the numerical range, wherein the Hamming weight is the number of the magnetic tunneling junction elements having the predetermined resistance state divided by the total number of the magnetic tunneling junction elements. 如申請專利範圍第1項所述之物理性不可複製功能電路,其中,若該漢明權重在該預定數值範圍內,則該控制裝置停止提供該第一能量至該等磁穿隧接面元件。 The physical non-reproducible function circuit of claim 1, wherein the control device stops providing the first energy to the magnetic tunneling junction elements if the Hamming weight is within the predetermined value range . 如申請專利範圍第1項所述之物理性不可複製功能電路,其中,若該漢明權重不在該預定數值範圍內,則該控制裝置提供一第二能量至該等磁穿隧接面元件。 The physical non-reproducible function circuit of claim 1, wherein the control device provides a second energy to the magnetic tunneling junction elements if the Hamming weight is not within the predetermined value range. 如申請專利範圍第1項所述之物理性不可複製功能電路,其中,該第一能量包括維持一既定時間的一磁場;其中,該磁場之方向與該等磁穿隧接面元件之至少一個磁穿隧接面元件的易磁化軸的方向平行。 The physical non-reproducible function circuit of claim 1, wherein the first energy comprises a magnetic field maintained for a predetermined time; wherein the direction of the magnetic field and at least one of the magnetic tunneling interface elements The direction of the easy magnetization axis of the magnetic tunneling junction element is parallel. 如申請專利範圍第1項所述之物理性不可複製功能電 路,其中,該第一能量包括一磁場與個別施加於該等磁穿隧接面元件的一電壓。 The physical non-reproducible function as described in item 1 of the patent application scope The circuit, wherein the first energy comprises a magnetic field and a voltage applied to the magnetic tunneling interface elements individually. 如申請專利範圍第1項或第5項所述之物理性不可複製功能電路,其中,該等磁阻式可變電阻電路為自旋軌道記憶體單元,且每一個上述磁穿隧接面元件各自連接一金屬導線;其中,該第一能量包括流經該金屬導線的一電流。 The physical non-reproducible function circuit according to claim 1 or 5, wherein the magnetoresistive variable resistance circuit is a spin track memory unit, and each of the magnetic tunneling interface elements Each is connected to a metal wire; wherein the first energy includes a current flowing through the metal wire. 如申請專利範圍第1項所述之物理性不可複製功能電路,其中,該等磁阻式可變電阻電路為自旋軌道記憶體單元,且每一個上述磁穿隧接面元件各自連接一金屬導線;其中,該第一能量包括一磁場、個別施加於該等磁穿隧接面元件的一電壓與流經該金屬導線的一電流之至少其中之二。 The physical non-reproducible function circuit according to claim 1, wherein the magnetoresistive variable resistance circuit is a spin track memory unit, and each of the magnetic tunneling interface elements is connected to a metal a wire; wherein the first energy comprises a magnetic field, at least two of a voltage applied to the magnetic tunneling junction elements and a current flowing through the metal wires. 一種磁阻式可變電阻裝置,包括:如申請專利範圍第1項所述之物理性不可複製功能電路;以及一第二磁阻式可變電阻電路陣列,包括該第一磁阻式可變電阻電路陣列以及一磁阻式隨機存取記憶體單元陣列。 A magnetoresistive variable resistance device comprising: the physical non-reproducible functional circuit according to claim 1; and a second magnetoresistive variable resistance circuit array including the first magnetoresistive variable A resistor circuit array and a magnetoresistive random access memory cell array. 一種物理性不可複製功能電路之控制方法,包括:將複數磁阻式可變電阻電路之磁穿隧接面元件初始化至一電阻狀態後,施加一第一能量至該等磁穿隧接面元件;以及判斷具有一預定電阻狀態的上述磁穿隧接面元件的一漢明權重是否在一預定數值範圍內,其中該漢明權重為具有該預定電阻狀態的該等磁穿隧接面元件的數量 除以 該等磁穿隧接面元件的總數量 。 A method for controlling a physical non-reproducible functional circuit includes: initializing a magnetic tunneling interface component of a plurality of magnetoresistive variable resistance circuits to a resistance state, applying a first energy to the magnetic tunneling junction components And determining whether a Hamming weight of the magnetic tunneling junction element having a predetermined resistance state is within a predetermined value range, wherein the Hamming weight is the magnetic tunneling junction element having the predetermined resistance state The number is divided by the total number of such magnetic tunneling junction elements. 如申請專利範圍第9項所述之物理性不可複製功能電路之控制方法,更包括:若該漢明權重在該預定數值範圍內,則停止施加該第一能量至該等磁穿隧接面元件;以及若該漢明權重不在該預定數值範圍內,則施加一第二能量至該等磁穿隧接面元件。 The method for controlling a physical non-reproducible function circuit according to claim 9 further includes: if the Hamming weight is within the predetermined value range, stopping applying the first energy to the magnetic tunneling junctions An element; and if the Hamming weight is not within the predetermined range of values, applying a second energy to the magnetic tunneling junction elements. 如申請專利範圍第9項所述之物理性不可複製功能電路之控制方法,其中,該第一能量包括維持一既定時間的一磁場;其中,該磁場之方向與該等磁穿隧接面元件之至少一個磁穿隧接面元件的易磁化軸的方向平行。 The control method of the physical non-reproducible function circuit according to claim 9, wherein the first energy comprises a magnetic field maintained for a predetermined time; wherein the direction of the magnetic field and the magnetic tunneling interface element The direction of the easy magnetization axis of at least one of the magnetic tunneling interface elements is parallel. 如申請專利範圍第9項所述之物理性不可複製功能電路之控制方法,其中,該等磁阻式可變電阻電路為自旋軌道記憶體單元,且每一個上述磁穿隧接面元件各自連接一金屬導線;其中,該第一能量包括流經該金屬導線的一電流。 The method for controlling a physical non-reproducible function circuit according to claim 9, wherein the magnetoresistive variable resistance circuit is a spin track memory unit, and each of the magnetic tunneling interface elements is Connecting a metal wire; wherein the first energy comprises a current flowing through the metal wire.
TW106113250A 2016-10-06 2017-04-20 Puf circuit, magnetoresistive device and puf control method TWI624835B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710367962.4A CN107919375B (en) 2016-10-06 2017-05-23 Variable resistance device, physical unclonable function circuit and control method
US15/659,572 US10090033B2 (en) 2016-10-06 2017-07-25 PUF circuit and magnetoresistive device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662404880P 2016-10-06 2016-10-06
US62/404,880 2016-10-06

Publications (2)

Publication Number Publication Date
TW201814706A TW201814706A (en) 2018-04-16
TWI624835B true TWI624835B (en) 2018-05-21

Family

ID=62639398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106113250A TWI624835B (en) 2016-10-06 2017-04-20 Puf circuit, magnetoresistive device and puf control method

Country Status (1)

Country Link
TW (1) TWI624835B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694778B2 (en) * 2010-11-19 2014-04-08 Nxp B.V. Enrollment of physically unclonable functions
US20150074433A1 (en) * 2013-09-09 2015-03-12 Qualcomm Incorporated Physically unclonable function based on breakdown voltage of metal- insulator-metal device
US9214214B2 (en) * 2013-09-09 2015-12-15 Qualcomm Incorporated Physically unclonable function based on the random logical state of magnetoresistive random-access memory
US9230630B2 (en) * 2013-09-09 2016-01-05 Qualcomm Incorporated Physically unclonable function based on the initial logical state of magnetoresistive random-access memory
WO2016018503A1 (en) * 2014-07-30 2016-02-04 University Of South Florida Magnetic memory physically unclonable functions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694778B2 (en) * 2010-11-19 2014-04-08 Nxp B.V. Enrollment of physically unclonable functions
US20150074433A1 (en) * 2013-09-09 2015-03-12 Qualcomm Incorporated Physically unclonable function based on breakdown voltage of metal- insulator-metal device
US9214214B2 (en) * 2013-09-09 2015-12-15 Qualcomm Incorporated Physically unclonable function based on the random logical state of magnetoresistive random-access memory
US9230630B2 (en) * 2013-09-09 2016-01-05 Qualcomm Incorporated Physically unclonable function based on the initial logical state of magnetoresistive random-access memory
WO2016018503A1 (en) * 2014-07-30 2016-02-04 University Of South Florida Magnetic memory physically unclonable functions

Also Published As

Publication number Publication date
TW201814706A (en) 2018-04-16

Similar Documents

Publication Publication Date Title
CN107919375B (en) Variable resistance device, physical unclonable function circuit and control method
US8289759B2 (en) Non-volatile memory cell with precessional switching
WO2016159017A1 (en) Magnetic resistance effect element, magnetic memory device, manufacturing method, operation method, and integrated circuit
JP5648940B2 (en) Apparatus, method and memory cell for controlling a magnetic field in a magnetic tunnel junction
CN110447074A (en) Spin(-)orbit torque MRAM memory cell with enhancing thermal stability
US10897364B2 (en) Physically unclonable function implemented with spin orbit coupling based magnetic memory
Lee et al. Design of a fast and low-power sense amplifier and writing circuit for high-speed MRAM
Bandyopadhyay et al. Magnetic straintronics: Manipulating the magnetization of magnetostrictive nanomagnets with strain for energy-efficient applications
US11538985B2 (en) Method for configuring reconfigurable physical unclonable function based on device with spin-orbit torque effect
US20100174766A1 (en) Magnetic Precession Based True Random Number Generator
US9576635B2 (en) Thermally-assisted magnetic writing device
Lee et al. Analysis and compact modeling of magnetic tunnel junctions utilizing voltage-controlled magnetic anisotropy
US20170372761A1 (en) Systems for Source Line Sensing of Magnetoelectric Junctions
CN106558333B (en) Spin transfer torque MAGNETIC RANDOM ACCESS MEMORY including annular magnet tunnel knot
KR20060135738A (en) Improved magnetic switching
WO2012151007A2 (en) Magnonic magnetic random access memory device
Lim et al. Programmable Spin–Orbit‐Torque Logic Device with Integrated Bipolar Bias Field for Chirality Control
Verma et al. Spintronics-based devices to circuits: Perspectives and challenges
Zhang et al. Demonstration of multi-state memory device combining resistive and magnetic switching behaviors
Sharma et al. Compact-device model development for the energy-delay analysis of magneto-electric magnetic tunnel junction structures
Cao et al. Reconfigurable physical unclonable function based on spin-orbit torque induced chiral domain wall motion
WO2021091484A1 (en) Magnetic logic device, circuit having magnetic logic devices, and methods for controlling the magnetic logic device and the circuit
TWI624835B (en) Puf circuit, magnetoresistive device and puf control method
Das et al. A Fokker–Planck approach for modeling the stochastic phenomena in magnetic and resistive random access memory devices
Zhao et al. Purely electrical controllable spin–orbit torque‐based reconfigurable physically unclonable functions